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A UNIFYING FRAMEWORK FOR SYSTOLIC DESIGNS

o ) Concettina Guerra
. .. Department of Computer Sciences, Purdue University
West lafayette, Indiana 47907

ABSTRACT

A systematic methodology to synthesize systolic designs is described and used to derive a new design for
dynamic programming. This latter design uses fewer processing elements than previously considered ones. The
synthesis method consists of two parts: 1) deriving from the high-level problem specification a form more suitable
1o VLSI implementation; 2) mapping the new specification into physical hardware. The method also provides a
unifying framework for existing systolic algorithms.

1. INTRODUCTION

In recent years, a large number of VLSI algorithms have been designed for such problems as matrix multi-
plication, linear systems, convolution, etc. The mapping of an algorithm into an array of processing elements has
been usually done in an ad-hoc manner. This is a difficult and error-prone task, especially for complex nonnumer-
ical problems. A synthesis procedure can save a considerable amount of design effort and, at the same time,
guarantee the correctness of the result. Recently, there have been various atiempts to formalize the procedure for
mapping algorithms into physical hardware. Their appraisal is in [2].

Among all the existing approaches, the transformational approach based on data dependencies proved to be
very powerful [1, 7-13). However, such an approach can be applied only to a restricted class of algorithms,
namely, algorithms with highly regular communication patterns. Such algorithms are generally expressed by a
uniform recurrence relation, or 2 nested loop with constant data dependencies. Many algorithros involve non-
uniform recurrences or many nested loops with additional statements between the loops. These algorithms are
sometimes implemented on VLSI networks with variable-speed data fiow. An example is dynamic¢ programming
as applied to the optimal parenthesization problem.

In [5), a systolic algorithm for dynamic programming was proposed which can be cast in a triangular array
of processing elements. The systolic design is quite complex: the data flow is non constant throughout the array
and the action of a processing element varies at different clock cycles. Attempts have been made to synthesize
non-uniform designs, concentrating on various aspects of the design process [1,4,9]). The crucial step towards
the automatization of the design is in the ability to rewrite the algorithm in a form better suited to VLSI imple-
meniation. The synthesis procedure described here attempis to soive this problem. It operates both at the algo-
rithmic level and implementation level. Thus, it consists of two parts: 1) transforming the given problem
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array. The high-level problem specification is rewritlen as 2 system of murually depandent rccurrence relations.
This is accomplished by a two-step procedure . The procedure first delermines a coarse dming function for the
computations in the high-level specification and then uses it to identify chains of linearly dependent computa-
dons. Each such chain can be converted into a recurrence with constant data dependencies, Staiements between
recurrences are introduced to correlate variables in distinct recurrences. Next the mapping of the new form into
VLSI hardware is obtained by applying linear time and space ransformations 1o the individual recurrences, sub-
ject to global constraints. Such transformations are again based on data dependencies.

Using this procedure we transform the dynamic programming algorithm into a system of two dependent
recurrence relations. In addition to rederiving the design presented in [5], we are able to automaidcally generate
another design which obtains a better utilization of the processing elements and therefore requires fewer cells in
the array; precisely, 3/8r2 instead of n%/2.

This paper is organized as follows. In section 1 the synthesis method is illustrated for the derivation of a sys-
tolic algorithm for dynamic programming. Next, lime and space transformations to map the new form inio
hardware are described in sections 2. The new design for dynamic programming is presented in section 3. It is
also shown that the application of the proposed methodology to obtain other systolic designs such as convolution
and palindrome recognition exploits interesting similarities among such problems.

1. DERIVATION OF A SYSTOLIC ALGORITHM FOR DYNAMIC PROGRAMMING

The dynamic programming can be expressed by é recurrence of the form:

1<i<n; i<j<n

Ci,j =My FCi gy €k, j) oY)

with initial conditions:
Ciivl =€ 1<i<n
for some function f. The recurrence above defines an index set I3={(i j k) | 1<i< JEnii<k<j} for dll the
computations and also a set I2={(i,j) | 1i< j<n} of index pairs associated to variable ¢. Variable ¢
appearing on both sides of (1) introduces non-constant data dependencies. A dependence vecior is defined as the
difference of the index vectors of the variable on the left and right side of any assignment statement [8). Data
dependence vectors in (1) are different for different vectors of the index set /2. Dependencies relative 1o the vector
(i ,j) can be represented by the columns of the following dependence matrix:
(0 -k
Dy, D ha j=k 0

which can be expanded in the matrix below, where each column corresponds to a different value of the index k.

0 « 00-1-2 - i=j+

D ooy =
GNT1jq1- 2100 ~ 0

Our aim is to ransform expression (1) into a new form which consists of possibly many recurrences each
characterized by constant data dependencies; non-constant data dependencies may only occur at the boundaries
berween the recurrences. For each such recurrence it will be possible to determine a linear time-space transforma-
ton into a systolic array, by applying the transformational method described in [11, 13]. We brefly review the
tranformational method for uniform recurrences.




Mapping a uniform recurrence into a VLS! array

Consider a recurrence with index set /* defined by:
c@=f (c(-ad),...c(-d,))
where f is a given function and 7 is a vector of /”. The recurrence is said to be uniform if the data dependence
veclors 4y, . . ., d; are constant. Let D={d, - - - 4. It is possible, under certain conditions, to automatically map a
uniform recurrence into a VLSI array.

We consider the following simplified model of a VLSI array. Each processor of the airay 1s assigned a
label JeL” }c Z”7! . The connection patiern of the armay is described by the matrix A=<[8,,5,, .. .,5,] which

specihes the links among the processors. Precisely, 3; is the difference vector of the integer labels of adjacent
cells in the network.

A linear ime-space transformation of the indexed computations into the VLSI array is defined by:
I .
=[]
where T is a mapping form /* — Z and S is a mapping from /* — L""!, The time function T transforms D
into TD . Thus, 1o ensure a correct execution ordering, 7 must satisfy the following condition;

T(d) >0 foreach d;eD )

System (2) may have no solution or several solutions. In this later case, the one which minimizes the total execu-
tion time (defined as the difference between the maximum and minimum value of 7 )is chosen.

The space mapping S is a mapping from the set of computations to the set of processing elements
S:I"— "]

such that for eachi,j € I"

SW=S () implies TE=T() (3)

le. concurrent computations cannot be mapped into the same processor. Determining a solution for § which
satisfies constraint (3) is equivalent to solve diophantine equations:

SD =AK @)

for which the matrix [; ]is non-singular, X is an integer matrix with positive elements. The equations may have
no solution or several solutions. If no feasible solution is found, the design procedure is repeated by starting with
a different timing function or else a different interconnection network. If several solurions are possible, the one
which is optimal according to some criterion is chosen.

A mwo-step procedure for dynamic programming

To adapt expression (1) to systolic implementation, we first eliminate broadcasting by 1) adding missing
indeces to variables on both sides of the expression, 2) renaming variables, 3) intreducing new variables. How-
ever, as is well known, there are many ways to perform such transformations some of which may not lead to any
feasible systolic design. The selection of a good transformation is crucial to the entire design process; for com-
plex problems such as dynamic programming this is not a straightforward task. In order to add the index # 1o
variable c; ; on the left side of (1), we need to specify an appropriate ordering for the computations ¢; ;, for
given [, j and fori < k < j, in such a way to inroduce as much parallelism as possible. If we choose, say, the
lexicographical ordering relative to index k, we cannot overlap computations of ¢; J.& for different values of
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Our strategy 10 select the appropriate transformation comsists of identifying among the compurations
indexed by the ser J3 = {(i, j, k) | i,j are given and i< k < j} chains of linearly dependent computations,
i.c. computations which have 1o performed in a certain order. To accomplish that, we first determine a coarse lim-
ing function for the computations indexed by /2. The transformational method described above applies only when
constant data dependencies are present. Thus we extract from recurrence (1) a subset of constant data dependen-
cies and derive a linear time transformation 7 based only on such subset. It obvious that if 7 is an actual timing
function for /% then it must be ©(Z,j) 2 T(i,j) for each (i,j)el? The set D; ; contains non-constant dependen-
cies; however, the intersection of D ; for all the index vectors (i,J) contains only dependencies which are valid
in any point of /2. Let us denote such intersection by D.

D= I 0

A linear time transformation T : 72— Z compatible with the subset D c¢an be obtained as described above, T
must satsfy (2), that is
Td)>0 for anyde D
Thus the coefficients of T =[T; T';] must satsfy
T1>0 and 7T,5-1
The least integer values that sasfy the above equations are:
T)=0 and Tp=-1.
Thus, the optimal time transformation is:
T{.j)=Jj-1i.
The function T will guide the search for a schedule of computations indexed by J3 according to the availability of
the variables ¢; ; and ¢y ; on the right side of (1). Because of the menotonocity of data dependencies in Dy ;y , it
must be T(f,j) > T({"jYIf T{,j)> T{'j?). According to function T, we inmoduce a partial ordering > in
J? defined by: ' '

(k) > (ke Max{ TE )T )} > Max { TG DT j)}

Notice that the minimal elements with respect to > are:

(. j. G+)2) ifi+jisevenor
G, . G+j=1)2) and (i, j, (i+j+1)2)  if i+/ is odd.

A partial ordering produces a decomposition of the set into chains of linearly ordered computations. Among all
the possible chain decompositions of J3, we select the one in which the index vectors of a chain are also sored
(either in increasing or decreasing order ) according to the third index k.

To obiain such a decomposition we repeatedly find minimal elements after removing the previous minimal
elements from the ordered set For the set J° we obtain a decomposition in two chains (here we only write the
third component of the index vectors):

{if (+j) is even}

(Y2, i+ Y21, ..., i+]; and G+ )2+1, i+ 2+2, ..., j-L.

{if (i4]) is odd}

(=102, (+j-1)/2-1, ..., i+]; and  (i+j+1)2, (i+j+1)/24], ..., j=1;



We are now able 1o restructure (1) inte a system of two recurrences or modules, cach corresponding 1o a
chain. The execution ordering of computations in cach recurrence is specified according 1o the ordering in the
chain. Thus, the first recurrence is a forward recurrence where the index & varics from (i+/)2 1o i+1 (or from
(i+j-1)2 to i+1 if i+/ is odd); and the second is a backward recurrence where k varies from (i+;)/2 10 J—=1(or
from (i+/+1)/2 to j—1 if i+/ is odd) . The two recurrences have different sets of variables; boundary conditions
relate variables in the two recurrences. Now equations (1) can be converted into the following form.

foriz=110n—1d0 @; 111, is1'=C;, i41s Ci, ivd, 41°= €7, i42;
forfi=2 ton-1do

fori:=110 n do begin

Jj=i+
if (f+f)=even) then begin
k=012,
Al: ﬂ;,j, k= a;:j—l,k;
A2: If k=i+1 then b;.j. ki =Cis, . else b,:‘j' k= b;+1.j, ks

ciy k=1 k. bi k) C.; k=G
end
else begin  {i+j=odd};
=(+f-1)/2;
ﬂ;, k= a;. ks
if k=i+1 then b,;.j_ ki =Cia else b;_j_ E= b;+l,j. i\
¢i e =G biix)
k= (i+j+1)/2;

A3: if ko= j—-l then a; ;== c; jy jy €lS€ a7 4 = a1y
Ad: b;:j.k = b1k
ci k= Fa k. bijk);
end
for k:= [(i+j—1)2 ~ 1] downto i+1 do begin 7
a;,j,k = a;,j—l.k;
I k= i+ then by ; gai= iy, ; €1S€ b7 j g = biay 43 module 1
Cijr=h (C;,j.kva(ar:.j.k b))
end; .

for k:= |(f+j+1)/2 +1] 10 j~1 do begin

ifk=j-ltheng; ; ,:=¢; j-Lj-18lse a; ;o =ag i ks module 2
bij ok =bis1j
Cijok= h(Cj S (@ j kb j i)

- end;
AS: €= R e € et

end;




The two-sicp mapping procedure can be generalized 10 any recurrence with index set [~

I"={(y, ..., i) | I]<iy<IF, ... 1<, <12} of the form:
(@) = fle@—aD, ... c(*~ d5))

where:
5 =n-1,;
#*=(i;, ..., i;) is an s-ruple of indeces of the loop;
gf=(a]v -0 Gy, il'_in: 8141, a.r) ' j=l,..,m;
and where g;, 1</<r—-1, 1+1<I<y, are integer constants and i, is the loop index missing on the left side of the

statement, i.e. i,#i for each /=1,..,5s. Each vector Ej. (j=1....,m), represents a non constant data dependence for
variable ¢, since its ¢-th component is a function of the two indeces i, and i, -

2. MAPPING THE ALGORITHM INTO HARDWARE
Timing funcrion

Given the new specificaton of dynamic programming, we extract from each module distinct sets Dyand D,
of constant data dependencies. w

¢’ a b’ ¢ a b”
0 0 -1 100—15
D,= {01 0 D, =101 0
-1 0 0 10 o

Dependencies between variables in distinct modules, referred to as global dependencies, are defined by state-
ments Al 10 A5 in the algorithm. '

We seek a linear time transformation for each separate set of local data dependencies which satisfies global
consiraints. Let A= (A A, A3 ] and 6 = [0 G Gy ] denote the linear time transformations for module 1 and
2, respectively. Furthermore, let T =f 7) 72 73 ] be the timing function for the computation in A5. Such transfor-
mations must satisfy condition (2), that is

Ld>0 fordeD),, od >0 fordeDy;
from which we obtain the system of equations:
A

G, 5-1 0,21 oy2l.

A

-1 21 A<-l

Global dependencies specified by A1-AS lead to the additional equations:

Ai, j, (G+Hi)2) > ofi, j=1, G+j)2)
AG, J, i+ > 1(i+]1, j, /)

ofi, j, j-1)> 1(, j~1. j-1)

o, j, (+j+D/2) > AMi+1, j, ((+j+1)72)
Wi, j. jyzmax[Ad, j, i+1)0(, j, j-1)]

Ir easy 10 check that an optimal solution to the above system, i.e. one which minimizes the execution time, is
given by:



Hence, we obtain the timing functions:
S OAE L) =2k
o ,j.k)= _—_ﬁ£+j+k
(i j.J) =—2i42).

Space function

The automatic procedure for determining the mapping of computations into the cells of a systolic array is
analogous to the one for the niming function. Again, we look for separate solutions to the different modules in the
algorithm subject to global constraints. We consider a 2-D array of processing elements modelled by the pair
[L?A), where L? is the set of labels (x,y) assigned 1o processing elements and A is a matrix describing the inter-
connection network between processing elements. Different interconneciion pattems may result in different
classes of designs. In the following, we generate the optimal design when A is chosen 10 be:

010
0 0-1

A corresponds to a network with unidirectional links, as shown in fig. 1.

LetS’, 5", and § be the space functions for module 1, module 2, and statement A5, respectively.

ISU' S S’ Sii Siz Sn

! S Sz 513|
i

rr L ar

s =
. Sa1 S» Sx

Sat" Sz Sz’

In addition to satisfy condition (4), the coefficients of §*, S”, and S must satisfy the constraints imposed by global
dependencies. Precisely, if a2 global dependence involves two variables belonging to different modules which are
computed at times ¢ and ¢’ with 7—¢'=d then the distance of the cells where the two variables will be mapped
cannot be more than 4. By distance we mean the length of a path consisting of interconnection links between the
two cells. From Al we have:

S i j G+ = 8T i -1 GH2 |+ dy; dieA,
sinee A(i 7, (i+f¥2)yo(i,j—1,(i+i)2) = 1 and, consequently, the two computations must occur either in the same
cell or in adjacent cells. Similarly, from A2-A4 we obtain:

S i j i+l | =8 |i+l j jlI' +dy @ eA;

ST j i1t =8 )i j-1 -1 +ay ds eA;

8" N j w2 ) = S i+l @2 + 2, d;=8; +3; §;.5;eh;

S jjlt =84 ji+l|'+ds ds €A



One solution 1o above system of equations is:
511 =813=0;81 =1 Sy =833 =0; S5 =1
for the first recurrence and:
Sn=Sp=0Sp=1  Sp=Sp3=05;=1
_forthe second recurrence. Thus
SG.jk)= s"_(f_,j,k) =8E.JjJy=U.0.

The resulting design is identical to the one first introduced in [5]. The correspondmg systollc array and the acton
of a cell at different times is depicted in figure 1.

3. ANEW DESIGN FOR DYNAMIC PROGRAMMING

Consider an array of processing elements whose communication pattemn is described by:

010 -1 -1
A=
00-1 0-1
Cells in the array are connected by bidirectional horizontal links as well as by diagonal and vernical links, as
shown in fig. 2. An optimal design for dynamic programming is generated for such an array using the same
mapping procedure. Again we solve equations (4) subject 10 global constraims. We derive:
S11=813=0:83 =1 S; =83 =053 =1
for the first recurrence and:
S11=8p =183 =-1 Sy =823 =0:55 =1

{orthe second recurrence. Thus wé have:
SG.jk)=(kiYand S°G j k) = (G+i-k D).

These transformations lead to the sysiolic design of figure 2. The array consists of 3/8n2 cells. All cells are
idenucal. However, the action of a cell varies from time to time. It does computation relative o module 1 or
module 2 depending on the values of indeces i, j, and k. Also, the direction of data streams varies for the two
modules. The transformation of data dependence vectors D, into communication vectors A is derived from §°.

From:

cf a.l' bf
Si’ Sy Sl o o -1 -1 00
Sa’ Sz Sxllo 1 0 00 -1
-1 0 0

we derive that variables a; J.& 40 not move along the array but stay inside the cells, where they are updated.
Furthermore, variables &; Jj.x& move up, except at the boundary, where they move along the diagonal. The direc-
tion of variables in module 2 is derived from the mapping S”. Variables a; J.4 Move 1o the right along the hor-
izontal links. The other variables move with the same pattern as in the other module. The action of a cell at each
time is illustrated in figure 2.
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beeause of its similarity with the design of a systolic palindrome recognizer [6]. A linear array of processing ele-
ments with rwo-way pipelining was described in [6] for this latier problem. The array delermines for each char-
acter in a string whether the suring input up to that character is a palindrome. A string of I+1 characters sg,57,....5
is a palindrome if the k-th character is the same as the (/- )-th character fork =0,1,..../. Let ¢; denote a variablc
whose value is 1 if the string 5g....5; is a palindrome, 0 otherwise. Thus:

_ i =f(Ged-x) gkl
for some function f .

The data flow -of input variables s and output variables ¢ along the linear array is the same as the data flow
~of variables ¢ and a, respectively, along any row of the two-dimensional array of fig.2 for dynamic program-
ming. Indeed, both problems have similar data dependence patierns, as it can be easily observed if we rewrite
recurrence (1) in the following form:

1<i<p; 1<i<i

iy =Milyerer (i, ks Ck, 1-k) ®)
In (6) index j in (1) has been replaced by the index {=j~i. From the above expression it is apparent that, as for
the palindrome recognizer, variables with indeces / and -k, I<k<!, have to collide in the same cell at the same
time.
It is also easy to show that the automatic mapping procedure described here transforms the palindrome
recognition problem into a form similar to the one for convolution and therefore applies the same tme-space
transformations io both.
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