
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1986

A Unifying Framework for Systolic Designs A Unifying Framework for Systolic Designs

Concettina Guerra

Report Number:
86-595

Guerra, Concettina, "A Unifying Framework for Systolic Designs" (1986). Department of Computer Science
Technical Reports. Paper 514.
https://docs.lib.purdue.edu/cstech/514

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A UNIFYING FRAMEWORK FOR
SYSTOLIC DESIGN

Concetlina Guerra

CSD-TR-595
April 1986

A UNIFYING FRAMEWORK FOR SYSTOLIC DESIGNS

Concettina Guerra
Department of Computer Sciences. Purdue University

West lafayette, Indiana 47907

ABSTRACT

A systematic methodology to synthesize systolic designs is described and used to derive a new design for
dynamic programming. This latter design uses fewer processing elements than previously considered ones. The
synthesis method consists of two pans: 1) deriving from the high-level problem specification a form more suitable

to VLSI implementation; 2) mapping the new specification into physical hardware. The method also provides a

Wlifying framewOIK for existing systolic algorithms.

I. INTRODUCTION

In recent years, a large number ofVLSI algorithms have been designed for such problems as matrix multi

plication, linear systems, convolution, etc. The mapping of an algorithm into an array of processing elements has
been usually done in an ad-hoc manner. TItis is a difficult and error-prone task, especially for complex nonnwner

ical problems. A synthesis procedure can save a considerable amount of design effort and, at the same time,

guarantee the correctness of the result Recently, there have been various attempts to fonnalize the procedure for

mapping algorithms into physical hardware. Their appraisal is in [2].

Among all the existing approaches, the transfonnational approach based on data dependencies proved to be
very powerful [I, 7-13]. However, such an approach can be applied only to a restricted class of algorithms,

namely, algorithms with highly regular communication patterns. Such algorithms are generally expressed by a

uniform recurrence relation, or a nested loop with constant data dependencies. Many algorithms involve non

uniform recurrences or many nested loops with additional statements between the loops. These algorithms are

sometimes implemented on VLSI networks with variable·speed data flow. An example is dynamic programming

as applied to the optimal parenthesization problem.

In [5], a systolic algorithm for dynamic programming was proposed which can be cast in a triangular array

of processing elements. The systolic design is quite complex: the data flow is non constant throughout the array

and the action of a processing element varies at different clock cycles. Anempts have been made to synthesize

non-unifonn designs, concentrating on various aspects of the design process [1,4,9]. The crucial Step towards

the automatization of the design is in the abili[)l to rewrite the algorithm in a form better suited to VLSI imple

mentation. The synthesis procedure described here anemprs to solve this problem. It operates ~th at the algo

ritlunic level and implementation level. Thus, it consists of two pans: 1) transforming the given problem

spc,::ail;;<lUOr. to aou.p~ Ii. LO \"....5. m~pH::mcm;,;.tlOi. ":'j r;,'~P?;"f Ul-:: nc\', Sp;;;;i1;;::auo:, 0: U1:: prv~.ll:'::;:. m;G ;:. Sy5;O,I:':

array. The high-level problem specification is rewritten as a system of muruall)' dependent recurrence relations.
This is accomplished by a two--step procedure. Thc procedure first detennines a coarse timing function for me
computations in the high~level specification and then uses it to identify chains of linearly dcpendent computa

tions. Each such chain can be convened into a recurrence with constant data dependencies. Statcmcnts between

recurrences are introduced to correlate variables in distinct recurrences. Next the mapping of the ncw form into

VLSI hardware is obtained by applying linear time and space transformations 10 the individual recurrences, sub
ject to global COnstrainlS. Such transformations are again based on data dependencies.

Using this procedure we transform the dynamic programming algorilhm into a system of twO dependent

recurrence relations. In addition to rederiving the design presented in [5], we are able to automatically generate

another design which obtains a better utilization of the processing elements and therefore requires fewer cells in

the array; precisely, 3/8n 2 instead of n 2/2.

This paper is organized as follows. In section I the synthesis method is illustrated for the derivation of a sys
tolic algorithm for dynamic programming. Next, time and space transformations to map the new fonn into

hardware are described in sections 2. The new design for dynamic programming is presented in section 3. It is

also shown that the application of the proposed methodology to obtain other syslOlic designs such as convolution
and palindrome recognition exploits interesting similarities among such problems.

I. DERNATION OF A SYSTOLIC ALGORITHM FOR DYNAMIC PROGRAMMING

The dynamic programming can be expressed by a recurrence of the form:

l::;;i~; i<j::;;n

Ci,j = mini<k<:i f (Cj, to Ct, j)

with initial conditions:

(I)

Ci,i+1 = Cj 1::;;i:9l

for some function f. The recurrence above defines an index set]3={(i J ,k) I l$i< j$n ;i<k<j} for all the

computations and also a set]~{(i,j) I 1~< j$n} of index pairs associated to variable c. Variable C

appearing on both sides of (1) inrroduces non-constant data dependencies. A dependence veClOr is defined as the

difference of the index vectors of the variable on the left and right side of any assignment statement [8]. Data

dependence vectors in (I) are different for different vectors of the index set]2. Dependencies relative to the vector

(i ,j) can be represented by the colwnns of the following dependence matrix:

r 0 i-k
D(· .) =

I,J j-k 0

which can be expanded in the matrix below, where each column corresponds to a different value of the index k.

o 00-1-2
D(i,j) = j-i-l'" 2 I 0 0

i-j+l

o

Our aim is to rransform. expression (1) into a ne~ form which consists of possibly many recurrences each
characterized by constant data dependencies; non-constant data dependencies may only occur at the bOWldaries

between the recurrences. For each such recurrence it will be possible to determine a linear time-space rransforrna

tion into a systolic array, by applying the transformational method described in [11, 13]. We briefly review the
tranformational method for Wliform recurrenceS.

Mapping a uniform recurrencc into a VLSI array

Consider a recurrence with index set I" defined by:

c (I) = f (c(7-o,), ...,c(7-o,))

wherc f is a given function and I is a vector of 1". The recurrence is said to be unifonn if the data dependence

vectors aI • ...• as are constant. LeL D=[al ... as]. It is possible, under certain conditions, to automatically map a
unifonn recurrence into a VLSI array.

We consider the following simplified model of a VLSI array.__~ach processor of the array is assigned a

labelleL,,-Ie Zn-I . The connection pattern of the array is described by the matrix 8=[Oj,~....• os] which

specifies the links among the processors. Precisely, OJ is the difference vector of the integer labels of adjacent
cells in the network.

A linear time-space transformation of the indexed computations intO the VLSI array is defined by:

rr=[I] .
where T is a mapping form J" ---7 Z and S is a mapping from 1" ---7 L II-I. The time function T transforms D

into TD. Thus. to ensure a correct execution ordering, T must satisfy the following condition:

T(a;) > 0 for each ajeD (2)

System (2) may have no solution or several solutions. In this laner case, the one which minimizes the total execu

tion time (defined as the difference between the maximum and minimum value of T) is chosen.

The space mapp'ing S is a mapping from the set of computations to the set ofprocessing elements
S : I" --'J L n-l

such that for each 7,J E 1"

s(i)=S (j) implies T(z)¢T (j) (3)

i.e. concurrent computations cannot be mapped into the same processor. Detennining a solution for S which

satisfies constraint (3) is equivalent to solve diophantine equations:

SD = t:J((4)

for which the matrix r:JiS non-singular. K is an integer matrix with positive elements. The equations may have
no solution or several solutions. If no feasible solution is found, the design procedure is repeated by staning with

a different timing function or else a different interconnection nelWorX. If several solutions are possible, the one

which is optimal according to some criterion is chosen.

A IWo-:;rep procedure/or dynmnic programming

To adapt expression (1) to systolic implementation, we first eliminate broadcasting by 1) adding missing
indeces to variables on both sides of the expression, 2) renaming variables, 3) introducing new variables. How.
ever, as is well known, there are many ways to perfonn such transformations some of which may not lead La any

feasible systolic design. The selection of a good transformation is crucial to the entire design process; for com
plex problems such as dynamic programming this is not a straightforward task. In order to add the index k to

variable CiJ on the left side of (1), we need to specify an appropriate ordering for the computations CjJ.i for
given i, j and for i < k < j, in such a way to introduce as much parallelism as possible. If we choose, say, the

lexicographical ordering relative to index k, we cannot overlap computations of CiJ,k. for different values of

".,,~ .. ,.. . ~._ •.., ..•. j,~. ;..;.>~-. ':. :.... '-;..::•• - .,;." .. ~y~;~: .•

Our strategy to select the appropriate transfonnaLion consistS of identifying among the computations
indexed b)-' the set 1'3 = {(i, j, k) I i J' a.re given and j < k < j} chains of linearly dependent computations,
i.e. computations which have lO perfonned in a cenain order. To accomplish that, we first detenninc a coarse lim

ing function for the computations indexed by P. The transfonnaLional method described above applies only when
conslant data dependencies are present. Thus we extract from recurrence (1) a subset of constant data dependen
cies and derive a linear time uansfonnation T based only on such subset. It obvious that jf't is an actual liming
function for P then it must be 't(i,j) ~ T(iJ') for each (i ,j)e/2. The set Dij contains non-constant dependen
cies; however, the intersection of D (i j) for all the index vectors (i ,j) contains only dependencies which are valid
in any point of /2. Let us denote such intersection by D .

D=
o -I

o

A linear time transformation T : /2~ Z compatible with the subset D can be obtained as described above. T
must satisfy (2), that is

T(d) > 0 for any aED

Thus the coefficients of T =[T1 Til must satisfy
T 1>O and T2$-1

The least integer values that satisfy the above equations are:

T1=O and T2 =-1.
Thus. the optimal time transfonnation is:

T(i ,j) = j- i.

The function T will guide the search for a schedule of computations indexed by J3 according to the availability of

the variables ci-.*- and Ckj on the right side of (1). Because of the monotonociry of data dependencies in D(ij) ,it
must be 't(i ,j) > 't(i',j') if T(i J) > T(i',j'). According to function T, we inrroduce a partial ordering >T in
J' defined by:

Ii ,j ,k) >T (i J ,1/')0=, Max (T(i ,k),T(k',j)} > Max { T(i ,k"j,T(k"J)}

Notice that the minimal elements with respect to >T are:

(i, j, (i+j)/2) ifi+j is even or

(i, j, (i+j-I)JZ) and (i, j, (i+j+l)/Z) if i+j is odd.

A partial ordering produces a decomposition of the set into chains of linearly ordered computations. Among all

the possible chain decompositions of J 3, we select the one in which the index vectors of a chain are also soned
(either in increasing or decreasing order) according to the third index k.

To obtain such a decomposition we repeatedly find minimal elements after removing the previous minimal
elements from the ordered set For the set J3 we obtain a decomposition in twO chains (here we only write the

third component of the index vectors):

{if (i+j) is even}

(i+j)/Z, (i+j)/Z-I, ..., i+l; and (i+j)/Z+l, (i+j)/Z+Z, ..., j-1.

{if (i+j) is odd}

(i+j-l)/Z, (i+j-I)/Z-I, ..., i+l; and (i+j+I)/Z, (i+j+I)/Z+l, ... ,j-I;

Wc arc now ablc to reSlllIcture (1) imo a system of [wo recurrences or modules, each corresponding 10 a

chain" The execution ordering of compulations in each recurrence is specified according 10 the ordering in the

chain. Thus, the fiCS[recurrence is a forward recurrence where the index k varies from (i+j)f2 [0 i+l (or from

(i+)-I)f2 to i +1 if i+) is odd); and the second is a backward recurrence where k varies from (i+))f2 to)-1 (or

from (i +)+ l)f2 to) -1 if i +) is odd) "The two recurrences have different sets of variables; boundary condilions

relate variables in the twD recurrences. Now equations (1) can be convened into the fDllowing form.

"fori:=l ton-l dD ai,i+I,i+t:=Ci,i+l; Ci,j+t,i+(=Ci,i+l;

fDr l:=2 tD n-1 do

for i:= 1 [Q n do begin

):= i+l;

if (i+))=even) then begin

k:~i+j)/2;

A1: ai,i, k = aj,j-l,k;

A2: if k= i+l then b;,j, k := Ci+I,i,i else b;,i, k := b;+l,i, k ;

c;,i, k:=!(a;,i, J: ' b;.i,k); c;:j, k := c;,i, k

end
else begin {i+j=odd};

k:=Ci+)-1)f2;. .
ai,i, k:= aj,i-I, J:;

if k= i+l then b;,i, k := Ci+l,i.i else b;,i, J::= b;+l,j, k ;

C;,i,k :=!(a;,i, J:. b;,i, k)

k:= (i+j+l)/2;

A3; if k:=)-1 then aZi, k := Ci,j-I,i-l else al~j,J: := a;:i-l, k;

A4: b;:i, k := b;+l,i, k ;

C;:i,k := !(a;:i,k' b;:i,k);

end

for k:= r(i+j-I)/2 - Il downlo i+1 do begin

AS:

.
ai,i, It := ai,i-l,k;

if k- i+l then b;,i, i+1:= Ci+l,i,i else b;,j, 11. := b;+l,i,k;

cu, J: := h (c;,i,J: +1./ (a;,j, J: , b;,i, k));

end;

for k:= l(i+j+1)12 +1J10 j-I do begin

if k=J'-1 then a;'J' k:= Cj ,·-1 J"-l else a;'J" k:= a;'J"-l Ie;, , " , , ,.

b;:i, k := b;~I.j, k ;

c;'i, k:= h (C;:j,J: -1'/ (a;:i, bb;'i, Ie)):

end;

ci,i,j:= h (C;,i, i+l' C;:i,i-l);
end; ---

module 1

mDdule 2

The two-step mapping procedure can be generalized 10 any recurrence with index set fro

/"={(il.···.in) J nSijSfl •.... lnISinSl,.z}oflheform:

where:

s =n-l;

is =(i 1, ... , is) is an s-ruple ofindeces of the loop;

and where at, lSl$J-l, 1+ISl Ss, are integer constants and ill is the loop index missing on the left side of the

statement, Le. i,.-:;ti/ for each [=1,.. ,$. Each vectOr (if, (j=I, .. ,m), represents a non constant data dependence for
variable c, since its t -th component is a function of the two indeces i1 and ill,

2. MAPPING THE ALGORlTIlM INTO HARDWARE

Timing function

o
o

b

-Ii
I

ac
10 0

/0 1
II 0

c' a' b'

o 0 -I

o 1 0

-I 0 0

G{yen the new specification of dynamic programming, we extract from each module distinct sets D 1 and D
2

of constant data dependencies.

Dependencies between variables in distinct modules. referred to as global dependencies, are defined by stare
mcnts A1 to A5 in the algorithm.

We seek a linear time transformation for each separate set of local data dependencies which satisfies global

consrraints. Let A. = (1..1~ ~] and 0" = [0"1 0"2 0"3] denore the linear time transformations for module 1 and

2. respectively. Furthermore, let 't =['t1 'tz "t3] be the liming function for the computation in A5. Such transfor
mations must satisfy condition (2), that is

I..a> 0 foraeD 1.

from which we obtain the system of equations:

O"a > 0 foraeD z;

Global dependencies specified by AI-A51ead to the additional equations:

l.(i, j, (i+j)/2) > aU, j-I, (i+j)/2)
l.(i,j,i+I» <U+I,j,j)

aU, j, j-I) > «i, j-I, j-I)
aU, j, U+j+I)/2) > l.(i +1, j, U+j+1)12)
<U, j, j) ~ max[l.(i, j, i+I),aU, j. j-I)]

I[easy to check that an optimal solution to the above system. i.e. one which minimizes the execution lime, is
given by:

'" =-1 }.2 =2 '" ~-I

oJ =-2
~~

I 0"3 = I0"2 =

'[1 =-2 't2 = 1 '[3 = 1.

Hence, we obtain the timing functions:

l.(i,j,k) = -i+Zj-k

cr(i ,j ,k) = -Zi +j+k

«i ,j ,j) ~ -Zi+Zj.

Spacefuncrion

The automatic procedure for determining the mapping of computations into the cells of a systolic array is
analogous to the one for the timing function. Again, we look for separate solutions to the different modules in the
algorithm subject to global constraints. We consider a 2-D amy of processing elements modelled by the pair
[L 2,.6.], where L2 is the set of labels (x;y) assigned to processing elements and ,f!. is a matrix describing the inter
connection network between processing elements. Different interconnection patterns may result in different
classes of designs. In the following, we generare the optimal design when !1 is chosen to be:

010
o 0-1

I!. corresponds to a network with unidirectional links. as shown in fig. 1.

LetS', S~, and S be the space functions for module 1. module 2, and statement AS, respectively.

Is 11' S 12' S13
, Is;', si~ s;~ I S" S12 Sl3 I,

s' = s" =: s=sz,, SZl' SZ3
, I .. S:;' s; sz, SZl S"i S21

In addition to satisfy condition (4), the coefficiems of S', S", and S must satisfy the constraints imposed by global
dependencies. Precisely, if a global dependence involves two variables belonging to differem modules which are
computed at times t and t' with t-t'=d then the distance of the cells where the two variables will be mapped
cannot be more than d. By distance we mean the length of apath consisting of interconnection links between the
two cells. From Al we have:

S· Ii j (i+j)/ZI' ~ S" Ii j-I (i+j)12 I' + d,; d,Ed,

since f..{i J ,0 +j)/2}-<J(i J-I,(i+j)/2) = 1 and, consequently, the two computations must occur either in the same
cell or in adjacent cells. Similarly, from A2-A4 we obtain:

s· Ii j i+l I' = S li+1 j ii' +dz; il2 E,6,;

S
..

Ii I' = S j-II'+d,; il3 E,6,;j j-I 1i j-I

S" Ii j (i+j+I)/Z I' = s' Ii+l) (i+j+I)/ZI' + d,; a, = Si +OJ OJ,OjE,6,;

S Ii j j II = S Ii j i+ll f +d's; d's E,6,;

One solution [Q above system of equations is:

S;l =S;3 =0; S;2 = I S~ =S~ =0; S;I = I

for the first recurrence and:

S;'I =S;3 =0; S;2 = I

for the second recurrence. Thus

S'(i,j,k) = S"(i,j,k) =S(i,j,j) = U,i).

The resulting design is identical to the one first inlroduced in [5]. The corresponding systolic array and the action
of a cell at different times is depicted in figure 1.

3. A NEW DESIGN FOR DYNAMIC PROGRAMMING

Consider an array of processing elements whose communication pattern is described by:

o 1 0 -I -I

t;=

o 0 -I 0-1

Cells in the array are connected by bidirectional horizontal links as well as by diagonal and vertical links, as
shown in fig. 2. An optimal design for dynamic programming is generated for such an array using the same

mapping procedure. Again we solve equations (4) subject to global conslraints. We derive:

S;1 =S;2 =O;S~3 =1 S~=S~ =0;S;1 =1

for the first recurrence and:

5;'1 =S;2=I;S;; =-1 S;=S;'; =O;S;l=1

for the second recurrence. Thus we have:

S'(i ,j,l:) = (k ,i) and S"(i J ,k) = (i+j-k ,i).

These transformations lead to the systolic design of figure 2. The array consists of 3/8n2 cells. All cells are

identical. However, the action of a cell varies from time to time. It does computation relative to module I or

module 2 depending on the values of indeces i, j, and k. Also. the direction of data streams varies for the two

modules. The transformation of data dependence vectors D I into communication vectors !1 is derived from S' .
From:

c' a' b'

S"
,

S12' S"
,

0 0 -I -I 0 0 I
S21

,
Su' S23

,
0 1 0 = o 0 -I

-I 0 0

we derive that variables ai'J). do not move along the array but stay inside the cells, where they are updated.

Furthermore, variables b/J). move up. except at the boundary. where they move along the diagonal. The direc

tion of variables in module 2 is derived from the mapping S". Variables a/J,t move to the right along the hor

izontallinks. The other variables move with the same pattern as in the other module. The action of a cell at each
time is illustrated in figure 2.

because of its similarity with !.he design of a sYSlolic palindrome recognizer [6). A linear array of processing ele
ments with [Wo-way pipelining was described in [6] for this laner problem. The alT3Y deLerrnines for each char.
actcr in a suing whelhcr the suing inpUl up to that character is a palindrome. A suing of 1+1 characters S D,S 1,,,,,SI

is a palindrome if me k-th character is the same as the (l-k)-th character for k = O,ll. Let Cj denme a variablc
whose value is 1 if the string so....s; is a palindrome, 0 otherwise. Thus:

Ci=!(SJc'sI_k) o~k~l

for some function! .

The data flow -of input variables S and output variables C along the linear array is the same as the data flow

--of variables C and a. resPectively. along any row of the two-dimensional array of fig.2 for dynamic program

ming. Indeed, both problems have similar data dependence patterns.... as j[can be easily observed if we rewrite
recurrence (I) in the following form:

(6)

In (6) index j in (1) has been replaced by the index l=j-i. From the above expression it is apparent that, as for

the palindrome recognizer, variables with indeces I and l-k, 1<J:. < I, have to collide in the same cell at the same

time.

It is also easy to show that the automatic mapping procedure described here transforms the palindrome

recognition problem into a form similar to the one for convolution and therefore applies the same time-space
tranSformations to both.

REFERENCES

[1] Chen, M "Synthesizing Systolic Designs" In Proc. Int. Syrnp. on VLSI Teclmology, Systems and Applica
tions, Taipei-Taiwan, May 85.

[2] Fones, J.A.B., Fu, K.S., and Wah, B.W. "Systematic Approaches to the Design ofAlgorithmically Specified
Systolic Arrays", Tech. Rep., Purdue Univ.

[3] Fones, J.A.B. and Moldovan. D.I. "Parallelism Detection and Algorithm Transfonnation Techniques Useful
for VLSI Architecrore Design" J. Parallel Disoib. Compul. May 1985.

[4] Guerra, C. and Melhem, R " Synthesizing Non-Wliform Systolic Designs" Tech. Rep.• Dept. Compo Sc.,
Purdue Dniv. (submitted for publication)

[5] Guibas, L.J., Kung, H.T. and Thompson. C.D. "Direct VLSI Implementation of Combinatorial Algorithms"
Proc. of Calrech Conf. on VLSI. 1979.

[6] Leise~on. C.• Saxe, F. "Optimizing synchronous systems" VLSI Algorithms, 1984.

[7] Kung, H.T. and Lin, W. "An Algebra for VLSI Algorithm Design" Proc. Cont. on Elliptic Problem Solvers,
1983.

[8] Kunh. R.B. 'Transforming Algorithms for Single-Stage and VLSI Architectures" Workshop on Interconnec
tion Networks for Parallel and Distributed Processing. 1980.

[9] Lam, M. and Mostow, J. "A Transfonnational Model ofVl..sr Systolic Design" Computer. pp. 42-52,1985.

[10] Melhem, R. and Guerra. C. "The Application of a Sequence Notation to the Design of Systolic Computa
tions" TeeM. Rep. 568 Dept. Compo Sc.• Purdue University.

[11] Moldovan. D. "On the Analysis and Synthesis of VLSI Algorithms" IEEE Trans. on Computers, C-31, pp.
1121-1126,1982.

[12] Moldovan, D. "On the Design of Algorithms for VLSI Systolic Arrays" Pmc. lEEE, vol. 71, pp. 113-120,
Jan 1983.

[13] Quinron, P. "Automatic Synthesis of Systolic Arrays from Uniform Recurrent Equations" Pmc. ll-th
Arumal Symp. on Computer Architecture, pp. 208-214.1984.

----"X

I
(, 0) ,. ,. ,.

13

1)(0.') 1,

23 ,. 2.

~T
y

'1/

l'b'
c' j tl i ~

i i k t 1

, t.

'0'

'"

,..
i i k_1

Fig. 1 A s)'smllc ne[\\'ork for dynamic programming

I b; i k

~ -

'2 13 14

T~~~~~'l~ --

-- --- - ~- - -

23 24 25

"""
I 1

34 35 36

45 46

J

b;' i k

C;'j k
..

a i i-1 k
•

C; i k...1

l'b'
i +1 j k

C'; j k-1

fOR

fOR

Fie· 2

	A Unifying Framework for Systolic Designs
	Report Number:
	

	tmp.1307986960.pdf.Fl5Rr

