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Lafayet te ,  Indiana 47907 

CSD TR 54 

November 1971 

ABSTRACT 

A class of binary trees is described for maintaining ordered 

sets of data .  Random insert ions ,  delet ions ,  and retrievals of 

keys can be done in t ime proport ional to log N where N is the 

cardinal i ty of the data-set .  Symmetric B-trees are a modificat ion 

of B-trees described previously by Bayer and McCreight .  This 

class of trees properly contains the balanced trees .  

* This work was part ial ly supported by an NSF grant .  



SYMMETRIC BINARY B-TREES: 

DATA STRUCTURE AND ALGORITHMS FOR 

RANDOM AND SEQUENTIAL INFORMATION PROCESSING 

This paper wi l l describe a further solution to the following wel l-known 

problem in information processing: 

Organize and maintain an index ,  i .e .  an ordered set of keys 

or virtual addresses ,  used to access the elements in a set 

of data ,  in such a way that random and sequential insert ions ,  

delet ions ,  and retrievals can be performed efficient ly .  

Other solutions to this problem have been described for a one-level store 

in [1],  [3],  [4],  |~5] and for a two-level store wi th a pseudo-random access 

backup store in [2].  The following technique is suitable for a one-level store .  

Readers fami l iar wi th [2] and [3] wi l l recognize the technique as a 

further modification of B-trees introduced in [2].  In [3] binary B-trees 

were considered as a special case and a subsequent modificat ion of the B-trees 

of [2].  Binary B-trees are derived in a straightforward way from B-trees ,  

they do exhibi t ,  however ,  a surprising Asymmetry: the left arcs in a binary 

B-tree must be 6  (downward) ,  whereas the right arcs can be either 5-arcs 

or p-arcs (horizontal).  Removing this somewhat artificial distinction between 

left and right arcs natural ly leads to the symmetric binary B-trees described 

here .  

After this brief digression on the relationship of this paper to earlier 

work we will now proceed with a self-contained presentation of symmetric binary 

B-trees .  
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Definition: 

Symmetric binary B-trees [henceforth simply called B-trees) are directed binary 

trees with two kinds of arcs (pointers),  namely 6-arcs (downward or vert ical 

pointers) and p-arcs (horizontal pointers) such that : 

i) All leaves are at the same 6-level .  

i i) Al l nodes except those at the lowest 5-level have 2 sons ,  

i i i) Some of the arcs may be p-arcs ,  but there may be no successive p-arcs .  

In addi t ion ,  the keys shall be stored at the nodes of a B-tree in such a way 

that postorder traversal [6] of the tree yields the keys in increasing order ,  

where postorder traversal is defined recursively as follows: 

1) If the tree is empty ,  do nothing 

2) Traverse left subtree 

3) Visit root 

4) Traverse right subtree .  

Fig .  1 shows a B-tree .  Readers familiar with balanced trees [1],  [4],  [S], 

should observe that B-trees are not always balanced trees as shown by the 

B-tree in Fig .  1 .  

Number of Nodes and Height of a B-tree: 

Let the height h of a B-tree be the maximal number of nodes in any path from 

the  a leaf. 

Then an example of a B-tree T
m
^

n
(h) of even height h with the smal lest number of 

nodes is of the form 

where x- ,  x_ are the roots of completely balanced binary trees of height 



£ - \ and x .  is the root of a tree T .  (h--2).  T .  (2) is of t?ie foxm 
2 4 m n

 J

 m m 

O—O 01 c>—o 
Let N(T) be the number of nodes in tree T .  Let

 T

j,
a
i(-

u

-3
 a

 co '«piet«i>
r 

balanced binary tree of height I .  Then we have : 

N C T ^ C h ) ) = 2 N C T
b a l

( | - 1)) + 2 + N C T ^ C h - 2 ) ) .  

Since 

NCT
b a l

U)) = 2 °  + 2
1

 + 2
Z

 + ...  + 21'1 = 2Z - 1 

we obtain: ,  

I "
 1 

N

C
T

m i n
( h

» "
 2

 '
 P

 "I)
 +

 2
 +
 N(T

m i n
Ch-2) 

= 2
2

 «• N(T .  Ch-2)) v

 min '  

h h
 1 ? ? " - 1 = 2 + 2 + ..  .  + 2

1 

= 2 - 2 

For a B-tree of odd height h we obtain: 

N

(
T

m i n ™ =
 1 + N t T

b a l
C

¥ »
 +

 ^ . i n ^
1

" 
h-1 h+1 h-1 

= 2 + 2 - 2 =/ 3-2 - 2 

This bound is bet ter than thejbound obtained for even h .  

Using the worse bound obtained for even h ,  and if N is the number of nodes 

in a B-tree of height h ,  then! we obtain as bounds for N : 1 
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Fig .  1: Example of a symmetric binary B-tree 
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Taking logarithms we obtain: 

~ + 1 £ log
2
(N+2) 

log (N+l) <_ h 

and consequently as sharp bounds for the height h of a B-tree with N nodes: 

log
2
(N+l) < h ^ 2 log

2
(N+2) - 2 (1) 

B-trees and balanced trees: 

Theorem: The class of B-trees properly contains the class of balanced trees .  

Proof: Let the 6-height of a B-tree be defined as the number of "levels" in 

a B-tree ,  i .e .  as the number of 6-arcs plus one in any path from the root to 

a leaf.  Then a balanced tree of height h can be . transformed into a B-tree of 

6-height by simply labelling the arcs as 5-arcs or p-arcs .  The proof is 

by induction on h .  For h = 1,2 we label as follows: 

balanced tree B-tree 

o — o 
- o - o 

 c-o 

/ N 
V 



and in general ,  letting ^ stand for the root of
 a
 balanced tree of height h and 

B for the root of a B-tree of 5-height I we obtain: 
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The proper containment can be seen from the B-tree in Fig .  1 which is not 

a balanced tree .  This completes the proof . 

Figures 2 and 3 show a balanced tree and a B-tree obtained by labelling the 

arcs according to the algorithm impl ied in the proof . 
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Fig .  2: A balanced tree 



Fig .  3: The balanced tree of F ig .  
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The upper bound on the height of a B  obtained in (1) is approximately 

2 log
2
 (N) instead of 1.5 log

2
 (N) for the height of a balanced tree , [4] ,  This 

means that the upper bound for the retrieval t ime is better for balanced trees 

than for B-trees .  On the other hand ,  these same bounds and the fact that 

balanced trees are a proper subclass of B-trees also suggest that less work 

should be required to update B-trees than to update balanced trees .  

Maintenance Algorithms: 

We now consider the algorithms for maintaining B-trees if keys are inserted 

and deleted randomly .  The algorithm to retrieve keys is straightforward and 

wi l l not be described here .  

Insertion Algorithm: 

A new key x is inserted into the tree by attaching it with a new p-arc at 

the lowest 6-level .  x is attached exactly at that place where the retrieval 

algorithm for x tries to proceed along a non-exist ing arc or "falls out of the 

tree ." The possible cases are indicated by the following i l lustrations: 

A 
i 

> ; 
A 

SPLITRR 

or g > — c 

i 
or 

SPLITRL 

or V — J
 V|  

N 

SPLITLL 

( x r \ 

SPLITLR 

I or or I 

; x 
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Whenever two successive p-arcs arise the tree must be modified according 

to one of the fol lowing four cases ,  which are named l ike the Algol procedures 

performing those modificat ions in our implementat ion .  It if assusied that 

x^ < for al l keys .  An arc of rectangular shape can be a p-arc or a 5-arc .  

SPLITRR: 

... I x„ 

r 
J 
X.  

fx rA 

SPLITRL: 

XT \ \ 

SPLITLL: L P 

'
X

2 - {
X

4 > <
X

'  

/ V, * r X.  X- • X
r
> { X ,  

.
 1 l

.  v 5/ V

SPLITLR: 

x ^ 
f . 2 

/ 

& ( 5 ) ( 5 > ^ 
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In all four cases P is a left or a right 5-arc (pointer) and must then 

become a left or ri^ht p-arc respect ively .  This may ,  of course ,  gives rise 

to successive P-arcs at the next 5-level closer to the root ,  requiring again 

one of the modificat ions just described to remove successive p-arcs from the 

tree .  These modificat ions may recursively propagate along the retrieval path 

all the way up to the root of the tree .  It is crucial to observe ,  however ,  

that these modificat ions can propagate only along the retrieval path and wi l l 

not affect any other parts of the tree .  Thus the total work required to modify 

the tree in order to remove successive p-arcs is at worst proport ional to the 

length of the retrieval path for x ,  i .e .  to 2 log„ (N+2) - 2 .  

Delet ion Algori thm: 

To delete an element x from the tree ,  we first have to locate it and to 

replace it by the next smal lest (next largest) key ,  say y ,  in the tree ,  y is 

found easi ly proceeding from x one step along the left (right) pointer and 

then along the right (left) pointer as long as possible .  The node containing 

y original ly is then replaced by a dummy node d which we wi l l delete from the 

tree in one of the fol lowing ways .  Note that at any one t ime d has at most 

one successor .  We use d only as a conceptual device for i l lustrat ive purposes 

In the implementation the dummy node d is not physical ly represented ,  instead 

the pointer P simply points "through" to the successor of d .  
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Case AI : at the lowest 6-level : 

Ap ip 
d^) or { d 1 j-/ z ) 

v / 
terminate 

Case A2: at the lowest 6-leve l ,  if d is a leaf: 

P P ip 

d or ; d - or * d • 

Set P := 0 and proceed according to one of the fol lowing cases .  

;P 
Case Bl : 

i
X

5 
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Cont inue recursive delet ion .  

.  d 
/ 

'T 

I > \ 

Apply SPLITLR and terminate .  

" x
r 

( d ) 

> fx • 

\, V - N -
;

x

s 

Apply SPLITLL and terminate .  

P 

> 2 ) v 
If necessary apply SPLITLR at X4 ,  Case CI ,  

or if necessary apply SPLITLL at x
4
,  Case C2, 

or do nothing further ,  Case C3 .  
In all three cases terminate .  
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Case P: This case is left-right symmetric wi th Case B ,  

/ """" 
G k _ > 

d T r " '
x

2) i ;  • -
 x

z 

Apply SPLITRL at x^ if possible and terminate .  Case 02 ,  
or apply SPLITRR at x-̂  if possible and terminate ,  Case D3 ,  
or cont inue recursive delet ion process ,  Case Dl .  

Case E: This case is left-right symmetric wi th Case C .  

d .  

t 
x .  

r'X^ ; 2 > ' x 
V 4 1 

<v- . V 

> '4 

V * ^ J v \ 
2" "3 • .  

Apply SPLITRL at x
2
 if possible ,  Case E l .  

Apply SPLITRR at x
2
 if possible ,  Case E2 .  

Do nothing .  Case E3 .  
In all three cases terminate .  

Case F: 

.  x 1 ." * d 

Y 
l x 2 . 
• > — . -

> 
f *i i Terminate .  

x ^ 

Case G: This case is left-right symmetric wi th Case F .  

d 

1 
x .  

r 
: X , 

> 
^

X

2 

x .  / 
Terminate .  
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Note that the recursive deletion process terminates in all cases except 

A2 ,  B l ,  and Dl .  If d was moved all the way
 u
p to the root of the tree ,  then it 

wi l l be deleted ana the successor of d wi l l become the.- r.ew root of the tree .  

A lso ,  a single retrieval ,  insert ion ,  or deletion requires inspect ion and modifi-

cation of the tree only along a single path from the root to a leaf .  As a conse-

quence of this observat ion and of the bounds for the height of a B-tree obtained 

in C D the fol lowing main resul t of this paper is obtained: 

Main Resul t : 

The work that must be performed for random retrievals ,  insert ions ,  and 

delet ions is even ii\ the worst cases proport ional to the height of the B-tree ,  

i . e .  to log2(N+2) where N is the number of keys in the trer>.  

General izat ion: 

From the insert ion and deletion algori thms discussed in this paper ,  it is 

qui te clear that the class of binary B-trees could be enlarged by al lowing up 

to n successive p-pointers for n = 2 ,3 ,4 , . . .  before requiring any modificat ion 

or "rebalancing" of the tree .  This would require less rebalancing ,  but perfor-

mance in t ime log(N) would st i l l be guaranteed .  
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POT the Algol 60 V.r-,vi ;.:ectati<"'V- T-J BU •"•rssidcrer
1

.  a . i n A u-tree 

shall consist of five fields ,  namely: 

LBIT: a Boolean variable to indicate that the left arc is a p-arc (true) or a 

6-arc (false) 

LP: the left downward pointer ,  an integer 

KEY: the key in the node ,  a real 

RP: the right pointer ,  downward or horizontal ,  also an integer 

RBIT: a Boolean variable to indicate that the right pointer is a p-arc (true) 

or a 6-arc (false) 

The absence of a pointer shall be represented by the value 0 .  Thus the insertion 

and deletion procedure have array parameters LBIT ,  LP ,  KEY ,  RP ,  RBIT to store the 

nodes of the tree .  The parameter x is the key to be inserted into or deleted from 

the tree to whose root the parameter ROOT is pointing (R00T=0 for an empty tree) .  

The Boolean R00TBIT indicates ROOT as a p-arc or as a 6-arc .  There are two pro-

cedure parameters to maintain a list of free nodes ,  namely ADDQ for the deletion 

procedure to enter a freed node into the free l ist ,  and GETQ for the insertion 

procedure to obtain a free node from the free l ist .  Both ADDQ and GETQ have one 

integer parameter pointing to the node added to or obtained from the free l ist .  

If the key to be inserted is already in the tree ,  control wi l l be transferred to 

the label parameter FOUNDX .  If the key to be deleted is not in the tree ,  control 

wi l l be transferred to the label parameter XNOTINTREE by the deletion procedure .  

The parameter P in SYMSERT and SYMDELETE is the pointer to the root of the subtree 

in which the insertion or deletion must be performed .  The parameter BIT in SYMSERT 

indicates whether P is a p-arc or a 6-arc .  

The four procedures SPLITRR ,  SPLITRL ,  SPLITLL ,  and SPLITLR modify the B-tree in 

order to remove successive p-pointers .  They are used both in the insertion pro-

cedure SYMINS and in the deletion procedure SYMDEL .  
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Other local quant i t ies in the procedures are: 

AUXP: an auxiliary integer variable used as a temporary store for pointers.  

DONE: a label to which control is transferred after completing an insertion 

in order to shortcut the full recursion of SVMSCRT .  

AUXX: an auxiliary integer variable pointing to the key :< after it has been 

found in the tree .  AUXX = 0 otherwise .  

QUIT: a label to which control is transferred after completing the deletion 

of the dummy node d in order to shortcut the ful l recursion of SYMDELETE .  

AUXD: an auxi l iary integer variable used as temporary store for pointers .  

SL: a label from where deletion of the key from the left subtree (smaller) 

is cont inued ,  

GL: a label from where deletion of the key from the right subtree (greater) 

is cont inued .  

The insertion (deletion) algorithm has been written as two procedures ,  a non-

recursive outer procedure SYMINS (SYMDEL) and a recursive inner procedure 

SYMSERT (SYMDELETE) .  Thje outer procedure SYMINS (SYMDEL) allows shortcutting 

the full recursion of SYMINSERT (SYMDELETE) via .  the label DONE (QUIT).  The 
inner procedure SYMINSERT (SYMDELETE) performs insertions (deletions) in a 

B-tree recursively .  

It is assumed that the six procedures SPLITRR ,  SPLITRL ,  SPLITLL ,  SPLITLR ,  

SYMINS ,  and SYMDEL are all declared in the same block or in such a way that 

SPLITRR ,  SPLITRL ,  SPLITLL ,  and SPLITLR c£n be used both in SYMINS and in SYMDEL .  

Note : The tree in Fig .  1 is a suitable tree for test ing .  Inserting the keys 

in the order 8 ,  9 ,  11 ,  15 ,  19 ,  20 ,  21 ,  7 ,  3 ,  2 ,  1 ,  S ,  6 ,  4 ,  13 ,  14 ,  10 ,  12 ,  17 ,  

16 ,  18 wi l l bui ld up the tree .  Deleting the keys in the o r d e T 1 ,  6 ,  2 ,  21 ,  16 ,  

20 ,  8 ,  14 ,  11 ,  9 ,  5 ,  10 ,  12 ,  13 ,  3 ,  4 ,  7 ,  15 ,  17 ,  18 ,  19 wi l l exercise all the 

cases which can arise in any deletion process .  
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procedure SPLITRR(F ,LP ,RP ,RB1T)j 
int.eggr P; integer arr-y RP

r
LP ; 

boolean array REIT; 
begin integer AU/V; 

AUXP := RP[P]; REITfAUXP] := false; 
RP[P] := LP[AUXP]; RBIT[P] := false; 
LP[AUXP] := P; P : = AUXP 

end OF SPLITRR 

procedure SPLITRL(P ,LP ,RP ,LBIT ,RBIT); 
integer P; integer array LP ,RP; 
boolean array LBIT ,RBIT; 
begin integer AUXP; 

AUXP :=LP[RP[P]]; 
LBIT[RP[P]] -fa l se ; LP[RP[P]] r = RPfAUXP]; 
RP[AUXP] := RP[P]; RP[P] := LP[AUXP]; 
RBIT[P] := false; LP[AUXP] := P; P := AUXP 

end OF SPLITRL 

procedure SPLITLL(P ,LP ,RP ,LBIT); 
integer P; integer array LP ,KP; 
boolean array LBIT; 
begin integer AUXP; 

AUXP:= LP[P]; LBIT[AUXP] := false; 
LP [P] := RP[AUXP]; LBIT[P]:= false; 
LP[AUXP] := P; P := AUXP 

end of SPLITLL 

procedure SPLITLR(P ,LP ,RP ,LBIT ,RBIT); 
integer P; integer array LP ,RP; 
boolean array LBIT ,  RBIT; 
begin integer AUXP; 

AUXP := RP[LP[P]j ; 
RP[LP[P]] := LP[AUXP]; RBIT[LP[P]] := false; 
LP[AUXP] := LP[P]; LP[P] := RP[AUXP]; 
LBIT[P] := false; RP[AUXP] := P; P := AUXP 

end OF SPLITLR 



procedure SYMINS(X
a
ROOT ,ROOTBIT ,FOUNDX ,LP ,RP ,KEY ,LBIT ,RBIT ,GETQ) 

value X; real X; integer BOOT; Soolegn ROOTBIT; 
label FOUNDX; integer array LP ,RP; array KEY; 
boolean array LBIT ,RBIT; procedure GETQ; 

begin procedure SYMSERT (
P

»BIT) ; 
integer P; Boolean BIT; 
if P = 0 then 

begin comment INSERT X AS NEW LEAF; 
GETQCP); KEY[P] := X; BIT true; 
LP[P] := RP[P] := 0; LBIT[P] := RBIT[P] := false 

end 
else if X = KEY[P] then goto FOUNDX 
else if X less KEY[P] then 

begin comment INSERT X IN LEFT SUBTREE; 
SYMSERT (LP[P],LBIT[P]); 
if LBIT[P] then begin 

if LBIT[LP[PJ] then begin SPLITLLCP ,LP ,RP ,LBIT); 
BIT := true end 

else if RBIT "jTP [P] ] then begin 
SPLITLR(P ,LP ,RP ,LBIT ,RBIT);  BIT := true end end 

else goto DflNE 
end 

else begin comment INSERT X IN RIGHT SUBTREE 
SYMSERTCRP[P] ,RBIT[P]); 
if RBIT[P] then begin if RBIT[RP[P]] then 

begin SPLITRRfP .LP .RP .RBIT); 
BIT true end 

else if LBIT[RPlP]] then begin 
SPLITRL(P ,LP ,RP ,LBIT ,RBIT);  BIT := true end end 

else goto DONE 
end OF SYMSERTj 

SYMSERTfROOT ,ROOTBIT);  DONE? 
end OF SYMINS 



procedure SYMDHL(X .
f
ROOT ,XNOTINTRHE ,LP ,RP ,KEY ,LBIT ,RBIT ,ADDQ) 

value X; real X; Integer ROOT; 
label XNOTINTREEr integer array LP ,RP; array KEY; 
Boolean array LBIT","RBIT;  procedure ADDQ; 

begin integer AUXX ,AUXD; 

comment RECURSIVE 3-TREE DELETION ALGORITHM; 
procedure SYMDELETE(P);  integer P; 
begin comment DID WE FIND THE KEY TO BE DELETED; 
if X = KEY[P] then AUXX := P; 
if X notgreater KEY[P] and LP[P] notequal 0 then 

SL: begin SYMDELETE(LP[P]); 
comment CASES D ,  E ,  G; 
if LBiT[P] ther begin comment CASE G; 
LBIT[P] := fal^e; goto QUIT end OF CASE G 

else begin comment: CASES E ,D; 
if RBIT[P] then begin comment CASE E ; 
AUXD := RPLPT7~RP[P] := LP[AUXD]; 
LP[AUXD] := P; P := AUXD; 
if LBITfRP[LP[P]]] then 

begin SPLITRL(LPTP77LP ,RP ,LBIT ,RBIT); 
LBIT[P] := true end 

else if RBIT[RPTlP[P]T1 then 
begin SPLITRR(LP[P] ,LP ,RP ,RBIT); 
LBIT[P] := true end; 

goto QUIT 
end OF CASE E 

else begin comment CASE D; 
RBIT[P] := true; if LBIT[RP[P]] then begin 
SPLITRL(P ,LP ,RP ,LBIT ,RBIT);  goto QUIT end 
else if RBIT [RP rP.11 theh begin 
S H n W ( P , L P , R P , R B I T ) j gotb IjUlT END 
end OF CASE D 

end OF CASES D,E 
end OF SL AND CASES D ,E ,G 

else if X not less KEY[P] and RP[P] notequal 0 then 
GL: begin SYMDELETE(RP[Pj); 

comment CASES B ,C ,F; 
if RBIT[P] then begin comment CASE F; 
RBIT[P] : = " M s e ; goto QUIT end of CASE F 



else begin comment CASES B ,  C; 
if LB IT [P ] then begin comment CASE C ; 
AUXD := LP[PTrLP[P] := P.P[AUXD]; 
RP[AUXD] := P; P := AUXD; 
if RBIT[LP[RP[P]]] then 

begin SPLITLR(RP~[PJ7LP ,RP ,LBIT ,RBIT) ; 
RBIT[P] := true end 

else if LBIT TlpTRPT^TI] then 
begin SPLITLLfRP[P] ,LP ,RP ,LBIT); 

RffTT[P] true end; 
goto QUIT 

end OF CASE C 

else begin comment CASE Bj 
LBIT[P] := true; 
if R B I T [ L P T P ! T then begin 

S P L I T L R ( P , L P , R P , L B I T , R B I T ) ; goto Q U I T end 
else if LBIT[LP[P]] then begin 
S P L I T L L ( P , L P , R P , L B I T ; goto Q U I T end 
e n d O F C A S E E 

e n d O F C A S E S B ,  C 
e n d O F G L A N D C A S E S B ,  C ,  F 

else begin comment ARRIVED AT LEAF OR NEXT TO ONE ,  CASE A 
if AUXX = 0 then goto XNOTINTREE; 

KEY[AUXX] := K E Y [ P j r ~ 
AUXD := if LBIT[P] then LP[P] else RP[P]; 
ADDQ(P); P := AUXD; if P notequal 0 then goto QUIT • 

end 
end OF SYMDELETE; 

AUXX := 0; 
if ROOT = 0 then goto XNOTINTREE else 
SYMDELETE(ROOT); 

QUIT: 
end OF SYMDEL 
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