
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1986

Analysis of a Class of Real-Time Control Systems Analysis of a Class of Real-Time Control Systems

Dan Cristian Marinescu

Report Number:
86-572

Marinescu, Dan Cristian, "Analysis of a Class of Real-Time Control Systems" (1986). Department of
Computer Science Technical Reports. Paper 491.
https://docs.lib.purdue.edu/cstech/491

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

ANALYSIS OF A CLASS OF REAL-TIME
CONlROL SYSTEMS

Dan Cristian Marinescu

CSD-TR-572
January 1986

ANALYSIS OF A CLASS OF REAL·TIME
CONTROL SYSTEMS

Dan Cristian MARINESCU

ABSI'RACI'

Real-time control systems with a subset of processes subject to deadlines are investi­
gated. The structure and the perfoImance of a class of such systems. namely the data
acquisition and analysis systems are analyzed in case of procedure oriented as well as
in the case of message oriented design. A methodology for system modeling and the
approximations needed are discussed.

INDEX TERMS

Approximate solution, real-time systems, data acquisition and analysis systems, process,

performance evaluation, parallel processing, message oriented system.

1. INTRODUCTION

Real-time systems in which all processes must meet shiet timing deadlines are called hard

real-time systems. Most of the systems of this type are homogeneous. since they consist of a set

of processes which execute similar functions upon different input data streams. Another charac-

teristic of this type of system is that the processing associated with each process is relatively

non-sophisticated and consequently the system can be implemented either in low level languages

or in special real-time languages. Timing analysis through system modeling can be perfonned

without major problems every time the system undergoes significant modifications. Scheduling

strategies for this type of system have been investigated in relation to the problem of assigning

priorities to different processes, in order to satisfy all deadlines.

This paper discusses a particular class of real-time control systems which are 000-

homogeneous and combine the real-time requirements of control systems with the complexity

and sophistication of knowledge processing systems. Since only selected processes need to

satisfy strict timing deadlines these systems will be called semi-hard real-time systems. An

important characteristic of this type of system is that they have to be open ended, allowing a user

-2-

to add own processing procedures to the system. Also, the system must be implemented in a high

level language, since the processing perfonned can be very sophisticated.

Examples of this type of systems are the data acquisition and analysis systems used in

nuclear and high energy physics as well as in other fields where complex experiments produce

one or more streams of input data which must be captured and analyzed [6]. The data acquisition

system perfonns a time critical function, the system must be able to process the streams of input

raw data at the rate at which they are produced. Its main objective is to store safely all the data

captured, with a minimum amount of transformations done to iL The analysis system is a

knowledge processing system. Its function is to assist one or more users to control the experi~

ment and to evaluate the results. Access to large data bases of experimental data, theoretical

models, model parameteR. as well as a wide spectrum of tools to compare different type of

objects must be supported. In contrast to other types of real-time systems where all processes

must meet predefined deadlines. in a data acquisition and analysis system only the data acquisi­

tion function is usually subject to a hard deadline. The data analysis function is user specific and

need only process statistical samples of the input data.

A data acquisition and analysis system can be designed either as a procedure oriented sys­

tem or as a message oriented system depending upon dIe hardware architecture of the supporting

system and upon the environment provided by the host operating system. Most of existing sys­

tems are based upon a procedure oriented design and often they support only one analysis. Due

to the increased availability of multiprocessor systems a number of design principles need to be

reconsidered. Multiple analysis procedures are easily supported since the host system can be

expanded. A new possibility is to design the system in such a way that one or more analysis pro­

cedures meet the timing constraints and are able to analyze all input data. In this case a consider­

able reduction of the volume of data recorded and of the effort for post experiment data analysis

is expected. 1bis paper argues that the semantics of message oriented system is more natural for

-3-

the design of a distributed data acquisition and analysis system and multi-processor systems pro-

vide a very good support for this type of design.

An important perfonnance characteristics of a data acquisition and analysis system is the

highest data rate the system can sustain during steady-state operation. It is non trivial to deter-

mine this parameter in a concurrent processing environment. In case of a procedure oriented

design, a number of logical resources need to be defined and even if no contention for physical

resources is present in the system, the effect of contention for logical resources must be

estimated. For message oriented systems the only synchronization between processes is done via

messages. The system may be designed to closely resemble a data flow environment.

Different architectural options as well as the underlaying implementation problems eocoun-

tered in the design of such systems are analyzed. A methodology for system modeling in order to

detennine the performance of the system, in particular the highest data rate the system may sus-

tain, is described. A number of approximations are necessary in order to model this type of sys-

tern to detemrine its perfonnance. The central theme is rlte compromise between a well sbUC-

tured system and an efficient one which satisfies the timing requirements of real-time processing.

The two alternatives, procedure oriented and message oriented system design are examined

considering both the system sbUcture and its performance.

2. PRIMITIVE FUNCTIONS AND INFORMATION STRUCTURES FOR DATA
ACQillSITION AND ANALYSIS SYSTEMS

For many years it has been debated if a general purpose data acquisition and analysis sys-

terns can be built around a set of primitive functions to provide the necessary support for a large

class of experiments. The set of primitive functions m1:1St be complete, the functions must be

orthogonal to each other and they must allow composition. These requirements guarantee that

the system is simple, open-ended and multi-functional.

-4-

A number of successful attempts in this direction have been reported in the literature, [ll,

[2]. The main benefits of this approach emerge from the higher level environment provided for

the user. These benefits are: a more reliable and better controlled environment, a variety of

software tools available for application design, testing and error localization. This type of system

tends to evolve in the direction of knowledge processing systems. The user is relieved from the

need to underntand the details of concurrent programming and the system suppons a sophisticated

use of knowledge accumulated in previous experiments and provides the means to correlate

experimental results with theoretical models.

This approach is shietly superior from a software engineering lXtint of view to the adhoc

design of experiment specific systems in which a user builds a system tailored to his needs, for

each new experiment, using a library of basic routines and procedures. When the sophistication

of the experiment increases or when the control functions needed are more complex, the effort to

build such a disposable system becomes prohibitive.

In a data acquisition and analysis system the data acquisition function is responsible for the

processing of the streams of input raw data. The input raw data consists of a sequence of experi­

ment dependent information structures containing correlated data and called events. An event is

like a snapshot of the physical system taken at a given moment of time. It consists of an array of

data representing the results of measurements provided by different semOni observing the physi­

cal system which is the subject of the experiment The events are generated randomly depending

upon the physical phenomena being observed. Often the events occur in bursts; in most cases the

accelerator produces a pulsed beam and only during the short pulse time accelerated particles

bombard the target and produce events.

There are two basic approaches in handling the raw data. In the first approach, all events

are recorded and the raw data is subject to a multiple step analysis procedure as follows: a real­

time analysis is done using samples of the input data in order to monitor and control the experi-

- 5 -

ment. Post experiment (off-line) analysis can then be done repeatedly since all information

recorded during the experiment is available.

To give an idea of the amount of information collected, it should be pointed out that an

experiment may run continuously for days. generating data at a high rate. For example, an event

may contain in excess of one thousand parameters (measurement points) and events may be gen­

erated at a rate of one thousand events per second or more. Typically, a measured parameter can

be represented as a 16 bit integer so that the data rate of such an experiment could be higher than

16 Mbps. Fortunately, only a low percentage, for example 10 percent of the parameters of a large

event are non zero, due to physical considerations, since in a large system there are many

uncorrelated elements. With large, sparse events, the data compression function is most impor­

tant for the acquisition system and should be built into the system as a standard feature.

A second approach is to perform some data reduction during the data acquisition and to

record only events which are significant for the experiment This approach is not used very often

since usually limited computing resources are available during the experiment The insufficient

computing resources prohibits multiple analysis and limits the complexity of the analysis done

during data acquisition. Another reason making this approach less popular is that any conceptual

or procedural error in the filtering procedure leads to a ~onrecoverable loss of data. Often, the

definition of what a "significant event" means, changes considerably during the off-line data

analysis.

While the task of the data acquisition part of the system is to store safely all the data cap­

tured, with a minimum amount of transformations done to it, the analysis part of the system con­

centrates upon the control of the experiment Interactive control can be exercised by one or more

users whose primary concern is the physical significance of the results. To determine that, a user

must process in real-time statistical samples of the input raw data. The results of this processing

need to be presented in a compact, meaningful fonnat, using some graphics facilities supported

-6-

by the system. The system must provide also a number of primitive functions for the manipula­

tion of different user defined information Sb'UCbJres.

Another strong requirement for the analysis system is to allow a user to redefine dynami­

cally his analysis procedure while the experiment is running and data is colIected. Multiple

analysis procedures running concurrently need to be supported. A considerable effort has been

invested in a design to allow dynamical changes of the analysis procedure while data is being col­

lected. To provide enough flexibility, the systems primitive functions do not manipulate the dif­

ferent objects in the computational space directly but through their descriptors. Such objects are

events, spectra, conditions, etc. There are different types of conditions, boolean, windows. etc.;

they can be altered at execution time and in this way the execution logic can be changed in a lim­

ited way. The price to pay is an increase in execution time since part of the analysis is executed

in an interpretative way. Also, a considerable increase in the complexity of the design is associ­

ated with this approach, with severe implications upon the ability to find an error in a user written

procedure.

If the system provides a set of tools to support editing, compilations, interactive debugging,

as well as primitives to create, connect to the environment new processes and other related func­

tions, then the requirement to change dynamically the analysis procedure can be implemented by

creating a new user process which carries out a new analysis logic requested by the user. The old

analysis may run until the user decides to tenninate it:. by disconnecting it from the environment.

This approach leads to a more comprehensive and simpler design.

The analysis system must be conceived as a knowledge processing system. It should sup­

port user's access to a large data base containing results of previous similar experiments and be

able to compare them with the current results. It should suppon access to a database of theoreti­

cal models and should be able to determine which model fits the best of the experimental data. It

should also help determine the set of model parameters which are adequate for a particular type

- 7 -

of experiment

In conclusion a data acquisition and analysis system must be designed to satisfy a few con­

ditions:

the system must be able to meet timing constraints imposed upon some of its com­

ponent processes.

the system must be open-ended, allowing a user to define dynamically one or more

analysis procedures which are experimentally specific,

it should contain a shell allowing a user to interact with the system by using a set of

standard commands,

the system should be able to recover from user errors and the data acquisition func­

tions should not be affected by errors in the user-written analysis procedure.

TItis brief presentation outlines the complexity of a data acquisition and analysis system and

the need for a well structured system design.

3. SYSTEM STRUCTURE AND PERFORMANCE EVALUATION

A data acquisition and analysis system is usually implemented as a distributed system. A

relatively common design consists of a front-end computer linked via a high speed network to a

back-end mainframe. The data acquisition function as well as most of the control functions are

implemented on the front-end while the analysis system is designed as a set of cooperating

processes running on the back-end computer. The cooperating processes may communicate

either by sharing a common memory segment in a procedure oriented design or by using a mes­

sage delivery system. Procedure oriented systems are more cornman, but if the operating system

supports an efficient inter-process communication mechanism, the message passing is advanta­

geous.

- 8 -

An alternative design can be based upon the use of a multiprocessor system to host the data

acquisition and analysis system. Depending upon the multiprocessor system architecture the

same two options, procedure oriented with shared memory or message oriented designs may be

approached.

Most of existing systems are implemented on uniprocessor systems, often on a minicom­

puter, and the procedure oriented approach is the most frequently encountered. A set ofcooperat­

ing processes communicate via a shared memory segment Two cases are distinguished depend·

iog upon the way the host operating system maps a process into an address space.

In the fir.>t case each process has its own address space containing process code and private

data. Protection among processes is achieved and error recover is manageable. The system has

the potential of being nicely stroctured with distinct functions mapped into different processes.

System processes implement lhe primitive functions provided by the system. Examples of sys­

tem processes are: the data acquisition process, the dialog manager processes, a shell process

running for each active user, driver process for graphics devices, an arbitrator process which

decides what action should be taken in case a number of users with the same authorization level

request conflicting actions, etc. User analysis procedures are mapped each into a distinct user

process. It is important to structure the system in such a way that each process which carries out

a given service may receive as input the data produced as output by any other process, in order to

create execution pipes.

The data kept in common are in this case; input data buffers, output data of one process to

be consumed by other processes, control information. The management of the common storage is

the most important single problem in the system design. All user processes run independently of

each other, but all processes compete for different logical and physical system resources. An

important design objective is to structure the system such that an enor in a user process does not

affect either the data acquisition system or any user process.

- 9 -

As opposite to this situation, is the case when all system and user processes share a large

address space and there is no protection of process private code or data. Such a system is

described in [1]. [8]; and the different processes run as PUI tasks in the MVS environmeDL The

obvious problems are: the lack of protection among different processes as well as the difficulties

to allow dynamic changes in analysis procedures. Since system code together with user written

procedures fann a load module, a user error may cause a total system shutdown. The execution is

non-deterministic and deadlock prevention cannot be guaranteed. The procedure oriented sys­

tems with a number of processes sharing a large address space, tend to be less structured than the

ones with isolated processes communicating via a shared segmenL

To ensure serialization of global resources, in case of a procedure oriented design, the sys~

tern can either define a Dumber of monitors, one for each resource or only locks associated with

each resource. Timing problems, error recovery, process synchronization, avoidance of

deadlocks are all non-trivial matters in this environment. In case of overwriting a data element it

is very difficult to establish the faulty procedure.

The most severe problems are the ones related to concurrency conttol and synchronization.

Often, instead of writing monitors to guard critical sections, a number of locks are defined. The

critical sections of the code become unnecessarily large, contain subsequent requests for addi­

tionallocks, calls to other procedures which may also request new locks, etc. Combined with the

fact that the usually large number of locks are not arranged in a hierarchyJ this lack of structure

makes system deadlocks a relatively frequent occurrence.

A very critical issue is the choice of the programming language used for system implemen­

tation. Data acquisition and analysis system may be very complex consisting of hundreds of

thousands lines of code. For example, the system described in [8] consists of more than 130,000

lines of PlJI code. Such a system can only be implemented in a high level language which sup­

ports concurrent processing. Usually such a language has a sophisticated run time system. In this

- 10 -

case, four different layers of software, each providing a different environment, can be recognized:

the operating system environment, aSE, the high level language environment, Ill..E, the presenta­

tion environment, PE and the application one, AE. The presentation layer implements the primi­

tive functions provided for the user by the data acquisition and analysis as well as the overall

environment control functions. The application layer implements user's analysis procedures. A

well structured design uses at each layer only the primitive functiom provided by the previous

one and communicates with it only through defined channels. For example, at the presentation

layer only the primitives of the high level language should be used.

The environment consistency constraints as formulated above are vel)' often violated in the

design of this class of real-time systems. There are cases when the Ill..E primitives are consider­

ably less efficient than the primitives which a knowledgeable usee may implement using directly

OSE functions. As an example, consider the process synchronization functions provided by the

Pur multi-tasking environment A control process performs all operations related to inter­

process communications for processes residing in an address space; it also dispatches the highest

priority process when the address space is activated by the system dispatcher. Since these func­

tions are vel)' time consuming, an alternative could be to implement directly a number of locks

based upon functions provided by the hardware, using for example the compare and swap insrruc­

tion. A deadlock may occur in this case when a high priority process which waits for such a lock,

external to the lll.E, is dispatched by the connol task which is aware of his environment

There ace also cases when lll..E does not provide all functions needed by the PE. For exam­

ple in case of a peripheral device not sUPIXlrted by the high level language environment, or when

additional functions are needed, the only solution is to communicate directly from the presenta­

tion environment with the operating system, by using low level system primitives. The following

example ilIusttates the danger.; of this approach. Since MVS does not support. multiple files on a

magnetic tape and since asynchronous 110 operations involve a large overhead in PUI, it was

- 11 -

decided to write a magnetic tape driver program using physical 110 operations. One of its func~

tions was to logically close a tape file whenever the data being collected did not arrive in a

specified time interval. by writing two end of file marks. In this case, if the system would crash,

the last file on the tape would still be closed and could be processed normally. If data would

eventually arrive, two backward file skips could reposition the tape after the last block of data and

the new data would be part of the same file. Unfortunately. the procedure responsible for writing

end :file marks. was not designed to return a completion code. As a resule. when it failed to write

one of the end of :file marks, the two backward skips, positioned me tape at the beginning of the

current file and valuable data was overwritten. Also ignored was the fact that an end of file mark

is a special block, separated from the previous data block by a larger gap, three times larger than

a nonnal gap between data blocks. When the input data rate and the timeout were not properly

matched, this strategy lead to a five time increase of the number of JJO operations due to the

additional writing of end of file marks and backward skips and, in the same time, to a tape density

up to five times lower than normal since most of the data blocks were separnted by long gaps.

This example illustrates also the need of a single design in which exceptional conditions are han­

dled separntely and the code responsible for ordinary processing implements a comprehensible

logic. As a conclusion, the different environments need to be properly interfaced. The choice of

a high level language should be made only after a very serious investigation of all features needed

by the presentation and application environments. Mixing up lower level code in such a complex

system leads very often either to errors or to an unstable system. greatly sensitive to minor

changes in basic system software.

Few attempts have been made in the past to model the performance of this type of system.

in particular, to determine the highest data rate a system may support. Most often it is left to the

user to either measure using the experimental hardware, or to simply estimate if all input data is

caprured. Such an approach is not acceptable in case of1arge systems with multiple analysis pro-

- 12-

ceduces. lhis problem becomes even more important when it is required that one or more

analysis procedures process all input data. It was previously indicated that due to the vast amount

of data involved it is highly desirable to have a certain level of data reduction done during the

data acquisition, based upon the results of one or more analysis. Since this is entirely possible if

the parallelism of a multi-processor system is exploited, it is conceivable to think that in the near

future, a significant part: of data analysis will be done in real-time. This requires a careful

analysis of processing time of all critical analysis processes, the processes which must complete

their analysis in real-time. It should also be pointed out that in case of data acquisition and

analysis systems the mapping of processes is a very simple and nablral one.

The modeling methodology presented in this paper is intended to provide general guidelines

and the models need to be validated in each case. A hierarchical modeling approach is suggested;

first the individual processes are modeled separately and parameters as the mean processing time

per data buffer are determined. In case of procedure oriented systems these values needs to be

adjusted to take into account contention for logical and eventually physical system resources.

Then an upper limit for the total number of processes must be established. Using these values it

is necessary to determine if the system can support the required input data rate considering the

conditions imposed upon the number of analysis processes which must process all input data.

Essentially this analysis gives only bounds for the system performance. An exact analysis is

difficult since the models do not have a product fonn solution. The appro"imation made in lhe

next two sections are necessary in order to obtain analytical solutions which can be easily

applied.

4. ANALYSIS OF TIME DELAYS DUE TO RESOURCE SERIALIZATION FOR A
PROCEDURE ORIENTED DATA ACQUISITION AND ANALYSIS SYSTEM

Modeling and analysis of parallel processing and of programs with internal concurrency is

of considerable interest especially for information and knowledge processing systems. Most of

-13 -

the research effort in this area is directed toward modeling of systems in which processes execllt­

ing in parallel require virtually no synchronization or inter-process communication. The assump­

tion of loosely coupled processes is needed in order to have separable models for the system. To

model the concurrency associated with tightly coupled parallel processes in addition to the ser­

vice centers corresponding to the physical system, service centers corresponding to logical

resources need to be defined when representing the system as a network of queues. Since a pro­

cess executing may require simultaneously both a physical and a logical resource. the models are

no longer separable. Studies as the ones reponed in [4], [5] are concerned with the effect of con­

currency upon the system throughput for loosely coupled systems.

In case of real-time systems, the main concern is the ability of the system to perform a

given function in a specified amount of time, with less regard to resource utilization. Each pro­

cess runs on a separate processor so there is a low level of contention for the physical system

resources. It is assumed that there are N processes 1tQ,7tI. 1tz•...• 7tN-I. which may run con­

currently in such a way that their execution logic requires frequent access to some common logi­

cal resources. Such resources are control structures defining the system status, resource alloca­

tion tables, control blocks. data buffers, etc., usually kept in a shared storage such that all

processes may access them. The problem of interest is how does the contention for these

resources affect the execution time of each process.

To ensure serialization, access to each resource is done by means of a monitor. It is

assumed that there are M such monitors, MOo M I, ... • MM-h each containing the critical section

associated with access to a resource. A process may be in one of tluee states:

active, which means running in a non-critical section,

in a monitor state, running in the critical section of a monitor,

blocked, waiting for a monitor currently held by other process.

- 14-

To simplify the analysis, it is asswned that the environment is homogeneous, all N process

have the same pattern of behavior, each active process requests access to a monitor at the rate of

A. requests per unit of time. The requests from any process are unifonnly distributed into the set

of monitors. Also the monitors have similar patterns of behavior, the service rate of a monitor

being ~ requests service per unit of time.

The system can be modeled as a closed system with M + 1 service centers, an infinite server

and M service centers. each corresponding to one of the monitors. The queuing network model

of this system does not have a product from solution since the service times are not exponentially

distributed and also priority queuing is necessary. It is assumed that process 1to has a high prior­

ity, since it maps the data acquisition while processes xI, ... ,1tN-l have equal priorities, each of

them mapping one analysis procedure.

A possible solution is to model the system as a continuous time semi-Markov chain with a

finite number of states. An expert analysis can be done comidering a state to be defined by the

pair

< # of active monitors, # of blocked processes >.

In this case, the total number of states is of the order 0 (N x M).

The approximation used in this paper is to solve the balance equations of system in which

all states with the same number of blocked processes are aggregated into a single state. So a

semi-Markov process models the system and the system is in state i if i processes are blocked,

waiting for monitors. The following notation will be used:

M i is the number of busy monitors in state i. It follows that the number of active

processes in state i is:

- IS -

(Xi is the probability that in state i a request for a monitor will lead to the blocking of

the requesting process since the monitor is in use,

Ili is the probability that in state i a monitor released by a process has at least another

process waiting for it

The transition from state i to state i + 1 has the probability:

A. XAi x Qj = A. X(N - M j - i)aj while the transitions from state i + 1 to state i has the probabiI-

ity: 11 x M i +1X lli+l.

The equilibrium equations give the probability of finding the system in state i as:

. N-Mo i-I
Pj=Poxplx xrrajJ for lSi

M j j=l

with:

(lj_l
Yj=--

~j

The largest number of blocked processes is:

kmax=N -Mmax

This corresponds to the situation when no process is active and running in a non-critical region.

The probability of finding the system in state O. P 0 can be determined from the condition:

k_

L P,= I
'-0

and has the value:

1
P 0 = .,-------,::-''-:-:---,--,-

k... N -Mo k-l

L pk X M x n OJ
k=O k.)"'1

It follows that

-16 -

. N-Mo i-I
pi X X II 5j
___-:M:;.'-i-;-;,--CJ,-'~::-I-,--_Pi =-;:

k ... N-Mo kl

L p' X M X II Sj
1=0 k J=I

for lSi

Let us assume that the pattern in which processes 7th 1tz•... ,1tN_h request monitors is similar.

As a result the number of busy monitors is the same, in all states:

Mj=Ma

"f;.=1 for OSiSN-Ma,
N .

&j=!!.......=1. for OSjSN-MaM.

In this case the probability ofhaving i processes blocked is:

for lSiSN-Ma

The average number of processes blocked, waiting for each of the active monitors is:

The processing time per data buffer in absence of any delays due to resource serialization,

for each process 1to,1tl.'1tz, ...•1tN_1 are denoted as R 0, R 1. R2•... •RHo It is assumed that

R 1.·.· .RN are mutually independent and exponentially distributed random variables with means

Then the average time spent by process 1tj waiting for monitors, during the processing of a

data buffer can be approximated by:

1 -
Wi =""f" xp X(Nb -I), for 1Sf SN -Ma,

Consequently, the average processing time per data buffer for process 1tj in the presence of delays

- 17-

due to resource serialization is:

11-­
-=,.-:- [I +p x(N, -I) J."Ar Iloi

for lSiSN-Ma,

The average time spent waiting for monitors by the data acquisition process 7to which a high

priority. can be approximated as:

- 1 1wo=-x-xp
2 l.o

Its mean processing time per data buffer is:

1 1 1-=-[I+-xpJ
l.<S' l.o 2

The processing time per data buffer for each process. no. 7th 1Cz, ... ,1tN_1 in the presence of

delays due to resource serialization are mutually independent and exponentially distributed ran-

d 0 bl °th 1 1 1 1
om vana es WI means 'Aow' A.t" Ai ')",;_1 .

These values are used to estimate the highest data rate which an be sustained without any

loss of input data, in the presence of the serialization delays, when the system is data drive. They

can also be used in conjuncture with the technique to be described in the next section to estimate

the percentage of data lost when additional coupling conditions between acquisition and analysis

processes are imposed. Such conditions could be: the acquisition process has to wait at least for

one analysis process to complete or it has to wait for all analysis process to complete.

v. ANALYSIS OF A MESSAGE ORIENTED DATA ACQUISITION AND ANALYSIS
SYSTEM

Assume N processes, n:o. 7th 1t7., ... , 7tH-h communicating via messages. Process 7to

implements the data acquisition and interactive control functiorui while processes 7tl , ...• 7tN-l

each map a different analysis procedure.

- 18 -

The message delivery function is provided by the disnibuted operating system and it is fully

transparent to the data acquisition and analysis system described here. It allows asynchronous as

well as synchronous communication between any pair of processes and the overhead associated

with message delivery is very small in comparison with the processing time per data buffer of

each of the 11 processes. The message delivery system has the capacity to store up to m messages

from any source to any destination process; so it may contain N xN mailboxes, each with max~

imum capacity of m messages. Whenever a mailbox is filled up to its capacity, m. any incoming

message is lost The system may have an overflow count, which will record the total number of

messages lost due to the overflow, for any given destination. Process Tti may communicate with

process 1Cj by sending a message which will be achieved .as the k-th message in the proper mail-

box, Mj;(k). In case of synchronous communication, after sending the message, 1tj will wait

until process 1tj receives his message and sends back an acknowledgment In case of asynchro-

nous communication 1tj will continue processing without assuming that an acknowledgment will

be sent A message may contain either data or control information and the receiver of the mes~

sage needs first to identify the content of the message and take proper action. The message

delivery system supports broadcasting. In case of a broadcast message only one copy of the mes-

sage is maintained and kept until it is received by all partners.

No direct interaction between processes 1t1 ,... PiH_1 is assumed. Each of them may run on

a different processor or a group of them may share a processor. Process 1to which runs on a dedi-

cated processor, broadcasts a block of data at a time to all of the analysis processes,

1tl •...• 1tH_I' Each process runs in a loop and performs a specified computation for each input

data block. Process 1to essentially executes the following code:

do until a stop request
begin

read data buffer
broadcast buffer to all analysis processes
compress data buffer

- 19 -

write data buffer to output device
if user command then
begin

create a process to execute the command
end
update system status

end

Whenever a command is entered, a special command execution process is created. This process

decodes the command and produces an order either for the data acquisition process or for any of

me other processes. A special communication path is then established between the command

process and the target process. To simplify the model it is assumed that the frequency of user

commands is much lower that the input data rate and the processing associated with input com-

mands can be ignored.

The read operation is synchronous, process 1to waits until the next data buffer is available at

the input. The write operation is asynchronous, 7t'o writes a buffer to the output device and checks

the completion codes at the next cycle before perfonning the next write operation.

The processing time per data buffer for each process 1tQ, 7th 1t7 •...• 1tN_l are denoted as

R 0. R 1> R2 •...• RN_1. It is assumes that R I ••.. , RN_1 are mumally independent and

exponentially disbibuted modom variables with means 1/)..10 1!A.z, ...• VAN_I' It is assumed

that In..o is much smaller than any of the lIAj. i = 1 to N .

A hierarchical modeling approach [3] is considered. First processes 1t} , ... , 1tN_1 are

modeled. The actual modeling methodology depends upon the mapping of processes

1t1 •...• 1tN_I to processors. It C of them share a given processor then a closed central server

model with C different customer classes is constrocted and solved for the processing associated

with one data buffer. For each model there are as many service centers as required by the

processes using the processor. The queuing network models are separable since there is no con-

currency within each process. As a result of the modeling at his level the mean processing times

R 1 ' ...• RN_1 are detennined. To model the asynchronous write operation of process 1ro the

- 20-

method of surrogate delays proposed in [7] may be used.

Different types of synchronization between Tto and XI •...• 1tN_1 can be analyzed. First it

is assumed that the system is driven by the input data stream and does not require that any of the

analysis processes 1tl ••.•• 1tN_1 analyze all input data. The highest data rate which can be sus-

rained without any loss of data is:

data buffers per second. '!his case is implemented by the 7to code presented above. If the input

data rate is equal to the maximum rate Done of the analysis procedures implemented by processes

1t1 •...• 1tN_l are able to analyze all input data buffers, but only statistical samples of it Process

7tj is able to analyze only the ratio ')../>"0 of the incoming data buffers. If the actual input data rate

D • satisfies the condition D S D max then processes with Ai ~ D are able to analyze all incoming

data buffers.

Since message queues have a limited capacity the system is self regulating, each process 1ti

consumes data at its own peace. The level of communication and synchronization between

processes is minimal and the system is very robust.

Now we examine the case when it is required that the acquisition process waits for all of the

analysis processes to complete before accepting the next data buffer. A typical code for process

7I{tis:

do until a stop request
begin

read data buffer
broadcast data buffer to all analysis processes
compress data buffer
write data buffer to output device
if user command then
begin

create a process to execute the command
end
fori from 1 toN -1 do
begin

- 21 -

wait to receive acknowledgment for process termination
end
update system status

end

The time spent by process 7to waiting for all its satellite processes to complete is:

Since it is assumed that R I I •••• RN_1are mutually independent and exponentially distri-

buted random variables with means: llA.h 1~ , llAN_h the distribution function of the ran-

dam variable W K' [9] is:

N-I
N-l 1

Fwg(x) = iI!t FRI(X)=B [l-exp[-x~]]

The average time spent by the acquisition process waiting for all analysis processes to complete,

[4], is:

- N-l 1 1 1
wg=E[wgj=L--L +'''(-If-'x L ..

. I 1..; ..).,;+1../' . I . A.il+A.j~+ . Ai" I1= I<J 11< 1"'<IN_\ -

When all analysis processes perform similar computations and their processing times can be con-

sidered equal:

Aj=A. for i=1 to N-l

to waiting time oflhe acquisition process can be approximated by:

The previous results can be easily adjusted for the case when the acquisition process must

wait only for a subset of the analysis processes to complete their execution. When it is required

to perform data reduction depending upon the results of k critical analysis processes, the code for

process 1to could be:

- 22-

do until a stop request
begin

read data buffer
broadcast data buffer to all analysis processes
if user command then
begin

create a process to execute the command
end
for i from 1 to k do
begin

wait to receive acknowledgment for process termination
end
if significant event then do
begin

compress data buffer
write data buffer to output device

end
update system stams

end

Finally we examine the case when it is required that at least one analysis procedure

processes all input data buffers. The code for the acquisition process can be derived directly from

the previous cases.

The time spent by process 1to waiting for the first analysis process to complete is:

The disttibution function of the random variable WJ is:

N-l
N-l 1 N-l 1

FwJ(x)=I- II [1-FR,(x)l=I-IIexp[-x ,]=l=exp[LX,]
1"'1 1=1 11.1 j=1 lI.i

Then it follows that

wJ =E[Wol= L
i\<i1 ···<i,,_l

When

/..j=A, for i=1 to N=l

the waiting time is:

- 23-

-1 1 1
Wo=-x-­

AN-I

The highest data rate which can be sustained without any loss of data, D max data buffers per

second is given by:

1
D~ = ---'-1--'---

-.. +Wo

with W 0 either W /f or W J depending if the data acquisition waits for all analysis process to

complete or only for the first one.

When the actual data rate D. is higher than D max then only a fraction of the data is cap-

tured:

D~
11=-­

D

5. SUMMARY

Nonhomogeneous systems with processes which must meet strict timing deadlines

cooperating together with processes with no deadlines form a distinct class of real time systems,

called in this paper semi-hard systems. They can be implemented either as procedure oriented

systems or as message oriented systems. The systems based on the asynchronous message pass-

iog paradigm are simpler to implement and their timing analysis is easier. In case of procedure

oriented systems, the contention for system's logical resources increases the average processing

[ime of each process.

The widespread use of multi-processor systems may a1ler drastically the design of data

acquisition and analysis systems since it will evenmally allow multiple analysis process with

strict deadlines increases, a significant data reduction can be done. Estimations of the average

delay experienced by the acquisition process, when it must wait for one or more critical analysis

processes to complete, are given. Also a methodology for system modeling is sketched.

- 24-

The environment consistency constraint is discussed and a simple design of the system is

advocated.

ACKNOWLEDGMENTS

I wish to thank Allen Weis and Alex Chandra for their support. I also thank P. Heidelberger

for helpful discussions.

AFFILIATION OF THE AUTHOR

D.C. Marinescu was on temporary assignment at ffiM Thomas J. Watson Research Center, York­

town Heights, N.Y. 10598. He is with the Computer Science Department, Purdue University,

West Lafayette, IN 47907.

REFERENCES

[1] F. Bush, H. Goeringer, W. Hartman, J. Lowsky, D.C. Marinescu, M. Richter, K.

Winkelman, Experiment Data Acqzdsition and Analysis System, vol. 1,2,3 aSI Report 83­

4, ISSN 017 I-4546

[2] E. Busse, et aI. The Data Acquisition and Monitoring System HOOPSY, IEEE Transactions

on Nuclear Science. vol. NS-28, No.5, pp. 3674-3679,1981.

[3] P. J. Courtois, Decomposability, Instabilities and Saturation in Multiprogramming Sys-

lems, CACM, vol. 18, pp. 371-377, 1975.

[4] P. Heidelberger, K.S. Trivedi, Analytic Queuing Modelsfor Programs with Internal Con­

currency. IEEE Transactions on Computem, vol. C-32, No.1. pp. 73-82, 1983.

[5] P. Heidelberger, K.S. Trivedi, Queuing Network Models for Parallel Processing with

Asynchronous Tasks. IEEE Transactions on Computem. vol. C-31, No. 11, pp. 1099-1109,

- 25-

1982.

[6] A. Holm et aI, Real Time Progranuning in a Dala Acquisition and Analysis System, IEEE

Transactions on Nuclear Science, vol. NS-28, No.5, pp. 3731-3738, 1981.

[7] P.A. Jacobson, E.D. Lazowska, Analyzing Queuing Networks with Simultaneous Resource

Possession, CACM, vol. 25, pp. 142-151, 1981.

[8] D.C. Marinescu, F. Busch, H. Hultzsch, J. Lowsky, M. Richter, Extended Data Acquisi~

tion Support, IEEE Transactions on Nuclear Service, vol. NS-31, pp. 914-924, 1984.

[9] K.S. Trivedi, Probability and Statistics with Reliability, Queuing and Computer Science

Applications. Englewood Cliffs, N.J., Prentice-Hall, 1982.

	Analysis of a Class of Real-Time Control Systems
	Report Number:
	

	tmp.1307986960.pdf.vPMZg

