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Generation of Configuration Space Obstacles I:
The Case of 2 Moving Sphere

Chanderjit Bajaj and Myung-Soo Kim

Department of Computer Science,
Purdue University,
West Lafayette, IN 47907,

Absmract

Using configurarion space to plan collision free motion for a single rigid object amongst
physical objects. reduces the problem to planning motion for 2 mathemarical point amongst
"grown" configuration space obstacies, ( the points in configurarion space which correspond to
the object overlapping one or more obstacles ). The problem of collision free motion for a point
is simple since a point can now be moved without restriction in any connected region of
configuration space. The difficult pamt of the technique comes in the construction of the
configuration space obstacles. In the past object representarions have been polyhedral approxi-
mations to the real object. However it has progressively become easier for geometric modeling
systems to deal with objects that are defined by quadric (degree 2) surfaces. It is in this sophisti-
cated modeling environment that we characterize the surface boundary of the configuration space
obstacles arising from the motion of a sphere amongst obstacles whose boundary is defined by
patches of quadric surfaces. The problem of generating these configuration space obstacles is also

shown to be closely related to the problem of blending quadric surfaces by spherical envelopes.

Index Terms: Robotics, Geometric Modeling, Spatial Planning, Obstacle Avoidance, Envelopes,

Blending, Computational Geomerry, Parameterization, Computer-aided Design




1. Introduction

Perhaps the most important and universal scheme used in motion planning is that of
transforming the problem in such a way that the rigid object 1o be moved is represented as a point
in what is known as configuration space. For example, the position and orientation of a rigid
object in the plane can be represented by a point (x,y,0) in 2 3-dimensional parameter
configuration space where x, y represent the position of a reference point of the object and 8
represents the orientation of a reference line of the object (say its angle with the positive x-axis).
Similarly, a rigid object translating and rotating in 3-dimensional space can be represented as a
point moving in a 6-dimensional configuration space. Early examples of a configuration space
approach are 5], [11] and more recently [8,9). Using configuration space to plan collision free
motion for a single rigid object amongst physical objects, reduces the problem to planning
motion for a mathematical point amongst “grown" configuration space obstacles, ( the points in
configuration space which correspond to the object overlapping one or more obstacles ). The
problem of collision free motion for a point is simple since a point can now be moved without
resiriction in any connected region of configuration space, The difficult part of the technique

comes in the construction of the configuration space obstacles, {(henceforth C—space obstacles).

There are few techniques known for computing or approximating the C—space obstacles,
resulting from motion of a rigid object in 3-dimensional space, [7]. These techniques have pri-
marily been confined to the motion of the class of polyhedral (degree 1 surface) objects amongst
polyhedral obstacles [3, 4, 9, 10]. We now consider the generation of C—space obstacles arising
from the moton of a spherical object amongst obstacles whose surface boundary consists of
patches of quadric surfaces. In § 2 of this paper we characterize the problem of "growing” gen-
eral C—space obstacles and show that the C -space obstacle boundary surface is the envelope
surface of the reversed object, (reversed with respect to the reference point of the object), as the
reference point moves around the boundary of the obstacle. In § 3 we consider the case of the
moving object being a sphere. More general quadric surface moving objects will be explored in a
subsequent paper [2]. In § 4 we consider the obstacles whose boundary consists of patches of
quadric surfaces. In § 5 we show how generation of these obstacles is closely related to the prob-
lem of blending quadric surfaces by spherical envelopes. The problem of blending surfaces, [6],

Is thus a special case of the general problem of generating € —space obstacles.

‘The choice of the sphere in § 3 is advantageous for a number of reasons. A practical metho-

dblogy that is increasingly gaining ground in robot task planning, is that of hierarchical
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representations, [7}. The notion of hierarchical representations involves attempting to solve prob-
lems concemning physical objects by starting with very simple representations of the properties
involved, and introducing more complex representations only as they are required to solve the
problem. A system thus could initially approximate all objects by interior and exterior enclosing
spheres. If the exterior spheres do not intersect at all during a planned motion, the motion is
known to be safe. If the interior spheres intersect during such a motion, a collision free motion is
impossible. If neither of these conditions are met the system then could proceed to a finer level
of detail. In most industrial applications, the workspace environment of the robot is sparsely clut-
tered and finding collision free paths for general objects by considering the motion of enclosing
spheres of the objects would suffice. Possibly, though ar high computational cost, exact high
degree surface representations could be used.

There is a further advantage in considering spheres. Approximations of the moving object
by the lowest degree (planar) surfaces, i.e., polyhedral objects amongst polyhedral obstacles lead
to an immediate computational difficulty. The unrestricted motion of a polyhedral rigid object
reduces to the motion of a point in 6-dimensional configuration space where both finding con-
nected regions for collision free motion and characterizing 6-dimensional C~space obstacles is
an arduous task, [4,10]. The unrestricted motion of a sphere on the other hand is transformed to

the motion of a point amongst 3-dimensional C—space obstacles.

2. Characterization of Growing C-space Obstacles

Let A be an object and B be a fixed obstacle. Let 2 point of 4, say agq, be designated as the
reference point of A. Throughout we consider A to be free to move under translation but not
rotation. In this case configuration space is 3-dimensional. Let Ap denote the set of points in 3-
space covered by A when A s located with ay at the point p. Ag denotes this set of points when
dg is at the origin. Let B denote the set of points in 3-space occupied by the obstacle B. The
C—space obstacle corresponding to B is the set of configuration space points {p 14, nB =P}
We define B~A to be the setof points {p |p =b —a,a € A, b € B}in 3-space, where b — a
is the vector difference of @ and . With translation but no rotation the ¢ —space obstacle is

given by the "grown" obstacle, B—A g as shown below,

Fact 1: Let B’ be the C—space obstacle corresponding 1o the obstacle 8 and the object A,
then B’=B—-Ag={p |p=b —a,a € Ap. b € B}.




Proof -
B'={peR’|B A, »D}
={peR’[Ibe B NA4,}
={peR*|3be B suchthatb=2+p forsome a e Ag}
={pe R|p=b-aforsomebe B andae Aq}
=B -4, |

IfA and B are convex and have planar (degree 1) boundary surfaces, that is they are convex
polyhedral objects then the boundary of B—4 ¢ = Convex Hull (Vertices (8 ) — Vertices (4)), 91,
The case of A and B being non-convex can be handled by first decomposing A and B into con-
vex components. If A is a convex rigid object with boundary surface of degree > 2 making sin-
gle point contact with obstacle B, then the boundary of B—4 o = Envelope of the boundary of -4,
(object reversed with respect to the reference point), as the reference point ag moves on the boun-

dary of B. This can be seen as follows.

The C—space obstacle corresponding to B is the set of all reference points 7 such that Az,
(the object A, located with a at p), intersects with B, i.e., {7 | A; N B # @}. In particular then
the boundary of the C—space obstacle is the trace or envelope of the reference points ag = p as
AE moves on B with the surface boundaries of AE and B just touching in a point contact. Let Aﬁ
and B make contact at a common surface point p. Then p-p is a point on the boundary of 4,
and p—p = —(p—p) is a point on the boundary of (~A);. When we place —A with the reference
point ag at p, 7 is on the boundary of (-4 )p and thus as the reference point a5 moves on the
boundary of B, the boundary of the C~space obstacle or the trace of the points 7 is an envelope
of the boundary of —A .

A,
Figure 1

Let the boundary of the obstacle B be defined by a smooth convex surface given by Bdr(B)
: f(xy.z)="0 and the obstacle B itseif be defined by B : f(x,y,z) <0, and the boundary of the
object Ag be defined by another smooth convex surface given by Bdr(Ag) : go(x,y.z) = 0 and
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the object A, itself is defined by Ag: go(x.y,2) < 0. If p = (x,y.7), then the boundary of A is
given by Bdr(4;) : golx -X,y -y, 2z-2) = 0. Next, let Az and B make contact at a point
p =(xy,z). The two surfaces go(x —X.y ~7.z~2) = 0 and fx,y.z) = 0 have a common
tangent plane at p = (x,y.z). Hence, for some o > 0, p = (xy.z) € Bdr(B), and p-p =
(x-x,y—-y.2z-2) € Bdi(A), we have the following relation berween the two normals of these
surfaces at the point p = (x,y,z),

Viyz)=—aVgyx-Xy—~7.z-7)

Vi) =~ a Vgop-p)

Now, the boundary of (—=A)q is defined by Bdr((-A)o) : g(x.y.z) = go(~x,~y.~z) = 0 and
Vg(xy.z) = — Vgo(-x.~y,~z). Thus for some & > 0, p ={xyz) e Bdr(B), and p—p =
(x—x,y-y,z-2z) e Bdr((-A)g), we have

Vixyz)=aVegx-xy-yz-12)

Hence, the solution for the boundary of the C ~space obstacle B’ is the set of ail the points p
which satisfies the following partial differential equation

Vi) =a Vgu@ -p)

for some a2 > 0 and some p € Bd(B). In general, for given f and g, this partial differential
equation is difficult to solve directly. We now attempt to characterize the solution for the cases

where f = 0 is a quadric surface and g = 0 is a sphere.

3. Moving a Spherical Object

Consider the object A 10 be a sphere of radius » with its center as a reference point and sup-
pose the boundary of an obstacle B be given by a smooth surface
Bdr(B): fxy.z)=0
and the obstacle B itself is given by
B:f(xy,z)<0
Atapoint (x,y,z) € Bdn(B), Vf (x,y.z) is the outward normal direction of f at(x.y,z). Hence,

Vi&y.z)
|1V xy.2)11

Is the position of the reference point (center of sphere) when the sphere makes contact with the

xyz2)+r

obstacle B. The boundary surface of the C—space obstacle B will be

Vf(xy.2)
[1Vf(xy.2)] ]

(¥ DeRNEITD=@yz)+r with f (x,y,2) =0 or (x,y,z) € Bdr(B) }
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Hence, 10 get the surface equation for Bdr(B ") we need o solve the equation
Vf(x.y.2)
[IVF(xy.2)i|
Even in the case of quadric surfaces of degree 2, | | V£ (x,y.z)| | is not of a simple form. So, the

Eyz)=@yz)+r forx,y,z interms of x.,y,z.

general solution is not easy. But, with special conditions on | |Vf{x.,y,z)| |, the solution can be

obtained easily. First, let us assume that | | Vf (x,y.z)| | = constant = X, then
— r
xyn=G@yz)+ x Vixy.2)

There are three cases (plane, cylinder, and sphere) of [ | Vf || = constant = K among the alge-
braic surfaces of degree < 2.

3.1. Special Cases of ||V f]| = Constant

3.1.1. Plane:
When f(x,y.z)=ax + by +cz +d =0, we have
Vilxyz)=(a.b.c) IVf(xy)l=Va2+b2sc?=K
By the above result
@y =(xy.2)+ % @b .c)

x—f—La =y — b z—E—Lc
B A r 2TET%

I
K
Hence

f(x

K&k 7k
a(f—-%a)+b@-%b)m(?-i,-c)m:af+bi+cz—%(a2+b2+c2)+d=o
ax + by + ¢z -r(Na®+b2 D +d =0

Herce, a plane is grown into another plane.

3.1.2, Circular Cylinder :

We may assume f (x,y,z)=x2+y2-R?2=0, R >0, then
Vixyz)=(2x,2y,0), ||VF@y.z2)l] =Vaxriay? = 2 Vx2y? = 2R

And so,
—_ - r r
(I-}’-_)=(I-)'-3)+2—:?‘(2x-2)"0)=(1+ﬁx-)'+§)’rz)
x=2z y=L_35 z-zf
TR+’ y—R+ry'



and

R _ R
R+r 7" R+r

R 22 (R -2 _ o2

@+ = R+r)?

Hence, a circular cylinder of radius R is grown into another circular cylinder of radius R+r.

K ¥, 2)=0,

3.1.3. Sphere:

We may assume f(x,y.z)=x>+y2+2z2-R2=0, R >0, then
ViGxy2)=(2x,2y,22), ||Vf(xy,2)||=Vax? +4y2 + 4z2=2Vx2 + y2 + 22=2R
And so,

7 r r r r
(f.y,?)—(x,y,_)+ R (21. 2}’- 22)—(x+Rx.y+—-y,z+E.)

R
r=2fy=25 =L ¢
TR VTR Y T T R
and
R _ R _ R
1 ] =0'
f(R+r R+ry R+rzj

R o2 R 2.—n R o3 _,
(R+r)®+(R+r)®+(R+r)®—R’

G+ TP+ @) =R+rY

Hence, a sphere of radius R is grown into another sphere of radius R +.

3.2. Surfaces of Revolution

Besides the above three surfaces, the cone is another very important and useful quadric sur-
face in geometric design. Such surfaces also arise in modeling cutting tools in machining opera-
tions. However, a conic surface given by the equation f (x,yz) = x? + y2 - 22 = 0, and having
[HVf(xy.2)l| = |1(2x2y,—22)|| # constant, requires another technique to compute the
C —space obstacle. We shall first consider a more general case of the surface of revolution and

see that the C—space obstacle of a surface of revolution is again a surface of revolution. Gen-

erating the C—space obstacle of a cone is then a special case of this.
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32.1. Growing of a Convex-Downwards Generating Curve

When the boundary surface of an obstacle is a surface of revolution of a convex-downwards
generating curve, y =c(x}20, (withc”(x)<0), 2 <x <5 around the x-axis, the equation
of the surface is given by

y2+22=[c(x)? a<x<b.
Let
FayD=-[c)P+y2+22=0, a<x <b.
then
Vikyz)=(2cxycx),2y,22z), a<x<bh.

Hence, this gradient vector is parailel to the plane contaiming the x-axis and the point (x,y,z).
And so, when we grow the point p = (x,y.z) into another point p = (%,5,z), this grown point p
will be on the same plane determined by the x-axis and the point p = (x,y,z). We can easily see
that the C—space obstacle of a surface of revolution is again a surface of revolution. To get the
C—space obstacle of a surface of revolution it is sufficient to get the generating curve of it We
can get the generating curve of the C—space obstacle by growing the original generating curve

¥ = ¢(x) in the xy -plane with respect to the circle of radius r with its center as a reference poirit.

Let's consider a convex-downwards generating curve
y=c@x)20, (withe¢”(x)<0), asx<bh.

At the point (x, c(x)), (1, ¢’(x)) is a tangent vector to the curve y=c(x) at the point (x, ¢ (x)).

1+ .1:'(x 2 (1, ¢”(x)) is an unit tangent vector to the curve y=c(x) at (x, ¢(x)). Now, when

we mulliply this vector by the rotation matrix by angle %

c(:osE —sirlE
[0 —1] 2 2
1 0|7, = b A
Slﬂ2 0052

since the generating curve is convex-downwards, we get the following outward unit normal vec-

tor 1o the curve y=c (x) at (x, c(x))

1

0-1] [Vi+ (c’(x))?
c’(x)

1+c¢’(x)?

V1 +¢’(x)* 1 —(x)
o IR -
TrcGy |
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Now, the growing of the point (x, ¢ (x)) toward this outward normal direction by distance r is
x 1 —(x)
@] Maear |1

—<’(x)»r
1+c(x)?

;
s v

— —c'(x)r — r
X=x+ . =c(x)+
Vit ¢ VI + ¢’y
In general, it’s very difficult to represent ¥ in terms of X 10 get a generating curve for the boun-
dary of the C—space obstacle. But in some special cases, x can be represented by X in a simple

way, and s0 y can be represented by X easily. Remarkably, the cone is such an easy case.

3.2.2. Generating curve is a line segment :

When the generating curve y=c(x) 20, a <x €5 is a straight line segmenty=ox 20, a

<x <), its surface of revolution is a piece of a cone. We have

cx)=ox, c’x)=ccand V1 +c'(x)¥¥ =V1 + o2,

By using the above result we get
- —‘(x)r —ar — or
X=x+ =x + sard x =x +
V1 +o'(x)? 1+a? V1+o2
and so
2
— - or r — ar+r -
= c{x + + = ox + =0oX + (V1 + a®)r
Y ¢ \!1+o.2) V1 + o2 V1+02 (

Now, since x and x differ only by a constant 310:-;2
a

or - ar
a— £x<h - iff a<x<h
1+ o2 1+ 2

Hence,

- =TT or _ or
=X +rV1+0% a-— <xgbh -
7 1+ a2 i+ a2
Hence, the growing of the cone y2 + 22 — o?x2 =0, a <x < b is the surface of revolution of
the following curve about x-axis
or

yet@=ar+ i, a-pEssich -t

that is, the surface
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2. .2 + 2.2 or or
+zé=(oxr + r¥l 4+ 09, aq - Sxsh — .
Y ( ) VI+to2 I+

32.3. General convex-downwards generating curve :

Now, let us consider a more general convex-downwards generating curve of the form
(¢, c(@)), (withc(¢)20 and ¢”(t) <0) for a <t <b.
When we grow this curve by a circle of radius r, we will get

—(t)r

r
=c(t)+ , X =r+ , where a £t <h
YO e Troer

Hence, a new generating curve for the grown curve is

E(f)=c(f)+m, astsh

The corresponding surface of revolution for this grown generating curve can be obtained by elim-
inating ¢ from the follwing two equations and replacing the bounds for the parameter ¢ by that of

x,

2

2 2 _ =12 r
ye+zt=[c(@®)) = [C(r)+m}.
—(¢)r

s where @ £t b
1+ ¢’(2)?

xr=I+

32.4. Example : Cone

Cone is a surface of revolution of the following two line segments.
y=0x20, 0sx<b
x=b, 0<y<ob
Since there are two singular points (0,0) and (b,0b), these will be grown into a piece of a-circle
in the generating xy-plane. Two line segments will be grown into line segments of equal length :
and slope. Hence, the generating curve of the C —space obstacle of a cone consisis of 4 pieces of

elementary curves.

(1) Firstofall, y =ox 20, 0<x £ b’ will be grown into a line segment

zax +r I+, - o <x b — -2

yEox kNI, - pFSE b -
(2) x=b (0<y <ab) will be grown into a line segment
x=b+r,0‘£y£czb




-11-

(3) 'The singular point (0,0) will be grown into a piece of circle

y=V¥rt—x2, —r<x SV_—O{‘;
1+ce?

(4) The singular point (&, ab) will be grown into a piece of circle
VPP (x-bP+ab, b-—m—<x<b+
y =Vt Tra? SF S0

Now, when we revolve these elementary line segments about x-axis, we can get the following

surfaces of revolution

(1") Theline segment y = oxr +r Vi+o?, — V{L- £x<ph- Vlar? will generate
+o

24 22= (o + rV1 + 027, Y o <xsh- X
yrram=(ox ) i+ V1 +02

(2) Theline segment x =H +r, 0 < y £ ab will generate a disc of radius ob

yi+z22< (b)Y x=b+r

(3"} The piece of a circle (which is a growing of the point (0,0)) will generate a piece of sphere

as follows
24,2 2_ 02 —w
+z=(0Vr -2, -r<xx<
7 ) V1+02
or equivalently

—ar

2 +y2+22=r% -rg i a1
¥ 4 r ' X 1+a2
(4) The piece of circle (which is a growing of the singular point (b, ob)) will generate

2422=(rP - (x b +0b?, b - <x<h+r

yresfrsGotyran boa
or equivalently
G—bP+y2+2t=r2+ 262+ 200Vr2 - (x - B ), b—ﬁ—5x5b+r
o

It is a piece of a torus (algebraic surface of degree 4) if ab = 0.

3.2.5. Example : More general surface of revolution

In general, when the generating curve consists of a finite number (say n) of piecewise
smooth convex-downwards curves of the form
(£, ¢;(¢)), (with¢;(£)20 and ¢;”(c)<0) where a; <t <b; =qa;,,,
fori=1,.,n witha =0 b,=0, ¢;(0)=0, and ¢,(b)=0

Each of the curve segments (s, ¢;(7)), a; £t £ b; will be grown into a curve segement
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(x(t), y(2)), a; <t <b; givenby
—;"(t)r .
1+ GO Yy =c@)+ WC:—W’ whereg; <t < b;
Each of the singular points (ay, 0) = (0, 0), (@2, €2(@D), ..., (@5, €4 (@), (By, 0) = (b, 0) will be

grown into a piece of circle as follows

x()=t+

(I} (0, 0) will be grown into

=,, z_ 2' —r<r< %"1(0)?
A e e A TDG

(2) (ai,ci(@), i =2,..,n will be grown into
y =N = (x — &) + ¢;(a;)

ci’'(a;) r ci'{aiv) 1

where a; — ‘—“—r—-—l T (cl-'(al-))z £z = aiy1 = _\!1 " (cl- '(al-_'_l))z
(3) (bx.0) = (b, 0) will be grown into

) r
=\Jr2—x2. b__Cnf_ € Xx £ b+
Y N1+ B ’

4. Obstacle consisting of patches of planes, circular cylinders, spheres, and cones

Let an obstacle B be a convex set such that the boundary of B consists of a finite number of
surface patches which are pieces of planes, circular cylinders, spheres, or cones. Let the boun-
dary of B have m faces Fy, ..., £, n edges E\, ..., E, (which are intersecting curves of faces),
and / vertces vy, ..., v; (which are intersecting points of edges or apexes of cones). Each face F;
({=l....,m) will be grown into another face F*; (i=l,...m). Each planar face will be grown into
another planar face at distance r. Each circular cylindrical face (of radius R ) will be growm into
another circular cylindrical face (of radius R +r). Each spherical face (of radius R ) will be grown
into another spherical face (of radius R+r). Each conic face will be grown into another conic

face without an apex, because the apex will be grown into a circular edge and a spherical face.

4.1. Growing Edges into Edges and Faces

When a face is bounded by some edges, its grown face will be bounded by the grown edges
of the boundary edges of the original face. In the case of common boundary edge £ of two dif-
ferent faces F and F, as a curve on the face F, £ will be grown into a boundary edge £, of
F|" and at the same time as a curve on the face F, it will be grown into another boundary edge

E4" of F5'. In addition to these two edges £, and £4/, E will be grown into a face Fg’ which is a
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piece of the envelope surface of sphere of radius r as the center of the sphere moves along the
edge E. This envelope surface has a tubular shape and is a member of the class of surfaces
known as Canal surfaces. In our case since the obstacle B is convex, we can get the parametric
representation of the tubular face F’ easily once we can parametrize the curve E and can get the

surface normals of the faces F; and F, on this curve E.

Suppose the edge E is parametrized by a curve C : [a, b]1 > E. By using the surface nor-
mals of ¥ and F; on this curve € (or edge £) we can parametrize the grown edges £/, and £,
by the curves C; : [z, b] - E and Cy:la, b] > E so that C ,(t)—C(¢) is normal to the face F
at C(t) e E and C(¢)~C (¢) is normal td the face F; at C(¢) € E£. Since the obstacle B is con-
vex, the directions between N, = C(¢)-C (¢) and Ny = Co(¢y-C(t) are always outward direc-
tions of B. These directions between N, and N, determine a geodesic curve segment Yc ¢y from
C(t) 1o C{r) on the sphere of radius r centered at C (¢) € E. We can show this curve segment
Yy Will be on the envelope surface of the sphere of radius r moving with its center along the
boundary of B, and when we move its center along the curve C (i.e. the edge E), the trace of the
circular curve ¢y will generate a tubular surface patch and this is the face generated from the
edge E by the growing operation. Actu ally when we locate a sphere of radius r with its center at
a point on the circular curve Yc ¢y this sphere will contact with the obstacle B exactly at the point
C(tye E.

When the face F, is given by F, tf1xy,2)=0 and the face F, is given by Fy:

fax.y.z) =0, the parametric curves C, and C for the grown edges E”| and £, can be given as

follows
C=c@r ||§;:Egggn P asrsh
C=CW+r lg-ﬁg;; rasest
and the parametric representation of the grown face Fg’ can be given as
e+ oy

H(s,r):yc(,)(s)=C(r)+r , where —1<s<1 and a <r<h

1— 1+
1155 €10y + =% €|
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42. Growing Vertices into Circular Edges and Spherical Faces

When a vertex v is an apex of a conic surface patch, it will be grown into a circular edge
and a spherical patch by the result of growing a surface of revolution ( § 3.2.4). When several
faces F, ..., F; are placed counter-clockwise around a common vertex v and v is not an apex of
a conic surface, v is a common vertex of k edges E, (common edge of F| and F5), E, (common
edge of F; and F3), ..., E; (common edge of F; and F1) atthe same time. As a point on each
faces Fy, ..., Fy, v has & nomal directions Ny, ... Np. These & normal vectors determine %
points vy, ..., v; on the sphere of radius r centered at v. By the same way as we did in growing
the edges, there are geodesic curves v, from v (o v,, ¥, from v4 10 va, ..., ¥, from vg to v; on the
sphere of radius » centered at v and we can show that the circular edges defined by these geo-
desic curve segments are on the C -space obstacle B’ of B and the convex re gion bounded by the
closed curve vy > % - ... = ¥, defines a spherical surface patch which is a grown face of the
verex v. In summary v will be grown into £ boundary vertices Vi a e Of F/, L F, into k
circular edges E,, (connecting v, and v,), ..., E,, (connecting v, and vy), and into a spherical face
F,’ which is bounded by the edges E,, ..., £,,.

When we have m faces, n edges, ¢ apexes of cones, and / vertices which is not an apex of
a cone (where each vertex is a common vertex of &; edges, i = 1, ..., ), we will have (m+n+qg+l)
faces, (2n+q+k +..+k;) edges, and (% +...+4;) vertices on the C —space obstacle B” of B. An
apex of a conic face can be a vertex of a non-conic face at the same time. This case is excluded
in the above consideration, but we can do the growing of this vertex by the same way as we did in
the other cases and we can get quite similar result on the number of faces, ed ges, and vertices and

the C —space obstacle B’ of B.

4.3. Boundary consisting of several planar patches

When the boundary of an obstacle B consists of only planar faces, the edges are all stright
line segements. Each face will be grown into another planar face of the same shape and area,
each edge will be grown into two line segments and a piece of right circular cylinder, and each
veriex will be grown into vertices, circular edges, and a spherical face. The boundary of

C—space obstacle B’ will be composed of pieces of planes, circular cylinders, and spheres.
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4.3.1. Example : Box

(b
@
3
@
&)
©)

When we have a box bounded by six planar patches
-R<x,y<R, z=-R
-RSx,y <R, z=R
-R=<y,z%5R, x=-R
—-R £y,z<R, x=R
R <x,z<R, y=-R
-R<x,z<R, y=R

The C-space obstacle of this box will be bounded by 6 planar patches, 12 cylindrical

parches, and 8 spherical patches

P1)
(P2)
P3)
(P4}
(P5)
P6)
(C1)
(C2)
(C3)
C4H
(C5)
(C6)
(€7
(C8)
(€9
(C10)
(C11)

R <x,y<R, z=-—R-r
-R<x,y <R, z=R+

"-R<y,z<R, x=-R-r
—R=Zy,z<R, x=R+r
R <x,z<R, y=—R—r
~-R<x,z2<R, y=R+r
(x-R)*Hz—RY*=r%,x 2R,z 2R,-R <y <R
E-R)Y+Hz+RY =rt,x 2R,z <~R,-R <y <R
(+RPHz+R)? =r%, x €-R,z <-R,-R Sy <R
(x+R)Y4z-RY¥=r2,x <-R,z2R,-R <y <R
O-RYHz-RY¥=rly2R,z2R,~-R <x SR
G-RYPHz4+RY¥ =r,y 2R, z<-R,-R <x <R
G+RYHz+RY¥ =rt,y <R,z <-R,-R <x <R
GHRYPHz—R?=r%y<—R,z2R,-R<x <R
(x—-R¥Hy-R¥?=r%,x2R,y2R,-R<z<R
(x-R)Y+(y+R¥ =r , x 2R,y <—R,-R <z <R

(R YHy+R ¥ =rt, x S-R,y <-R,-R <z <R
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(C12) (+RY+(Y-R)?=r%,x<-R.y>2R,-R <z <R
() (-RYHy-R)z-R)*=r%x>R,y>R.z 2R
(82)  @-RYHy-R)Hz+R)*=r2,x 2R,y 2R,z $-R
(83)  G-RYP+y+RY+z-R)*=r%x 2R,y <-R,z 2R
84)  @E-RYHy+RHz+RY¥ =r2, x 2R,y <-R,z <-R
(85)  x+RYHy-RYPHz-RP=r%,x<-R,y 2R,z 2R
(S6)  @+RYHy—-RP+z+R¥ =r%,x <R,y 2R,z <-R
ST GHRP+y+RYHz-R¥ =r% x <-R,y <-R,z 2R

(S8)  HRHy+R)YHz+R¥ =r%x <-R,y<-R,z <-R

43.2. Boundary consisting of planar patches and cylindrical patches

The intersecting curves of two cylinderical patches are in general very complicated. Some
simple cases of these are considered in § 5 in connection with the surface blending problems.
The intersecting curve y of a planar patch P and a cylindrical patch C can be a straight line, a
circle, or an ellipse. When we grow a convex obstacle B, the planar patch P will be grown into
another planar patch P’ of the same Shape and the same area, the cylindrical patch C (of radius
R) will be grown into another cylindrical patch C” (of radius R +r), and the intersecting curve y
will be grown into a cylindrical patch (if yis a stright line), a piece of torus (if yis a circle), or a
piece of elliptic torus (if v is an ellipse). Growing of a vertex is quite similar to the case of

several planar palches,

4.3.3. Example : Cylinder
When we have a cylinder bounded by 3 surface patches
(1) x2+y?=R2 0<z<R
@) x2+y2<R? z=0
€)] x2+y2<R? ;=R

The C-—space obstacle of this cylinder will be bounded by a cylindrical patch, 2 planar
patches, and 2 toroidal patches.

©) x2+y?=(R+r)?, 0<z<R
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(P1)  x%4y2<R? 7=-r
®2)  x*y?<R? z=R+r
(T 2y2z%4R2-rY)? = 4R%(x%4y2), 2 <0, x24+y2 2 R2

(T2) Py z-RY4R¥—rH? =4R%:%yY), z 2R, x2y? 2 R2

3. Relation to Blending :

When the boundary of a convex obstacle B consists of finite number of smooth surface
patches (i.e. piecewise smooth), the C—space obstacle B’ of B due to 2 moving sphere of radius
r, has a smooth boundary surface. This is because the faces of the € —space obslacle B, due to
the way they are constructed, fill out the discontinuities of the directions of the surface normals
on the edges and vertices of 8. The normal directions of the smooth blending mbular faces over
edges of B and the blending spherical paiches over vertices of 8, of the constructed C —space
obstacle B” give all the missing outward normal directions bewteen two adjacent non-smoothly

connecting boundary faces of B.

5.1. Example : Two cylinders of same radius intersecting at right angle

Consider two cylinders of the same radius R intersecting at right angles (R > r),
Fifyz)=R2-—x2-22=0
G:glxyz)=R2-y?—22=0

By solving these two equations simultaneously, we get
x2-yr=0, (x—y)(x+y)=0, and y=+x

Hence, the intersecting curves are on the planes y =x and ¥ =—x. The intersecting curves can
be divided into 4 pieces and parameterized by t as follows

c1(&)=(t, t, YR2—1®, -R<:<R

ca@)=(t, t,—-VRE=1?), —-R<t<R

es ()={(¢, -, W), -R<t<R

ca @)=(r,~t,-VRZ 1B, _R<r<R
When we grow these cylinders inwards (we assume the obstacle is defined by x2+z2 > R2 and
y*+z% 2 R?), the piece of cylinders will shrink toward their relative axes. Since the intersecting
curves are on both F and G, as a curve on F, it will shrink toward the y-axis and as a curve on
G, it will shrink toward the x-axis. The gap between the boundary edges of the reduced

cylinders 7 and G’ is filled out by the envelope of a sphere of radius » moving with its center on
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the intersecting curves of F and G, forming the blend of the reduced cylinders.

Now, assume that a sphere of radius r is located with its center at the intersecting curve
ci{ty={(c¢,zt, W) for some —R < < R. At this point, the normal direction of cylinder F
is

V(e t, m
=(~2£,0,2z) withx=¢, y=¢, z=VRZ~¢2
=(-2¢,0,-2 VRZ ~ 13)
and the normal direction of cylinder B is
Ve(t, 1, YR~ 19
=(0,-2y,2z) withx =z, y=t, z=VR2—¢2
=(0,—2t, 2 VRZ - 73
The straight line L,(s)=((~2) 5, 0, ((:2YRZ— %) 5 ), 5 20 intersects with a sphere of radius

- r as follows

(=2¢)%2 + ( =2VR?
4r2%52 + A(R? - :2)s = r2
4R*%%=r2
r
=—20
TSR
- — VYRZ _ 2
Hence, v=( T” 0, ;%-—r- ) is a point on the sphere of radius 7 in the direction of Vf .
—r VRZ _ ;2
Similarly, w= (0, — R = __r_.';_r_ ) is another point on the sphere of radius r in the direction
of Vg.
The straight line connecting these two points v and w is given by
P.(s) = 1—5(:1'1 0 —rVRZ—-rz) I+s (o, % —rVRZ — 2 )
ST 2 gt R 2 "R R ,

-(ér 0, —“/Rz—r }s—1) + (0, — : —wle—: Ys+1)

—(—ﬁr —-2Rr 0)3+(2R ZRr——\fRz—r )y for-1<s5<1
The geodesic curve segment connecting v and w on the sphere of radius r is :

P,(s)
Os)=r ————
= RG]

Now, when we translate this curve so that it will be on the sphere of redius r with its center at the

curve ¢ (t) = (¢, £, VR? — 1), we have

Pi(s
Hs.t)=r --ﬁ;l—l+(r.r, \JIRZ—IZ) for -1<s <1, -R<£r <R
(s
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This is 2 parametrization of the blend connecting the £ap (due 1o the curve c,) between the reduce
cylinders of F and G smoothly. We can do similar work for the other 3 intersecting curves

€a, €3, and Cy4.

5.2. Three cylinders of same radius intersecting at ri ght angles
When three cylinders of the same radius R intersect at right angles to each other, we have

F:ftxyz)=R*=x*—y2=0
G :g(x,y,z):Rz—-yz ~z2=0
H:h(xy.z)=R*>-7z2_x*=0

and

ViGx,y,z)=(-2x, 2y, 0), Vglx,y.z)=(0, -2y,—2z ), Vh{xy,:z)=(-2x,0, 2z).
When we solve three equations simultaneously, we have

2_,2.0 22442-p2 ny2_ p2 _+ R
X -z 0, z°+x=R% 2x R.andx_ﬁ.

and simitarly

)

R R
x—:l:ﬁ. y=x L z—:t@.

. R R R .
Hence, there are 8 vertices ( + \E’i\’f'iﬁ) which are commonto F, G, and H.

Let us intersect the two cylinders g(x,y.z)=0& h{x,y,z)=0 first, and then intersect the third
cylinder f (x,y,z) = 0 with the intersection of the first two. The parts of the intersecting curves of
the first two cylinders g = 0 & & = 0 which lie inside of the third cylinder f = 0 will be removed
in the later intersection. So, we can construct 4 pieces of parametrized intersecting curves for
each pair of cylinders and then take out the parts which are inside the other cylinder. We would
still have 4 pieces of parametrized intersecting curves, but now of shorter length. We can con-
struct total 12 pieces of parametrized intersecting curves in this way. These 12 pieces of inter-

secting lines can be formalized as follows.

ci(t) =( VR2~2, RZ_ 42 p, —% <t s—%
car) =(~VR2-¢2, YRZ-.22 p, —%s: < —%
cat) =(=VR*—1% —VR*_ 1, 1), —%srs—%
ca(t) =( VRZ-12, —VRZ2_ 22, p, —%s: S%
es(t) =( YRE~(% &, YRZ - 13, ——%s: s%
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celt) =( YRZ—12, ¢, ~VR2 -1}, _—%5; g%
ety =(—VR =2, 1, —YRZ -1}, —%s:s%
cg(t) =(~VRZ-12 ¢, VR?-¢?), -%s; 5—%
eolt) =( t, YR*—r%, R* -3, —%g;s%
cwy=( t, ~VRZ= 2, YRI_ 3, —-—%g; 5%
cult) =( t, =VRZ -2, ~YRZ -3, ——%s: 5—%—
crt)=( t, VR:-72, —NRI- 3, ——%s;g%

The growing of all these curves into smooth surface patches will be done exactly the same
way as we did it in the case of two intersecting cylinders. A new situation in this problem is how

to grow the common vertices of the three orthogonal cylinders.

At the point ( :?. :f; w/_) we have three normal directions, one for each cylinder.

R R R
Vi(—= r\,«)(J_R—v'_RO)

R R R
V(TTT) (0,~ZR,—ZR)

R R R
22’2

Obviously, the three intersecting points of the sphere of radius r together with the straight haif

Vh(— —)=(—2 R, 0,2 R)

lines coming out of the origin toward
R R R R R R v R R

g g e ey

S|

r r r r r r
(—'Tz*, L 0). (0, -5 —Tz). and (—Tz. 0, —Tz)-
These three points define a spherical face which blends the gap at the corner (due to the vertex

(f; :;i r) ) among the reduced cylinders of F, G, and H, and the tubular patches grown

from the edge curves ¢;, ¢5, and ¢y. We can do similar work for the other 7 vertices.
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33. Two cylinders of different radii intersecting at right angles

When we have two cylinders of different radii Ry and R; (R) > R, ) intersecting at right

angle, we may assume these are given by
Fif(xyz)=R2-x2-22=0
G:gxyz)=R2-y?—2z2=0
and so
Vilx,yz}=(-2x,0, -2z ), Vg(x.y,z)=(0, 2y, -2z)

When we solve two equations simultaneocusly, we have

2=y =R2~Ry, x?=y+ RPE-RAD.and x =£Vy2 + R* - RD)

The intersecting curves can be parametrized as follows

(VP2 +R2-RD .1, £VRZ —1%), —-R,<t <R,

There are four intersecting curves

) =( NE+RZ-RD), t,NRP—1D, -R,<t<R,

ca)=( VE+R*=RD), t,-VRZ <13, —R,<t<R,

cx)=(NE+R2E-RP, 1. \REF-1D, -Ry<t<R,

cat) =( N+ RP-RAD, 1, RZ 1), -Ry<t<R,
Let's consider the curve

@) =(NP+RE-RD. t,\RE 1D, -R;<t<R,
On this curve, we have two normal directions
Vi 16D = (2 VP + R = R, 0, 2 VRZ - 19)
Vele | (£)=(0.-2t, 2 VRZ~ 1), -R,<t <R,
Now solve the following equation for s > 0,
Is-VFfl=r
452 + Ry ~ RP) + 452 (R — 1% = r?

4R %s*=r2

r
=——n=>0
8 ZRI

Similarly,
Is-Vgil=r
as%? + 45%(R? — 1B =r?

r
§= TH >0

Hence, a point on the curve ¢ (¢} will be grown into the geodesic curve connecting two points on



2.
the sphere of radius r
v=( —;54:2 +R =R, 0, _;—:w — %) and w=(0, ——R’—zs. —?'z—w/Rf =)

A straight line connecting these two points is given by
Pi(s)

—_i(R;r-'\h +RE-RH, 0, ——-\]Rz —r2)+£(0 —-r.——-—\JRz -r?)
1

= (— 2 2_p2 2 _ 2 (s . r
_(ml\l: +R2-RA),0, ZRlszz (Y6 1)+(0.2R fop

2

Rzz - l':,'

for -1<s <1
Hence, the geodesic curve connecting v & w on the sphere of radius 7 is
Pi(s)
12,11
Now, when we mranslate this curve so that it will be on the sphere of radius r with center ar

) =(VE+R2-RD), 1,VRE— D, -R;<t<R,

Qis)=r-

we have

P (s}
Hl(s-t)zr TI_P:(STI- +(V12+(R12—R22), z, ‘JRZZ_' [2)

for -1<s < 1, —stf SRZ

We can do similar work for the other 3 intersecting curves €3 C3, and c,.

54. Two cylinders of same radius intersecting at skew-an gle

When two cylinders intersect at skew angle, by rotating appropriately we can place one of
the cylinders parallel to the y -axis. We may assume one of the cylinder is given by
F :f(x,y.z)=R2—x2—zz=0
Another cylinder intersecting at skew angle can be given by rotating the following cylinder by

angle ¢ counter-clockwise about z -axis.

The rotated cylinder is
RP_(yY-z22=0
When x =r cosd and y =r sin8,
x’=r cos(8—¢) = r (cosd cosd + sind sing) = x cosd +y sing
¥ =r sin(6-¢) = r (sind cosd — cosd sing) = y cos¢ — x sing
Hence, the rotated cylinder is
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G:glxyz)=R%—(y coshp —x sing)? —z2=0
When we solve the following simultaneous equations
x> +2z2=R%, (x sing —y cosg)? + z2 = R?
we have
x2—(x sing — y cost)y? =0
x2 — (x2 sin% — 2xy sing cos + y2cos2p) = 0
(1 ~ sin®)x? + sin(2¢) xy — cos®h y2 =0
(cos?) x% + (sin2¢) xy — cos?d y2 =0

We may assume 0<¢<% (. cos’p = 0), and so

2 4 Sin2¢
cos%
x% + 2tand) xy - y2=0

(x + (tang)y )* — (tan’p + 1) y> = 0

x xy —-y2=0

(x + (tand)y)? - y*=0

cos%H
y =% cosd (x + (tand) y)
y =x((cosd) x + (sind) y )

Hence,
cosd
r= I—sing = (L)
or
—Ccosd
= Teeing * T

In case (1), since z% = R? — 2,

z=tVR?-1x2, y — Lo
1-sing
Similarly, in case (2),
z=1VR*-x%, y =_co_r-s¢
T+sind
Hence, the intersecting curves can be divided into 4 parameteric curves

cilt)=(¢, —1% r,\fRz—tz), —-R <t <R

cot) = ( ¢, % t,VR2—1®, -R<:r<R

cosh 2 7.
()=(t,—~———1,YR2 19, —R<:!<R
c4(f) = ( T+sing )
cl)=(r, 22, RT3 _p<i<r
1+sing
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Now, when we grow the cylinders inwards by a sphere of radius 7, the cylinder
| x*+z2=R?
will be grown into another cylinder
2 +22= (R--r)2

which is bounded by the 4 parameric curves
c1(t) = ( RR—r t, coso r, R;P VR2-1%3, —R<r<R

1-sing
= R—r COS® R-r o7
ckty=(-—F7—1 sing TR R~ —R<i<R
Es(f)=(RR_r t, l__;o;t R TNR*-13, —r<:r<r
ca(t) =( RR_r £ 1-+C;?$> I R_r VR? -1, -R<t<R

And, the other c¢ylinder
OV +22=R-r)?
or equivalendy,
(y cosd — x sing)? + zZ = R?
and the 4 boundary curves of this cylinder will be grown as follows.

_ First, rotate these curves by ¢, clockwise (i.e. —¢, counterclockwise), shrink it towards the x

axis, and then rotate it back into the x” axis.

(A) Romate by —¢ counterclockwise
2
€1 {¢)=(t cosd + $ing cos g, =08 . sing,YR2 — 13

1-sind 1-sing
— 7 _ _
(1_5m¢rr‘\!R 5, -R<1<R
¢y (1) = (I—S ¢ —vR? —t%), -R<t<R
2
¢y () =(t cosd — Sl;if;? t, - l(islq; t — ¢ sing,YR? - 1%
=22, VRI-®, -r<:<R
1+sin ¢
cq () =( ——— 1+5 ¢ ~t,—VR?2 -1}, _r<:t<R

(B) Now, when we shrink it towards the x -axis, we will have

ety = (2, R, R‘;’ YRZ- 1), —R<:sR

1= sm¢ R
R—r R-r m
= L, - R“—1t9), -R<t=5R
(:) (1—sm¢ R R )




ey (2) =( cosd , _ R t R;' VRZ-1?», _R<:<R

1+sm¢ R
cosd _R-r  R-r T3 _pcre
cam (@) =¢( 1+sm¢ 7 z, R VR? -3, —R<t<R

(C) Finally, we need rotate these curves back into the original angle position. Hence, we have

the following 4 curves on the second cylinder which was grown towards x’-axis.

c0s%} R—r . R-r sing coqu R—r RZ - 13
ci(t) = ( m¢r—: R sing, cosd R P+ l—smqa R %)

= ((I+Esin¢) t, (tan¢+sec¢—é-cos¢) £, %c VR2 -9

RZ_IZ

— r
ey =(1 R

cat)=( 1—%Sin¢) £ (tan¢—sec¢+£-cos¢) L %r- VRZ — 3

R% — 12

Calt) = ((

where ~R <t <R

Now, we need to fill in the gaps between the curves ¢; and ¢; fori=1234 by growing the
points on the intersecting curves ¢; (i = 1,2,34) into pieces of geodesic curves on the sphere.
At a point ¢;(t) on the curve ¢;, we can compute two directions (i.e. one toward the y-axis, one
toward x’-axis)

Let’s consider the curve

ct)=(t, ——— r*JR:"—z) R <t<R

Since the cylinder along y-axis is given by
Fif(xyz)=R*-x2-2z2=0
we have
Vi(xy2)=(-2x,0,-2z) withx =f,z =VR:— (2
=(-2t,0, -2 VR~ 12)

Hence, the unit normal vector on the curve ¢ ,(¢) loward the y-axis is

—x —z —t VR2 -2
nOE T O g T )

The cylinder along x’-axis is given by
G :g(xy.z)=R?- (xsind — ycosp)® — z2=0
and so

Vg = (—2sind (xsind — ycosd), 2cosd(x sing — ycosp), —2z )

&2
= ( =2sind (rsind — 4Epr) 2cosd {(¢sing — m¢¢ ), =2 YRZ —¢2)




-26-

= ( (2sing) , (—2cos)t, —2 VR2_ 2 )

The unit normal vector toward x’-axis is

__ vz
I} =
20 = 11,7
- 1' 2z 2
= (=2, - B =) -RsisR

Now the straight line segment connecting the two vectors r-n((t) and r-n4(¢) on the sphere of

radius r is

P,(s)=% -r-nl(r)+% reny(t), —-1£5<1

When we project it onto the sphere of radius r, we can get the following geodesic curve on the
sphere of radius r
Qi(s) = r-—-ﬂ-)—. -1€5 <1
A
Finally, we need to translate this geodesic curve by ¢ 1{£) o place it at a correct position
His.t)=0,(s) +¢c;(t), where =R €1 <R, -1<s<1
This is a parametrization of the blend of the gap (due to the edge curve ¢,) between the reduced
two cylinders.

Similarly, we can construct Hq(s,t), Ha(s.t), H(s t) from ca(t), £5(t), c4(t).

35. Two cylinders of different radii intersecting at skew-angle

Let's consider two unequal radius cylinders intersecting at skew-angle. By the same way as
before, we may assume that two cylinders are given as follows
Fif(xyz)=R?2-x*-22=0 (assume R | >R )
G :g(x.y.2) =R3> — (xsind — ycosp)2 — 22 =0
then
x% — (x sinp — y cosp)* = R,2 - R,2
and

(cos?9) x% + (sin2¢) xy — (cos®9) y2 = R} — R,

We may assume that 0 < ¢ < % (i.e. cos®d = 0), then

R - Ry*
coszq:
2%+ (ang) xy - y2 = (Ry? - RP)sec?d
y2—2(@and x) y —x2 + (R;> — R\secp =0

x? + (2tang) xy —y? =
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y = (tang) x £ Vian® x2 + x% = (R |2 - R, D)sec2p
= (tang) x % V(IHan%) x* — (R - R Dsec?d
= (tang) x +Vsec* x% — (R, — R,D) sech
= (tang) x +secd Vx> — (R 2 - R
for —VR2-R2<x<YRZ-R,2

Hence, we can get 4 parametrized intersecting curves as follows
c(t)=(t, (ang) ¢ + (secd) V2 — RZ - R A VRP - 1D
ca(t)=(¢, (tand) ¢ + (secd) Ve ~ (R,2—RD, - VR 2 - 1)
c3(e)=(+, (tand) t — (secd) V2 = R Z - R VR 7= 1D
cq(r)={(r, (tand) ¢ — (sechd) V12 ~ (R = RD, - VR 2= D)
for —VR2-RP?<tsRZI-RS?

The unit nommal vector toward y -axis at ¢ (¢) is

-—x —"
me)=( N 22 0, ,\Ixzizz)

-t R 2—32 =
=(—E,0.—};l——), for —‘\JRIZ—Rzzer‘\!Rl"—Rzz

And, since the cylinder parallel 1o x’-axis is given by
G:g(x,y.2)=R,*— (x sing — y cosg)? —z2 =0,

at ¢;{r), we have

Vg = (-2 sind (x sing —y cosp), 2 cosd (x sing —y cosd), —2z)

(-2sing (¢sing—rsing—Vr>—(R *—R 3% ), 2cost) (esing—t sing—Vr?—R —R12)), —2VR =2 )
=(25inp V> = R 2~ R, -2 costy V2~ (RZ—RD), 2 VR 2 - 5

and the unit normal vector toward x’-axis at ¢ 1(8) is

__ Vg
"= T1ve i
=(_sm¢ Vi - R 2-R7), 050 ‘Jrz-(Rlz—Rzzv'-_l' VRE = 1%)
Rz R2 RZ

The rest of work is exactly the same as before.
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