
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1985

A Communication Sub-System for MVS/XA A Communication Sub-System for MVS/XA

Dan C. Marinescu

Report Number:
85-555

Marinescu, Dan C., "A Communication Sub-System for MVS/XA" (1985). Department of Computer Science
Technical Reports. Paper 473.
https://docs.lib.purdue.edu/cstech/473

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

\

A COMMUNICATION SUB-SYS1EM
FORMVSIXA

Dan C. Marinescu

CSD-TR-555
October 1985

A Communication SUb-System for MVSIXA

Dan C. Marinescu
Computer Science Department

Purdue University
West Lafayette, IN 47907

Overview
This paper explores inter-process communication based on cross-memory services

in MVSfXA and describes the implementation and the use of a simple sub-system,
Extended Communication Facility (ECF), offering a number of primitive transport func­
tions (OFFER, CONNECf, SEND, RECEIVE, DISCONNECf) and running in a dedi­
cated address space.

The'ideas and mechanisms presented are useful for many scientifical and engineer­
ing applications running under MVSIXA. Examples are: communication sub-systems.
mail sub-systems, multi-address space 8ub-syStems, applications based upon concurrent
programming, a quasi-balch eiJvironment, etc.

,-.- --"-_._.. _._'.. _.

-2-

- . '.~------~--~- -- -- -----'- .:-._---------_._._--;.

Inter-process communication in MVSIXA

MVSIXA uses the concept of task to describe a computation or a dispatchable unit
of work, but since the concept of process is widely used with essentially the same mean-
ing we shall use the1aler throughout this paper. .

In MVSIXA all user initialed processes, as well as the ones created hy the system on
the users behalf are confined to an address space which defines the addressing environ­
ment for a given user. One recognizes three types of users namely started tasks, which
are operator initiated activities, interactive and batch users. Consequently, there are three
execution environments, one for each type of address space. Each address space is
almost entirely isolated from the others; more precisely there are three areas, a user's
private area, a common area and one for system residence, in each address space. The
address mapping for the private area is different for each address space while the the
mapping for the other two areas is the same for all address spaces. In order to share code
or data among address spaces, they should be placed in the common region. There are
two obvious prohlems (and a few non-ohvious ones) in this approach:

the common region becomes overcrowded with code to be shared,

the ability to share data hy placing it in the common are is very limited due to the
space constraints and, even more important, the lack of protection makes this solu­
tion imPractical. There are only sixteen different protection keys, hence, there is no
way to limit access to data placed in the common area.

Exchange of messages between address spaces using standard MVS techniques is a
tedious and expensive activity. Essential1y, the sender has to acquire a huffer in the com­
mon area, move its data into the huffer, schedule a request via a System Request Block
(SRB) for the receiver to pick-up the data and wait until the 1aIer posts completion. The
very fact that each time a data buffer is exchanged, the system dispatcher must be
invoked, gives an idea of the overhead involved in this type of communication and
accounts for the CPU usage of the current communication sub-systems, TCAM, VTAM
etc. Each of them runs in a dedicated address space as a started task and data buffers are
moved to and from the address space where the application runs.

Returning to inter-process communication, we recognize two cases:

.a. Processes which reside in the same address space; communication is done via
shared memory. We should point out that the only high level language environment
which supports concwrent programming in MVS is PIJI. In PIJI, concurrent
processes may be started by call statements which specify one event for each pr0­

cess; events allow process synchronization by using wait and post operations. By
default, all user initialed processes run with the same protection key so that private
process data cannot be protected. Conceptually it is possible to have different keys
associated with different processes running concurrently in a given address space,
but it is non trivial to implement this idea and, even more important:, there are only
eight protection keys in user mode. The lack of protection is probably one of the
reasons which bas limited the number of applications using concurrent program­
ming in MVSIXA.

-b. Processes which reside in different address spaces: communication can be done
either by the standard mechanism previously described or by using the cross

\

- 3-

memory services (CMS). We have pointed out the drawbacks of the first solution in
terms of efliciency and ease of use; though mucb more efficien~ the use of CMS is
by no means trivial .

Inter..process communication based. 00 cross.memory services
DUDI Address Space (DAS) facility. As far as addressing is concerned, a major

enhancement of the 370 architecture can be observed in the 308x and 309x machines [I].
Under the generic name DAS, one recognizes extensions of the PSW (Program Status
Word) key, of the storage key, of the program status as well as a set of new machine
instructions.

The addressing context of any address space may be switched from a primary to a
secondary addressing mode and in this way a program in the private area of one address
space may execute code residing in another address space or may move data between the
two. Also, code residing in the common area may address data from the private area of
any address space by setting it as a secondary address space; then, after switching to the
secondary addressing mode, all slandard 370 inslructions could be executed, to address
data in that particular address space.

PSW and storage key extension provides now a list of keys called PKM (PSW Key
Mask). The Slandard fetch and store Protection mechanisms still apply but a dispatchable
unit of work under a TeB (Task Control Block) or SRB may now easily switch between
the keys in PKM. As a side effec~ we note that PKM can be used to implement protec­
tion for processes running in the same address space.

Extended program status is now maintained in control registers: segment table ori­
gin and length for the primary and secondary address space (in CRI and CR7), linkage
table origin and length (in CRS), primary and secondary address space ids (in CR4 and
CR3). PSW indicates if in primary or secondary addressing mode.

There are new semi-privileged machine inslructions which allow:

syn<:hronous transfer of COnlrol from a program in one address space to a program
in a different address space (PC-Program Call, PI'-Program Transfer),

data movement across address space boundary (MVCP-Move to Primary, MVCS­
Move to Secondary, MVCK-Move with Key),

data access (SSAR-Set Secondary As, SAC-Set As Control),

key manipulation (IPK-InsertProgram Key, SPKA-SetPsw Key from Address).

Cross Memory Services. ·CMS provides the software support for dual address space
facilities [2],[3]. A set of macro inslructions available to authorized users (users in
supervisor state or keys 0-7) gives table driven authority to establish a cross memory
environment and to access data and code across address space boundary.

A dedicated address space, PClAUIH contains both the code implementing cross
memory services and the control blocks for CMS. There are two classes of services pr0­

vided:.

·- ._.,- .. __ .

-4-

. _.- --'- .-.._._- . --- - .._.' .- --- -,. -- ..- -. -- ----- ~ _._-. - - -' --~- -- .. ' -.. --_.__._- .

autlwrization services used to manipulate system wide authorization indexes which
determine the level of authority in using cross memory functions.
linlcage services which allow late binding o(a program from one address space to
code residing in another one which offers services.

An address space providing services must have an entry in an Entry Tobie (EI'), for
each service it offers. This entry contains a description of all address spaces which are
allowed to use that service, the virtual address to he given control when the service is
invoked, a pointer to a two wOld parameter list and other informations. Each address
space has a Linkage Tobie (LT) which defines all services avaiIahle to i~ an LT entry
contains a pointer to the ET origin for the address space offering the service. To establish
the cross memory environment, proper entries must he created in each of these tables. At
execution time, control is lransfened after a two level table look-up, by means of a PC
instruction in which the service is identified by a PC number. This number is unique
system-wide, consists of an LT index (used to exlIact the pointer to the ET) and an ET
index and leads to the ET entry corresponding to the service. By examjning the ET entry
the authority to perform the PC can he checked and control can he passed to the proper
code.

It is important to note that as far as scheduling is concerned, this lIansfer of control
is done without invoking the system. dispatcher and execution continues under the control
of the same TCB. This makes CMS efficient and atlIactive in spite of its complexity.

The lISe of eMS. Though MVSIXA makes extensive use of CMS by executing
specific systmn functions in dedicated address spaces (GRS-Global Resource Serializa­
tion, CONSOLE), the direct use of cross memory services is rather cumbersome due to:

the difficulty to establish a cross memoty environment,

the large number of restrictions at execution time, with most of the standard system
services not available in cross memory mode,
avai1ability of cross memory services only to authorized users,

the requirement to make non-swappable the address space which provides services
in cross memory mode.

In our opinion a higher level interface, like the one described in this paper, must be pr0­

vided hy the MVSIXA system, to give access to these services to a larger group of users.

Applications of inter-process communication
For many scientific and engineering applications inter-process communication is an

important issue. Briefiy we shall descrihe now applications which rely heavily on inter­
process communication and which could henefit from the use of CMS.

Networking applications are obvious candidates. A lIansport station for TCPIIP or
other lIansport protocols not currently supported under MVSIXA, cao he designed using
two dedicated address spaces. The first one will implement the lIansport primitive func­
tions of TCP (CONNECT,LISTEN,CLOSE, SEND,RECEIVE) as well as a name server
and two other functions, ToNet and FromNet, to communicate with the second address

-5-

space where the code implementing the network layer protocol as well as the code for the
IMP driver will reside. Since CMS provides an efficient way to move packets of data
between the application's address space and the two address spaces dedicated to TCP's
transport station, this imp1ementation is adequate. .

MVSIXA is an appealing environment for the scientific and engineering community
since it allows both interactive and balCh processing. Most number cranking applications
run in balCh mode and the user has no control upon his job until it is finished. Sometimes
a significant amount of computing resources is wasted since in a long computation,
incorrect results """ur in an early phase. It would be ideal for large balCh programs to
have cbeck-out points at which to report partiaI results to an interactive user and to be
able to carry on the remajning computation only after a dialogue in which computational
parameters could be adjus1ed. Such a quasi-balch environment can be easily imple­
mented using inter-process communication primitive functions as the ones provided by
ECP.

There are applications which may be best implemented as multi-address space sys­
tems. Let us consider a community of users performing real-time data acquisition and
analysis. For each user the environment consists of a number of processes, one say prR,
to read input dala, perform some sort of data compression and write it on some output
media, a second one, say prA, to lake samples of input data and run them through an
analysis proCedure, a thUd one, say PIC, to read, inleIpret and execute input commands, a
fourth process, say prL, to present in a life graphics mode the results of the analysis, elC.
All these processes run concunently, act upon a different stream of data and have ade­
quate priorities; prR must have a high priority so that all input data can be captured, prA
sbould have a low priority and process a variable percentage of input dala, depending
upon the input data 13le, the overall system load e1C., PIC should have the highest priority
to allow user controL If all processes sbare the same address space, elabol3le mechan­
isms must be built-in to ensure: serialization of non·sharable resources, protection, pr0­

cess synchronization, elC. Though most of the code can be carefully designed and
checked, the analysis procedure, which is user specific, it is very often not properly
debugged and may be the Trojan hon;e in the environment. For this reason a good solu­
tion is to split such an application, to have an address space, say 25M, where the standard
code runs and a number of satellite address spaces asAI, asA2•..etc. where analysis pro­
cedures reside.

Inler-process communication using ECF

Extended Communication Facility (ECF) provides a high level interface to cross
memory services and allows inter-process communication across address space boun­
daries for all users running under MVSIXA.

Any ECF transport function is initiated from the user's application layer. An active
user, say A, wishing to communicate, issues an OFFER, making himself known to ECF.
Any other user wishing to communicate with A. may establish a communication path to
it, by issuing a CONNECT request for A. After a successful connect, the requester
obtains a token which uniquely identifies its partner; a token is a logical name of a com­
munication partner which may be either a TSO user (in this case the user identification

-6-

must be specified in the connect request), a batch job (the job name must be given) or a
started task. Subsequently, each partner may SEND or RECEIVE messages from any
other address space connected to it until one of the partners performs a DISCONNECT.

In the present implementation, up to 170 addiess spaces may use ECF in the same
time and any of them may be Connected up to 50 others, at any time. ECF provides asyn­
chronous communication and allows up to 10 messages to be queued for any destination
address space from each of its partners. A inessage may have any length up to 32 kbyte.
All these parameters can be easily changed with more appropriate ones at the time when
ECF is installed, depending upon the application; for example a graphics application may
require messages of a few Mbyte. Communication with ECF if fully transparent, the
message may contain data, code, control information, etc.

The same user interface may be used either from PlJI or from FORlRAN environ­
ments. Each primitive function returns a completion code and additional information; for
example a SEND returns the number of unread messages .in partner's inbox, a RECEIVE
returns the number of messages in owner's inbox, a special form of RECEIVE provides a
lis9t of all partners connected to the owner and the number of messages received from
each of them.

A very simple name server is embedded into ECF. It maps the TSO user
identification or the batch job name into the address space identification (ASID) and uses
this as a token. A slight inconvenience results from this approach; one may communicate
only with users which are currently active in the system. Whenever an user leaves the ­
system and eventually comes back, the communication path must be reestablished.

Preliminary measurements indicate that ECF is rather efficienL With a 3081 model
D, a SEND and a RECEIVE, from PlJI environment need 6.3 DlSec for a 32 kbytes mes­
sage and 2.5 msec for a 4 kbytes message, all overhead included. This amounts to a
transfer data rate from one address space to another of about 5 Mbytelsec for 32 kbyte
messages and 1.6 MbyteIsec for 4 kbytes messages. Since there is a fixed amount of
overhead associated with each data transfer and since the data transfer time is much
sma11er than this overhead, the larger the message is, the higher is the overall data rate
attainable with ECF or with any other cross memory based method. A reasonable optimi­
zation effort could probably decrease tltis fixed overhead and lead to higher transfer rates.

We cannot confirm that intensive use of cross memory services in a user application
may have a negative impact upon overall system performance as stated in [2] and [3].
Even when the system was heavily loaded, no adjustment of the standard tuning mechan­
ism was necessary during our tests and no increase in the average response time or sys­
tem overhead was noticeable.

As far as the structure of ECF is concerned one recognizes a monitor program,
ECFMON, which runs as a started task in its own address space, ECFAS and the set of
primitive transport functions (OFFER, CONNECT, SEND, RECEIVE, DISCON) provid­
ing the user's interface; each of these functions performs a PC (Program Call) to the
corresponding functional routine in ECFMON. The monitor (Figure 1) consists of:

a nucleus, ECFNUC, which provides the operator communication interface, is used
to build-up the cross memory environment, does error handling, etc.

a set of functional routines, ECFPCI,ECFPC2,.. .ECFPC5, which perform the ser­
vices offered by ECF,

-7-

a set of auxilialy procedures.

ECF user interface

To use ECF, an application layer must be designed using ECFs transport primitive
functions~ available via standard subroutine call in Pl1I or FORTRAN environmenL

The object modules of tbe five primitive functions may be part of user's private
libraries, provided tbat tbe installation bas an SVC to bypass tbe APF autborization; otb­
erwise tbe user load modules must be eata10gued in an autborized library. The first solu­
tion bas distinct advantages.

The user's load module should include all primitive function code. The storage
requirements for them are minjmal, in the 2 kbytes range. The user should provide a
buffer area equal in size to the maximum message length, for receiving messages.

The application layer for ECF comnuuUcation. An user may enter tbe ECF sub­
system, eitber by performing an OFFER, or by performing a CONNECT to anotber user
already sctive in ECF. After a successful OFFER or CONNECr, tbe user gets an entry
in tbe Table of Active users, TA, and a Table of Connected users, TC, is allocated to him.
These two elements, tbe TA entry and tbe TC table, exist until tbe owner leaves ECF, by
performing a DISCONNECT. All messages are held in a double-cbained queue pointed
at, from tbe sender's entry in tbe TC owned by tbe userto.whom tbe message is senL

The full description of ECF primitive transport functions, as well as tbe significance
of all paIlIttleters is presented in Appendix I. The error codes are self-explaining and tbe
following examples describe tbe sctions taken in esch case.

It is tbe user's responsibility to cbeck tbe return codes after esch call and to take
proper sctions; for example in case of a return code of 2, a delay of a few mi1Iiseconds
and a retry is indicated. The use of ECF functions is serialiu:d. any user must obtain the
CML lock of tbe address space where ECFMON runs; whenever this lock is unavailable
tbe requester must retry later.

The first example presented in Appendix 3 illustrates tbe design of a service sub­
system, using ECF. A batch job which performs a specific service for all requesting
address spaces uses ECF to receive the service request, interprets it, perl'orms the service
and provides tbe results after service completion. Essentia11y, tbe server polls its TC and
whenever it finds a message :reads it. In our example the server checks every ten seconds
the number of messages received from all connected users and echos the message. Such a
server may be a magnetic tape handling sub-system, a graphics sub-system to handle
non-interactive graphic devices, etc. As a general rule one may design such a server
sub-system whenever in the interactive environment a number of users need a service
which may be performed asynchronously. This approsch has tbe advantage tbat it
prevents code duplication.

The procedure presented in tbe second example of Appendix 3 illustrates an appli­
cation layer for a dialogue oriented environment and it was actually used to test different
ECF functions. The error processing is sketcby in order to preserve tbe comprehensibility
of this example. Basically, tbe program prompts for tbe desired ECF function and its
required parameters and executes the function.

- 8-

ECFMON structure and implementation

ECFMON runs as a started task: in its own address space, ECFAS, and consists of a
nucleus, ECFNUC, a set of functional routines which perform the services offered by
ECF and a set ofau'mary functions. The structure ofECFMON and the map ofECFAS
is presented in Figure I. The current velSion of ECFMON coosists of less then 4 kbytes
of code. Nevertheless, in order to have enough space for data buffering, it is advisable to
have forECFAS an address space of\arge size.

ECF nucleus. The nucleus, ECFNUC performs a variety of functions necessary to
create the cross memory environmen~ to built the control structures of ECF, to provide
operator communication interface.

When started by operator, ECFMON must first take actions to set its address space,
ECFAS, as a privileged one. Since cross memory services are available only to requestelS
in supervisor srate and PSW key 0 to 7, a MODESET macro instruction must be per­
formed. In order to have the authorization to use this macro instruction, the ECFMON
must be Iinked with an Authorization Code (AC) of one, in an AFF authorized library.
Another way is to design an SVC to bypass the authorization mechanism; basically this
SVC must be able to tum ON and OFF the JSCBAUTII bit in the JSCB (Job Step Con­
trol Block), which is tested by TESTAUTII macro before performing any restricted ser­
vices. Though ECFMON may be catalogued in a system APF authorized library, this
SVC is important since the primitive functions of ECF must also run in the same
privileged mode as ECFMON and it is not advisable to catalog the user's load modules in
a privileged library, but to use this SVC. Another requirement is to have the ECFAS as a
non-swappable address space and this is done by means of a SYSEVENT OONTSWAP
macro instruction.

Now the cross memory services may be used to perform the following actions: set a
system-wide linkage structure by using LXRES macro to reserve a linkage index and set
the authorization index to one by means of an AXSET macro. An Entry Table for ECF is
then defined (by using the ETDEF macro) and the PC numbeIS for the services provided
by ECF are stored in a communication vector table. To conclude the building up of the
cross memory environmen~ the services provided by ECF must be connected using a
ETCRE macro.

The next step is to construct ECFMON's own control structures. Thc first onc is the
system's Table of Active users (fA). The format of this table is described in Appendix
2. Nex~ the ECF communication area is builL Since this area must be accessible to all
USClS; it should reside in the Common Storage Area (CSA) and must be pointed a~ from
the Common Vector Table (CVT). Once the space for the communication area is allo­
cated, the pointer to it must be placed in the user field of CVT. Space allocation in CSA
proved to be a daring experience for us. One of the global system locks (SALLOC) must
be obtained in order to allocate space in CSA and since a branch entry to the GETMAIN
macro must be used, special care is necessary in handling the savc areas. Wc havc
experienced one error when even the GTF trace couId provide very little belp.

Another function of the nucleus is to provide an operator communication interface.
This interface sbould be able to process MODIFY and STOP commands. In case of a
STOP command the cross memory environment must be distroyed.

- ~---~~_._-- --

-9-

The furu;tional routines ofECFMON. The five functional routines perform the functious
provided by ECF and they are activated via PC's (Program Calls) from the user' interface
procedures. Standard PCLINK (STACK and UNSTACK) macros are used to maintain
program call linkage informatiou.

For efficieney reasons all parameters are passed to the PC routines via registers (RO,
RI, RIS); when returning, RI coutains the return code.

Addressability in the PC routines, after space switching is provided via the ECF
communication area where the base registers are saved.

Conclusions

It is highly desirable to make avai1able all system services provided by an operating
system in the environment of all high level languages supported and not ouly in the
assembler language environment as it is now the case with MVSIXA.

Cross memory services are an extreme example, even for MVSIXAJ as far as the
difficulties to use it are couceined. Nevertheless, with a relatively modest effort of abuut
half a man-year a high level interface for cross memory services was designed. Inter­
process communication based ou CMS is much more efficient than the standard MVS
method and ECF opens this area for a large class of applications.

References

[I] mM Systeml370 Principles of Operatiou, mM Publication GA22-7QOO-S

[2] OSNS2 System Programming Library: Supervisor, mM Publication GC2S-I046

[3] U. Pimisken and PDom 'Cross Memory Services User's Guide', Technical Bulletin,
mM Washington Systems Center, 0022-9231-00

-10-

APPENDIX 1. ECF primitive functions

Name: OFFER

Function: enter the ECF sub-system

Call: CAll.. OFFER(RETURNCODE)

RETURNCODE is an output parameter of type BIN FIXED(31)
o-successful offer reques~
1 - user already in ECF;
2 - ECFMON is now active for another user. try later;
6 - ECFMON is not yet slarted;
10 - internal ECF error; failure to allocate TC ofrequester;
11- maximum number ofECF active users reached (170);

Name: CONNECl'

Function: connect current ECF user to the one specified in the request

Note: if successful, TOKEN, will contain identification to be used in all
SEND or RECEIVE to or from that partner.

Call: CAll.. CONNECl' (NAME, TOKEN, RElURNCODE)

NAME is an input parameter of type CHAR(8) containing
the userid - if TSO user or,
the job name - ifbatehjob or,
the name - if started task.
It identifies the communication partner.

TOKEN is an output parameter of type BIN FIXED(31) returning the ECFID
of partner with given NAMB, if successful connect

RETURNCODE is an output parameter of type BIN FIXED(3I)
o-successful connect reques~
1 - connection already established;
2 - ECFMON is now active for another user, try later;
3 - partner (NAME) is not active in ECF;
4 - invalid NAME supplied;
5 - partner (NAME) is not active in MVS;
6 - ECFMON is not yet started;
7 • successful reconnect;

10 - internal ECF error;.failure to allocate TC ofrequester;

- 11 -

11- maximum number ofECF active users reached (170)
22 - maximum number ofpartners connected to requester reached (50);
30 - maximum number ofpartners connected to NAME reached (50);

Name; DlSCONNECr

Function: leave ECF.

Note: there are two modes of the disconnect request
conditional - the requester has:

- all messages sent by all his partners deleted,
- its TC is freed and its TA enlIy is deleted,
- all messages sent by the IOquester to others are kept

unconditional· in addition to previous actions, all messages sent to
others are deleted.

Call; CALL DlSCON (MODE, RETURNCODE)

MODE is an input parameter of type BIN FIXED(31) which defines the
type of the disconnect IOquest

o-conditional
I - nnconditional

TOKEN is an output parameter of type BIN FlXED(3I) returning the ECFID
of partner with given NAME, if successful connect

RETURNCODE is an output parameter of type BIN FIXED(31)
0- successful disconnect IOquest
2 - ECFMON is now active for another user, try later;
3 - requester is not active in ECF;
6 - ECFMON is not yet started;
10 - internal ECF error; failure to deallocate the message box;
II - internal ECF error; failure to deallocate the TC;

Name: SEND

Function: send a message to a specified ECF partner.

Call: CAlL SEND (TOKEN, MSGADR, MSGLEN, NMESGS, RETURNCODE)

TOKEN is an input parameter of type BIN FIXED(31) containing the ECF1D
of partner previously obtained in a CONNECT requesL

MSGADR is an input parameter of type pointer; points to the message
area in user's address space.

____ ._C •• "'-- • _._

-12 -

MSGLEN is an input parameter of type BIN FIXED(31); it defines the true
message length.

NMESGS is an output parameter of type BINFIXED(31); it returns the
number of messages sent and not read to the partner.

RETURNCODE is an output parameter of type BIN FIXED(31)
o-message successfully sen~

I - maximum Dumber of messages in the inbox (10) reached;
2 - ECFMON is now active for another user, try later;
3 - partner (TOKEN) is Dot active in EeE';
4 - partner (TOKEN) and requester are Dot connected;
6 - ECFMON is Dot yet started;
7 - message Dot sent, invalid TOKEN;
8 - message not sent, invalid message address;
9 - message Dot sent, invalid message length;
10 - internal EeE' error; failure to allocate the message box;
11 - internal ECF error; invalid next message pointer;

Name: RECEIVE

Function: receive a message from a specified EeE' partner.

Note: a list of all partners connected to the requester and the
number of messages received from each of them is returned
when TOKEN is specified as '.'.

Call: CAlL RECEIVE (TOKEN, MSGADR, MSGLEN, NMESGS, RETURNCODE)

TOKEN is an input parameter of type BIN FIXED(31) containing the ECFID
ofpartner; previously obtained in a CONNECT request

MSGADR is an input parameter of type pointer; points to the message
area in user's address space where the message will be
found; this area should be of the maximum message size,
now 32 kbyte;

MSGLEN is an output parameter of type BIN FIXED(31); the true message
length will be returned here;

NMESGS is an output parameter of type BIN FIXED(31); it returns the
number of messages in the inbox of the owner;

RETURNCODE is an output parameter of type BIN FIXED(31)
o-message successfully received;
1 - no message from TOKEN in the inbox;

-13 -

2 - ECFMON is now active for another user, try later;
3 - partner (TOKEN) is not active in ECF;
4 - partner (TOKEN) and requester are not connected;
6 - ECFMON is not yet stamd;
7 - message not received, invalid TOKEN;
8 - message not received, invalid message address;
10 - internal ECF error; failure to dea1Iocate the message box;

-14 -

APPENDIX 2 - Data structures and auxiliary routines of ECFMON

The following auxi11iaIy routines are called via branch enbies from the
functional routines:

PCINIT
PCEXIT
TAADD
CONECf
TSRCH
TCADD
MSSEND
MSRECV
DISCON
TADEL
TCDEL
DELMSG

It initializes for a PC by performing a PCLINK STACK;
Exit from a PC routine by performing a PCLINK UNSTACK;
Processor for the OFFER PC routine;
Processor for the CONNECT PC routine;
Search a table for a given token (ASID);
Add an entry in the TC ofrequester;
Processor for the SEND PC routine;
Processor for the RECEIVE PC routine;
Processor for the DISCONNECf PC routine;
Delete an entry from TA;
Delete an entry from TC;
Purge the message queue of a given user;

The following control structures are used in ECFMON:

Name: ECFCOM;
Function: ECF Communication Area;
Location: In CSA (Common Storage Area), subpool231;
Pointed from: The user field in CVT;
Length: 52 byte;
Remarks: It is allocated wben ECF is started;
Structure:

-Kl LXCOUNT
+4 LXVALUE
+8 AXCOUNT
+10 AXVALUE
+12 TKCOUNT
+16 TKVALUE
+20 SERVIPC
+24 SERV2PC
+28 SERV3PC
+32 SERV4PC
+36 SERVSPC
+40 SCTAPTR
+44 SCBASER
+48 ECFASCB

Number ofLX requested;
LX returned by LXRES macro;
Number of AX requested;
AX returned by AXRES macro;
NumberETS created;
Token returned by ETCRE macro;
The PC number of the first service (OFFER);
The PC number of the second service (CONNECT);
The PC number of the third service (SEND);
The PC number of the fourth service (RECEIVE);
The PC number of the fifth service (DISCONNECT);
Pointer to the TA (fable of Active Users);
Base register for ECFMON;
Pointer to ASCB ofECFAS;

- 15-

Name: TA;
Function: Table of Active ECF users. There is a unique TA in the system;
Location: In ECFAS, in user's private area, in subpool 2;
Pointed from: ECFCOM;
Leogth: 1024 bytes ~ 2 + 2 + (170 enmes· 6 bytes/entry) ;
ReIllllrl<s: It is allocated wben ECFMON is started; ao entry has 6 bytes;
Structure:

+0 NRACITA
+2 MAXNRTA
+4 TAASIDI
+6 TATCPTR
+10 TAASI02
+12 TATCPTR

Number of active TA entries;
MaximumnumberofTAen1ries (now 170);
First entry, ASID of owner;
First entry, pointer to TC of owner;
Second entry, ASID of owner;
Second entry, pointer to TC of owner;

..

Name: TC;
Function: Table of Connected users. There is one TC for each ECF user;
Location: In ECFAS, in users private area, in subpool4;
Pointed from: lbe TA entry of lbe owner;
Leogth: 704 bytes ~ 2 + 2 + (50 enmes • 14 bytes/entry) ;
Remarks: It is allocated when the first connect request for the owner is

made and it is deallocated when the owner performs a disconnect
An entry is 14 bytes long.

Structure:

+0 NRACITC
+2 MAXNRTC
+4 TCASIDI
+6 TCFLAGI
+8 TCEINCN
+9 TCEINPT
+13 TCOUTCN
+14 TCOUTPT
+18 TCASID2

Number of active TC enmes;
Maximum numberofTC entries (now 50);
First entry, ASIO of first partner;
First entry. flags;
First entry, 'in' message count;
First entry, pointer to the 'inbox';
FiI"stentry, 'out' message count;
First entry, pointer to the 'outbox';
Second entry, ASIO of second partner;

-- -- - . ---"- .---

-16-

APPENDIX 3 - Examples of an application layer for ECF communication

EXAMPLE 1 - A service sub-system

TESTBAT: PROC OPTIONS(MAIN) REORDER;
/* The declarations are the same as in the previous example */

CALL OFFER(RETCODEj;
G_BEGIN: DELAY (10000);

TOKEN = UNSPEC('*');
CALL RECEIVE(TOKEN, P_BUFF,MSG LEN, NMESGS, RETCODE);
MESSAGE=SUBSTR(C_BUFF, 1,MSGLEN);
KSTART = 0; .
IF RETCODE=O THEN DO;

G_LOOP: IF KSTART ,< MSGLEN THEN GO TO G_BEGIN;
ECFIDS= UNSPEC(SUBSTR(MESSAGE, KSTARP1 ,2));
INMSG= UNSPEC(SUBSTR(MESSAGE, KSTARP3, 1));
IF INMSG ,=0 THEN DO;

ECFID=ECFIDS;
GO TO G_RECEIVE;

END;
KSTART = KSTARP3;
GO TO G_LOOP;

END;
IF RETCODE·=O THEN GO TO G_BEGIN;

G_RECEIVE: CALL RECEIVE(ECFID, P_BUFF ,MSGLEN, NMESGS, RETCODE);
IF RETCODE=O THEN DO;

MESSAGE=SUBSTR(C_BUFF, 1,MSGLEN);
IF SUBSTR(MESSAGE,1,6) = 'ENOUGH' THEN GO TO G_TERM;
IF SUBSTR(MESSAGE, 1, 10)= 'DISCON' THEN GO TO G_DISCON;
C_BUFF='I AM SNOPPY AND I HAVE GOT YOUR MESSAGE « 'II

MESSAGE II ' » GO ON **';
MSGLEN=MSGLEN>S6 ;
CALL SEND(ECFI 0, P_BUFF ,MSGLEN, NMESGS, RETCODEj;
GO TO G_BEGIN;

END;
IF RETCODE ,=0 THEN GO TO G_BEGIN;

G_DISCON: CALL DISCON (MODE, RETCODE);
G_TERM:
END TESTBAT;

-17 -

EXAMPLE 2 - A dialogue orienred applicatioo ofECF

ECFT: PROC OPTIONS(MAIN) REORDER;
DCl PLiXOPT CHAR(40) VAR INIT('NOSPIE NOSTAE') STATIC EXTERNAL;
DCl OFFER ENTRY(BIN FIXED(31)).

CONNECT ENTRY(CHAR(*) VAR,BIN FIXED(31). BIN FIXED(31)).
SEND ENTRY(BIN FIXED(31).POINTER,BIN FIXED(31).

BIN FIXED(31).BIN FIXED(31)).
RECEIVE ENTRY(BIN FIXED(31).POINTER, BIN FIXED(31).

BIN FIXED(31),BIN FIXED(31)).
DISCON ENTRY(BIN FIXED(31),BIN FIXED(31));

DCl (ADDR, lENGTH,SUBSTR,lNDEX, UNSPEC) BUI l TIN,
(SYSIN,SYSPRINT) FI LEo

DCl C_ANSWER CHAR(BO) VAR INIT(' ').C_ANS CHAR(1) INIT(' ').
C_BUFF CHAR(32767) INIT(' ').MESSAGE CHAR(32767) VAR,
C_BlNK CHAR(4) INIT(' ').P_BUFF POINTER INIT(ADDR(CBUFF));

DCl (MSGlEN, NMESGS, RETCODE,I lEN,l, ECFID, TOKEN,MODE, KSTART)
BIN FIXED(31) INIT(OL (ECFIDS,INMSG) BIN FIXED(l5) INIT(O);

DCl NAME CHAR(B) VAR INIT(' ');
G_BEGIN:

PUT SKIP EDIT ('ENTER OPERATION CODE (O,C,S,R,l,D,E)') (A);
GET EDIT (CANSWER) (A(BO));
C_ANS = SUBSTR(CANSWER,l, 1);
UNSPEC(C_ANS) = UNSPEC(C_ANS) I '01000000'B;
SELECT (C_ANS);

WHEN('O') GO TO G_OFFER;
WHEN('C') GO TO G_CONNECT;
WHEN('S') GO TO G_SEND;
WHEN('R') GO TO G_RECEIVE;
WHEN('l') GO TO G_L1ST;
WHEN('D') GO TO G_DISCON;
WHEN('E') GO TO G_TERM;
OTHERWISE GO TO G_BEGIN;

END;
G_OFFER; CAll OFFER(RETCODE);

SELECT (RETCODE);
WHEN(O) PUT SKIP EDIT ('WELCOME TO ECF. YOU ARE IN NOW 'J (A);
OTHERWISE PUT SKIP EDIT ('OFFER ERROR'IIRETCODE) (A);

END;
GO TO G_BEGIN;

G_CONNECT:
PUT SKIP EDIT ('ENTER USERID/JOBNAME OF PARTNER') (A);
GET EDIT (NAME) (A(B));
I lEN=lENGTH(NAME);
IF IlEN < 4 THEN GO TO G_CONNECT;
DO 1=1 TO IlEN;

CANS = SUBSTR(NAME,I,l);
UNSPEC(C_ANS) = UNSPEC(C_ANS) I '01000000'B;
SUBSTR(NAME, 1,1) = C_ANS;

END;
CAll CONNECT(NAME,ECFID, RETCODE);
SELECT (RETCODE);

WHEN(O) PUT SKIP EDIT ('CONNECT TO:'IIECFIDII' DONE') (A);
OTHERWISE PUT SKI P EDIT ('CONNECT ERROR'II RETCODE) (A);

END;
GO TO G_BEGIN;

G_SEND:
PUT SKIP EDIT ('ENTER TEXT TO BE SENT TO ECFID:'IIECFID) (A);
GET EDIT (CBUFF) (A(32767)); .
MSGLEN=INDEX(C_BUFF, CBLNK) -1;
CALL SEND(ECFI D, P_BUFF ,MSGLEN, NMESGS, RETCODE);
SELECT (RETCODE);

WHEN(O) PUT SKIP EDIT ('SUCCESFULL SEND TO:'IIECFID) (A);
OTHERWISE PUT SKIP EDIT ('SEND ERROR:'IIRETCODE) (A);

END;
GO TO G_BEGIN;

G_L1ST: TOKEN = UNSPEC('*');
CALL RECEIVE(TOKEN, P_BUFF,MSGLEN,NMESGS, RETCODE);
KSTART = 0;
MESSAGE=SUBSTR(C_BUFF,l ,MSGLEN);
SELECT (RETCODE);

WHEN(O) DO;
PUT SKIP EDIT ('# OF PARTNERS CONNECTED:'IINMESGS) (Al;
G_LOOP: IF KSTART ,< MSGLEN THEN GO TO G_BEGIN;
ECFI DS= UNSPEC(SUBSTR(MESSAGE, KSTART+l ,2));
INMSG= UNSPEC(SUBSTR(MESSAGE, KSTART+3, 1));
PUT SKIP EDIT ('ECFID:'IIECFIDSII'# OF MESSAGES:'IIINMSG) (A);
KSTART = KSTART+3;
GO TO G_LOOP;

END;
OTHERWISE PUT SKIP EDIT ('LIST ERROR:'II RETCODE) (A);

END; -
GO TO G_BEGIN;

G_RECEIVE: CALL RECEIVE(ECFID, P_BUFF,MSGLEN,NMESGS, RETCODE);
SELECT (RETCODE);

WHEN(O) DO;
MESSAGE=SUBSTR(C_BUFF,1 ,MSGLEN);
PUT SKIP EDIT ('MESSAGE CONTENT: 'IIMESSAGE) (Al;
PUT SKIP EDIT ('MESSAGE LENGTH IS:'llMSGLEN) (A);
PUT SKIP EDIT ('NUMBER OF MESSAGES: IINMESGS) (A);

END;
WHEN(l) PUT SKIP EDIT ('NO MESSAGE IN INBOX') (A);
OTHERWISE PUT SKIP EDIT ('RECEIVE ERROR:' II RETCODE) (A);

END;
GO TO G_BEGIN;

G_DISCON: PUT SKIP EDIT ('ENTER MODE, C(COND)/U(UNCOND)') (A);
GET EDIT (C_ANSWER) (A(BO));
CANS = SUBSTR(C_ANSWER, 1,1);
UNSPEC(CANS) = UNSPEC(C_ANS) I '01 000000' B;
SELECT (CANS);

WHEN('C') MODE=O;
WHEN('D') MODE=';
OTHERWISE GO TO G_DISCON;

END;
CALL DISCON(MODE, RETCODE);
SELECT (RETCODE);

WHEN(O) PUT SKIP EDIT ('SUCCESFULL DISCONNECT') (A);
OTHERWISE PUT SKIP EDIT ('DISCONNECT ERROR:'IIRETCODE) (A);

END;
GO TO G_BEGIN;

G3ERM: END ECFT;

CSA (Common Storage Area)

ECFCOM Communication Area <- ----------_._. __ .
-- -----------------

ECFNTIC - EeF Nucleus

ECFPCl - functional routine for OFFER

ECFPC2 - functional routine for CONNECT

ECFPC3 - functional routine for SENTI

ECFPC4 - functional routine for RECEIVE

ECFPC5 - functional routine for DISCONNECT

ECFHON auxiliary routines

TA - Table of active ECFIDs <-----------------

ECFIDI I Pointer to Tel ---------- ____ a_a'
,,

ECFID2 I Pointer to Tel I,,
•,,

Tel- [CFIDs connected to ECFIDI
< ___________ J

ECFID2 I Pointer to INBOX12 - -1-->INBQX12 I
ECFIDx I Pointer to !NBOXlx - -1--> INBOXlx I

Tel- [eFIDs connected to EeFrD2

[eFIDI I Pointer to INBOX21 - -1-->INBOX21 I
ECFIDz I Pointer to INBOX2x - -1··>INBOX2Z I

Fig-ure 1. ECFMON structure and ECFAS map.

--,,,,,

CVT

I·

	A Communication Sub-System for MVS/XA
	Report Number:
	

	tmp.1307986960.pdf.5EfGv

