
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1971

Symmetric Binary B-Trees: Data Structure and Algorithms for Symmetric Binary B-Trees: Data Structure and Algorithms for

Random and Sequential Information Processing Random and Sequential Information Processing

Rudolf Bayer

Report Number:
71-054

Bayer, Rudolf, "Symmetric Binary B-Trees: Data Structure and Algorithms for Random and Sequential
Information Processing" (1971). Department of Computer Science Technical Reports. Paper 458.
https://docs.lib.purdue.edu/cstech/458

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SYMMETRIC BINARY B-TREES:
DATA STRUCTURE AND ALGORITHMS FOR

RANDOM AND SEQUENTIAL INFORMATION PROCESSING*

Rudolf Bayer
Computer Sciences
Purdue Universi ty

Lafayet te , Indiana 47907

CSD TR 54

November 1971

ABSTRACT

A class of binary trees is described for maintaining ordered

sets of data . Random insert ions , delet ions , and retrievals of

keys can be done in t ime proport ional to log N where N is the

cardinal i ty of the data-set . Symmetric B-trees are a modificat ion

of B-trees described previously by Bayer and McCreight . This

class of trees properly contains the balanced trees .

* This work was part ial ly supported by an NSF grant .

SYMMETRIC BINARY B-TREES:

DATA STRUCTURE AND ALGORITHMS FOR

RANDOM AND SEQUENTIAL INFORMATION PROCESSING

This paper wi l l describe a further solution to the following wel l-known

problem in information processing:

Organize and maintain an index , i .e . an ordered set of keys

or virtual addresses , used to access the elements in a set

of data , in such a way that random and sequential insert ions ,

delet ions , and retrievals can be performed efficient ly .

Other solutions to this problem have been described for a one-level store

in [1], [3], [4], |~5] and for a two-level store wi th a pseudo-random access

backup store in [2]. The following technique is suitable for a one-level store .

Readers fami l iar wi th [2] and [3] wi l l recognize the technique as a

further modification of B-trees introduced in [2]. In [3] binary B-trees

were considered as a special case and a subsequent modificat ion of the B-trees

of [2]. Binary B-trees are derived in a straightforward way from B-trees ,

they do exhibi t , however , a surprising Asymmetry: the left arcs in a binary

B-tree must be 6 (downward) , whereas the right arcs can be either 5-arcs

or p-arcs (horizontal). Removing this somewhat artificial distinction between

left and right arcs natural ly leads to the symmetric binary B-trees described

here .

After this brief digression on the relationship of this paper to earlier

work we will now proceed with a self-contained presentation of symmetric binary

B-trees .

2

Definition:

Symmetric binary B-trees [henceforth simply called B-trees) are directed binary

trees with two kinds of arcs (pointers), namely 6-arcs (downward or vert ical

pointers) and p-arcs (horizontal pointers) such that :

i) All leaves are at the same 6-level .

i i) Al l nodes except those at the lowest 5-level have 2 sons ,

i i i) Some of the arcs may be p-arcs , but there may be no successive p-arcs .

In addi t ion , the keys shall be stored at the nodes of a B-tree in such a way

that postorder traversal [6] of the tree yields the keys in increasing order ,

where postorder traversal is defined recursively as follows:

1) If the tree is empty , do nothing

2) Traverse left subtree

3) Visit root

4) Traverse right subtree .

Fig . 1 shows a B-tree . Readers familiar with balanced trees [1], [4], [S],

should observe that B-trees are not always balanced trees as shown by the

B-tree in Fig . 1 .

Number of Nodes and Height of a B-tree:

Let the height h of a B-tree be the maximal number of nodes in any path from

the a leaf.

Then an example of a B-tree T
m
^

n
(h) of even height h with the smal lest number of

nodes is of the form

where x- , x_ are the roots of completely balanced binary trees of height

£ - \ and x . is the root of a tree T . (h--2). T . (2) is of t?ie foxm
2 4 m n

 J

 m m

O—O 01 c>—o
Let N(T) be the number of nodes in tree T . Let

 T

j,
a
i(-

u

-3
 a

 co '«piet«i>
r

balanced binary tree of height I . Then we have :

N C T ^ C h)) = 2 N C T
b a l

(| - 1)) + 2 + N C T ^ C h - 2)) .

Since

NCT
b a l

U)) = 2 ° + 2
1

 + 2
Z

 + ... + 21'1 = 2Z - 1

we obtain: ,

I "
 1

N

C
T

m i n
(h

» "
 2

 '
 P

 "I)
 +

 2
 +
 N(T

m i n
Ch-2)

= 2
2

 «• N(T . Ch-2)) v

 min '

h h
 1 ? ? " - 1 = 2 + 2 + .. . + 2

1

= 2 - 2

For a B-tree of odd height h we obtain:

N

(
T

m i n ™ =
 1 + N t T

b a l
C

¥ »
 +

 ^ . i n ^
1

"
h-1 h+1 h-1

= 2 + 2 - 2 =/ 3-2 - 2

This bound is bet ter than thejbound obtained for even h .

Using the worse bound obtained for even h , and if N is the number of nodes

in a B-tree of height h , then! we obtain as bounds for N : 1
2

 "
 2

 " m i n
0 1

" i
N

| i
N

<
T

b a l <
h

» " ^

'l
1 \

Fig . 1: Example of a symmetric binary B-tree

5

Taking logarithms we obtain:

~ + 1 £ log
2
(N+2)

log (N+l) <_ h

and consequently as sharp bounds for the height h of a B-tree with N nodes:

log
2
(N+l) < h ^ 2 log

2
(N+2) - 2 (1)

B-trees and balanced trees:

Theorem: The class of B-trees properly contains the class of balanced trees .

Proof: Let the 6-height of a B-tree be defined as the number of "levels" in

a B-tree , i .e . as the number of 6-arcs plus one in any path from the root to

a leaf. Then a balanced tree of height h can be . transformed into a B-tree of

6-height by simply labelling the arcs as 5-arcs or p-arcs . The proof is

by induction on h . For h = 1,2 we label as follows:

balanced tree B-tree

o — o
- o - o

 c-o

/ N
V

and in general , letting ^ stand for the root of
 a
 balanced tree of height h and

B for the root of a B-tree of 5-height I we obtain:

7

The proper containment can be seen from the B-tree in Fig . 1 which is not

a balanced tree . This completes the proof .

Figures 2 and 3 show a balanced tree and a B-tree obtained by labelling the

arcs according to the algorithm impl ied in the proof .

9

Fig . 2: A balanced tree

Fig . 3: The balanced tree of F ig .

\

\
\

considered as a B-tree

KO

10

The upper bound on the height of a B obtained in (1) is approximately

2 log
2
 (N) instead of 1.5 log

2
 (N) for the height of a balanced tree , [4] , This

means that the upper bound for the retrieval t ime is better for balanced trees

than for B-trees . On the other hand , these same bounds and the fact that

balanced trees are a proper subclass of B-trees also suggest that less work

should be required to update B-trees than to update balanced trees .

Maintenance Algorithms:

We now consider the algorithms for maintaining B-trees if keys are inserted

and deleted randomly . The algorithm to retrieve keys is straightforward and

wi l l not be described here .

Insertion Algorithm:

A new key x is inserted into the tree by attaching it with a new p-arc at

the lowest 6-level . x is attached exactly at that place where the retrieval

algorithm for x tries to proceed along a non-exist ing arc or "falls out of the

tree ." The possible cases are indicated by the following i l lustrations:

A
i

> ;
A

SPLITRR

or g > — c

i
or

SPLITRL

or V — J
 V|

N

SPLITLL

(x r \

SPLITLR

I or or I

; x

11

Whenever two successive p-arcs arise the tree must be modified according

to one of the fol lowing four cases , which are named l ike the Algol procedures

performing those modificat ions in our implementat ion . It if assusied that

x^ < for al l keys . An arc of rectangular shape can be a p-arc or a 5-arc .

SPLITRR:

... I x„

r
J
X.

fx rA

SPLITRL:

XT \ \

SPLITLL: L P

'
X

2 - {
X

4 > <
X

'

/ V, * r X. X- • X
r
> { X ,

.
 1 l

. v 5/ V

SPLITLR:

x ^
f . 2

/

& (5) (5 > ^

12

In all four cases P is a left or a right 5-arc (pointer) and must then

become a left or ri^ht p-arc respect ively . This may , of course , gives rise

to successive P-arcs at the next 5-level closer to the root , requiring again

one of the modificat ions just described to remove successive p-arcs from the

tree . These modificat ions may recursively propagate along the retrieval path

all the way up to the root of the tree . It is crucial to observe , however ,

that these modificat ions can propagate only along the retrieval path and wi l l

not affect any other parts of the tree . Thus the total work required to modify

the tree in order to remove successive p-arcs is at worst proport ional to the

length of the retrieval path for x , i .e . to 2 log„ (N+2) - 2 .

Delet ion Algori thm:

To delete an element x from the tree , we first have to locate it and to

replace it by the next smal lest (next largest) key , say y , in the tree , y is

found easi ly proceeding from x one step along the left (right) pointer and

then along the right (left) pointer as long as possible . The node containing

y original ly is then replaced by a dummy node d which we wi l l delete from the

tree in one of the fol lowing ways . Note that at any one t ime d has at most

one successor . We use d only as a conceptual device for i l lustrat ive purposes

In the implementation the dummy node d is not physical ly represented , instead

the pointer P simply points "through" to the successor of d .

13

Case AI : at the lowest 6-level :

Ap ip
d^) or { d 1 j-/ z)

v /
terminate

Case A2: at the lowest 6-leve l , if d is a leaf:

P P ip

d or ; d - or * d •

Set P := 0 and proceed according to one of the fol lowing cases .

;P
Case Bl :

i
X

5

Case B2:

V-\
x

2 -r
 x

3
" \

Case B3:

X

1 "i
 X

2
\

0

\
 X

3

Case C:

•
X

1

— A
X

4 .

V 1 \
A

 '

• >

f
\ d

*

(x 2 x 4 ;

/ \ X
t

 X

l ! i
 X

3- <
x

5
 v

Cont inue recursive delet ion .

. d
/

'T

I > \

Apply SPLITLR and terminate .

" x
r

(d)

> fx •

\, V - N -
;

x

s

Apply SPLITLL and terminate .

P

> 2) v
If necessary apply SPLITLR at X4 , Case CI ,

or if necessary apply SPLITLL at x
4
, Case C2,

or do nothing further , Case C3 .
In all three cases terminate .

14

Case P: This case is left-right symmetric wi th Case B ,

/ """"
G k _ >

d T r " '
x

2) i ; • -
 x

z

Apply SPLITRL at x^ if possible and terminate . Case 02 ,
or apply SPLITRR at x-̂ if possible and terminate , Case D3 ,
or cont inue recursive delet ion process , Case Dl .

Case E: This case is left-right symmetric wi th Case C .

d .

t
x .

r'X^ ; 2 > ' x
V 4 1

<v- . V

> '4

V * ^ J v \
2" "3 • .

Apply SPLITRL at x
2
 if possible , Case E l .

Apply SPLITRR at x
2
 if possible , Case E2 .

Do nothing . Case E3 .
In all three cases terminate .

Case F:

. x 1 ." * d

Y
l x 2 .
• > — . -

>
f *i i Terminate .

x ^

Case G: This case is left-right symmetric wi th Case F .

d

1
x .

r
: X ,

>
^

X

2

x . /
Terminate .

15

Note that the recursive deletion process terminates in all cases except

A2 , B l , and Dl . If d was moved all the way
 u
p to the root of the tree , then it

wi l l be deleted ana the successor of d wi l l become the.- r.ew root of the tree .

A lso , a single retrieval , insert ion , or deletion requires inspect ion and modifi-

cation of the tree only along a single path from the root to a leaf . As a conse-

quence of this observat ion and of the bounds for the height of a B-tree obtained

in C D the fol lowing main resul t of this paper is obtained:

Main Resul t :

The work that must be performed for random retrievals , insert ions , and

delet ions is even ii\ the worst cases proport ional to the height of the B-tree ,

i . e . to log2(N+2) where N is the number of keys in the trer>.

General izat ion:

From the insert ion and deletion algori thms discussed in this paper , it is

qui te clear that the class of binary B-trees could be enlarged by al lowing up

to n successive p-pointers for n = 2 ,3 ,4 , . . . before requiring any modificat ion

or "rebalancing" of the tree . This would require less rebalancing , but perfor-

mance in t ime log(N) would st i l l be guaranteed .

16

POT the Algol 60 V.r-,vi ;.:ectati<"'V- T-J BU •"•rssidcrer
1

. a . i n A u-tree

shall consist of five fields , namely:

LBIT: a Boolean variable to indicate that the left arc is a p-arc (true) or a

6-arc (false)

LP: the left downward pointer , an integer

KEY: the key in the node , a real

RP: the right pointer , downward or horizontal , also an integer

RBIT: a Boolean variable to indicate that the right pointer is a p-arc (true)

or a 6-arc (false)

The absence of a pointer shall be represented by the value 0 . Thus the insertion

and deletion procedure have array parameters LBIT , LP , KEY , RP , RBIT to store the

nodes of the tree . The parameter x is the key to be inserted into or deleted from

the tree to whose root the parameter ROOT is pointing (R00T=0 for an empty tree) .

The Boolean R00TBIT indicates ROOT as a p-arc or as a 6-arc . There are two pro-

cedure parameters to maintain a list of free nodes , namely ADDQ for the deletion

procedure to enter a freed node into the free l ist , and GETQ for the insertion

procedure to obtain a free node from the free l ist . Both ADDQ and GETQ have one

integer parameter pointing to the node added to or obtained from the free l ist .

If the key to be inserted is already in the tree , control wi l l be transferred to

the label parameter FOUNDX . If the key to be deleted is not in the tree , control

wi l l be transferred to the label parameter XNOTINTREE by the deletion procedure .

The parameter P in SYMSERT and SYMDELETE is the pointer to the root of the subtree

in which the insertion or deletion must be performed . The parameter BIT in SYMSERT

indicates whether P is a p-arc or a 6-arc .

The four procedures SPLITRR , SPLITRL , SPLITLL , and SPLITLR modify the B-tree in

order to remove successive p-pointers . They are used both in the insertion pro-

cedure SYMINS and in the deletion procedure SYMDEL .

17

Other local quant i t ies in the procedures are:

AUXP: an auxiliary integer variable used as a temporary store for pointers.

DONE: a label to which control is transferred after completing an insertion

in order to shortcut the full recursion of SVMSCRT .

AUXX: an auxiliary integer variable pointing to the key :< after it has been

found in the tree . AUXX = 0 otherwise .

QUIT: a label to which control is transferred after completing the deletion

of the dummy node d in order to shortcut the ful l recursion of SYMDELETE .

AUXD: an auxi l iary integer variable used as temporary store for pointers .

SL: a label from where deletion of the key from the left subtree (smaller)

is cont inued ,

GL: a label from where deletion of the key from the right subtree (greater)

is cont inued .

The insertion (deletion) algorithm has been written as two procedures , a non-

recursive outer procedure SYMINS (SYMDEL) and a recursive inner procedure

SYMSERT (SYMDELETE) . Thje outer procedure SYMINS (SYMDEL) allows shortcutting

the full recursion of SYMINSERT (SYMDELETE) via . the label DONE (QUIT). The
inner procedure SYMINSERT (SYMDELETE) performs insertions (deletions) in a

B-tree recursively .

It is assumed that the six procedures SPLITRR , SPLITRL , SPLITLL , SPLITLR ,

SYMINS , and SYMDEL are all declared in the same block or in such a way that

SPLITRR , SPLITRL , SPLITLL , and SPLITLR c£n be used both in SYMINS and in SYMDEL .

Note : The tree in Fig . 1 is a suitable tree for test ing . Inserting the keys

in the order 8 , 9 , 11 , 15 , 19 , 20 , 21 , 7 , 3 , 2 , 1 , S , 6 , 4 , 13 , 14 , 10 , 12 , 17 ,

16 , 18 wi l l bui ld up the tree . Deleting the keys in the o r d e T 1 , 6 , 2 , 21 , 16 ,

20 , 8 , 14 , 11 , 9 , 5 , 10 , 12 , 13 , 3 , 4 , 7 , 15 , 17 , 18 , 19 wi l l exercise all the

cases which can arise in any deletion process .

18

procedure SPLITRR(F ,LP ,RP ,RB1T)j
int.eggr P; integer arr-y RP

r
LP ;

boolean array REIT;
begin integer AU/V;

AUXP := RP[P]; REITfAUXP] := false;
RP[P] := LP[AUXP]; RBIT[P] := false;
LP[AUXP] := P; P : = AUXP

end OF SPLITRR

procedure SPLITRL(P ,LP ,RP ,LBIT ,RBIT);
integer P; integer array LP ,RP;
boolean array LBIT ,RBIT;
begin integer AUXP;

AUXP :=LP[RP[P]];
LBIT[RP[P]] -fa l se ; LP[RP[P]] r = RPfAUXP];
RP[AUXP] := RP[P]; RP[P] := LP[AUXP];
RBIT[P] := false; LP[AUXP] := P; P := AUXP

end OF SPLITRL

procedure SPLITLL(P ,LP ,RP ,LBIT);
integer P; integer array LP ,KP;
boolean array LBIT;
begin integer AUXP;

AUXP:= LP[P]; LBIT[AUXP] := false;
LP [P] := RP[AUXP]; LBIT[P]:= false;
LP[AUXP] := P; P := AUXP

end of SPLITLL

procedure SPLITLR(P ,LP ,RP ,LBIT ,RBIT);
integer P; integer array LP ,RP;
boolean array LBIT , RBIT;
begin integer AUXP;

AUXP := RP[LP[P]j ;
RP[LP[P]] := LP[AUXP]; RBIT[LP[P]] := false;
LP[AUXP] := LP[P]; LP[P] := RP[AUXP];
LBIT[P] := false; RP[AUXP] := P; P := AUXP

end OF SPLITLR

procedure SYMINS(X
a
ROOT ,ROOTBIT ,FOUNDX ,LP ,RP ,KEY ,LBIT ,RBIT ,GETQ)

value X; real X; integer BOOT; Soolegn ROOTBIT;
label FOUNDX; integer array LP ,RP; array KEY;
boolean array LBIT ,RBIT; procedure GETQ;

begin procedure SYMSERT (
P

»BIT) ;
integer P; Boolean BIT;
if P = 0 then

begin comment INSERT X AS NEW LEAF;
GETQCP); KEY[P] := X; BIT true;
LP[P] := RP[P] := 0; LBIT[P] := RBIT[P] := false

end
else if X = KEY[P] then goto FOUNDX
else if X less KEY[P] then

begin comment INSERT X IN LEFT SUBTREE;
SYMSERT (LP[P],LBIT[P]);
if LBIT[P] then begin

if LBIT[LP[PJ] then begin SPLITLLCP ,LP ,RP ,LBIT);
BIT := true end

else if RBIT "jTP [P]] then begin
SPLITLR(P ,LP ,RP ,LBIT ,RBIT); BIT := true end end

else goto DflNE
end

else begin comment INSERT X IN RIGHT SUBTREE
SYMSERTCRP[P] ,RBIT[P]);
if RBIT[P] then begin if RBIT[RP[P]] then

begin SPLITRRfP .LP .RP .RBIT);
BIT true end

else if LBIT[RPlP]] then begin
SPLITRL(P ,LP ,RP ,LBIT ,RBIT); BIT := true end end

else goto DONE
end OF SYMSERTj

SYMSERTfROOT ,ROOTBIT); DONE?
end OF SYMINS

procedure SYMDHL(X .
f
ROOT ,XNOTINTRHE ,LP ,RP ,KEY ,LBIT ,RBIT ,ADDQ)

value X; real X; Integer ROOT;
label XNOTINTREEr integer array LP ,RP; array KEY;
Boolean array LBIT","RBIT; procedure ADDQ;

begin integer AUXX ,AUXD;

comment RECURSIVE 3-TREE DELETION ALGORITHM;
procedure SYMDELETE(P); integer P;
begin comment DID WE FIND THE KEY TO BE DELETED;
if X = KEY[P] then AUXX := P;
if X notgreater KEY[P] and LP[P] notequal 0 then

SL: begin SYMDELETE(LP[P]);
comment CASES D , E , G;
if LBiT[P] ther begin comment CASE G;
LBIT[P] := fal^e; goto QUIT end OF CASE G

else begin comment: CASES E ,D;
if RBIT[P] then begin comment CASE E ;
AUXD := RPLPT7~RP[P] := LP[AUXD];
LP[AUXD] := P; P := AUXD;
if LBITfRP[LP[P]]] then

begin SPLITRL(LPTP77LP ,RP ,LBIT ,RBIT);
LBIT[P] := true end

else if RBIT[RPTlP[P]T1 then
begin SPLITRR(LP[P] ,LP ,RP ,RBIT);
LBIT[P] := true end;

goto QUIT
end OF CASE E

else begin comment CASE D;
RBIT[P] := true; if LBIT[RP[P]] then begin
SPLITRL(P ,LP ,RP ,LBIT ,RBIT); goto QUIT end
else if RBIT [RP rP.11 theh begin
S H n W (P , L P , R P , R B I T) j gotb IjUlT END
end OF CASE D

end OF CASES D,E
end OF SL AND CASES D ,E ,G

else if X not less KEY[P] and RP[P] notequal 0 then
GL: begin SYMDELETE(RP[Pj);

comment CASES B ,C ,F;
if RBIT[P] then begin comment CASE F;
RBIT[P] : = " M s e ; goto QUIT end of CASE F

else begin comment CASES B , C;
if LB IT [P] then begin comment CASE C ;
AUXD := LP[PTrLP[P] := P.P[AUXD];
RP[AUXD] := P; P := AUXD;
if RBIT[LP[RP[P]]] then

begin SPLITLR(RP~[PJ7LP ,RP ,LBIT ,RBIT) ;
RBIT[P] := true end

else if LBIT TlpTRPT^TI] then
begin SPLITLLfRP[P] ,LP ,RP ,LBIT);

RffTT[P] true end;
goto QUIT

end OF CASE C

else begin comment CASE Bj
LBIT[P] := true;
if R B I T [L P T P ! T then begin

S P L I T L R (P , L P , R P , L B I T , R B I T) ; goto Q U I T end
else if LBIT[LP[P]] then begin
S P L I T L L (P , L P , R P , L B I T ; goto Q U I T end
e n d O F C A S E E

e n d O F C A S E S B , C
e n d O F G L A N D C A S E S B , C , F

else begin comment ARRIVED AT LEAF OR NEXT TO ONE , CASE A
if AUXX = 0 then goto XNOTINTREE;

KEY[AUXX] := K E Y [P j r ~
AUXD := if LBIT[P] then LP[P] else RP[P];
ADDQ(P); P := AUXD; if P notequal 0 then goto QUIT •

end
end OF SYMDELETE;

AUXX := 0;
if ROOT = 0 then goto XNOTINTREE else
SYMDELETE(ROOT);

QUIT:
end OF SYMDEL

22

B I B L I O G R A P H Y

Adelson-Velski i , G .M . and Landis , E , M . , An Informat ion Organizat ion
Algori thm , DANSSR , No . 2 , 1962 .

Bayer , R . and McCreight , E . M . , Organizat ion and Maintenance of Large
Ordered Indexes , Record of the 1970 ACM SICFIDET Workshop on Data
Descript ion and Access , (Nov . 1970) , Houston , Texas pp . 107-141 (to
appear in Acta Informat ica , December 1971) .

Bayer , R . , Binary B-trees for Virtual Memory , Proceedings of 1971
ACM SIGFIDET Workshop on Data Descript ion , Access and Control , pp . 219-
235 , (Nov . 11-12 , 1971) , San Diego , edited by E . F . Codd and A .L . Dean .

Foster , C .C . , Informat ion Storage and Retrieval Using AVL-trees , Proc .
ACM 20th Nat

1

1. . Conf . (1965) , pp . 192-205 .

Knot t , G . D . j A Balanced Tree Structure and Retrieval Algori thm , Proc .
of the Symposium on Informat ion Storage and Retrieval , Univ . of
Maryland , Apri l 1-2 , 1971 , pp . 175-196 .

Khuth , D .E . , The Art of Computer Programming , Vol . 1 , Addison-Wesley
(1969).

	Symmetric Binary B-Trees: Data Structure and Algorithms for Random and Sequential Information Processing
	Report Number:
	

	tmp.1307986960.pdf.zK0Lb

