
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1985

Representing Graph Families with Edge Grammars Representing Graph Families with Edge Grammars

Francine Berman

Gregory Shannon

Report Number:
85-517

Berman, Francine and Shannon, Gregory, "Representing Graph Families with Edge Grammars" (1985).
Department of Computer Science Technical Reports. Paper 437.
https://docs.lib.purdue.edu/cstech/437

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

REPRESENTING GRAPH FAMILIES
WITIl EDGE GRAMMARS

Francine Bennan
Gregory Shannon

CSD-TR-517
May 1985

Revised December 1986

Representing Graph Families with Edge Grammars

Francine Berman·

Department of Electrical Engineering and Computer Sciences

University of California at San Diego

La. Jolla, California 92093

Gregory Shannont

Department of Computer Sciences

Purdue University

Weat Lafayette, Indiana 47907

Abstract

An edge grammar is a formal mechanism for representing families of related graphs

(binary trees, hypercubes, meshes, etc.). Given an edge grammar, larger graphs in the

family are derived from simple basis graphs using edge rewriting rules. A drawback to

many graph grammars is that they cannot represent some important, highly regular graph

families such as the family of shuffie-exchange graphs. Edge grammars, however, exist

for all "computable" graph families, and simple edge gramma.rs exist for most regular

graph families. In this paper, we define and illuskate edge grammars and analyze them

in the context of formal language theory. Our results include hierarchy and decidability

properties. Since this work originally was motivated by a need to represent graph families

found in parallel computation, the application of edge grammars in this context is also

discussed.

·Supported by the Office of Naval Research Contract No. N00014-86-K-0218.

tSupported in part by Hewlett-Packard's Faculty Development Program.

1 Introduction

A graph "'family" is a set of graphs which share structural and/or ver~ex labeling proper~ies,

e.g. the family of comple~ebinary ~rees. Graph families are fundamental in computer science.

They are used ~o represent da~a structures and algorithms [1], architectures [17,22,24], data

How (18], automa~a [12], etc.

Since the relationships between the graphs in a graph family are abs~ract, we need a

formalism wi~h which to define and manipula~e graph families. In the long run, one desires

that ~he formalization be powerful enough to provide a model for graph related problems in

the same way that the formaliza~ionof type 2 languages as con~ext-free grammars provides

a model for the lexical and parsing phases of compiler construction.

Past work on formalizing graph families has centered on graph grammars or sys~ems

which use subgraph rewrite rules to generate new graphs from previous or basis graphs. This

work includes Lindenmayer sys~ems [20], graph grammars [8,9], pair grammars [16], NLC

grammars [13,14], web grammars [19]' and o~hers. A drawback ~o these grammars is ~ha~

they cannot express an "compu~a.ble" graph families. 1 For example, many graph gra.mmars

have no representation for the highly regular family of shufHe-exchange graphs.

________--'T-"hLo.riginaLtn~ttjvationfor edge grammars comes from ~he problem of mapping paral­

lel algori~hms into parallel architectures. Regular graphs such as the shuffle-exchange are

commonly used in parallel computa~ion [22]. Therefore, previous graph type grammars and

systems are unsa~isfactory since they lack ~he necessary power to represen~ graph families

needed in this application. Edge grammars solve the problem of efficiently and clearly repre­

sen~iDg the shuffie-exchange family and other highly regular graph families. More generally,

edge grammars can represent any "computable" graph family.

Edge grammars were in~roduced in [2] in ~he contex~ of a graph generating formalism

for parallel computation. In [4] we discussed decidability and hierarchy results for edge

grammars. In [31, edge grammars are applied to ~he mapping problem in parallel compu~ation.

This paper unifies and expands the edge grammar results in these three papers.

Section 2 provides the basic defini~ions for edge grammars. We give example edge gram­

mars which represen~ the graph families of complete binary trees and shuffle-exchange graphs.

1 We mean computable in the sense of Church's Thesis; the labels and the structure of a graph are

computable.

1

Secl;ion 3 delivers our hierarchy results for edge grammarSj we compare the "languages" of

edge grammars with the Chomsky languages. Sedion 4 invesl;igates decidabilit;y quesl;ions

which arise when discussing graph-generating grammars. For example, when can we decide

if a graph is isomorphic to a member of a.n edge grammar's graph family? Section 5 applies

the idea of edge grammars to the mapping problem in parallel computation by using edge

grammar represenl;ations to automatically contrad many common parallel communical;ion

graphs. In Sedion 6 we evalual;e the completeness of these results on edge grammars and

discuss some remaining inl;eresl;ing questions.

2 Definitions

In this sedion we present the basic definitions needed to discuss edge grammars. We also

give edge grammar representations of the family of complete binary trees and the family

of shuffle-exchange graphs as examples 1;0 illustrate the definitions. There are no defini­

I;ions provided for the traditional formal language grammars and equivalent machines in this

paper. We will freely assume and use the definil;ions and notal;ions for the Chomsky gram­

mars and languages, push-down-automata. (PDA's), linear-bounded-automata (LBA's), and

Turing machines (TM's) found in [12]. The Chomsky grammars (languages) are the regular

(t;ype 3), context-free (type 2), context-sensil;ive (t;ype 1), and unrestrided (I;ype 0) grammars

(languages).

Definition 2.1 An edge grammar is a i-tuple (N,T,S,P) where

N is a finite set o/non-terminals.

T = {(v, w)lv and wEE·} is a finite set of terminal pairs.

SEN is the start symbol.

p = {a --+ PI a, PE (N U T)+ is a finite set o/productions.

Definition 2.2 To combine terminal pairs or pairs produced by previously combined pairs}

let (v,w)(::z:,y) = (v::z:,wy).

An edge or pair (v,w) is generated in f} S ::::}. (v,w), if S =>. O!, Q results from S by a

sequence of legal applications of productions in P, Q E T+ J and Q = (v,w) after combining

paIrs.

An edge or pair (v,w) is derived in f, S <......j.. (v,w)J if S =>. (v,w) and Ivl = Iw].

2

The empty symbol is e. Therefore, (v, e)(e, w) = (tI, w). Ixl is the length of the string x.

Figure 1 is an example of an edge grarrunar for the family of complete binary trees.

Figure 2 demonstrates how the ideas of generation and derivation in definition 2.2 apply

to the complete binary tree grammar in figure 1. These two figures also show how edge

grammars are closely related to Chomsky grammars. The only difference between generating

edges and deriving strings is in how combined terminals are viewed.

Note that the vertex labels for each edge are required to be of the same length.

Therefore, we can index the graphs r produces by the length of the vertex labels in the

graphs. This indexing enables us to distinguish between distinct graphs in an edge grammar's

graph family.

Definition 2.3 The nth graph derived by r, GrI(r), is an undirected graph with vertez set

VrI(r) and edge set ErI(r), where

vn(r) = {v [[vi = n, and 3w S ,-+' (v,w) 0' S ,-+' (w,v)}.

En(r} = {(v, w) [v,w E Vn(r), and S ,-+' (v,w), v '" w).

Note that Vo(r), Eo(r) and Go(r) are well-defined; they are either the empty set or the

--------,'e1,t'}·

Definition 2.4 The graph family derived by r is

G(r) = {Gn(r) [n ~ o}

The vertex set or language derived by r is

V(r} = {v [3n ~ 0, v E Vn(r)}.

The edge set den·tled by r is

E(r) = {(v,w) [3n ~ 0, (v,w) E En(r)}.

Figure 3 provides examples of the graphs with 1, 2 and 3 character length labels using

the complete binary tree edge grammar r from figure 1. Figure 3 also displays examples of

the gra.ph, vertex and edge sets that an edge grammar produces.

3

Gn, Vn and E n
2 demonstrate how the length of the vertex labels defines a graph derived

by a grammar: all of Gn's vertex labels have length n which makes Gn's vertex and edge set

distinguishable from Gm's, for m f:. R.

Definitions 2.5 and 2.6 below provide a classification of edge grammars and their languages

analogous to the language classifications in formal language theory. We use this classification

in section 3 to compare the languages of edge grammars and Chomsky grammars.

Definition 2.5 An edge grammar r is of a given type if all of its productions have the

correct form for that type as specified below.

Type 0: No restrictions.

Type 1: There are at least as many non-terminals and terminal pairs on the production's

right-hand-side as on the left-hand-side and (E,E) l;t T.

Type 2: A - BC, or A - (v,w), where A, Band C are non-terminals and (v,w) is a

terminal pair.

Type 3: A - B, A _ (v,w)B, or A --. (v,w), where A and B are non-terminals and (v, w)

is a terminal pair.

Definition 2.6 For edge grammars 01 type I = 0,2,3, let the class of edge grammar

languages of type I be

VI = (V(r) Ir ;. a type I edge gmmma,}.

For edge grammars of type 1, let the class of edge grammar languages of type 1 be

VI = (Vcr), vcr) u {,} Ir ;, a type 1 edge gmmma,}.

For Chomsky grammars of type 1= 0,2,3, let the class of Chomsky languages of type

I be

LI = {L(r)'1 r ;. a type I Chomsky gmmma,}.

For Chomsky grammars of type 1, let the class of Chomsky languages of type 1 be

2When the context is clear, we will use Gn to represent Gn(r) and likewise for Vn and En.

3 L{r) is the la.nguage produced by a Chomsky grammar r.

4

L1 ~ {L(r),L(r) u {,} Ir ;, a type 1 Chomsky 9'Ommar}.

The usual classes ofregular, context~freeand unrestricted languages (including languages

which include the empty string) are represented as L9, LE, L1 and LO respectively. The

definition of the class of type 1 edge grammar languages Vl has been augmented so that it

comparable with VE, likewise for L1 and L2. In addition to the above definitions, DLf! refers

to the class of deterministic contexl;-free languages or equivalently the class of languages

accepted by deterministic push-down automata.

From the above definitions we see that the complete binary tree edge grammar r from

figure 1 is type 3, and Vcr) is in V9. The shuffle-exchange edge grammar e discussed below

and in figure 4, is also type 3, and V(S) is in V9.

.AJJ indicated earlier, edge grammars can represent clearly the family of shuffle-exchange

graphs. A shume-exchange graph SEn consists of 2n vertices. Each vertex is labeled by a

binary n-bit string. There are two I;ypes of edges: shuffle edges and exchange edges. On shuffle

edges, the incident vertices are len or right circular shifl;s of one another, e.g. (1000,0001)

and (0100,1000). For exchange edges, the incident vertices are identical except that the last

bit is complemented, e.g. (1000,1001). The firs!; three shuffle-exchange graphs SEl, SE2

------a-nd--8Es-a-re-shown-in-.6gure-4~_he_edge_grammar-e--in-figure__5_generates--these-graphs:-In'------­

other words, Gn (8) = SEnl n > O. See [22] for a more in-depth discussion of shume-exchange

graphs.

Additional edge grammar examples are in [3] for cube-connected cycles, linear arrays

(lines), meshes, and binary n-cubes.

In the nex!; section, we compare the "power" of edge grammar languages with themselves

and the Chomsky languages. This results in a hierarchy of the Chomsky and edge grammar

language classes.

5

3 A Hierarchy of Language Classes

In this section, we prove a hierarchy theorem for Chomsky and edge grammar languages.

Figure 6 pictorially presents this theorem. The work to prove this theorem is divided into

three smaller theorems. The hierarchy theorem follows directly from the results of these

three theorems. Theorem 3.1 presents the relationships of edge grammar languages with

themselves and Chomsky languages with themselves. Theorem 3.2 shows how VI is related

to LI for I = 0,1,2,3. Theorem 3.3 cleans up the interelationships in the lower half of the

hierarchy (V9, V2, L9, L2, and DLE).

Hierarchy Theorem

L9 c V8 c L2 c V2 !; L1 - V1 c LO _ VOl

VB is incomparable with DL21

La C (DL2 n VB).

Theorem 3.1

LB c DL2 c L2 c L1 c LO,

________V'-B"--C V2 >; V1 >; VO.

Proof: The proof of the proper containment inter-relationships for the Chomsky languages

is in [12] and elsewhere. The containment inter-relationship of the edge grammar languages

follows directly from definition 2.5j each edge grammar language class is no more restrictive

than the next higher numbered class.

Note that the augmentation of V1 and L1 doesn't cause problems. By using grammar

normalizatiODs [12], any type 1 grammar can be changed to a grammar with at most one

E-production S -Jo (E, E) where S is the start symbol and does not appear on the right-hand

side of any production. If this one production is taken out of the grammarJ then the language

produced by the grammar does not contain E. Therefore, VB !; V1 and L2 !; L1. 0

Theorem 3.2

LB c VB,

12 c V2,

L1 _ V1,

6

LO;: VO.

To prove theorem 3.2 we first establish lemma 3.1 below. The lemma shows that given

any Chomsky grammar, we can effectively construct an edge grammar of the same type which

produces the same language as the Chomsky grammar. From this lemma, it follows directly

that L1 ~ VI, for 1= 0,1,2,3.

Lemma 3.1 Letr = (N,T,S,P) be a type I Chomsky grammar, 1= 0,1,2,3. Then, there

is a type I edge grammar e = (N,T',S,F') where,

T' = {(t, t) It E T},

p' = {T(a) ~ T(Il) Ia ~ Il E P},

where r(Aa) = Ar(a}, for A E N,

and T(aa) = (a,a)T(a),

T(a) = (a, a)' fOT a E TU {,},

.ueh that L(r) = Vee).

Proof: By inspection, there is a derivation of 8 terminal string w from S in r iff there is a

------similar-derivation-of-a.-pllir-{-w-,w-}-from-S-in-8;---This-{ollows since-l-)-r--l-ja-we-ll=denn-ea.-£"o-,------­

r constructed terminals, and 2) for all of the derived pairs in e, each of the two vertices in

a pair are of the same length. Therefore, L(r) == V(e). 0

The next 4 lemmas address each line of theorem 3.2. Collectively, with lemma 3.1, they

readily imply theorem 3.2.

Lemma 3.2 L9 l' V9.

Proof: Let r be a type 9 edge granunar with the productions shown below.

S~(a,,)S,

T ~ (b,bb)T,

S ~ (a,,)T,

T~ (b,bb).

This edge granunar generates pairs of the form (aib i , b2i), i,J· > o. Any such pair is an edge

in r only when i = i Therefore, the language ofr is V(r) = {anbn]n > O} U {b2nln > OJ.

By the pumping lenuna for Chomsky regular languages [12J, V(r) is not a type 3 Chomsky

language. Therefore, L9 is not equal to V9. 0

7

Lemma 3.3 L2 '" V2.

Proof: LeI; r be a. type 2 edge grammar with the productions shown below.

S ~ LR,

L ~ AL', L' ~ LBjl L ~ ABI,

R ~ R'C, R' ~ BrR, R ~ Bre,

A ~ (a, a),

B, ~ (b,.), B, ~ (£, b),

C ~ (c, c).

The language of this grammar is Vcr) = {anbncnln > o}. To see this, note that L ::::} ..

A'BLi ~ 1 and R =>* B!C",i ~ 1. Only pairs of the form (aibici,aib;c i) are generated

from S. Therefore, an edge is derived only when i = i. By the pumping lemma for Chomsky

context-free languages [12], Vcr) is not a type 2 Chomsky language. Therefore, L2 is not

equal to V2. 0

Lennna 3.4 V1 ~ L1.

Proof: For an arbitrary type 1 edge grammar r, we construct an LBA which accepts exactly

______tha.:Ledg.e---&I-ammar's language'- _

Let M be a 3-tape nondeterministic Thring machine: one tape for input, another for

non-terminals and the left components of terminal pairs, and the third for nonterminals and

the right components of terminal pairs. The non-input tapes are called the work tapes. M

operates as described below. Without loss of generality, each component of a. terminal is

restricted to have length one or zero. For example, if a. terminal (aaa, b) is required, then it

is represented as (a,b)(a,E")(a,E).

Begin with f's start symbol in the second and third tapes' left-most cells. Nondetermin­

isticly eimulate the derivation of an edge pair on the second and third tracks. This is done by

repeating the steps below until an appropriate match is found between the input tape and a

work tape.

1. If the length of either work tape is more than twice 4 the length of the input tape, then

halt with failure.

4Twice the length is needed since terminals can have IE as one component. Thill means that an edge with

a label of length n might need 2n termina.1s to derive it.

8

2. Use M's finite state control to nondeterministically find some production's left-hand­

side which matches a. segment of what is currently on the work tapes.. Let a: -+ {3 be

the matching production. If there is no matching production then halt with failure.

3. Make room on the work tapes to replace a: with {3. Do this by making room on the

second tape for the left-hand components of a: and the nonterminals, and by making

room on the third tape for the right-hand components of a: and the nonterminals. (For

example, if a: -+ f3 is (O,l)A(l, 0) -+ (0,1)(00,11)(1,0), then OAl on the second tape is

replaced with 0001 and lAO on the third tape is replaced with 1110).

4. Replace the matched occurrence of the left-hand side a: with the right-hand side of {3

on the work tapes.

5. If there are any non-terminals on the second or third tapes, go to step 1.

6. Compare the second and third tapes to the input to determine if one matches. When

comparing, skip occurrences of E. If there is a match and the number of symbols on

the second tape is equal to the number on the third (again skipping E'S), halt with

acceptance, else, go to step 1.

Figure 7 shows how M might look if it were partially done simulating a derivation from

the edge granunar given in lenuna 3.3.

M is not, strictly speaking, an LBA. However, using standard compaction techniques

from [12], it is easy to simulate M on an LBA M'.

M accepts at least the strings in Vcr) since 1) the productions for r are properly applied

in M, and 2) the length of a derived string of terminals and nonterminals increases with each

application of a production for a type 1 edge grammar. Therefore, a derivation in r never

uses an intermediate string of terminals and non-terminals of length greater than twice the

length of the final derived edge. No extra strings are accepted since only productions from r

are simulated and the conditions for accepting are consistent with definitions 2.2 and 2.3.

Therefore, L(M)5 = L(M') = Vcr). Every type 1 edge granunar is accepted by some

constructible LBA. Therefore, Vi ~ Ll . 0

Lemma 3.5 VO ~ LO.

S L(M) is the language accepted by machine M.

9

Proof: For an arbitrary type 0 edge grammar r, construct a TM M which accepts V(r) as

in the proof of lemma. 3.4. However, do not restrict the length of the strings on the work tapes

as in step 1 of the algorithm for lemma 3.4. By a discussion similar to that in lemma 3.4,

L(M) = V(r). Note that non-accepting computations may not terminate. Every type 0 edge

grammar r is accepted by some such constructible TM. Therefore, VO ~ LO. 0

With theorem 3.2, we now see that edge grammars can represent any computable graph

family; this is a good start on a hierarchy. However, the locations of V9 and V£ in the

hierarchy are unclear. Is V9 larger than Lft? The theorem below shows that it is not and

that V9 does not quite fit in with all of the Chomsky languages. Is V£ as powerful as Vl

and LBAs? This remains an open question and appears to be as difficult as determining if

2-way-PDAs are as powerful as LBAs.

Theorem 3.3

VB c L2,

V9 is incomparable with DL£.

LB c (DL2 n VB).

_________TJ..Dhe---.nexUo.ll..r..-lemmas p.r.mo:e this theorem r.emma-3..6-dem.onstrates-thaLV--3-~L,'2h. _

Proper containment follows directly after lemmas 3.7 and 3.8 prove that V9 is incomparable

with DL2. Lemma 3.9 proves that the intersection of DL2 and V9 contains more than just

LB.

Lemma 3.6 V9 ~ L2.

Proof: Let r =:: (N,T,P,S) be a type 3 edge grammar. Assume without loss of generality

that for each nonterminal (a, b) E T, lal is 0 or 1 and fbi is 0 or 1.

We construct a nondeterministic PDA M which accepts exactly the language ofr, V(r).

M nondeterministically chooses where to look in a derivation of an edge/pair for w. That is,

it looks to match w with either the left or right component of the edge. The subscripts on

the state symbols indicate which coordinate has been chosen. The stack contains markers to

indicate how much longer or shorter the left coordinate is compared to the right coordinate

in the pair derived so far. If the superscript on the current state symbol is + (i.e. At) then

the stack markers represent how much longer the left coordinate is compared to the right

10

coordinate. H the superscript on the current sta.te symbol is - (i.e. An then the stack

markers represent how much shorter the left coordinate is compared to the right coordinate.

More specifically, we construct a nondeterministic PDA M ::::: (Q,E, .6.,5, qo, Zo, F), with

respect to r, as described below.

Q {At.Ai.A;.A~IAEN}u{8,f}.

E {a 13b such that (a. b) or (b.a) E T}.

Ll. {o.Zo}.

qo 5,

F {I}.

Let 6(8, ,.Zo) = {(8t, Zo), (8;' ,Zon.

For each A E N, let

if lal > Ibl
if lal = Ibl
if lal < Ibl,

(Bt, .Zo),

(Bt,Zo),

(B;: ,.Zo),

5(A;!"",b,Zo) 3

if lal > Ibl
if lal = Ibl
if lal < Ibl.

6(At.,.Zo) => (Ai,Zo), 6(A;".Zo) => (A;.Zo),

6(Ai,',Zo) => (At.Zo), 6(A~."Zo) => (A;,Zo).

For each production of the form A -+ (a,b)B in P, let

1
(Bt,oZo),

6(At,a.Zo) => (Bt,Zo),

(Bi.oZo),

1
(B~,,),

6(A;,b,o) => (B~,o),

(B; ,••),

if lal > Ibl
if lal = Ibl
if lal < Ibl.

if lal > Ibl
if lal = Ibl
if lal < Ibl.

5(A;!"",b,.)

(Bt,··),

(Bt,·),

(Bt, e),

if lal > Ibl
if lal = Ibl
if lal < Ibl,

if lal > Ibl
if lal = Ibl
if lal < Ibl·

For each production of the form A -+ B in P and x E .6., let

6(At.,.x) => (Bt,x), 6(A;.,.x) => (B;,x).

6(Ai, " x) => (Bi.x), 6(A~",x) => (B~,x).

For each production of the form A -+ (a, b) in P, let

6(At,a,oZo) => (/"), iflal < /bl,
6(At,a,Zo) => (/,,). if lal = Ibl,
6(Ai,a,oZo) => (/"), iflal > Ibl,

6(A;,b. oZo) => (/,'), if lal < Ibl.
6(A;,b,Zo) => (/,,), iflal = Ibl,
6(A~,b,oZo) => (/.'). if lal > Ibl.

11

5 contains only the elements described above. For any undefined state,S maps it to the

empty set. The symbol 1(3" is used in defining 5 to indicate that M is nondeterministic.

That is,S maps states of the form Q X fE U {E}} X a into subsets of Q x a· .
It is straightforward to show that M nondeterministically simulates the derivation of a

string as the right or left coordinate in a derivable pair and accepts with an empty stack

and in the final state only those strings in the language of r, Vcr). Therefore, since r was

arbitrary, V9 ~ L2. o
V9 and DL2 are shown incomparable by constructing a language for each which is not

contained in the other. The techniques used are similar to those found in [10).

Lemma 3.7 V9 11: DL2.

Proof: Consider the language P = {anbncn In> O}. By the pumping lemma for context-free

languages, P is not context-free. Since DL2 is closed under complement [12J and is contained

in L2, P is not in DL2. However, as demonstrated below, P £8 in V9.

Divide P into the 5 non-disjoint sets shown below.

P = PI U P2 U Ps U P4 UPs,

P2={aib;ckl£<i,i,i,k>O} U

Ps = {aib;ck 1£> i, i,i,k > O} U

P4 = {aib;ck I i < k, i,i,k > O} U

Ps = {aib;ck Ii> k, i,i,k > O} U

{a"ln> 4},

{a"ln> 4},

{a"ln > 4},

{a"ln> 4} .

.A2, shown below, each Pi is expressible as a type 3 edge grammar. The union of the Pi'S (P)

is also a type 3 edge grammar since V9 is closed under union. (This closure is easy to show

using the method in [12] to show that L9 is closed under union.)

H is in L9, by L9's closure properties, and hence PI is in V9 by theorem 3.2.

P2 is in V9 since the language for the type 3 edge grammar below is equal to P2 •

s ~ A,

A ~ (a, ,)A, A ~ (a,,)B,

B ~ (b, aa)B, B ~ (b,aa)B',

B' ~ (b,a)B', B' ~ (b,a)C,

C ~ (c,a)C, C ~ (c,a).

12

Note that the B' productions guarantee that i < j. This edge grammar is similar to the

one used in lemma 3.2. The type 3 edge grammars for P s, P4 , and Ps are straightforward to

produce from the given edge grammar for Pz.

Note that though the sets Pz, Ps, P4, and Ps include extra subsets of {a}·, these extra

"a" strings have no influence on the union of the Pi'S since they are already in Pl.

Hence, there is a type 3 edge grammar for P. Therefore, since P E VB and P lit DL£,

VB is not contained in DL2. 0

Lemma 3.8 DU lC V9.

Proof: An iterated counter [10,l1,12J is a PDA with only an "end-of~stack"marker and one

other symbol. An iterated counter can accept on either final state or empty st.a.ck. Let IC be

the class of languages that iterated counters can accept. The PDA constructed in lemma 3.6

is clearly an interated counter. Therefore, VB is also contained in IC.

Fischer states in [IOJ that DL2 and IC are incomparable. Therefore, there is a language

Q that is in DL2 and not in IC. If DL2 were contained in V9, Q would be in V9 and therefore

in IC. This is a contradiction; hence DL2 is not contained in V9. 0

Lemma 3.9 L9 c (DU n V9).

Proof: The language of the type 3 edge grammar r used in the proof of lenuna 3.2 is in

V9 by definition. Vcr) is in DL£ since there are no ambiguities. By the pumping lemma for

regular languages, Vcr) is not in L9. Therefore, since L9 is contained in V9 and DL£, L9 is

properly contained in V9 n DL£. 0

With the language class hierarchy firmly in hand, we proceed to investigate decidability

questions in the next section. We find that the hierarchy established in this section (3) enables

us to use decidability results known for Chomsky grammars to help answer decidability

questions for edge grammars.

13

4 Decidability Results

So far we have investigated the structure of edge grammars in terms of the components of the

graphs which they generate - edges and vertices. Nowl we investigate the global structure

produced by edge grammars - G(r) a.nd its member graphs. The theorem below presents

questions about edge grammars which we found to be undecidable.

Undecidability Theorem The following questions are undecidable for a graph H and type 1

edge grammars l' and 9.

Size: Is G(r) empty6/ finite, or infinite1 ?

Membership: Is H isomorphic to a member 01 G(r) 7

Connectivity: Are all of the graphs in G(r) connected? planar? hamiltonian?

Containment: Is each graph in G(r) isomorphic to some member 01 G(6)?

Intersection: Does there exist at least one graph which is isomorphic to a member 01 G(S)

and to a member 01 G(r)?

The proof technique for this theorem is to first reduce the Post Correspondence Problem

------(PCP) to the question "iSV(f) = 0?~G{I') empty?) Then, we show how to reduce PCP

or "is Vcr) = 0" to ea.ch of the other questions in the theorem. It follows immediately that

each question is undecidable since PCP is undecidable.

Definition 4.1 I is an instance of Post's Correspondence Problem (PCP) of size N over

alphab,t E if I = {(a,b) Ia,b E E', (a, b) i' (",n and III = N.

We establish the following notation for an arbitrary PCP instance I of size N over :E.

Index each pair in I as (ail bi) where i is between 1 and N. Let ni = lail and ffli = Ibi [. Let

ai}: be the kth letter of a in the ith (a,b) pair, 1 ~ k ~ nij likewise for bi}: with respect to mi.

Let A be all of the a;.I;ls and B be all of the bi.l;'a.

6"1s G(r) emptyD is the sa.me question as "1s G(r) == {(0,0)}D which is the same as "is V(r) = 0.D

'IDoes G(r) ha.ve an (in)finite number of pair-wise non-isomorphic graphs?

14

Lemma 4.1 For each PCP instance 1 of size N otler E there is a type 1 edge grammar r
such that there is no solution to I iDV(r) = 0.

Proof: Construct a type 1 edge grammar r = (N, T,S,P) with respect to I as shown below.

For each x,x' E A and Y,1I E S,

T = {(1,<), (E,I)}

P ={S -+ MS'M,

S' -+ S' AOil ••• AOini Bbil •.• B bim" for (ai, bi) E I,

S' -+ H,

L~B~ -+ LL,

A~LL -+ LLA~J

MLL ~ (E,I)MH,

MHBv -+ (1,€)MRu,

RuBu' --;+ Bu'Ru,

R"A, ~ RR,

BuRR -I'RRBu,

MRR ~ (E,I)MH,

(E,I)MHM ~ (E,I)XXX,

X ~ (,;e){<;1y)}>---------------------

The one S production provides two "end-of-tapeD markers. The first N S' productions

enable r to nondeterministically guess a solution to I. If for some i, ni is zero, then there

are no <IAD terminals usedj likewise for mi. Note that at least one of nj and mi is nonzero

for each i.

Mter the last S' production, S' -I' H, the next productions first check to see that what

is between the end-of-tape markers is a solution. That is, the right coordinate must equal

the left coordinate. These productions also record matched elements of the coordinates as

the terminals (1, £)(£,1) on the left of the leftmost end-of-tape marker.

The last production is reached only if the solution guessed for I is correct. This production

erases the end-of~tapemarkers and the head. Note that this production is used iff there is a

solution to 1.

It is easy to see that there is a solution to I of length n iff S =>. (1n+3, 1n+s). Therefore,

r produces the empty language iff I has no solution. 0

15

Now that there is a redudion from PCP to the emptiness of G(r), we can proceed to

prove that the other questions in the Undecidability theorem are reducible to PCP or the

emptiness question.

Lemma 4.2 (Size) For each POP instance I of size N over E there is a type 1 edge grammar

r such that there is a/no solution to I iff G(r) is infinite/jim·te.

Proof: Based on the edge grammar r constructed in the proof of lemma 4.1, construct a

type 1 edge grammar a = (N,T',S,P') with respect to I as follows. Let P' contain all of

the produdions from r listed above plus the three discussed below

Add the produdion X _ (l,f)(f,l)X to P'. This produdion enables e to derive arbi­

trarily long strings if a state is reached where the production with left-hand-side (f, I)MH M

in r could be used.

Add the produdions (l,f) --+ (O,f) and (f,l) --+ (f,O) to P'. These two produdions

nondeterministicly change l's to O's in the final output of a derivation in e.
Note that aU graphs derived by a are isomorphic to a single node if strings can only

consist of 1'so However, each r,. is isomorphic to the complete graph K n if strings of length

n can consist of all combinations of l's and O's.

Given the proof in lemma 4.1, e produces an infinite number of complete graphs of

increasing size iff there is a solution to PCP. H there is no solution, then e produces no

graphs. Therefore, G(8) is infinite iff I has a solution. o

Lemma 4.3 (Membership) For each POP instance I of size N over E
J

there is a graph

H = (V, E) and a type 1 edge grammar r such that there is a solution to I iff H is isomorphic

to some graph in G(r).

Proof: This follows almost directly from the constructed r in the proof of lemma 4.1. Let

H = ({a},0) be the graph consisting of a single node. Each G,.(r) is defined by those edges

and vertices derived by r where the vertex labels are of length n. All solutions to I of

length m imply exactly one terminal edge in r, (lm+s,lm+3). Therefore, each Gn is either

isomorphic to H or Gn is the null graph. Therefore, H is isomorphic to a member of G(r)

iff I has a solution.

16

o

Lemma 4.4 (Connectivity) For each PCP instance I of size N over :E there is a type 1

edge grammar f such that there is no solution lo I iff all graphs in G(r) are

connected/planar/hamiltonian.

Proof: For connectivity, modify the edge granunar f from the proof of lenuna 4.1 to

construct a with respect to 1. Allow 6. to also produce a string of a's in the right component

the same way that a string of l's is produced in f. Now, a graph of the form {{I n+s,on+3}, 0}

is derived using A iff there is a solution to I of length n. Since the null graph is vacuously

connected, all graphs in G(a) are connected iff I has no solution.

PCP can be reduced to the question of planarity by using the modified edge granunar

e from the proof of lemma 4.2. If I has one solution, it has infinitely many solutions. For

n> 4, the complete graph K n is not planar. Therefore, all graphs in e are planar iff I has

no solution.

PCP can be reduced to the question of the hamiltonianness of a graph family by using

the edge granunar a for reducing PCP to the connectivity question from above. It is easy

to show that all graphs in A are hamiltonian iff I has no solution. 0

Lemma 4.5 (Containment and Intersection) For each graph H and type 1 edge grammar

f J there is a type 1 edge grammar Ssuch that 1) H is isomorphic to a member of G(r) iff

each graph in G(8) is isomorphic to some member of G(r)J and £) H is isomorphic to a

member oIG(r) iff there exists at least one graph which is isomorphic to a member oIG(S)

and to a member 01 G(f)J

Proof: Construct type 1 edge granunar e which represents the finite structure of H.

Uniquely label each node in H with equal length labels. Generate productions for e of

the form S ~ "edge" where "edge" is a pair of H's node labels connected by an edge in H.

Now, H is "in" G(r) iff the graph in G(8) is isomorphic to some member of G(f). This

reduces the membership question to the containment question.

To reduce membership to the intersection question, let e be as above with respect to H.

Now, H is "in" G(f) iff H is isomorphic to a graph in G(e) = H and isomorphic to a graph

in G(f), and the reduction is complete. 0

The combination of the reductions presented in lemmas 4.1 to 4.5 reduce PCP to each

question in the Undecidability theorem. Since PCP is undecidable, each Undecidability

17

theorem question is undecidable.

Even though the membership question is in general undecidable, there still is motivation

to determine when membership is decidable. We find that there are reasonable restridions

on edge grammars which make membership decidable. In particular, membership is decidable

for many interesting regular graph families including the families of shuffle-exchange graphs,

complete binary trees, and meshes.

Decidability Theorem These questions are decidable for graph H and edge grammar r.

Size: If r is type 9, is Vcr) empty, finite, or infinite'?

Membership: Ifr is type 1 and /V11(r)1 is bounded by fen), a nondecreasing funct£on with

no upper bound, then is H isomorphic to a member of G(r) 7

Proof: The decidability of emptiness, finil;eness, and infiniteness for type 3 edge grammar

languages follows directly from the fad that V9 c £2 and the decidability of these questions

for type 2 Chomsky languages [12].

Decidability for the new membership question is proved with a counting argument. Let H

be the graph (VH,EH) where !VHI = m. Since f is nondecreasing and has no upper bound,

there exists an N such that /(n) > m for all n;::: N. Test all Gp(r), p < N, for isomorphism

with H. We can generate each Gp(r) since Vp is computable on a LBA (see section 3), and

membership of word in a language in £1 is decidable [12]. If one of the Gp is isomorphic to

f, then f is isomorphic to a member of G(r)j if not, then f is not isomorphic to any member

of G(r). o
In the next section, we apply edge grammars to problem of mapping parallel algorithms

into parallel a.rchitectures.

18

5 Edge Grammars and Parallel Computation

Graphs are a natural abstraction for the interconnection architectures of many parallel com­

puters. In addition, graph families can be used to represent problem instances of a parallel

algorithm. In the parallel computation literature, graphs and graph families are often used

to abstract the implementation of parallel algorithms on parallel architectures [15,23].

Edge granunars were originally introduced in this context as a formal tool for representing

and embedding graph families commonly used in parallel computation [2,3]. In particular,

Berman and Snyder studied the problem of developing uniform strategies for embedding and

multiplexing large-sized parallel algorithms into fixed-size (smaller) parallel machines (the

mapping problem) [5]. In studying the mapping problem, edge granunars were developed to

define graphs and graph families. The formalism proved padicularly fruitful because edge

grammars can be used not only to represent the graph families of many commonly used par­

allel algorithms, but in many cases can also be used to produce an automatic embedding from

larger members of a graph family into smaller members. The representation of parallel algo­

rithms with edge grammars then functions as part of a uniform procedure for implementing

large-size parallel algorithms on fixed-size parallel machines.

_______~In~'"th"'e~m'"a~p~p=ingstrategy described in [~l, it was desirable to b_e_a_ble_to_e.asi~embedJarge, _

graphs from a. graph family into small graphs from the same family. This represents the

mapping of a large-size parallel algorithm into a parallel machine of the same interconnection

architecture. Differences in interconnection structure are then processed in a separate layout

step. When such an embedding can be done in a uniform fashion over the whole graph

family, we call the family contractable. There is a particularly useful subclass of contractable

graph families, called truncatable graph families, which promote automatic embedding. In

the following, we describe these classes and give sufficient conditions under which an edge

grammar for a given graph family is truncatable.

Definition 5.1 Let G(r) = {Gn(r)IGn = (Vn(r),En(r»)) be the graph family af edge

grammar r and let k be a fized positive integer. Then G(r) is k-contractable if for

each n ~ OJ there IS a mapping c: Vn+k -Jo Vn such that {(c(v),c(w))lc(v)::j:. c(w), and

(v,w) E En+d >; En.

Definition 5.2 Let G =: (V, E) be a graph whose labels are strings in r:"" and let k be a

19

fixed integer. Let tk be the mapping which assigns to each label xw (x E r:", w E r:k) in

V the label x in r:-. Then the graph tk(G) with the vertex set {tk(V) Iv E V} and edge set

{ (t.(v), t.(w)) I t.(v) '" t.(w), and (v, w) E E} i, the k-truncation of G.

Definition 5.3 Let k be a fixed positive integer. A graph family G(r) = {Gn]n ~ O} for

edge grammar r is k-truncatable illor each n ;::: 0, tk(Gn+k) ~ Gn. That is, Gn ~·s the

k-truncation 01 Gn+k.

Proposition II a graph lamily is k-truncatable, it is k-contractable.

The proposition follows diredly from the definitions.

The converse is not true however; not all k-contractable graph families are k-truncatable.

For example, the family of shuffle-exchange graphs {SEn} (see figures 4 and 5) with the usual

labeling (i.e. vertex w is adjacent to vertex v if the label of v is a shuffle or the exchange of the

label of w) is k-contractable with the trivial contraction which maps every vertex in BE n+k

onto a single vertex in SEn. However, this family is not k-truncatable since tk(En+k) :p En,

foranyk>Oandn>l.

Truncation Theorem Let r be a type 9 edge grammar w£th graph fam£ly

G(r) - {Gnln ;::: O} and let k be a fixed integer. II lor every term£nal pair (v,w) E T,

eitherlvl = Iwl = k or (v, w) = (€, €), and lor each A E N, there is a derivation A ~" (€, E)

in r / then G(r) is k-truncatable.

Proof: To show that G(r) is k-truncatable, we must show that for every n ~ 0, tk(Gn+k) ~

Gn for k-truncation tk. Let S~" (v,w) with lvl = Iwl = n + k. Then v and ware labels in

Vn+k and if v:p w, (v, w) is an edge in E n+k. There are two cases to this proofj each involve

specifying how the last k symbols in the vertices of the edge (v, w) were derived.

For the first case, the last k symbols are derived by a production of the form H -+ (a, b).

Since r is type 3 and by hypothesis all terminals have length k, there are strings x and y

with v = xaJ w = yb, Ixl = Iyl = n such that S~" (x,y)H <.....+ (x, y)(a, b) = (v, w).

For the second case, the last k symbols are derived by a production of the form H -+

(a,b)J, where J~" (E,E). Since r is type 3 and by hypothesis all terminals have length k,

there are strings x and y with v = xa, w = yb,]xl = Iyl = n such that S~" (x,y)H <.....+

(x,y)(a,b)J • (x,y)(a,b)«,<) = (v,w).

20

Since H <--j.* (€,€) by hypothesis, we know that S <--j.* (x,y)H <--j.* (:z::,y)(€,€) = (:z::,y). If

:z:: i:- y, then (:z::, y) = (t.l:(v), tk(W)) is in En. In any case, x and y are in Vn . Hence, t.l:(Gn+.I:)

is a k-truncation of G n, and G(r) is k-truncatable. D

Graph families which are k-truncatable by the truncation theorem include complete binary

trees, cube-connected cycles, butterfly networks, square meshes, hypercubes, finite element

graphs, toruses, linear arrays, complete graphs and others. (See [2,3) for the examples of

some of these edge grammars.) Also note that the theorem provides one effective procedure

to determine if a graph family is k~truncatable.

For a para.llel algorithm whose graph family G = {G nln ;::: a} is k-truncatable, there is

a uniform algorithm for mapping any large graph G n in the family into a fixed-size parallel

architecture H. The mapping algorithm is given below.

Mapping Algorithm

To implement graph G n on architecture H:

1. Choose the largest interconnection graph G m from the family G, m ~ n, which can be

laid out efficiently on the interconnection architecture H.

2. Truncate Gn to Gm using the edge grarrunar derivation of G n . This mapping will

specify which processes in Gn must be simulated at each single processor in H during

the multiplexing phase.

3. Layout the contracted graph G m on H using a good layout heuristic [3] or library

routines.

4. Multiplex G n on H using the truncation specified in step 2 and the layout specified in

step 3.

An important feature of this strategy is that the layout problem can be separated from

the contraction problem. In particular, solutions to both problems may be independently

optimized.

AiJ an example) suppose we wish to execute a parallel algorithm whose interconnection

graph is a binary tree with 255 processes on a mesh-connected computer with 49 processors

21

as in figure 8. An example algorithm might b«: Schwartz's parallel max-finding algorithm /21J

or one for Browning's parallel tree machine [7]'

By the Truncation theorem, the family of complete binary trees is k-truncatable for any

k > 0 using the edge grammar given in figure 1. Hence, we can map the 255 node tree onto a

31 node tree using a 3-truncation t s. In particular, the 3-truncation maps nodes with labels

al ... a7 onto nodes with labels ts(al ... a7) = al ... a4 in the 31 node tree. For example,

nodes with labels 2222 * ** are mapped to the node 2222. Therefore, 2222222 and 2222110

are mapped to the same truncated node.

In the next phase of the algorithm, the 31 node tree can be laid out on the 49 node mesh

using an H-tree layout [15] (figure 9). Using the assignment of processes in the 255 node tree

to nodes in the (contracted) 31 node tree (and hence to processors in the 49 node mesh), the

original algorithm can be multiplexed on the fixed-size target architecture.

The result of this procedure is that the large-size parallel algorithm can be run on a fixed­

size architecture with the same results as if the architecture was "big enough" to accommodate

the algorithm. This mapping procedure using edge-grammar generated contractions appears

to generate optimal or near-optimal mappings for many commonly used parallel algorithms

and architectures [5]'

6 Conclusion and Open Problems

In this paper, we have introduced edge granunars as a formal language mechanism for easily

and efficiently describing, producing and manipulating families of graphs.

We have treated edge granunars as a formal language with respect to the definition and

derivation of gra.phs. Viewing the "output" from grammars as a language, we have compared

their power to that of the Chomsky grammars. This lead us to the Hierarchy theorem.

Another hierarchical view that would be useful, but that we did not pursue, is that of

looking only at the structure of the graph families produced by edge grammars. For example,

are there interesting graph family structures which a type 2 edge grammar can produce but

not a type 3 grammar? Since all of the graphs that we are interested in for applications

are produced by type 3 edge grammars, a structural hierarchy might provide a class of

interconnecl;ion structures desirable for parallel computation. For example, "type 3" graph

structures may have good or easy to find separators, bifurcators, or embeddings [6] whereas

22

strictly "type 2" structures may not.

In the Undecidability and Decidability theorems we addressed the question of member­

ship. Though in general the decidability news is bad, for interesting applications membership

is decidable. The decidability ofmembership for type 2 and "non-even" type 3 edge grammars

is an open question.

A question to which we often thought we had an answer is: is there a pumping-type lemma

for type 3 and/or type 2 edge grammars? We believe that useful pumping lemmas for edge

grammars must not only show that the length of the derivable strings can be arbitrarily long,

but that the size of Vn(r) is unbounded as n increases. If there were any pumping lemmas of

this type, then membership for the "pumpa.ble" grammars would be decidable. (The proof

would be similar to the counting proof in the Decidability theorem). A pumping lemma for

type 2 edge grammars could also surely be used to show that v..e is properly contained in V1.

The implication of the Undecidability theorem is that questions about the structure

of a graph family produced by an edge grammar are at best possibly decidable only for

types 2 and 3 edge grammars. The obvious question is, "What structural properties of

graph families produced by type 3 (or 2) edge grammars are decidable?" Intesting structural

qualities to look for might be connectivity, bounded degree, bipartiteness, etc.

The Truncation theorem shows how the edge grammar formal language mechanism is

useful in automating a part of one solution to the mapping problem. Given powerful pump­

ing lemmas and more information about truncation and contractability, it might be possible

to construct for certain pairs of interesting edge grammars (different pairs of graph fami~

lies) efficient mappings from one graph family to the other. In addition, effective types of

contraction other than truncation could be found.

Acknowledgments

We would like to thank Larry Synder and Mike Atallah for their interest and encouragement

in this work.

References

[1] A. Aha, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley) 1974.

23

[2] F. Berman. Edge grammars and parallel computation. In Proceedings of the 21 ~t Annual
Allerton Conference on Communication, Control, and Computing, pages 214-223, 19S3.

[3] F. Berman, M. Goodrich, C. Koelbel, W. Robison, and K. Showell. A guide to the
Poker Mapping Preprocessor. Technical Report CSD-TR-488, Department of Computer
Sciences, Purdue University, West Lafayette, Indiana, 1984.

[4] F. Berman and G. Shannon. Edge granunars: decidability results and formal language
issues. In Proceedings of the 22 11d Annual Allerton Conference on Communication, Con­
trol, and Computing, pages 921-930, 1984.

[5] F. Berman and L. Snyder. On mapping parallel algorithms into parallel architectures. In
Proceedings of the 1984 International Conference on Parallel Processing, pages 307-309,
1984.

[6J B. Bhatt and F. Leighton. A framework for solving VLSI graph layout problems. Journal
of Computer and System Sciences, 28:300-343, 1984.

f7J S. Browning. The tree machine: A highly concurrent programming environment. PhD
thesis, California Institute of Technology, 1980.

[8] V. Claus, H. Ehrig, and G. Rozenberg. Graph Grammars and Their Application to Com­
puter Science and Biology. Volume 73 of Lecture Notes in Computet' Science, Springer­
Verlag, 1979.

(9J H. Ehrig, M. Nagle, and G. Rozenberg. Graph Grammars and Their Application to Com­
puter Science - 2nd International Workshop. Volume 153 of Lecture Notes in Computer
Science) Springer-Verlag, 1983.

[10] P. Fischer. Turing machines with restricted memory access. Information and Control,
9:364-370, 1966.

[l1J M. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.

[12J J. Hopcroft and J. Ullman. Introduction to Automata Theory Languages and Computa­
tion. Addison-Wesley, 1979.

[13J D. Janssens and G. Rozenberg. On the structure of node-label controlled graph lan­
guages. Information Sciences, 20:191-216, 1980.

[14J D. Janssens and G. Rozenberg. Restrictions extensions and variations ofNLC grammars.
Information Sciences, 20:217-244, 1980.

[15J C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley, 1980.

[16] T. Pratt. Pair granunars graph languages and string-to-graph translations. Journal of
Computer and System Sciences, 5(6):560--595, 1971.

[17J F. Preparata.. Algorithm design and VLSI architecture. Technical Report, Coordinated
Science Lab, University of Illinois, Urbana, Illinois, 1982.

[18J A. Rosenberg and L. Snyder. Bounds on the costs of data encodings. Mathematical
Systems Theory, 12:9-39, 1978.

24

[19] A. Rosenfeld and D. Milgram. Web automata and web grammars. Machine Intelligence,
7:307-324,1972.

[20] A. Salomaa. Formal Languages. Academic Press, 1973.

[21] J. Schwartz. Ultracomputers. ACM Transactions on Programming Languages and Sys­
tems, 2(4):484-521, 1980.

[22] H. Stone. Parallel processing with the perfect shuffle. IEEE Transactions on Computing,
C-20(2):153-161, February 1971.

[23] J. Ullman. Computational Aspects of VLSL Computer Science Press, 1984.

[24] L. Valiant. Universality considerations in VLSI circuits. IEEE Transactions on Com­
puting, C-30(2):135-140, February 1981.

25

Figures

r (N,T,8,P)

N = {8,A}
T {(2, 2), (2,0), (2, 1), (1, 1), (0, 0), (e, e)}
P {8 ~ (2,2)8, 8 ~ (2,0)A, 8 ~ (2,1)A, 8 ~ A,

A~ (O,O)A, A~ (1,1)A, A~ (e,e))

Figure 1: r is an edge grammar for the family of complete binary I;rees.

8 => (2,2)8
=> (2,2)(2, O)A
=> (2,2)(2,0)(1,1)A
=> (2,2)(2,0)(1,1)(e,c)

Therefore, S =>- (221,201).

Since, 12211 = 12011, 8~' (221,201).

Figure 2: A derivation of (221,201) using I;he edge grammar from figure 1.

220

200

000 100 010 110 001 101 011 111

G3(r)

11011000

222

1o

G(r) = {G1(r),G,(r),G3(r), ...}
Vcr) = {2, 0,1, 22, 20, 21, DO, 01,10,11, 222, 220, 221, 200, .. .}
E(r) = {(2,0), (2,1), (22,20), (22, 21), (20,00), (20, 10), (21, 01), (21, 11), (222, 220), ...)

Figure 3: The graph, verl;ex and edge sel;s derived by I;he edge grammar from figure 1.

26

100 101

10 11

S
010 '------' 011

•
o

•
1 00 01

000

001 110

111

SE, SE, SE,

Figure 4: SE 1• SE2 and SE3 in ~he family of shuffle-exchange graphs.

e (N,T,S,P)

N {S,E,So,S,}
T {(O, 0), (0, 1), (1, 1), (',0), (0, ,), «, 1), (1, <)}
P {S ~ E, S ~ (0, <)So, S ~ (1, <)S"

E ~ (O,O)E, E ~ (1,I)E, E ~ (0,1),
So ~ (O,O)So, So ~ (1,I)So, So ~ (,,0),
S, ~ (O,O)S" S, ~ (1,I)S" S, ~ «, I)}

E derives exchange edges.
So derives shuffle edges with a ashuffled.
81 derives shuffle edges with a 1 shuffled.

Figure 5: e is an edge grammar for t;he family of shuffle-exchange graphs.

27

VO"LO

VI" LI

V2

L2

"/

V3 0 DL2

/)

Figure 6: Hierarchical strudure of the Chomsky and edge grammar language classes as
indicated by the Hierarchy Theorem. The border between V£ and Vl is dashed since it is
not known if v..e is properly included in Vl.

tape 1 a a b b c c

tape 2

tape 3

~ a L b E R c

rx a L E b R c

Figure 7: This is a tape state from machine M simulating the derivation
S =>* (a,a)L(b,E)(",b)R(c,c) =>* (aabbcc,aabbcc). M is an LBA based on the construc­
tion in lemma 3.4 and the edge grammar r in lemma 3.3.

28

2222222

2222200

2222220

2222201

2222221

2222211

2222000 2222100 2222010

• • •
• • •
• • •

2222110 2222001 2222101 2222011

• • • •
• • • •
• • • •

u

2222111

•
•
•

Figure 8: Interconnection structures for a 255 node complete binary tree algorithm and a 49
node square mesh architecture.

29

0100 1000 0111 1011

2100 2200 2000 2111 2211 2011

1100 0000 1111 0011

2220 2222 2221

0010 1110 0001 1101

2010 2210 2110 2001 2201 2101

1010 0110 1001 0101

Figure 9: La.yout of the 31 node contracted complete binary tree on a 49 node square mesh.

30

	Representing Graph Families with Edge Grammars
	Report Number:
	

	tmp.1307986960.pdf.ogDj4

