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A STUDY OF

DATA INTERLOCK IN VLSI COMPUTATIONAL NETWORKS

FOR SPARSE MATRIX MULTIPUCATION

Rami G. Melhem

Department of Computer Science

Purdue University

West Lafayette, IN 479fr1

ABSTRACT

The general question addressed in this srndy is: Are regular VLSr networks suitable for sparse

matm computations? More specific.el.Iy, we consider a special purpose self-timed network that is

designed for certain specific dense matrix computation. We add to each cell in the network the

capability of recognizing and skipping operaticm that involve zero operands, and then ask how

efficient this resulting network is for sparse matrix computation?

In order to answer this question. it is neceswy to study the effect of data interlock on the per_

formancc of self-limed networks. For this, tbe class of pseudo systolic networks is introduced as a

hybrid class between systolic and self-timed network!. Networks in this cJ.ass are easy to analyze:,

and J%OVidc a means lor the study of the went case performance of sc1t~tim.cd networks. The weU

known CODCept of computation fronts is also generalized to include irregular flow of data, and a

technique based on the propagation of such computation fronts is suggested for the esrimatiOll of the

processing timc and the communication time of. pseudo systolie networks.



1. lotroductiDn

The problem of solving large linear systems of equations on various types of

parallel architectures has been receiving considerable attention. In fact, both direct

and iterative parallel solution schemes have been studied for dense matrices ( e.g.

-[6,16] ) as well as for certain banded (e.g. [2,11,14] ) and span;e matrices (e.g.

[3,4,20]). In this paper, we focus our attention on iterative solutions of large

sparse systems.

Usually, large sparse matrices that appear in practical applications correspond

to large graphs with specified local connectivity (as for example in finite element

analysis [24]). A matrix of this type may be efficiently manipulated by means of a

network of processes interconnected in such a way as to match the underlying graph

[1,12]. However, given a specific interconnection, It is usually difficult, and some­

times imp:>ssible, to map the nodes of the specific graph into the cells of the net-

work [S).

On the other band, it·is clearly inefficient to use the more general systolic
,

architecture [IS) for sparse matrix manipulation. 10 particular, assuming thaI, is.
the percentage of zero dements in a matrix A, then C% of the resources of a Sys-

tolic network may be wasted during the manipulation of A due to operations that

involve zeroes and the associated data communication.

One way of reducing this waste of resources may be 10 replace the clocked

synchronization in the network by a self-timed (data driven) scheme [21], and td add

to each cell in the network the capability of recognizing and skipping trivial opera­

tions. The result is a shorter average operational cycle for each cell. However,

data interlock may prevent any gain in the _speed of the entire network. More pre~

cisely, a cell that skips an operation may be -unable to start the next operation

immediately if some of its input data are locked (temporarily) in neighboring cells.
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In the following sections, we consider an operation that is fundamental in itera-

live solution schemes for sparse linear systems, namely the multiplication of a sparse

matrix by a vector. More specifically, we assume that data driven networks are

used for the multiplication and that each cell performs only those operations that

involve non zero operands. We then evaluate such networks by studying the effect

of data interlock on their efficiency and speed.

However, the asynchronous nature of data driven networks, together with the

irregularity of the structures of sparse matrices, make the temporal analysis of data

flow very difficult, if not impossible. For this reason, we define in Section 2 the

class of Pseudo Systolic networks. Namely a hypothetical class of synchronous net­

works where the operation of each cell depends on the input data. These networks

are slower tban self-timed networks, however, they are easier to analyze and prer

vide a tool for the establishment of upper bounds on execution times of data driven

networks.

In Section 3, we generalize the well known concept of computation fronts [23]

to include irregular data propagation. We also describe a technique for the estima­

tion of the execu~ion time of pseudo systolic networks. Our purpose is to show that

the inefficiency caused by the application of systolic networks to sparse matrices

may be restored if data driven synchronization is used. In other words. we may

have both the efficiency of sparse matrix manipulation techniques and the speed of

local communications and specialized cells. This argument is hacked up by the

experimental results that we ,present in Section 4.

2. Pseudo Systolic Networks.

Both systolic and self-timed computational networks may be defined [18] as
,

networks in which each cell repeats the execution of a specific cycle. Namely 1)

read the data from its input links, 2) perform a specific computation, and 3) write

the results on its output links. The mechanism that initiates the cycles in the
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various cells is different in the two types of networks. More specifically, systolic

networks employ a global clock to initiate the cycles of all the cells in the network

simultaneously, while the cycles of each cell in self-timed networks are initiated

independently by the availability of input data.

Conceptually, an internal communication link It,q directed from a cell k to a

cell q is a buffer that has a certain capacity of, say, b data items. Only cell k' may

write on the buffer (if it is not full), and only cell q may read from the' buffer (if it

is not empty). Here, we will refer to this buffer as either "lhe buffer at the input

JXJrt of cell q'" or "the buffer at the output port of cell k"o In practical implementa­

tions, however, the buffer may be distributed between the two ports.

In addition to internal communication links, we may have network

input/output links that connect cells in the network to 8 host system. In order to

isolate the effect of data interlock among the cells of the network from any delay

that may be caused by slow communication with the host, we assume that data are

provided on the network input links as soon as they are needed, and consumed

from network output links as soon as they are produced. In other words, the

buffers on the network input links are never empty and those on the network out.

put links are never full.
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Figure I - The network MV 1 during the third cycle
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For example, consider tbe network MV 1 shown in Fig 1 [14]. This network

may be used for the computation of the product vector y of an n x n banded matrix

A = {aj) by an n-dimensional vector %. For simplicity, we assume that the

number of upper diagonals of A is equal to the number of lower diagonals, namely

B" and bence, the band-width of A is B = 2B. + I. In Fig 1, we let B, =2 and

label the cells by integers in the range [-Bn ,Bnl. Any cell in the network has three

input ports and two output ports, namely lb 121 [3' 01 and °21 respectively. Its

operation may be described by one of the following algorithms, depending on the

type of synchronization used. (Here, 0 .- a means that a is written on the output

PJrt 0 and [I] denotes the data item on the input port I. When this item is read, it

is removed from the input buffer).

ALGI: A S)'5IoIic cycle

1) Wait for phase 1 oUhe global clock;

a = [ [.J ; II = [ [,1 ;1 = [ [,)

2)p=a+Il'1

3) Wait for pbase 2 of the global clock

4)0,-11; O,-p.

ALG2 : A self-limed cycles

1) Wait until the buffers at [ l' 1, and [ , are not empty ;

a = [1, 1; II = [I, J ;1 = [1,]

2) p = a + II • 1

3) Wait until tbe buffers at 0, and 0, are not full

4) 0, -II; 0,- p.

In Figure 1, we show the sequence of elements that should be applied on each
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input link of the network. Namely, the·,elements of the kill off diagonal of A,

-Bit s k ~ BII , are applied to pan 13 of cell k, the elements of % are applied to

port I z of cell B•• and the elements of the result vector y (initialized to zeroes) are

applied to port 11 of cell -B". For the systolic operation, successive elements are

applied at consecutive time units, while for the self-timed operation timing is not

crucial as long as th~ order of the elements is preserved. As a result, in systolic

operation, it is usually necessary to pad the sequence with don't care elements

whose values are irrelevant to the computation. These don't care elements are

denoted by 6 and may be removed in the self-timed network [18].

The elements Yll •.•• Yn of the product vector may be computed in 2n-l sys_

tolic or self timed cycles. Adding to this 2Bh +1 cycles that are needed to fill in the

initial data and flush the results, we conclude that the total execution time of tbe

network is the time for the completion of 2(Bh + n) cycles. More precisely, we

have

T",(MV tl = 2 (B. + n) (Tc..,. + T.. )

and

Tnl[ (MV tl = 2 (B. +n)( T"Of + T.. )

Where Tm is the time for a floating point multiply/add operation, and Tc"ryJ and

TC,Irl/ are defined as the time needed for communication during the execution of

one systolic or self timed cycle. respectively. This includes the time for reading

data from the buffers associated with the input p:>rts and for writing data ~n the

buffers associated with the output ports, plus the time for the transmission of signals

and any synchronization overhead (clock propagation or shake band protocol). Note

that the ex.ecution time of one cycle of ALG2 is equal to Tc,uli + Tnt only if the

input buffers are not empty when step 1 is reached and the output buffers are Dot

full wh~n step 3 is reached.
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Assuming that t% of the elements in the band of the matrix A are zeroes, then

it is clear that t% of the resources in either the systolic or the self timed versions of

MV 1 are wasted in the execution of trivial operations in step 2 of ALGt and

ALG2. In order to reduce this waste, we may attempt to skip the floating point

operation whenever [1,1 = O. More speciJically, we may replace step 2 in ALGI

and ALG2 hy

2) IF (-y ~ 0), THEN

ELSE

2.1) p = a

22)p=a+~'1

An execution of a cycle that goes through step 2.1 is called a trivial execution

of the cycle, otherwise the execution is called non trivial. In the case of systolic

networks, the time for completing either a trivial or a non-trivial execution is the

same, namely, the period of the global clock.

On the other hand, trivial executions of self timed cycles may, or may not, be

shorter than non trivial executions, depending on the time spent in steps 1 and 3 of

the cycle. Hence, the total execution time of the self timed network, denoted in

this case by T'd! ",.,(MY v. depends primarily on the effect of data conflict on the

execution of the individual cells.

How much, if at all, do we gain by skipping trivial operations in self timed net­

works?, or stated differently, how much of the t% inefficiency in Tul{ (MY V may

be restored in Ts~lf !sl:ip(MV 1)1. The precise answer to this question necessitates the

construction of a mathematiCal model for the estimation of TSt!/f Islip. which is very

complex due to the asynchronous concurrency that exists between the cells of the

network. Alternatively, we may apply a worst case analysis to obtain an upper

bound on .Tsdf Islip and then use this bound to estimate safely the speed-up ratio

T sdf /Tul//sl:ipo



-7 -

In order to pursue the second alternative, we consider a new hypothetical type

of networks that are both data driven and synchronous, namely Pseudo Systolic net­

works. Each cell in such a network repeats the execution of the following algo­

rithm:

ALG3 : Pseudo Systolic Cycle

1) Wait until the buffers all b [2 and [3 are not empty ;

IX=[ld;~=[[2l;'Y=[l31

2) IF (-y a 0) THEN 2.1) Wait until the buffers at 0, and 02 are nol full

22) °I - IX ; 02 - ~

2.3) Go To step I.

3) Wail for a synchronization signal

4) P = IX + ~ • 'Y

5) Wail untillhe buffers at 0, and 02 are not full,

6)02-~; O,-P.

In other words. trivial operations are first skipped until a non trivial operand is

found in [/3], then, the multiplication is performed. The role of the synchroniza­

tion in step 3 will be discussed later. Note, however, that if this synchronization is

removed, then the execution of the network will be identical to the execution of the

self-timed network. The only difference is that trivial executions of successive self

timed cycles are executed in a single pseudo systolic cycle.

Because a slow down in the execution of any cell in the self-timed network

cannot speed up the execution of the entire network, we may conclude that pseudo

systolic networks cannot be faster than self4imed networks. Hence. TIel! !d:ip(MV 1)

is bounded from above by Tpseudo (MY V; the execution time of the pseudo systolic

version of MV 1-
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At this point, we note that we may avoid the transmission of zero operands to

the pseudo systolic network (or the self timed network) by using the same tech­

niques applied to sequential sparse matrix manipulation [9,10]. Namely, transmit­

ting to cell k only the non zero elements in the k'" off diagonal of A along with the

(Xlsition of each element in that diagonal. In order to keep track of the position of

the elements of.% and y received on II and 1 2, respectively, each cell is equipped

with a counter that is set initially to zero and is incremented after each read opera­

tion. More specifically, assuming that a record { [I,].elem and [I,]posilion I is

received on 13, the cycle of each cell may be described by

ALG4 : Pseudo systolic cycle wi1b reduced oetwork/bos1 communication.

1) Wait until the buffer at I, is not empty; '{ = [I,]

2) Wait until the buffers at It and 12 are not empty;

a =[l tl ; II =[12 ] ; Counter =Counter + 1

3.1) Do steps 2.1 and 2.2 in ALG3

3.2) Go To step 2.

4) execute steps 3, 4, 5 and 6 in ALG3 with '{ replaced by '{.e/em.

Clearly, ALG4 does eliminate the need for supplying the network with trivial

data, thus relieving the host system from an unnecessary burden. However, this has

no effect on possible data conflicts between the cells of the network, and hence, bas

very little effect on the execution time of the entire network. For this reason, the

simpler algorithm, namely ALG3, will be considered in the remainder of this paper.

The purpose of statement 3 in ALG3 is the synchronization of all the cells such

that the execution of the network alternates between two phases; a communication

phase, an~ a processing phase. During the communication phase, the data is mov·

ing in the network until each cell is either blocked due to data interlock (step 1, 2.1

or 5), or is blocked in step 3 (with [I,] '" 0). We assume that all the cells are
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connected to a controller that detects the termination of the communication phase

and issues a synchronization signal. At that instant, all the cells that are blocked at

step 3 perform the multiplication (step 4), simultaneously, while the other cells

remain idle. This is the processing phase. A communication phase followed by a

processing phase is called a global cycle of the network.

3. Efficiency nnd speed of pseudo systolic networks

3:1. Consistency of data flow.

In order to estimate the execution time of pseudo systolic networks, we first

formalize two conditions that are necessary for the consistency of any stream. of

data Zh Z2,'·' flowing through a series of linearly connected cells ClJ ez, ... (see

Figure 2). These conditions ensure that the order of data is preserved and that the

capacity of the communication lines is not violated. More precisely, if at any

instant, z, is at cell ct. and Zj is at cell ell' with k > q, then

Cl) I <j,

C2) (j - I ) s b ( k - q ), where b is the number of data items that can be

buffered between any two consecutive cells.

--(0-m~m.e--·_-~··-t~ -.-
b b b

Figure 2 . Data flow through linearly connected cells.

3.2. Computation fronts

In t~s section. we will introduce the concept of computation fronts using the

pseudo systolic version of the network MV 1 as an example. It should be clear, how­

ever, that the ~ame concept may be applied to any systolic or pseudo systolic net­

work. It may also be applied to self timed networks in which data communication
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and actual processing take place in separate phases of execution (see for e.g. [16] ).

Given a specific sparse matrix A , we assume that MV 1 completes the multipli­

cation y =Ax in N 1 global cycles, and we define the function

a : [-B, ,B,] X [1,N t]- A such that a(k;) is the element of A that appears on

port I, of cell k at the beginning of the processing phase of the i" global cycle.

Here, a. is a total function by the assumption that the elements of A are supplied to

the network as soon as they are needed.

Although a data item is always available on 13 of any cell during a specific pro-

cessing phase, only those cells that receive the corresponding elements of the vec­

tors x and y on II and 12, respectively, perform a Doating point operation, while the

other cells remain idle. We let ME be the subset of cells that are not idle dwing the

i'k processing phase and we define the i,Jr computation front as the set of elements

of A that are operated uPOJ:l dwing this phase. More precisely, we define

CF, = {a(k;) IkE M i }

Note that the members of CF;, for any i, are non ~ro elements of A.

Computation fronts may be constructed directly from the structure of A by,
applying the conditions of Section 3.1. In order to be more specific, we note that

successive inputs to port 13 of cell k are the elements of the k th off diagonal of A.

In other words, we may define the function d : [-8, •B, I x [1,N t 1- [1,n ] such

that a(k;} = ad('Jj"('J)+>. Hence, at the beginning of the i" processing phase

the data items at [1> [2 c:nd [3 of any cell k EMj are Xd(.l:.i)+b Yd(.l:.i) and

Qd(t,i),d(.l:,i)+b respectively. Similarly, the corresponding data at any other cell

q E M j are xd(q,i)+ql Yd(q,i) and Qd(q,i).d(q.i)+q' respectively. assuming that k > q

and applying the conditions for the consistency of data flow on the y and x data

streams, respectively, we get

O<d(qn-d(k;)Sb (k-<J) (1)
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o <d(k;) +k -d(q,i)-q <b (k -q) (2)

Now, consider the two axes 1 and J shown in Figure 3. The line joining any

two elements 6d(t J),d(.t J)+.t and Dd(q,i),d(q,l)+q in A has a slope s on the J axis

given by

S = ...",.::..d(""k.z:.,iL)-_d::..(O'-q.z:.,i~) _
d(k,i)+k - d(q,ik (3)

If these elements are in the same computation front CFil tben s should satisfy (1)

and (2). For this, straight fOIWard manipulation gives

- '" < S < 0 (4)
That is, if the elements of a specific computation front are joined by a piece-wise

linear curve (see Figure 3), then. its line segments should have a slope in the range

(90" • 180").

.u 0 "13 .y
"'y>'f'.(.u /, 1" .(
"/t:/:;~p /:

o ·u .~ ·u 007.-
~.(.,( "/,y-:----0
/" '" '/'~7Y
~." '" '" "',,, »7/::" ..:" .-/ //7'" '" /"'lJl

o O""'"LUI 0

//
Figure 3 - Construction of computation fronts

With this result, we may now construct successive computation fronts graphi­

cally by starting at the top left corner of A and joining the non zero elements of A

by piecewise linear curves that satisfy (4). This construction is shown in Figure 3

where it is found that 16 fronts are required to complete the computation for the

given specific structure of A. That is N 1 = 16.
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On the other hand, if the operations involving zeroes are not skipped, then

2n - 1 = 23 computation fronts are needed for the given matrix (each having a

slope = 135°). However, 33 elements of the 72 entries in the band of the given

. th t· 33 46% f th ". d·· "almatm are zeroes, a 15 72 = 'D 0 e computatlon IS waste In trIVl opera-

tions. In terms of computation fronts, this is equivalent to 23 • 46% ::::: 10 wasted

fronts. Clearly, by skipping trivial operations, we reduced the number of fronts by

7, that is we restored about 70% of the wasted resources. Of course, data conflict is

the reason that prevents the complete restoration of the wasted resources.

It is obvious that the number of computation fronts is determined by both the

number of zeroes in A and the distribution of these zeroes. In particular, consider a

matrix with non zero diagonal elements. The condition that computation fronts

cannot be parallel to the diagonal of the matrix implies that its non zero elements

cannot be covered with less than n computation fronts. That is the maximum.

speed up factor that may be obtained by skipping trivial operations is :In-I '" 2,
n

irrespective of the number of zeroes in the matrix. Given that most of the matrices

that result from practical applications have non zero diagonal elements, it seems

necessary to reorganize the network such that computation fronts parallel to the

diagonal of the matrix are allowed.

3.3. A Network for Matrices with non ..... diagonals.

Consider the network MV 2 shown in Figure 4. It is a linear network composed

of B cells labeled by the iniege" I,. " .,lJ. Each cell has two input ports and two

output pons, namely I I' /21°1 and 02' respectively, and is equipped with a counter

'Ct' and an accumulator 'Ace', Assuming systolic (or self timed) synchronization,

the cycle ~f each cell may be described by the following algorithm:
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•

Figure 4 - A snap shot of MV2 after two cycles (B = 5)

ALGS

'* Initially J Ct = Bh + 1. This allows data to fill-in during the first BlI cycles *'
1) Wait for phase 1 of the clock (or until the buffers at [1 and [2 are nol

empty); ,,= [I,]; ~ = [[2 ]

2)p=[Aee ]+a* ~

3) Wait for phase 2 of the clock (or until the buffer at 0, is not full)

4) If (C' = B) THEN 0, - a ; O2 - P [Ace] = 0 ; Cr = 1

ELSE 01 - a ;Acc - p Ct = Ct + 1

The elements of the vector x are applied to (X'rt II of cell B, and the elements

in the rows k, k +8 , k +2B I •• . , of the matrix A are concatenated and applied to

IX'rt 12 of cell k (see Fig 4). More precisely, we may define a new B x n matrix,

A*, such that for ;=1,.··11 and j=l,...,n, we have aj*j =ai+rBJ' where

r = U-i+Bh ) +- B. That is the band of the matrix A is sliced every B rows, and all

the slices. are concatenated into the matrix A •. With this, the inputs to port 1
2

of

cell k are simply the elements of row k in the matrix A•.

Gtyen this input, it may be easily seen (or formally verified using the models in

[17,19] or [7D that the elements y". . .>ls of the result vector are produced on port
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02 of cells 1, ...,B. respectively, at the end of cycle Bh + B. The elements

Ya+1' .. . ~2B are produced on the same JXJns at the end of cycle 8 11 + 2B. and in

general, YrS +11 ... IYrB+B' r =OJ1,.. are produced at the end of cycle 8,. + (r +1)8 .

That is, the computation terminates after 811 + 13 B cycles, where 13 =

((n-1) + B) + I. This result applies to both systolic and self timed synchronization

and bence the time for the completion of the computation in either case is

(5.a)
or

(5.b)

As for the case of MV 1. the execution time of the self timed version of MV 2

may be reduced if we replace step 2 in ALGS by a conditional statement that skips,
trivial operations. The execution time. of the resulting computation, namely

T../f /"Ip(MV.J. is bounded-by the execution time of the corresponding pseudo sys­

tolic computation, namely Tpuud,,(MV z).

Computation fronts for pseudo systolic executions of MY 2 may be constructed

by applying the conditions C1 and C2 of Section 3.1 on the x data stream. More

precisely. We let N, be the number of global cycles needed for the completion of

the computation for a specific matrix A and we define the function

g : [1,8 I x [IN iI - [l,n I such that for any 1 :s k :s B. the element a;d(' j) of A·

iii at port I, of cell-k at the beginning of the processing phase of the i" global

cycle. If M1 is the subset of cells that are not idle during this phase, then we may

define the jlh computation front by

CFj = {a;,g(k,i) IkE M j }

Noting that for any cell k E. Mj , %8(1';) is at port 11 at the beginning of the i 1h

processing phase, we may apply the conditions Cl and C2 to conclude that if

a; .t(A:,i) and a;,g(q,i) are in CF jl and q < k, then
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0< g(k,i) - g(qn,,; b (Ie - q) (6)

Given the two axes shown in Figure 5, we may use (6) to prove that the slope

s (on the J axis) of the line joining any two elements in the same computation

front should satisfy

1-,,;,<00 (7)
b

where b is the buffer capacity of any communication line in the network.

(a) b = 1 (b) b = 2

Figure 5 - Computation fronts for MV 2

Condition (7) may be used to construct computation fronts for any sparse

matrix. The result of this construction for the same matrix used in Section 32 is

shown in Figures Sa and Sb, where we assumed, respectivelYJ that b = 1 and b = 2.

From (7), the slope of a computation front is restricted to the range [450 • 90°) if

b = 1, and [tan-1 ~ ,90°) if b = 2. Clearly, 10 and 9 fronts are needed, respec.

lively, to complete the computation.

The. number of computation fronts may be used for the comparison of the

speed of different computations provided that the time for physically moving the

data in -the network is negligible with respect to the time for floating point opera­

tions, that is Tc,sdf «Tm • This assumption may be justified in the case of local
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dedicated interconnections, especially if the synchronization and the communication

protocols are implemented in hardware. On the o!her hand, if these protocols are

implemented in software, or common communication channels are used, then the

value of Tc .self may be relatively large and hence the time for the communication

phases of pseudo systolic networks should not be ignored.

3.4. Communication time in MV 2

The synchronization of pseudo systolic networks is such that all possible com­

munications take place during the communication phases of the global cycles. More

specifically, during the i,h communication phase) each cell transmits from II to 01

successive elements of the vector x corresponding to zero elements of A. This pro­

cess continues until either an element of x corresponding to a non zero element of

A is received on Iv or no more data items become available at Ito

In order to estimate the time of the communication phases, we define for each

global cycle i the x-stream profile, XPi, to indicate the content of the buffers on the

communication links transmitting the elements of the vector x. Future inputs to

the network are included in xP j by assuming that they are stored in an arbitrarily

long buffer associated with the input link of cell B. More precisely, we define the

function xP, : [1,8 1x {I, 2,...j - {Xi ; j =I,..,n j such that xP,(k ,q) is the content of

location q in the buffer associated with the input port II of cell k at the beginning

of the i th processing phase. If this buffer location is empty, then %Pj(k.,q) is

undefined ( denoted by I). Note that the domain of the second argument to XPi is

taken to be the set of positive integers rather than [l,b ], where b is the capacity of

each buffer. This is consistent with the assumption that the input buffer to cell B

may be arbitrarily long.

We also define the inverse function xp j-
1 : {.Xj jj=I,.. ,n} - [1,8] x {I, 2, __ .}

such that xPj-
1(Xj) is the location of Xj in the i fh profile. More precisely
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if xP,(k,q) = xi

if xi I range af xP,

Given a certain buffer location (k ,q), the following predicate tests whether this

location is occupied or not at the beginning of the jth processing phase

if xP,(k,q) = ,

otherwise

In order to construct the profile rPj from the jrll computation front, we assume

that Mj = { ci
l

C2' ... • em} with Ct < C2 < ... < em' For each cell Co E Mi. we

know that rg(e.';) is at port II of Co during the jIll processing phase. Hence, we

may set .!Pi(ca,l) = ra(e.,i)0 Moreover, given any two cells Ca and Ca+lo

1 Sa s m-l, the elements ;rg(e.,i)• ... • x,(c.+I,i}-l of the vector x should occupy

consecutive buffer locations on the communication lines between cQ and Ca+1 start­

ing at cell CGo Fmally, the elements .:ta(t.i)_ .%,(c.';)+1o .. . should occupy consecu­

tive buffer locations on the communication lines following cell em" More precisely,

xPj may be computed as follows:

FOR a=I, ... ,In DO

I) IF (a "m) THEN d = g(c.+1~) - g(c.~)-I

ELSE d = n - g(CM~)

2) k=c. ; q=1

3) FOR I = g(c.~), ... , g (c. ,i)+d DO

3.1) xP,(k,q) = x/

32) ,. Get the next buffer location .,

IF (q < b OR k '" B) THENq =q+1

ELSEk =k+1 ; q =1

Before the beginning of execution, the data profile may be defined by
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for k = B, and q =1,.. ,1%

otherwise

That is all input items are stored in the buffer of cell B. Noting that the data

profile do not change during processing phases, then it becomes clear that the time

for the i 'll communication phase is the time required to change the data profile

from XPi_l to xP j • If we denote this time by f1;1 then the execution time for the

entire pseudo systolic computation may be expressed by

N,
Tl"ewio(MV iJ = ~ (A, + Tm )

;=1

(8)

assuming that Aj(x) is the time needed to move Xj from its position in xPi _1 to

its position in ;:Pi' then we may write

A; = max {A,(x) ; Xj E range of xF,}

The mathematical formula for the computation of ~(.x'j) for any Xj E ;rPjl is

complex: and it seems that the simplest way for the evaluation of 6; is the discreate

simulation of the transformation from :cPi_1 to xPJ • However, an upper bound may

be easily obtained for A,(xj)' For this, we let (k,q) = xF,-I(Xj) and

(k',q1 =.xPi-:,\(.x'j) be the locations of Xj in XPi and xPi _1, respectively. Then, the

maximum number of read/write sub-cycles that have to elapse before Xj reaches the

position (k,q) starting from (k' ,q ') is bounded by ",(x;), where

.1;"-1 b q

",(x;) = (k' - k) + I I occ,(" ,v) + ~ occ,(k',v)
.,=1: 1'=2 1'=2

From this and (8), we may establish the following bound

(9)

N,
where a =: I. max {crj(Xj) j Xj Eo Tang~ of %PI }.

'-I
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3.5. Partitioning the computation by folding rows

So far, we assumed that the number of cells, say ~, in MV 2 is equal to the

band width B of the matrix A. and hence that each row of the modified matrix A'

is allocated to one cell in MV 2' If, however, B is larger than A., then the rows of

A' may be partitioned into A groups that are allocated to the Acells of MV,. More

specifically, if B = r~, for some r, then every consecutive T rows of A·, namely

rows (rk - i), for some k, 1 s k SlJ and i=O,. . _1'-1. may be allocated to cell k in

MV2' Whenever an element Xj is received by that cell, it is multiplied by the

corresponding r elements O:J:-i;, i=(J, ... ,r-I in the allocated rows before it is

passed to the next cell. For this mode of operation, each cell should be equipped

with T accumulators to store the partial results corresponding to the r rows. Note

that if Adoes not divide B exactly, then T = ((8 - 1) ... A) + 1 rows are allocated to

each cell except the last cell that is allocated the last B - T (A-I) rows. 10 the

remainder of this paper. we will call r the "degree of folding".

Systolic, self-timed and pseudo systolic cycles for the cells of MV 2 may be

easily written for a general degree of folding r. However, we will only be con­

cerned here with the effect of such folding on the efficiency of pseudo systolic net­

works when operations involving zeroes are skipped.

Assume, as before, that at most one floating point operation may .be executed

in each computational cells in a global cycle, and define the i,1I computation front

eF, as the set of elements of A· that are operated upon during the processing

phase of the i·h global pseudo systolic cycle. Then, any two elements a;t._j JI and

a;q_p ,v, 1 ::S k,q ::S A, O::S j /J :; r-l, in the same computation front should reside

in two different cells, that is k "* q. Moreover, the application of conditions Cl

and C2 o( Section 3.1 shows thaI if the slope s of the line joining these two ele­

ments is_defined by

k -.s = ..:.:.-..
u - v
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then s should satisfy the same condition (7). Given this, consecutive wave fronts

may be constructed and the number of global cycles may be estimated. Moreover,

the communication time 11; for each global cycle i may be estimated using the same

concept of data profile discussed in the last section.

4. Numerical experiments

In order to test the effect of data interlock on the pseudo systolic version of

the network MV 21 we wrote a program that Constructs the computation fronts and

the data profiles for any given matrix A, assuming a specific number of buffcr3 b

and degree of folding r .

Besides the number of global cycles N 2 and the total number of communica­

tion subcycles C1, the program. also computes the utilization of the network J.L defined

by

1 N2 M,
IJ.=-~­

N 2 i=l ).

M·
where). is the number of cells in the network and T is the percentage of cells

that are nol idle during the proressing phase of the j'" global cycles.

The yalue of J.L may be a good measure for the efficiency of the pseudo systolic

network for sparse matrix computation,. It also gives a lower bound on the

efficiency of the self timed network in which trivial operations are skipped. How­

ever I in order to measure the gain obtained by skipping trivial operations, we may

compute the relative speed up 'IT defined by

T"lf (MV 2),,=
T,<if />kip (MV il

From (5) and (9) we gel

=
'lTm 'lTc__.::e...2-__ (10)

'lTm Pc + 'lTc (1 - Pc )
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where is the relative cost of communication in a

and(or self timed) computation, r is the degree of folding and

read/compute/write cycle, Nz = T (BIJ + f3 B) is the number of cycles in the systolic

N,
,.,. =-

m N 2

N'"'c = -=- are the costs of actual processing and communication, respectively, in the
a

self timed network relative to the corresponding costs in the pseudo systolic net-

work.

We analyzed the performance of the network MV 2 for many specific sparse

matrices that result from the application of the finite element analysis to boundary

value problems. However, due to space limitations, we report here the results of

the analysis for only five of these matrices.

First, we consider the regular grid that covers the domain shown in Figure 6a.

We assume that each one of the 432 triangular elements of the grid has three nodes

located at its comers and, then, we generate the stiffness matrix by assembling

these clements. Given that the bandwidth and the profile of the resulting 270 x 270

matrix depend on the method used to number the nodes of the grid, we generate

two matrices At and A z from two different numbering schemes. More specifically,

A 1 is obtained by numbering the nodes row-wise in a regular way, and A z is

obtained by applying the Cuthill-Mckee scheme [8] starting from the node at the

upper left corner of the grid. The bandwidthcs of At and A 2 arc 39 and 79, respec­

tively, and only 16% of the elements in the band of A 1 and 7% of the elements in

the band of A z are non zero elements. In other words, the time for the multiplica­

tion of A 1 and A 2 by a vector on self timed computational arrays may be improved

b t 100 - 6.36 d 100 - 1493 . 1 if "a! .Y up 0 "lTm,mar = 16 - an -::;- - , respecnve y, trtVi operations
,

are skil'P"d.
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/,
I •• '~

'/ ::..v.::'. ,

(a) The grid used to generate Al andA z

Figure 6

(b) The grid used to generate As.

time 'JTm

In the second example, we consider a three dimensional 7 x 7 x 7 grid that

covers a cube with 343 elements, each having 8 nodes located at its corners. Again,

a regular plane-wiselrow-wise numbering is used to obtain a matrix A 3 and a

Cuthill-Mckee scheme is used to obtain another matrix A 4• Both matrices are of

order 512 and their bandwidthe, are 147 and 341, respectively. The percentages of

non zero elements in the bands of A 3 and A 4 are 12% and 5%, respectively, that is

"m _ '" 8.12 and 21.76, respectively.

Finally, we consider the domain shown in Figure 6b. We cover this domain by

a grid that contains 402 quadrilateral, 9-node elements (Lagrange elements), and we

use a regular, column-wise. numbering to label the 1780 nodes in the grid. The

resulting matrix A s is of order 1780. Its bandwidth is 209, with only 7% non zero

elements in the band. That is 'lTm,IIIIU ~ 14.88.

The results of the analysis are shown in Tables 1,2 and 3, where the values of

the utilization .... , the number of computation fronts N 2' the speed up in processing

and the slow down in communication time _1_ are reported for different
",

degrees of folding r and number of buffers b. Following are some comments on

the results:
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R=.lIts for A I R=:.!a. (orA1
B "'39, ,-..0.16, ..... "36 8-79, (cOm, .....-. ..1493

• , ,
" N, -. .l.. ,

" N, -. .l..-, -,
1 1 " .m .,

'Jl67 1.455 " -'" " 6.017 1901, 1 " .7'" 58 '.0J4 ,.,.
" .5<3 " 9J'" 1.5"

3 1 " .m 54 ,..., 1>" " .so " 9J'" 1.S92, 1 " S2S S2 ,.U 1.747 " .so " 9J'" U"
1 , " 266 3U I"" 7D17 '" '" '" ,.., .361, , 2Il .7'" 118 4.949 1579 '" .414 101 71l3O 1.910
3 , " .7'" II' 0" 1.733 '" HJb ., 1029 1.<68, , 2Il .721 10' ,..., 1.760 '" ..,

" lI:l7 1.''51, , 2D .782 107 5.458 ",., '" ..,
" 11>:7 I.'"

3 , 10 ...., '" 33/8 2<" 2D 32Il "I 'Ml 1.882, , 10 .722 '" '.0J4 1.'4' 2D .ss7 "" 9.467 1.42S, 4 10 .741 '" U68 1.716 2D "" '" 11.45 1.211

• , 10 .76< '10 ,3D ''''' 2D IR1 l2Il '"'' 1360
7 , 10 .782 ,I< ,,,. 1."" 2D IR1 l2Il 11.83 1.417, , 7 ." '" ,.sU 1.<3$ I< .•s< '" .- 1231, • 7 .m '" S.214 1-'00 I< :HI "" 10., 1.425
7 , 7 .m 330 'J<» U2Il I< ." In um 1.34<, , 7 .747 320 5.475 LS92 I< ... J72 "" 1361, , 7 .n< m 5.670 1.$11 I< .707 170 ".s, U2lJ
7 • ,

.7" "I 5297 1.476 l' "" '" ''0' 1.1f6

• , , JIOS '" ,." 1.784 10 .., '" 11>:7 1.3ll7, • , >1, '" ,.70 ,.... 10 .721 '" 132< 13311
10 • , B23 .., 5.740 ,." 10 .743 22S "., 12&5
11 • , .8lS 401 ,-'" 1-'" 10 .751 221 l2JlS IjS8, 10 • S2S yn S.7fR 1.479 • -'" '" lOa> 1.149
10 10 , ..,. ". ,1m 1." • IR1 .. 11.83 1=
11 10 • 361 486 6lX. 1>" • .733 28S 12.<6 1296

" 10 • .... '" "'58 1.7.010 • .7" V< "36 I",
U 10 4 "'. '78 6.109 I'" • .m "" mo 1.473

Table 1 - Results of the analysis for A I and A 2

Rc:suJ.1I for tl J RaIiliJ (<;II; A.
B=147.(=O.I2, ... =8.U B "341, Coc01lS,,,-.. "21.76

• , N, 1 , N, 1,
" -. " -.-, "

1 1 1<7 ..., lOS 'm 12.51 '" J57 2DD <:260 ,>:7,, I 1<7 ..., IDS 'm 1>:71 "I "" 128 ."" '.92<
3 I 1<7 ... IDS ,m 13S2 "1 lli 128 'm 3"", 1 1<7 ... IDS ,m 13S2 '" lli 123 'm 3.2S1l

1 , 74 Z>4 ,I< "33 UfU 171 "" '" 2m 11-", , 74 .., 21' "., 1.475 171 ,,, 321 ",. 5.717
3 , 74 .., 21' ''''' 1.57' 171 322 19< 8.7SC '''''• , 74 .., 21' ,m 1.,. 171 "'7 "" '.467 ,.sst, , , 74 .., '10 ''''' , ..7 111 331 178 '.573 2<"

I : • , ,., ,412 ... 3./88 4.i'99 .. .IS< 675 SJ'" 4.450
I• I • "

.., ." ''''' I..., .. lli ..., ,.... 3.sJ9, • II
31 .707 .., 6.496 1.5304 .. .336 '" 9.211 '34$, , " .707 ..,

'"" l1i1l .. 31' m 1036 ""7 , " .711 <OS ''''' I'" .. 3/8 3" 1092 ,.sst
7 • 10 lUI "'" 5.748 2:,1< " 311 '" •.so 2:,0>

• • 19 .732 766 ,... 1239 " "" 7U ,.sw 22m, • 19 .732 7" ,... 1= " .382 6SO 10A!1 "'''10 • 19 •732 766 ,... 1579 " "21 '" 11.61 l.O17
11 • 19 .732 766 ,... 1.573 " .m "" l2.J9 ""I

" U 10 .7U ,,9< .." 204' 2l '" 1173 10., "'"IS U 10 .7S2 1416 71XJJ. "" 2l .'18 1111 11!<1 I...,
16 U 10 .7" 1403 7S1<i1 '372 2l .•38 lOSl ,,-" 1.817
17 U 10 .7" ,,<12 "172 '337 2l .... 1011 ".64 1.918

·18 U ID .719 "02 "m 2.~2 2l ..., '" U:l8 1....

Table 2 - Results of the analysis for A, and A,
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1) 'lTm > 1 and 'JTc < 1, for any r and A. That is, by skipping trivial operations, the

time for arithmetic computation decreases and the time for data communication

increases. The actual speed up ratio depends aD the relative values of Tm and

'rc-self as given by equation (10). For example, if MV 2 is emulated on a system like

the Pringle [13], where Tm ~ Tc.,sdf (all data communication share one pipelined

communication channel). then large speed ups should not be expected. On the

other hand, if dedicated links are used for data transmission between neighboring

cells, then Tm »Tc and large speed ups may be obtained. Example of this type of

machines are the wave front machine [16] and the CHiP system [22].

2) It is very inefficient to use b < r. The reason for this inefficiency may be

clarified by an example: Consider a diagonal matrix diag (a 1,1' •.• ,a 8,8) and a net­

work with >.. = 4 cells, that is r = 2. If b =2, then it is clear that the matrix may be

processed in two global eycles. More specifically, the computation fronts are

CF 1 = {a l,h a 3,3' a5,5' a7,7} and CF 2 = {a 2,2, a 4,4, a6,6' as,a}. On the other hand, if

b=l and.%l is at cell 1 dwing a specific cycle, then.%3 may not be at cell 2 dwing

the same cycle because there are no buffers to store.%2 between cells 1 and 2. Due

to this type of data interlock, five cycles are needed to complete the computation

and the corresponding fronts are: {at.t}. {a2~' a,,,l. {a •.•• as,sl. {a6,6. a,.,} and

{a'M'

3) Given a specific r, any increase in b (up to a certain limit) results in a larger ~J

that is a better performance; In Figure 7a, we plot the values of IJ. versus b for A 5

and r =8. It may be seen that, for b ~ r, the best improvement in performance

occurs when b is changed from r to r +1. Hence, if we consider the "performance

improvement per additional buffer" as an optimality criteria, then b = r +1 gives

the optimal performance. This curve is typical in all the examples that we studied,

with the exception that, in some cases, the optimal performance is obtained at
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b = r+2 instead of b = r+1.

4) Better performance is obtained at higher degrees of folding. That is to say, parti.

tioning of the computation improves the performance. This is illustrated in Figure

"m7b where we fix b = r +1 and we plot .... and --"'-- versus r, for A s. Note that
"m"....

"mboth I'" and -~- approache unity as r approaches B (A = 1). Note also that I'" is
"m"....

not monotonically increasing. For example, .... = 0.653 and 0.635 at r = 11 and 12,

respectively. The reason for this is obvious; For r = 11, nineteen cells are used and

each cell operates on the elements of exactly 11 rows. On the other hand. for r =

12, eighteen ce.l1s are used with the last cell operating on only 5 rows. In other

words, the utilization of the last cell may not exceed 1~' which reduces the average

utilization of the network.

(a) 'l" • 8

r=dls Cor A,
B c 2fl9.l=OD7. ",.. _'"14.88

• , ,
" N, -. ..L-,,

I
,

'" ..., ,.. ,... 1.786, ,
'" "" '" 7." 1.811

3 ,
'" 51< '" ".. ,..., , ,OS J2h "'" '''' "m, , ,os 506 .., ",. 3243

J ,
'" 596 ." .... "'"• ,
'" -" "" .m, ".3

3 • " :m "" 3.688 6.817• ,
" '" .., 8.'" ".,, ,
" -'" '" '.lOB ....,, • " -" 811 '.790 L9S<, ,

: Ii :;
.442 : 22!.5 17.169 un, sn I 1695 9.369 3Im, ,

8 27 .617 ! 1586 . Hl.D1 '-'"10 i 8 27 .623 ! 1571 10.1l 2>1,
113 I 14 " -" 288' .... 2Bn

14 I 14 15 OS< "" 10.32 2.911
I IS 14 15 -" "21 10'" ,.,.

16 I< "
_n

"'" ".68 .,,,,,' .20 " "" ,." 10., 3m,
20 20 " ... "'" 11.D1 2.97,
21 20 " -" '''' lUI '-'"
" 20 II ." '''' 11.12 2.751

·

l.O

I'
0.'

0.'

,..
o.~

0.0
0

1.01

"t
,.S

o. ,

o.~

, '"

-

b
20 25

---'.1
..... f·.. I I. ',", I

'.'.-
"..•+-,-~_~_~__-,-r.J

<, u
,>1

Table 3 - The results for As Fig 7 - Performance of MV 2 for AS
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5) The range of variation of J.L. 'TTm and 'fTc with b and r depends on the method

used to number the nodes of the finite element grid. More specifically, if a regular

numbering is used, the efficiency of the network is relatively high, but only slight

improvement in performance is obtained by increasing r and b. On the other hand,

if a non regular numbering is used, as for example the Cuthill-Mckee scheme, then

the efficiency is relatively low for r = b = 1, but improves noticeably at higher b

and r. The reason for this is that the structure of the matrix [s more regular in the

first case than in the second, and a well structured matrix, where the elements are

clustered around few off diagonals is particularly suited for the propagation of the

type of computation fronts encountered in MV 2- However, this does not leave too

much room for improvement as J.L and 7Tm may not exceed their limits, namely 1

and 'TTm,man respectively.

Finally, we note that the pattern of behavior described above was obtained

consistently in all the other examples that we used to test MV 2' Hence, we are led

to believe that this behavior is typical for the type of matrices that result in finite

element analysis.

5. Conclusion

We suggested a technique for the estimation of lower bounds on the efficiency

of self timed computational arrays. Although this technique is quite general, it was

applied in this paper to specific networks for the multiplication of a sparse matrix by

a vector. The propagation of the computation fronts in such netv.'orks is restricted

by some conditions that are necessary for the consistency of data flow. The study

of these restrictions was shown to be crucial for the choice of networks that are

suitable for special types of matrices. For example, networks that do not allow

computation fronts to be parallel to the diagonal of the matrix are expected' to per­

form poorly on matrices with non zero diagonal elements.
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The network presented in Section 3 for sparse matrices with non zero diagonal

elements was extensively tested using many examples drawn from finite element

analysis. The experimental results showed that the efficiency and utilization of the

network arc, in general, satisfactory. Moreover, if the size of the network is small

with respect to the given mu.trix, and the computation is partitioned such that each

cell operates on more than one row of the matrix, then the effect of data interlock

is reduced, thus improving the efficiency of the network. The results also showed

that the number of buffers on the communication links has a major effect on the

efficiency of the network. In particular, the efficiency deteriorates severely when

the number of buffers b is decreased below the degree of folding r. These results

may be easily extended to the computation of the product of a matrix by more that

one vector, and to the product of two matrices. The extension of the evaluation

technique to more complex networks, (e.g. networks for matrix factorizations)

seems possible, but requires further study.

Finally, we note that our approach for the analysis of self timed networks

measures the effect of data interlock on computations without any assumption

about the technology used for the implementation of the networks. - More

specifically, our results are independent of the parameters Tm and Te,sd!' that

depend strongly on the architecture and technology. This type of results may not

be obtained by the straight fonvard simulation of self timed computations.
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