Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1971

Symmetric Binary B-Trees: Data Structure and Algorithms for
Random and Sequential Information Processing

Rudolf Bayer

Report Number:
71-054

Bayer, Rudolf, "Symmetric Binary B-Trees: Data Structure and Algorithms for Random and Sequential
Information Processing" (1971). Department of Computer Science Technical Reports. Paper 458.
https://docs.lib.purdue.edu/cstech/458

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SYMMETRIC BINARY B-TREES:
DATA STRUCTURE AND ALGORITHMS FOR
RANDCM AND SEQUENTIAL INFORMATION PROCESSING*

Rudolf Bayer
Computer Sciences
Purdue University

Lafayette, Indiana 47907

CSD TR 54

November 1971

ABSTRACT
A class of binary trees is described for maintaining ordered
sets of data. Ranﬁom insertions, deletions, and retrievals of
keys can be done in time proportional to log N where N is the
cardinality of the data-set. Symmetric B-trees are;a modificatioqgfgg
of B-trees described previously by Bayer and McCreigﬁt. This N

class of trees properly contains the balanced trees.

* This work was partially supported by an NSF grant.

SYMMETRIC BINARY B-TREES:
DATA STRUCTURE AND ALGORITHMS FOR
RANDOM AND SEQUENTIAL INFORMATION PROCESSING

This paper will describe a further solution to the following well-imown

problem in information processing:
Organize and maintain an index, i.e. an ordered set of keys
or virtual addresses, used to access the elements in a set
of data, in such a way that random and sequential insertions,

deletions, and retrievals can be performed efficiently.

Other solutions to this problem have been described for a one-level store
in [1], (31, [4], 5] and for a two-level store with 'a pseudo-random access
backup store in [2]. The following technique is suitable for a one-level store.

Readers familiar with [2] and [3] will recognize the technique as a
further modification of B-trees intxroduced in [2]. 1In [3] binary B-trees
were considered as a special case and a subsequent modification of the B-trees
of (2]. Binary B-trees are derived in a straightforward way from B-trees,
they do exhibit, however, a surprising asymmetry: the left arcs in a binary
B-tree must be §-arcs (downward), whereas the right arcs can be either S-arcs
or p-arcs (horizontal). Removing this somewhat artificial distinction between
left and right arcs naturally leads to the symmetric binary B-trees described
here.

After this biief digression on the relationship of this paper to earlier
work we will now proceed with a self-contained presentation of symmetric binary

B-trees.

Definition:

Symmetric binary B-trees (henceforth simply called B-trees) are directed binary
trees with two kinds of arcs (pointers), namely $§-arcs {downward or vertical
pointers) and p-arcs (horizontal pointers) such that:

i) All leaves are at the same é-level.
i1} All nodes except those at the lowest §-level have 2 sons.

1ii) Some of the arcs may be p-arcs, but there may be no successive p-arcs.

In addition, the keys shall be stored at the nodes of a B-tree in such a way
that postorder traversal [6] of the tree yields the keys in increasing order,
where postorder traversal is defined recursively as follows:

1) 1If the tree is empty, do nothing
2} Traverse left subtree
3) Visit root

4} Traverse right subtree,
Fig. 1 shows a B-tree. Readers familiar with balanced trees [1], [4], [S],

should observe that B-trees are not always balanced trees as shown by the

B-tree in Fig. 1.

Number of Nodes and Height of a B-tree:

Let the height h of a B-tree be the maximal number of nodes in any path from

the root to a leaf.

Then an example of a B-tree Tmin(h) of even height h with the smallest number of

nodes is of the form

where Xy» X, are the roots of completely balanced binary trees of height

h - -~ a . - — - ¥ -
5" 1 2nd X, is the toot of a iree Tmin(h-z). Tmi“(Z] is of the fom

O—) = OO0

Let N(T) be the aumber of nodes in tree T. Let Tbal(kj bz a cogpletely

balanced binary tree of height 2, Then we have:

h
N(Tmin[h)) = QN(Tbalﬁf - 1)) + 2+ N(Tmin(h-z}),
Since
P B | 2 -1 .
N(Tbal[g)) =2 + 2+ 2% ,,, +2 2 1
we obtain: ho .
_)2
N(Tmin[h)) = 2 (2 -1) + 2 + NCTmin(h-Z}
h
= 2% « N(T_. (h-2))
min
h h
& =1
= 22 + 22 + .. * 21
%—+ 1
=2 - 2

For a B-tree of odd height h we obtain:

h-1
N(Tmin(-h)) =1+ N(Tbal(T)) +. N(Tmin(h'_l)]
h-1 hel . h-l
=22 422 _2:32% -2

—_—_

This bound is better than the| bound obtained for even h.
Using the worse bound obtain%d for even h, and if N is the number of nodes

in a B-tree of height h, theq}we obtain as bounds for N:
h

7*+1 h
2 2 N (T (h) < N|< N(Ty () = 2'-1

\

W

{

Fig. 1: Example of a symmetric binary B-tree

Taking logarithms we obtain:

h
5+ 1 f_logZ(N+2)

logz(Nfl) <h

and consequently as sharp bounds for the height h of a B-tree with N nodes:

logz(N+1) <h=<?2 logz(N+2) -2 (1)

B-trees and balanced trees:

Theorem: The class of B-trees properly contains the class of balanced trees.
Proof: Let the §-height of a B-tree be defined as the number of 'levels'" in
a B-tree, i.e. as the number of §-arcs plus one in any path from the root to

a leaf. Then a balanced tree of height h can be.transformed into a B-tree of
6-height (%1 by simply labelling the arcs as é-arcs or p-arcs. The proof is

by induction on h. For h = 1,2 we label as follows:

balanced tree B-tree

O = O
' | } e "\}
O e OO0

)
{\-f B
3

77N

and in general, letting Ah stand for the root of a balanced tree of height h and

Bz for the root of a B-tree of 6-height % we obtain:

P £ m B [hzl
(,Ah.-
N
S -
Ah-'zi/ o1
- ‘ ‘\\ ~ e
A - Brw .,

The pfoper containment can be seen from the B-tree in Fig. 1 which is not
a balanced tree. This completes the proof.
Figures 2 and 3 show a balanced tree and a B-tree obtained by labelling the

arcs according to the algorithm implied in the proof.

AN
~)

“/ a B g) ¥ >
; 0/ 11 14 J€7,

. o AL
. 13 ‘\}5 1,18}

Fig. 2: A balanced tree

Fig. 3:

The balanced tree

T

N
.
_‘ﬂ" -, -~
127 - —--p 16
o N
/ /
Y
, \

/ | / .\'\
. r/ \\

. I"-\\ a . - .
— (13 14— 15) (17 @

2 considered as z B-tree

10

The upper bound on the height of a B-tree obtained in (1) is approximately

2 log2 (N) instead of 1.5 log2 (N) for the height of a balanced tree.({4]. This
means that the upper bound for the retrieval time is better for balanced trees
than for B-trees. On the other hand, these same bounds and the fact that
balanced trees are a proper subclass of B-trees also suggest that less work

should be required to update B-trees than to update balanced trees.

Maintenance Algorithms:

We now consider the algorithms for maintaining B-trees if keys are inserted
and deleted randomly. The algorithm to retrieve keys is straightforward and
will not be described here.

Insertion Algorithm:

A new key x is inserted into the tree by attaching it with a new p-arc at
the lowest 6-level. x is attached exactly at that place where the retrieval
algorithm for x tries to proceed along a non-existing arc or "falls out of the

tree.” The possible cases are indicated by the following illustrations:

f_J\ — o

; ; SPLITRR # SPLITRL !
“f——h/' Loy ;.: T rog BN N — or)1—-4 o
- R - . {ﬁx I. . :
]
SPLITLL SPLITLR l /1\
Rl d Gl G (LISt S S EUC

11

Whenever two successive p-arcs arise the tree must be modified according
to one of the following four cases, which are namad like the Algol procedures
performing those modifications in osur implementarion. It iy assumed that

X < X4 for all keys. An arc of rectangular shape can he a p-231c or a 6-arc.

P SPLITRR:

N N “SV"
b
P =z (71 {f% (x
l SPLITRL #
Yo o A
’ ¥
N
XZ)
SPLITLL: p
'.x-z ..- - _(\Xi'\q—_—— X6 .
xn" \‘f"\ -) ‘\ / ‘
w1 %3) 7 T
5 N
SPLITLR: p
b

12

In all four cases P is a left or a right S-arc (pointer) and must then
become a left or wight p-arc respectively. This guy, of course, gives rise
to successive P-arrs at the next 8-level closer toc the root, Teoguiring again
one of the modifications just described to remove successive p-arcs from the
tree. These modifications may recursively propagate along tiie retrieval path
all the way up to the root of the tree. It is crucial to observe, however,
that these modifications can propagate only along the retrieval path and will
not affect any other parts of the tree. Thus the total work required to modify

the tree in order to remove successive p-arcs is at worst proportional to the

length of the retrieval path for x, i.e. to 2 log2 (N+2)'~ 2.

Deletion Algorithm:

To delete an element x from the tree, we first have to locate it and to
replace it by the next smallest (next largest) key, say y, in the tree. Yy 1is
found easily proceeding from X one step along the left (right) pointer and
then along the right (left) pointer as long as possible. The node containing
y originally is then replaced by a dummy node d which we will delete from the
tree in one of the following ways. Note that at any one time d has at most
one successor. We use d only as a conceptual device for illustrative purposes.
In the implementation the dummy node d is not physically represented, instead

the pointer P simply points "through' to the successor of d.

13

Case Al: at the lowest S-level:
LP lp lp
(Z_ﬂ—@ or | dL—--'«(;‘) ===> {z- terminate
- RPN —a .

Case A2: at the lowest 8-level, if d is a leaf:
p
b b P
d or :d - or -——%d

Set P := 0 and proceed accdrding to one of the following cases.

_ =P
case B1: }' {
%, . d
-~ "\\,_ : N ‘.
e
27 N RS VAR T
Xl x3 ‘ !\xs H g\x];i i x:{f {XS .

Continue recursive deletion. -

Case B2: ; P , 4P

% . d

4 —
//kf"\m ¥
X “ x d _'—r_.f#:;) X — e R
|' 2-*73 2 < 4
N 3
 § : l [,} \ \\\\\‘
X x X
1 5 WL Xe,
Apply SPLITLR and terminate. =~
- P — P
Case B3: —; ,L
1 X4 : (d ,\l
/.._ \ - e Lo . :}.
ks "*‘-.."z\ (¢ - - e anih @: %
4 A X raa®
X L Xc) SN A e :
Sz s |) (% !
Apply SPLITLL a.nd-‘ terminate“. :
P :
Case C g d |
xz:\-e—-——- (.x4. it A > xz '\\ ‘
//'A \ \r . - ,5‘\‘\ »)
x L Xgi oy :d] (Xq (X A X ,
N A G A E
X Xs '

If necessary apply SPLITLR at x4, Case Cl, ™
or if necessary apply SPLITLL at x4, Case C2,
or do nothing further, Case C3.
In all three cases terminate.

14

Case D: This case is left-right symmetric with Case B.

Apply SPLITRL at x, if possible and terminate, Case D2,
or apply SPLITRR at xy if possible and terminate, Case D3,
or continue recursive deletion process, Case Di.

Case E: This case is left-right symmetric with Case C.

lP ‘P
XN <X, x: .
,i,_ N _‘_ . » - . .? _'--‘\\
» ~ -— -
2 i, pe - -

d. X3 5 ¥ i) *s)
M f ‘ " r ’
X1 1

Apply SPLITRL at x, if possible, Case EIl.
Apply SPLITRR at X, if possible, Case E2.

. Do nothing, Case E3,
In all three cases terminate.

Case F:

X R mameoof Rg) ;
A e ‘ Y Terminate.
. &
X X,
2 7
Case G: This case is left-right symmetric with Case F. ‘
P
| P
) & o
-y : X, - H X
A 172 (2
N i S /
' e
Xy 'X1.

Terminate.

Note that the recursive deletion process terminates in 21l cases except
A2, Bl, and DI. 1If ¢ was wmoved all the way up to the root of the tree, then it
will be deleted and the successcr of d wili become the new root of the tree.
Also, a single retrieval, insertion, or deletion requires inspection and modifi-
cation of the tree oniy along a single path from the root tc a leaf. As a conse-
quence of this observation and of the bounds for the height of a B-trée obtained
in (1) the following main result of this paper is obtained:
Main Result:

The work that must be performed for random retrievals, insertions, and
deletions is even in ithe worst cases proportional to the height of the B-tree,
i.e. to Iogz(N+2) where N is the number of keys in the tree.

Generalization:

From the inserticn and deletion algorichms discussed in this paper, it is
quite clear that the class of binary B-trees could be enlarged by allowing up
to n successive p-pointers for n = 2,3,4,... before requiring any modification
or "rebalancing" of the tree. This would require less rebalancing, but perfor-

mance in time log(N) would still be guaranteed.

IMPLEMENTATICN - INSEKIZON AND CEnETION ALGURITHMS FUR H-TREES

For the Algol G0 iwi-entatios to be ~onsideresd here a ode in 2 G-tree

shall consist of five ¥,elds, narely:

LBIT: a Boolean varianle to indicate that the left arc is a p-urc (true) or a
é-arc (false) '

LP: the left downward pointer, an integer

KEY: the key in the node, a real

RP: the right pointer, downward or horizontal, also an integer

RBIT: a Boolean variable to indicate that the right pointer is a p-arc (true)

or a é-arc (false)

The absence of a pointer shall be represented by the value . Thus the insertion
and deletion procedure have array parameters LBIT, LP, KEY, RF, RBIT to store the
nodes of the tree. The parameter x is the key to be inserted into or deleted from
the tree to whose root the parameter ROOT is pointing (ROUT=0 for an empty tree).
The Boolean ROOTBIT indicates ROOT as a pg-arc or as a §-arc. There sre two pro-
cedure parameters to maintain a list of free nodes, namely ADDQ for the deletion
procedure to enter a freed node into the free 1list, and GETQ for the insertion
procedure to obtain a free node from the free list. Both ADDQ and GETQ have one
integer parameter pointing to the node added to or obtained from the free list.

If the key to be inserted is already in the tree, control will be transferred to
the label parameter FOUNDX. If the key to be deleted is not in the tree, control
will be transferred to the label parameter XNOTINTREE by tiie deletion procedure.

The parameter P in SYMSERT and SYMDELETE is the pointer to the root of the subtree
in which the insertion or deletion must be performed. The parameter BIT in SYMSERT

indicates whether P is a g-arc or a 8-arc.

The four procedures SPLITRR, SPLITRL, SPLITLL, and SPLITLR modify the B-tree in
order to remove successive p-pointers. They are used both in the insertion pro-
cedure SYMINS and in the deletion procedure SYMDEL,

17

Other local quantities in the procedures are:
AUXP: an auxiljary integer variable used as a tomporary store for pointers.
DONE: a label to.which control is transfexred afier completing an insertion
in order to shortcut the full recursion of SYMSERT.
AUXX: an auxiliary integer variable pointing to the key x after it has been
found in the tree, AUXX = 0 otherwise.
QUIT: a label to which control is transferred after completing the deletion
of the dummy node d in order to shortcut the full recursion of SYMDELETE,
AUXD: an auxiliary integer variable used as temporary store for pointers,
SL: a label from where deletion of the key from the left subtree (smaller)

is continued, »
GL: a label from where deletion of the key from the right subtree (greater)

is continued.

The insertion (deletion) algorithm has been written as two procedures, a non-
recursive outer procedure SYMINS (SYMDEL) and a recursive inner procedure
SYMSERT (SYMDELETE). The outer procedure SYMINS (SYMDEL) allows shortcutting
the full recursion of SYMINSERT (SYMDELETE) via the label DONE'(QUIT): The
inner procedure SYMINSERT (SYMDELETE) performs insertions (deletions) in a

B-tree recursively.

It is assumed that the six procedures SPLITRR, SPLITRL, SPLITLL, SPLITLR,
SYMINS, and SYMDEL are all declared in the same block or in such a way that
SPLITRR, SPLITRL, SPLITLL, and SPLITLR cZn be used both in SYMINS and in SYMDEL.

Note: The tree in Fig. 1 is a suitable tree for testing. Inserting the keys

in the order 8, 9, 11, 15, 19, 20, 21, 7, 3, 2, 1, S, 6, 4, 13, 14, 10, 12, 17,

16, 18 will build up the tree. Deleting the keys in the order 1, 6, 2, 21, 16,

20, 8, 14, 11, 9, 5, 10, 12, 13, 3, 4, 7, 15, 17, 18, 19 will exercise all the i

cases which can arise in any deletion process.

procedure SPLITRR(F,Li",RP,RBIT);

integer V; intecsr azrsy KP,LP;

boclean array REIT;

begin integer AUY®,
AUXP = RF[P]; RBIT(AUXP] := {alse;
RP[P] := LP[AUX?*]; RBIT{P] := false;
LP[AUXP] := P; P := AUXP

end OF SPLITRR

procedure SPLITRL{P,LP,RP,LBIT,RBIT);
integer P; integer array LP,RP;
boolean array LBIT,RBIT;
begin integer AUXP;
AUXP :=LP[RP{[P]];

LBIT{RP[P]] :=false; LP[RP[P]] := RP[AUXP];

RP[AUXP] := RP[P]; RP[P] := LP[AUXP];
RBIT[P] := false; LP[AUXP] := P; P := AUXP
end OF SPLITRL

procedure SPLITLL(P,LP,RP,LBIT};

integer P; integer array LP,RP;

boolean array LBIT;

begin integer AUXP;
AUXP:= LP[P]; LBIT[AUXP] := false;
LP[P] := RP[AUXP]; LBIT[P]:= false;
LP[AUXP] := P; P := AUXP

end of SPLITLL

procedure SPLITLR(P,LP,RP,LBIT,RBIT);
integer P; integer array LP,RP;
boolean array LBIT, RBIT;

begin integer AUXP;
AUXP := RP{LP[P]]:

RP[LP[P]] := LP[AUXP]; RBIT[LP[P]] := false;

LP[AUXP] := LP[P]); LP[P] := RP[AUXP]; ~
LBIT[P] := false; RP{AUXP] := P; P := AUXP
end OF SPLITLR

18

procedure SYMINS (X,RCOT,ROOTBIT,FOUNDX ,LP ,RP,KEY, LBIT,RBIT,GETQ);

value X; real X; integer ROOT; Pooledv ROQTBIT
label FOUNDX; lnteger array LP,RP; arrav XEY;
boolean array 1L.B17,RBIT; EroceJure GETQ

begin procedure SYMSERT (P,BIT);
integer P; Boolean BIT;
if P = 0 then
begin comment INSERT X AS NEW LEAF;
GETQ(P); KEY[P} := X; BIT := true;
LP[P]) := RP[P] := 0; LBIT[P] := RBIT[P] := false
end
else if X = KEY[P] then goto FOUNDX
else if X less KEY[P] them
begln comment INSERT X IN LEFT SUBTREE;
SYMSERT (LP[P],LBIT[P]);
if LBIT[P] then begln
" if LBIT[LPPJ] €then begin SPLITLL(P,LP,RP,LBIT);
TBIT := true end
else if REIT {LP[P]] then begin
“SPLITLR(P,LP,RP,LBIT,RBIT); BIT := true end end

else poto DENE
end '
else begin comment INSERT X IN RIGHT SUBTREE
SYMSERT (RP[P],RBIT[P]);
if RBIT[P] then begin if RBIT[RP[P]] then
begin SPLITRR(P,LP,RP,RBIT);
BIT := true end
else if LBIT[RP[P]] then begin ,
SPLITRL(P LP,RP,LBIT,RBIT); BIT := true end end
else goto DONE
end OF SYMSERT;

SYMSERT (ROOT,ROOTBIT); DONE:
end OF SYMINS

19

procedure SYMDEL(X,R0OT,XNOTINTREE,LP,RP,KEY,LBIT,RBIT,ADDQ) ;

value X; real X; integer ROOT;
label XNOTINTREE; 1qteger array LP,RP; array KEY;

Boolean array LBI.,R311 E*ocedure ADDQ,

begin integer AUXX,AUXD;

comment RECURSIVE B-TRtE DELETION ALGORITHM;
procedure SYMOELETE(P); integer P;

begin comment DID WE FIND THE KEY TO BE DELETED;
if X = KEY[P] Lhen AUXX := P;

if Xn otgreater XEY [P] and LP[P] notequal 0 then

SL: begin SYMDELETE{LP[P]);
comment CASES D, E, G;
if LBIT[P] ther begin comment CASE G;

LBIT[P] := fzise; goto QUIT end OF CASE

else begin comment CASES E,D;
if “if RBIT[P) then begin comment CASE E;
AUXD := RP[i RP I | LPiAUXD],
LP[AUXD] := P; P := AUXD
if LBIT[RPTLP[PJ]] then
begin SPLITRL(LP[1, LP,RP,LBIT,RBIT);
"LBIT[P] := true end
else if RBIT[R [LP[PTT] then
begin SPLITRR(LP[P],LP,RP,RBIT);
LBIT[P] := true end;
goto QUIT
end OF CASE E

else be in comment CASE D;
RBIT[P) := true; if LBIT[RP[P]] then begin
SPLITRL(P LP RP LBIT ,RBIT); gote QUIT EEE
else if: RBIT{RP[P]} then begin- -
SPLITRR(P,LP,RP,RB ot QUL
end OF CASE D

end OF CASES D,E

end OF SL AND CASES D,E,G

T END

else if X notless KEY[P] and RP[P] notequal O then
GL: begln SYMDELETE (RP[P1};
comment CASES B,C,F;
if RBIT[P] then begin comment CASE F;
"RBIT{P] := false; goto QUIT end of CASE F

20

else begin comment CASES B, C;
if LBIT[P] tiien begin comment CASE (;
AUXD := LP[P]; LP[P] := RP[AUXD];
RP[AUXD] := P; P := AUXD;
if RBIT[LP{RP{P]]] then
" begin SPLITLR(RPP],LP,RP,LBIT,RBIT);
RBIT[P] := iTue end
else if LBIT [LP[RP[P1}] then
begin SPLITLL(RP[P],LP,RP,LBIT);
[P] := true end;
goto QUIT -
end OF CASE C

else begin comment CASE B;
LBIT[P] := trTue;
if RBIT[LPTP] then begin
SPLITLR(P, LP,RP,LBIT,RBIT); goto QUIT end
else if LBIT[L?[P]] then begin
SPLITLL(P,LP,RP,LBIT; gotoc QUIT end
end OF CASE I — T

end OF CASES B, C

end OF GL AND CASES B, C, F

else begin comment ARRIVED AT LEAF OR NEXT TO ONE, CASE A;
if AUXX = 0 then goto XNOTINTREE;
KEY[AUXX] := KEY[P];
AUXD := if LBIT[P] then LP[P] else RP[P];
ADDQ(P); P := AUXD:; if P notequal 0 then goto QUIT -
end
end OF SYMDELETE;

AUXX := 0;
if ROOT = O then goto XNOTINTREE else
SYMDELETE (ROOT) ;
QUIT:

end OF SYMDEL

21

[1]

(2]

(3]

(4]

(5]

(6]

22

BIZLICSRAPHY

Adelson-Velskii, G.M. and Landis, E.M., An Information Organization
Algorithm, DANSSR, No. 2, 1962.

Bayer, R. and McCreight, E.M., Organization and Maintenance of Large
Ordered Indecxés, Record of the 1970 ACM SICFIDET Workshop on Data
Description and Access, (Nov. 1970), Houston, Texas pp. 107-141 (to
appear in Acta Informatica, December 1971).

Bayer, R., Binary B-trees for Virtual Memory, Proceedings of 1971
ACM SIGFIDET Workshop on Data Description, Access and Control, pp. 219-
235, (Nov. 11-12, 1971), San Diego, edited by E.F. Codd and A.L. Dean.

Foster, C.C., Information Storage and Retrieval Using AVL-trees, Proc.
ACM 20th Nat'l., Conf. (1965), pp. 192-205.

Knott, G.[., A Balanced Tree Structure and Retrieval Algorithm, Proc.
of the Sympesium on Information Storage and Retrieval, Univ, of
Maryland, April 1-2, 1971, pp. 175-196.

Knuth, D.E., The Art of Computer Programming, Vol. 1, Addison-Wesley
(1969).

	Symmetric Binary B-Trees: Data Structure and Algorithms for Random and Sequential Information Processing
	Report Number:
	

	tmp.1307986960.pdf.zK0Lb

