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Robust Transmission of Unbounded Strings
-~~~~~~~~~Usin-gFibuttlft:ci~R'epresent1ttions;----

Alberto Apostolico
1

and Aviezri S. FraenkeI
2

--~~.--

Abstract. Families of Fibonacci codes and Fibonacci representations are de
fined. Their main attributes are: (i) robustness, manifesting itself by the local
containment of errors; (ii) simple encoding and and decoding. The main applica·
tiOD explored is the transmission of binary strings whose length is in aD. unknown
range, using robust Fibonacci representations instead of the conventional error
sensitive logarithmic ramp representation. Though the former is asymptotically
longer than the latter, the former is actually shorter for very large initial segments
of integers.

Key words and phrases: Fibonacci codes, Fibonacci representations, Fi
bonacci systems of- numeration, uniquely decipherable codes, prefix codes, nni
versal representations, asymptotic length of Fibonacci codes.

1. Introduction

Efficient loga.rithmic ramp representations of binary strings of either nn
bounded length or a priori unknown length, have emerged some time ago in the
somewhat related frameworks of data transmission [5,151, coding theory [31 and
unbounded searching [11. Logarithmic ramp representations rest on a simple idea:
after writing the string S - encoded in binary, say - the length of 5, with leading
I, is similarly encoded and prefixed to S. The process of recursively placing the
length of a string in front of that string is repeated until a short string, of length 3,
say, is obtained. Since all strings representing lengths begin with a leading i-bit,
the bit a can be used to mark the end of the logarithmic ramp and the beginning
of S.
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For example, the string S = 001011100 is represented as follows:

The major disadvantage of this representation, however, lies in its vulnera
bilit)-° to errors. If an error occurs in the logarithmic ramp, then the decoding
capability is lost and cannot, normally, be recovered.

The main contribution of this paper is to show that generalized Fibonacci
systems of numeration [12, 61 can be exploited to construct binary uniquely deci
pherable (UD) codes which are robust and easy to encode and decode. They can,
in particular, be exploited to represent unbounded strings efficiently.

The key idea lies in the following property of a Fibonacci numeration system
of order m (m 2:': 2), denoted by .T(m) in the sequel: any positive integer N can be
expressed uniquely as a sum of distinct m-th order Fibonacci numbers, provided
that no m consecutive such numbers are used. In other words, the encoding of
N in .T(m) is a binary encoding with the property that it contains no run of m
or more consecutive I-bits. A run of m consecutive I-bits can thus be used as a
comma, also called separator, separating consecutive codewords.

A representation is a bijection of a countable infinite set Sl of strings onto a set
S2 of strings, such that any concatenation of the members of any subset of S2 isun
[4, Ch. 4]. The set S2 is called a code, and its members codewords. For example,
the encoding of the positive integers using the standard binary numeration system
{I, 10, 11, 100, 101, ...} is not a representation: the parses 1,1 and 11 of the string
11 illustrate the problem. However, any prefix code is 00. (A pre;fiz code is any
code with the property that no codeword is a prefix of any other codeword.),

Let P = (a" ... ,a.l be an arbitrary binary string (the pattern). A pattern
code (P-code) is a set T of binary strings, each of length 2: P, such that for any
z = %1:1;2··· Xn +p E T (n 2:': 0), P occurs in z precisely once, as a suffix. That is,
Z'n+; = Gj for j = 1"" I p, and there is no i E IO, n - 11 such that zi+i = Gj for
i = 1"., ,p. Note that every P·code is a prefix code, and is thus un.

A P-code is comma free or Bynchronizable (SP-code), if for any codeword
x = Zl%2··· XnGl .•• Gp E T, the pattern P does not appear as a block anywhere
in a2 ···apxl'··Xnal'··Gp_l_ Thus for P =:: 0101, the string 11010101 is not in
any P-codej 0110101 is in some ?-code but not in any SF-code; and 10110101 is
in some SP-code.

A receiver turned on in the midst of the transmission of an SF-code has only
to identify P for unambiguous parsing of the code, which is not true for a general
UD code. On the other hand, an SF-code is not in general complete. (A un
code is complete ii addition of any codeword renders it non-UD.) However if P has
autocorrelation PP = 10···0 (see [lOn, it is easy to see that the SF-code with
pattern P can be completed. It is therefore not too surprising that the number
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of codewords of an S P-code of fixed length N is maximized - for P of suitable
length - when PP = 10···0. This has been proved by Guibas and Odlyzko [101

_~~~foIJarged>dW.<hpoab_ouUo~~dtJmplie""a~onie~ture~ohGilb_erq911~· ~~_~~~~

A P-code with P = (01) has been considered in [161. In this code the length
of an encoded integer increases as the square root of the integer. For Fibonacci
representations it increases only logarithmically. Some initial properties of Fi-
bonacci fixed-length codes have been considered by Kautz [111. The universality
of P-codes was investigated by LakshIllaJlan [131. .

Fibonacci numbers came up in previous work on P-codes as bou.nds for code
lengths, etc., but not, it seems, as codewords in UD codes. The main new fea
tures of this work is the construction of robust codes- based on the Fibonacci
numeration system which are easy to encode and decode, the exploration of their
properties, application to the robust transmission of strings of unknown sizes, and
the "asymptotic efficiencyll computation of this transmission.

In Section 2 we construct two basic Fibonacci representations, <p~m) and <p~m),

based on a single P-code elm) derived from Fibonacci numbers of order m (m ~ 2).
The representation epim) maps arbitrary binary integers onto elm). Here and in.
the sequel, a binary integer is a binar)" sequence with leading 1. A lea.ding bit or
lea.ding string is the most significant (leftmost) bit or string of a binary string~

The representation ~~m) maps arbitrary binary strings, which may begin with

leading 0, onto eim
). We also give in Section 2 encoding and decoding algorithms

for transforming standard binary encodings to the cpim ) and ep~m) representations
and vice versa. We finally prove in Section 2, using the Kraft equality [8, Ch. 31,

that aim) is complete. ...

In Section 3 we construct an alternate UD code e~m), based on Fibonacci

numbers of order m, and a natural representation rp~m) which maps the positive

integers onto eim
). The main difference between aim) and e~m) is that C;m)

contains binary integers only. It is possible to construct many other Fibonacci
codes. Some variants of interest are investigated in 17j, where also the robustness
of Fibonacci codes is examined in greater detail Using again the Kraft equality,
we show that also eJm) is complete, and we compare the densities of aim) and

C(m)
2 •

In the main Section 4. we apply Fibonacci representations to the problem of
the robust transmission of binary strings in an unknown range. We show that
the logarithmic ramp representation is asymptotically shorter than any Fibonacci
representation, but that, nevertheless, integers in a very large initial range have
shorter Fibonacci representations, depending on the order m of the underlying
Fibonacci numeration system. The "transition point" for ~~rn) is FJ~) - 1 =
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514.,228 for m = 2. For m = 3, it is

and for m = 4,

~(F.«) +2F.«) +F.«l -1) - 4.194 X 10"3 2:n 229 228 - •

These computations are based on a list of higher-order Fibonacci nnmbers which:
Gerald Bergum has kindly prepared for us.

We point out that every Fibonacci code is a /ized infinite set, independent of
the probability distribution of any given source. 1n particular, the code does not
have to be constructed anew for every probability distribution, as, for example, a
Huffman code. On the other hand, the independence of probability implies that
Fibonacci codes, unlike Huffman codes, are not generally optimal. In the final
Section 5 we show, however, that a very broadiamily of Fibonacci representations,
including ~~m) J ~~m) and )?;m), is u.ni'fJersal in_ the sense of Elias 13]. That is,
the expected representation lengths lie within a constant.multiple of the optimal.
entropy lower bound.

2. Two Basic Fibonacci Representations

Fibonacci numbers of order m ;::: 2 are defined by the recurrelice

(

F.(m) = F.(m) + F(ml + ... + F(ml
n n-l n-2 n-m (n ~ I), (1)

where F~~+l = F~~+2 = ... = F~';) = OJ F~~) = FJm) = 1.

Thus F}m) = 2 for all m ~ 2, FJ'l = 4, Fpl = 7, FI') = 13.

In the sequel we often write Fi for Fi,m) when an arbitrary but fixed m is the
underlying order of Fi.

Every nonnegative integer N has precisely one binary encoding of the form

k

N = Ld,F,
i;;;::O

(d, E (O,I},O:S i:S k),

such that there is no run of m consecutive Fibonacci numbers of order m in the
summation. This is the 1(mLnlLmera.tion system [121 6]. The encoding of the
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Table 1: The .1(3)-encoding, sequence of messages M,
c1') -code and mappings 1"\') and I"~').

. =oM..,,,!\" de :1('~~mteger

c") Encoding
M 7421 137421 N1

0 0

0 III 1 1 .
00 0111 10 2

000 00111 11 3

1 10111 .100 4

0000 000111 101 5

01 010111 110 6

2 100111 1000 7

3 11 0 1 1 1 1001 8

00000 0000111 1010 9

001 0010111 1011 10

02 0100111 1100 11

03 0110111 IHH 12

4 1000111 10000 13

5 1010111 10001 14

6 1100111 10010 15

000000 00000111 10011 16 r

first few nonnegative integers in .1(3).is sbowu...in. the two right.ha.nd columns of
Table 1.

For any i ~ 1, let Ii denote the string of i consecutive I-bits, Oli the string Ii
prefixed by 0, and 1i Othe string Ii postfixed by O. Similarly, OJ denotes the string
of of i consecutive Q-bits.

The code aim) = 0 1 is a P-code with pattern P = 1m defined as follows.
The first two codes are 1m and Oim of length_ m and m + 1 respectively. The
codes oi !ength m + n (n 2: 2) each consist of the suffix. Oim and a prefix of length.
n -1. These prefi..xes are the first few ;(mLencodings of the nonnegative integers,
in increa.:;ing size, which can be encoded by at most n -1 bits. Leading O-bits are

- 5 -



prefixed, where necessary, to complete the length. to m+ n. The first 16 codewords
of cl') appear in the middle colulDIl of Table 1.

The rep;esentation rpF - ~l maps the s~t -of positrv"~inte~ers z-.+.- bi,iectively
onto Cll such that if N I < N 2 , then !PI(Nr) is lexicographically smaller than
1"1(N,) (see the three right-hand columns of Table 1 for m = 3).

Below we give some basic properties of 0 1 and 'Pl. We remark _that since
each codeword in 0 1 ends in 1m , 0 1 is a prefix code. The length of a codeword-is
the number of binary bits it comprises. Regarding leIlgths of codewords in 0 1 we
have,

LEMMA 1. The code 0 1 contains precisely Fn- l codewords of length.
m + n, which are partitioned as follows: Fn _ 2 with leading 0, Fn- 3 with leading
10, Fn_. with leading 110, ... , Fn- m- l with leading Im_lO (n ~ 0).

PROOF. Induction on n. Clear for n = 011 and.2. Suppose the result
holds for n. The definition of 0 1 implies that the codewords of length, m + n+ 1
can be produced from those of length m + n by prefbdng 0 to all the latter,
and by prefixing 1 to all of them except to the Fn - m - 1 codewords with leading.
1m _ I O. This gives Fn _ 1 codewords with leading 0, Fn - 2 with leading 10, Fn.-3
with leading 110, ... , Fn.-m with leading Im_ 10 - a total of Fn. codewords of
length m + n + 1. •

COROLLARY 1. Let S~m) = Sn = L::':-l Fim
) (n ~ -1) and S~m) = 0

for n < -1. Then all and only all the Fn _ 1 integers in the interval 111.-1 -=
[50 _, + 1, So-II have I'll-representation lengthm + n (n > 0).

PROOF. The integer 1 is in 1-1 whichllas representation length m. Next
2 E 10 of length 11"1(2)1 = m + 1. By Lemma 1, the next Fl = 2 integers, those in
IF-I +Fo+1, F- l +Fo+Fli have length m+2, that is, 11"1(3)1 = 11"1(4)1 = m+2.
The proof is completed by induction on n. •

We thus have,

COROLLARY 2. If 11"1(k)l <:; m + n, then k is ilL the interval [1,50 _ 11
(n ~ 0). •

For the encoding and decoding processes, itis useful to compute Sn efficiently.

LEMMA 2. Let So = L:7=-1 F, (n ~ -1). Then

SO=m~l(Fo+2+'I:'(m-2-i)Fn_,-I) (n~-I,m~2). (2)
i=O

PROOF. Induction on n for arbitrary but fixed m. For n = -1, the
right-hand-side of (2) becomes

1
---:-(Fl + (m - 2)Ll -1) = 1= F'-l = 5_1 ,
m-I

- 6 -



If the assertion is true for n, then

Srr,f;l = 5rr, + Frr,d::l

= m:'" (F'+2 + (m -1)F.+, +I:~~'(m - 2 - i)F._; -1)

= m:'l (Frr,+3 + I:~3(m - 2 - i)F",+l_i -I),

where we used the recurrence (1). •

Encoding Algorithm. Given a positive integer N , compute ~l(N).

(i) If N = 1, then I",(N) = 1m. End. If N =2, then I",(N) =Olm' End.

(il) Find n such that 5'_2 < N $ 5.-,. Let Q = N-5._2 -1 and encode Qin
l(rn). {The approximate value of n can be computed. from the asymptotic
result N "-J AUn, see Theorem 4, Section 4 below. Then 5"'-2 can be
computed using Lemma 2.}

(iii) Adjoin 01m as suffix to the l(mJ.encoding of Q. Adjoin leading Q-bits, if
necessary, to make 'P, (N) of length m + n. End.

Example. Let m = 3, N = U. Since 5~') = 8 < N = 11 < 5~'), we have

n = 4 and Q = 2. Hence 1"\') (11) = OlDOll1.

Decoding Algorithm. Given ~r(N), compnte N.

(i) Remove the suffix 1m.

(il) If the remaining prefix is empty, then N = 1. End...Ifit is {O}, then N = 2.
End.

,Remove the suffix O.(iii)

(iv) The remaining prefix is an l(rnLencoding. Transform it .into standard..
binary encoding, sa}' b {for example, by using a stored table of m-th order
FibonaA:ci numbers, or by computing them using (ll). Then N = b+
5._2 +1 {where n = II",(N)I-m, and 5._2 is computed using Lemma 2}.
End.

Example. Let m = 3, 1"1(N) =1010111. Then n= 4 and 5._2= 52 =8.
The prefix 101 in 1(3) remaining at the end of step (iii) transforms into itself in.
standard binary encoding. Thus N = 8 + 5 + 1 = 14 in decimal, that is, N is the
binary string lUO.

We shall now address ourselves to the problem ofrepresenting arbitrary binary
strings which are not necessarily binary integers.

Towards this end, let M = ZO u 0 ZO, where ZO is the set of nonnegative
integers, and 0 ZO the set of all nonnegative integers with leading binary zeros.
The bijection rp~m) = rpz maps IlJ onto Gl : The subset ZO is mapped onto the
subset of intege~ of Gl , that is, onto the subset of codewords with leading I-bit,
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such that if N. < N, with N., N, E ZO, then ",.(N.) is lexicographically less
than ",.(N,). The subset OZo is mapped onto the subset of C" with leading 0:

_~~~d..I.etd8 cO;~&QZ~,-whereJlbE 2 0 XbeIh""~~0;,,,.~K~bi5 mappingjo,cc__~~~
m = 3 can be observed in the two left-hand columns of Table 1.

Encoding and decoding are even simpler than for 1j01' The essence is that if
N E Z+, then the 1(m)-encoding of N, with aIm postfixed, gives ",,(N). The
process is reversed for decoding.

For later reference we record the following

LEMMA 3. Ifk E Z+ and 1",,(k)1 ::; m + n + 1, then k E Il,p. - IJ, that.
is l precisely the first Fn - 1 positive integers have ~2-represeDtationsof lengths
up to m + n + 1 (n 2: 1).

PROOF. The definition of 1", implies that for k E Z+,I",(k) is the 1(mL
encoding E(k) of k, postfixed by aIm' For k = F. -1 we clearly have IE(k)1 = n,
and for k = F.. IE(kli = n + 1. I

Our final result in this section is

THEOREM 1. The code C, is complete.

PROOF. Ally cOUIltable UD code C satisfies the Kraft inequality
2::,ec 2-1'1 ::; I (see e.g. 18, Ch. 3; Ch. 9, Ex. 3.7]). It follows that if
2::,ec 2-1'1 = 1 (the Kraft equality), then C is complete.

Let O'lm) = 0'. = 2::,ec, 2-1'1. By Corollary 1,

Thus by (1),

00

"2-m -'F0'1 = L..J n-l'
n;;;;;O

,

0'. - (rm + 2-m -.) = 2:::;"=2 2-m -. (F._, + Fn_, + ... + F._m _.)

• ,,00 2-m-RF: +' ,,00 2-m-RF:= 2' L.m:::l n-1 2'" .L..n=O n-l

+ ,''co 2-m-.F: +
26' L..n=-l n-l'"

, 1 ,,00 ?-m-nF.
T 2m L..n=-rn+2 - n-l

= !(O'l - 2-m ) +P."'l + 2111fTl + ... -+ 2~0'1'

Thus, 0'1 - 2-m = T(1 + ~ + ... + 2.L1 ) = Ul (1- 2~ ), so 111 = 1. •

Notes. (i) The P-code 0 1 is not an SP-code, since 1m E 0 1 . Deleting 1m

makes it into an SP-code with P = DIm, but then it is not complete. It can be
completed, but then it will contain. runs of length;::: m of I-bits, and the decoding

- 8-



may be harder than for 0 1 , The Lakshmanan codes [131 are all_incomplete, since
they do not contain P.

--~~~~~(lirrfD;;llenotesthe number ofcooes of length m+ n in aP-cod"witiLr~~~~
[PI = m, then for C, Lemma 2 says that bn =Fn _, (n ;:: 0). Lakshmanan [131
showed that bn :5 Fn (n ~ 1). The bound bn :5 Fn cannot, however, be assumed
for all n ~ 1, since, as in the proof of Theorem I, it can be seen easily that
I:~=1 2-m- n Fn = 2 - 3 ·2-m > l.

(iii) It is not hard to construct P-<odes for which the bOUlld Fn is assumed.
for small n. But for larger n the inequality bn :5 Fn is then strict. The decoding_
of such codes may be harder than for 0 1 ,

3. An Alternate Fibonacci Code and Representation

The code we define now is conceptually simpler tha.n 0 1 , For m ~.2, O~m) =
O2 consists of the codeword Im_ 1 and the 1(mLencodings of the positive integers
in increasing order, the latter postfixed by OIm_ l _

The representation \O~m) = \03 maps the positive integers bijectively onto O2

such that [f N"N2 E Z+ with N, < N2 , then I',(N,) is lexicographically smaller.
than 1",(N2 ). The first few integers represented by 1'~2) and I"~') are shown in.
Table 2.

We note that C2 is not a prefix code: Table.2 shows that I'~S)(l) is a prefix of,
say, I"~s) (4), and I'~S) (2) is a prefix of, say, I"~S) (11). Of course 1"~2) (1) is a prefix.

of rp~2)(N) for every N > 1. However, O2 is a un code, because the! concatenation
of a.ny two codewords· generates the separator Oim between them. When parsing a
concatenation of 02·codewords, the comma is placed just in_front of the last I-bit_
of any 1m encountered.

The general length-distribution of codewords in O2 is.given by

LEMMA 4. For O2 there are Fn- l - Fn _ 2 codewords of length m +n-I
which can be partitioned as follows: Fn - 3 with leading .10, Fn- 4 with leading;
110, ... ,Fn_ m_ 1 with leading 1m_ I O (n ~ 0).

PROOF. Note that C2 is the same as C, except ior two changes: (i) all
codewords with leading 0 are omitted; (ii) the common suffix.is Olm_l.instead of.
01m • Now apply Lemma 1. •

COROLLARY 3. The code C2 contains precisely F n codewords of length.
not exceeding m + n (n ;:: 0).

PROOF. There is one codeword of length m -11 F1 - Fa of length m + 11

F2 -F, of length m+2, "',Pn -Fn- 1 of length m+n (n;:: 0). Adding gives the
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Table 2: The codes C;2), C;') and the mappingll 1";2), 1";').

137421 ct') 1385321 ct2) N2 2

11 1 1

1011 101 2

10011 1001 3

11011 10001 4
.

100011 10101 5

101011 100001 6

110011 100101 7
-

1000011 101001 8

1001011 1000001 9

1010011 1000101 10

1011011 1001001 11

1100011 1010001 12

1101011 1010101 13

10000011 10000001 14

10001011 10000101 15
-

10010011 10001001 16

result. I

Encoding and decoding for Ipz is very simple: the encoding of 1 is lm-I. For
N E Z+, N > 1, the .r(m).eucoding of N -1 with 01m_1 postfixed is 102(N). The
procedure is reversed for decoding.

We now prove,

THEOREM 2. The code C2 is complete.

PROOF. It sullices to show that the Kraft equality E oEC, :r lol = 1 holds.

Let O'~m) = 0'2 = I:cEc, 2-lcl . By Lemma 4,

=
(12 = L(Fn - 1 - Fn_z)2-m-n+l.

110=0

- 10 -



L t "'= F. 2-m - n+1 "'= F. 2-m- n+1 The O':s = L..n=o n-l ,O'-{ = L..n=O n-2 • _ en

Thus

as we established in the proof of Theorem 1. •

Theorems 1 and 2 assert that no codeword can be adjoined to either 0 1 or
C2 without losing their UD property. This does not imply that they necessarily
have the same densityl however. In fact, O2 contains one code of length m - 1,
whereas the minimum length of the C1·codewords is m. Since both 0 1 and O2

satisfy the Kraft equality, the density of 0 1 must be larger than that of O2 for some
codelengths. We shall see that this is in fact the case everywhere except for small
codelengths. This may at first seem counterintnitive, since the separator Olm_l
of O2 is shoner than the separator DIm of C1• Note, however, that if we rotate
the leading I-bit of every codeword of O2 to its right-hand end, the resulting code
- which is a prefix code! - contains words with leading Q-bits and every word
ends in DIm. It is not, however, identical to 0 1 : In the latter there are codewords
with leading 1m - I , which do not exist in the fanner.

Corollary 2 implies that precisely the first Sn_I codewords of 0 1 have lengths
:5 m + n (n ;:: 0). By Corollary 3, the firstFn codewords of C2 have lengths
:5 m +n (n ;:: 0). Thus the quantity ,

~-

(n ;:: 0)

measures the density difference between the two codes 0 1 and O2 •

THEOREM 3. The density difference between 0 1 and C2 is D_I = -1,
Dn = Sn-m_l for n ~ OJ thus D n = 0 for 0 ::5 n < m, and..Dn > 0 for n ~ m.

PROOF. We have Do = 5_1 - Fa = O..For n > 0, Dn = 5n- 1 - Fn =
L7::"~1 Pi - (Fn - l + ... + Fn - m ) = 5n - m - l . •

4. Transmission of Binary Strings in-"Il Unknown.Range

Transmitting a binary string whose length is unbounded or liesln an_unknown
range by means of a P-code or a Fibonacci code such as O2 clearly has the advan-·
tage thai any error such as a transmission error, will be locally contained) because
of the solid separator P which terminates each codeword of the string (except the

-11-



last, for O2 ). This is in contrast to the logarithmic ramp .representatioD, where
any error in the logarithmic ramp sectioD can. .play totaLhavoc with the decoding'.

_~~~efl"ol"ls~~~~~~~~~~~~~~~~~~~~~~~~~~~

If the transmission is restricted to integers, one of the representations Ij? 1 or
1j?3 can be used. For arbitrary strings which_are not necessarily integers, 1j?2 is
employed.

It is naturaI to inquire about the asymptotic length of Fibonacci repres~n-·

tations. How does it compare with the length .of the logarithmic representation?
What size should m be? These are the kind of.questions we address onrselves to
in this section.

We show that Fn ...... >"uR
( ...... denotes "asymptotic-to"), where u(m) = u is a

Pisot-Vijayaraghavan (PV) number, that is, an....a1gebraic.integer > 1 all of whose
conjugate other than u itself lie in the open unit circle Iz-l < 1 (see e.g. Cassels
12, Ch. 81) and ,\(m) = ,\ a positive number. We also give a sharp estimate of u.
These facts give us a good handle on estimating. the asymptotic length of Fibonacci
representations.

LEMMA 5. For all m ;:: 2, ihe polynomial

-'-'-

/(z) =zm _(zm-i+ zm-'+".+z+l)

has m distinct roots, one of which is a PV-number satisfying

2 - 2-m +1 < u < 2 _ :2-m •

(3)

PROOF. The firsi pari has beeD proved by Miles [UI. See piso Knuth [12,.
Sect. 5.4.2, Ex. 51. For proving the second part, .1lote that

Lei p(z) = 1- (2 - z)zm. Then

p(2 _112m) = 1- T m(2 - Tm)m = 1- (1- 2-(m+l)jm > O.

On the other hand, using the binomial expansion, we get

p(2 _112m-i) = 1- 2-(m-i)(2 _ 2-(m-i»)m = 1-.2(1- 2-m)m

< 1- 2(1- m2-mj = _1+m2-(m-i) :0; 0

for m ;:: O. I

We remark that with a little more effort, the interval for u can be narrowed
further.

- 12 -



THEOREM 4. If F. is the n-th term of the m-<lrder Fibonacci sequence
defined by tbe recurrence (1), then F. - AU' for large n (fixed m), where

(2 - ",)(2 - us)··· (2 - um)
A=Al = > 0,(u - ;,,)(u - us)··· (u - um)

and u~m) = Ui (i > 1) are the conjugates of the PV·nomber u
polynomial (3). Moreover, Fn '" un for large n and large m.

PROOF. The solution of the recurrence

Fn - Fn - l - ... - Fn.-m = 0

is clearly

Ul in the

Fn = AIU~ + >'2U~ + .... + .\mU~,

where U = Ul, U2, .• ", Urn are the roots of the polynomial (3), and All >'21'-"' Am
are suitable constants. Since u is a PV-number, we have Iud < 1 for i > 1. Hence

for large n.

The recurrence (1) implies Fi, = 2i for a :5 i < m. Hence,

where
1 1 1

u, ", um
v= = Ih>,(uk - u,)

m-l m-l m-lU, U, um

is the Vandermonde determinant. This implies

(2- ",)(2 - us)··· (2 - um)
Al = A = ) .

(Ul - U,)(U, - Us ••• (Ul - "m)

By the S;ymmetric Polynomial Theorem it follows that>. is real. Since Fn '" ""un
and Fn and u are positive} we have in fact .\ > O.

- 13 -



In view of Lemma 5 we can write Ul = U = 2 - 0 /2m- 1 , where 6 is a suitable
number in the range 1/2 < 5 < 1. Thns

,
'.

(i=2•...• m).

~~~~~~~~~~~~~~~~~~~--~-~~.~
.\ = (ul-u~+62-{"'-!1 "1-UII+62 (m_I)) u1-u ... +02 1m I)

("I u~ "I "II ... II.! "m)

= [1+ 2m-I(~1 U~)][l+ 2m 1(~1 88)] ..• [1+ 2",1(:1 u ...d·
Let e > O. For m sufliciently large

5 e
==i------,<2m I[UI - ud m

Hence [.\1 < (1+~ )m -+ et:, which can be made arbltrariIy close to 1 for sufficiently
large m. Thus ,\ -+ 1 as m -+ 00. •

Theorem 4 enables us to give an asymptotic estimate of the length of any
Fibonacci representation. We cm:ry this out below for ~3, but it is not much.
different for ~l and ~2 (for which we get a slightly smaller asymptotic length).

Corollary 3 implies that the largest integer representable by ~s with m + n
bits is Fn (n 2: 0). If k is the number of bits in the standard binary numeration.
system necessary to encode FB , then 2k - 1 :=; Fn < 2k • For large n we have by
Theorem 4, 2k

- 1 :5 .\un < 1!', where u := 2 - 52-m+1, 0 a suitable real D.umber
satisfying 1/2 < 5 < 1. Then k -1 :5 nlg u + 19.\ < k, where 19 denotes log to the
base 2.

Expanding 19 u into a Taylor series,

Thns

Igu = Ig(2-52-m+I) =1+lg(1-5rmJ
= 1- (52-m + 522-(2m+I) + .. .Jlge.

,

(4)

In the logarithmic ramp representation R(m) (F~m)) = R(F.J of F., an. extra O-bit
prefixes the strmg itself. Therefore,

[R(F.)[ = k + 1 + rlg(k + 1)1 + rlgr1g(k + III + 11 + ... + 3,

where the last 19l9 ... term is 3. Using the appraximation.k = n(l- 52-m lge) +
19 A, the lengths difference is

n5
~ =m-l+-1ge-lgA- rlg(k+l11- rlgrlg(k + III +11-"'-3,2m .

where k is given by (4).

-14-



all

This formula shows that for every fixed m,_.6. > 0 if.n is sufficiently large,
so ultimately the logarithmic ramp representation is shorter than any_Fibonacci.

-~~~~repre5ent-atien~e=crossover=-p-oint=dep-ends=e:qfoIfentiaUY=-(j~~o~r~··· ~~~~

very large initial values, the latter representations are in fact shorter than the
former. The following computational results for m = 2, 3 and 4 refer to 'PI and_
C•.

We have !R(')(n)1 = 4 bits and 11"\') (n)1 = 5 bits for n = 5,6,7. But
11"\') (n)l $ IR(') (n)1 for all integers n in the range

8 $ n $ Fi;) -1 = 514,228.

Beyond this point, the representation 1"\') (n) becomeS slowly larger than R(') (n).

For m = 3, IR(')(n)1 < 11"\'l(n)l for 3 $ n $ 7. But 11"\') (n)1 $IR(')(n)l for

< 1 (F(') F(') ) 34 9 I.8 $ n _ 2 ., + •• - 1 = ,696,689,675,84,696 '" 3.470 x 10 .

Forlarger n, 11"\') (n)1 becomesslowly larger than IR(')(n)l. Thn' for n = HFJ:)+
Fi:) -1) '" 1.095 x 1021 we have 11"\')(n)l-!R(')(n)l = 1, and this difference is 5,

for example at n = i (Fi:l + F1;D ~ 3.208 x IQ38. IncidentalJy, the difference lJ.....
does not increase monotonically: it usually decreases at points where R(n) picks
up a new 19 19 . .. term on its logarithmic ramp.

We have IR(') (n)l < 11"\') (n)1 for 2 $ n $ 7, 11"\') (n)1 $ IR(') (n)l for 8 $ n $
116, and 11"\')(n)I-IR(')(n)1 = 1 for 117 $ n $ 127. Bnt 11"\')(n)1 $IR(')(n)1
rorall ,

1 (F(') 2F(') F('») .s128 $ n :':-3" 23. + 229 + 228 - 1 '" 4.194 X 10 .

Beyond this point, the representation 1,01 (n) becomes very slowly larger th3IL.
R(') (n).

These computational results and the asymptotic formula.for A (valid for 1",),
both indicate that II"\m) (n)1 $ IR(m)(n)1 for exponentially laxger n as m increases.
Hence if we expect mauy of the transmitted strings to be very large, jt may be
advantageous to select a larger value of m than for the transmission of shorter
strings.

5. Universality of Fibonacci Codes and Representations

Let C be a couutably infinite UD binary code, and M = {m(I), m(2), ...} ::>
Z+ a countable set of messages. Let 5 = {(1,p,),(2,p,), ... ,(n,Pn)} be a source

- 15 -



of the first n positive integers, with associated positive probabilities PI ;:: P2 ;::
... ;:: Pn (2:::~=1 Pi .5 1). The source may also_include some noninteger messages
with their associated probabilities. The entropy of the integers in the source is

-~~~~~'EHfj(~r= nC:-L::'=I P0lip;. tet <p : ZT _ C be a blDaly represenlallOil of·Ctrih""~-~~~
positive integers such that 1<p(i)l:5I<p(i+1)1 (i ~ 1). Then <p is called lUli.ersaiif

Ep(L) <
max{l, H(P)} - K,

where Ep(L) ~ L:~=I p;I<p(ill is the expected codeword length of the representa
tions of the integers in the source, and K is a positive constant independent of
the probability distribution P = {PI,P2, . .. ,Pn}. This definition reduces to Elias'
universality definition when there are no noninteger messages.

Let f = {f; (z)}~=I be a finite sequence of polynomials with deg(t,J ~
deg(t;) > 0 for all i satisfying 1 :5 i :5 k. All polynomial coefficients are constauts
which may depend on m. For simplicity we .assnme that all coefficients of 11 are
nonnegative.

A more general notion of Fibonacci representation than used above will now
be introduced.

A Fibonacci representation of a set M _::> Z+ is any binary representa-
tion ¢ such that all and only all the first .l(FJ(l») + d positive integers -have
representations of length up to l, where l denotes a :finite linear combination:_
l(FJ(l») = LiCiFh(l), where the Ci .and dare constants·which may depend on_
m, and Cl > o.

By applying the definition successively to lmJ. = 1"'(1)1, lmln +1, lmJ. +2, ... ,
it follows that ¢ is a representation of M if and only if all-the poliliive integers n
in the interval

[.c (F/(l_I)) + d + 1, .c (F/(l)) + d]

have representation length 1"'(n}1 = l for alll ~ lmJ•.

Note that !PI, IP2 and !P3 are representations also according to the new defi.
nition: By Corollary 2, the !Pl-representation5.of precisely" the first Sn._l positive
integers have length up to m + n. Furthermore, we have

5n- I = e(F/(m+n)) +d = m ~ 1 (Fn+r +~ (m - 2 - i)Fn_ 1_; -1).

where

.,

f,(n+m) =n+m- (m-1),

/;(n + m) = n + m - (m -1 + i),

1
Cl = ,

m-I

m - i
Ci =

m-I

1
d=- ,

m-I

(i = 2, ... , m - 1).
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,
Let f = U>}· For f,(m+n+l) = m+n+l-(m+l), CI = 1, d = -1,Lemma3

implies that precisely the first l(F/Cm+n+l») + d = Fn-1 positive integers have
-~~~~\O,-representatiolfS"OHength noftXteeamg-nr-f'nTF.Fi>r71tmTnY~~m¥nc:. \m")~,~~~~~

Cr = 11 d = 0, Corollary 3 implies that precisely the first .c(FJem+n )) + d = Fn
positive integers have /P3-representatioIlS of length not exceeding m + n.

LEMMA 6. Let", be a binary representation such that 1"'(k)l:s CI +c, Igk
(k E Z+)' where CI and c, are constants and c, > o. Let P. = p(k) be !he
probability of k. If PI 2:. P2 2: ... 2:. Pn I E~=l Pi :5 1, then rjJ is universal.

PROOF. For 1 :s j :s n we have 1 ;:: "L;=I Pi ;:: jPi' so Ig j :s -Ig Pi.
Hence

• •
L,Pi'gj:S - LPi'gp;=H(P),
i=1 ;:::::1

and

Ep(L) = "L~=,pM(ill:s "L;:"'IPih +c,lgi)

:s CI + c,"L~I Pi Ig i :s CI + ",H(P).

Thus

Ep(L) {CI + c, for H(P) :s 1

max(l, H(P)}:S iT + c, < CI + c, for E(P) > 1. •

THEOREM 5. Any Fibonacci representation is llIliversaL

PROOF. If '" is a Fibonacci representation, then any integer n E
[.e(F/C'-I») + d + 1, .e(FJ(,) + dJ has representation length 1"'{fi)1 = l for aIL
i ;:: i mJn_ Thus

where al is the leading coefficient of fl. By Theorem 4, Fk '" Auk where A > 0,
so Fk > Kuk for all k ::::: 01 where K > 0 is a suitable constant. Thus

so

1( n-d 1( )l:S- Iog.--)+I=- Iog.(n+Kd-]og.(c,K) +1,
al ell( 01

where K I = -d and n + K I > o.
If K,:S 0, then 10g.(n+K,):s log.(n). So assume K, > o.
If n ~ K" then log.(n + K, ) :s 10g.(2n) = log. 2 + log. n.
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if n < K .. then log. (n + K , ) < log.(2K,). Thns in allcases log.(n + K,) :s
K 2 + log" n for a suitable constant K 2 > O. Thus

I¢(nll = l :s K, + K, 19 n

for suitable constants K 3 and K." > o. Now apply Lemma 6.
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