View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1985

A Study of Data Interlock in VLSI Computational Networks for
Sparse Matrix Multiplication
Rami G. Melhem

Report Number:
85-505

Melhem, Rami G., "A Study of Data Interlock in VLSI Computational Networks for Sparse Matrix
Multiplication" (1985). Department of Computer Science Technical Reports. Paper 426.
https://docs.lib.purdue.edu/cstech/426

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4951538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A STUDY OF
DATA INTERLOCK IN VLSI COMPUTATIONAL NETWORKS
FOR SPARSE MATRIX MULTIPLICATION

Rami G. Melhem

Department of Computer Science
Purdue University
West Lafayette, IN 47907

ABSTRACT

The general question addressed in this study is: Are regular VLSI networks suitable for sparse
metrix computations?. More Wy. we consider a special purpose self-timed network that is
designed for certain specific dense matrix computation. We add to cach cell in the network the
capability of recognizing and skipping operations that involve zero operands, and then ask how

efficient this resulting network is for sparse matrix computation?.

. In order to answer this question, it is necessary to study the effect of data inteclock on the per-
formance of sclf-timed networks, For this, the class of pseudo systolic networks is introduced as a
hybrid class between systolic and sclf-timed networks. Networks in this clasy are easy to analyze,
and provide 8 means for the study of the warst cese performance of sclf-timed petworks. The well
known concept of computation fronts is also generalized to include irregular flow of datz, and a
technique based oo the propagation of such computation fronts is suggested for the estimation of the

processing time and the communication time of pseudo systolic networks.

F'\:

9

n

. Introdnction

The problem of solving large linear systems of equations on various types of
parallel architectures has been receiving considerable attention. In fact, both direct
and iterative parallel solution schemes have been studied for dense matrices (eg
[6,16]) as well as for certain banded (e.g. [2,11,14]) and sparse matrices (e.g.
[3,4,20]). In this paper, we focus our attention on iterative solutions of large

sparse systems.

Usually, large sparse matrices that appear in practical applications correspond
to large graphs with specified local connectivity (as for example in finite element
analysis [24]). A matrix of this type may be efficiently manipulated by means of a
network of processes interconnected in such a way as to match the underlying graph
[1,12]. However, given a specific interconnection, It is usually difficult, and some-
times impossible, to map the nodes of the specific graph into the cells of the net-
work {5].

On the other hand, it -is clearly inefficient to use the more general systolic
archnecture [15] for sparse matrix mampulanon In particular, assuming that {is
the percentage of zero elements in a matrix 4, then % of the résources of a sys-
tolic network may be wasted during the manipulation of A due to operations that

involve zeroes and the associated data communication.

One way of reducing this waste of resources may be to replace the cl&ked
synchronization in the network by a self-timed (data driven) scheme [21), and td add
to each cell in the network the capability of recognizing and skipping trivial opera-
tions. The result is a shorter average operational cycle for each cell. However,
data inteflock may prevent any gain in the speed of the entire network. More pre-
cisely, a cell that skips an operation may be unable to start the next operation

immediately if some of its input data are locked (temporarily) in neighboring cells.

-2-

In the following sections, we consider an operation that is fundamental in itera-
tive solution schemes for sparse linear systems, namely the multiplication of a sparse
matrix by a vector. More specifically, we assume that data driven networks are
used for the multiplication and that each cell performs only those operations that
involve non zero operands. We then evaluate such networks by studying the effect

of data interlock on their efficiency and speed.

Hq\vcver, the asynchronous nature of data driven networks, together with the
irregularity of the structures of sparse matrices, make the temporal analysis of data
flow very difficult, if not impossible. For this reason, we define in Section 2 the
class of Pseudo Syﬁtolic networks. Namely a hypothetical class of synchronous net-
works where the operation of each cell depends on the input data. These networks
are slower than self-timed networks, however, they are easier to analyze and pro-
vide a tool for the establishment of upper bounds on execution times of data driven

networks.

In Section 3, we generalize the well known concept of computation fronts 23]
to include irregular data propagation. We also describe 2 technique for the estima-
tion of the execution time of pseudo systolic networks. Our purpose is to show that
the inefficiency tl:aused by the application of systolic networks to sparse matrices
may be restored if data driven synchronization is used. In other words, we may
have both the efficiency of sparse matrix manipulation techniques and the speed of
local communications and specialized cells. This argpument is backed up by the

experimental results that we present in Section 4.

2. Pseudo Systolic Networks.

Both systolic and self-timed computational networks may be defined [I8] as
networks 'in which each cell repeats the execution of a specific cycle. Namely 1)
read the data from its input links, 2) perform a specific computation, and 3} write

the results on its output links. The mechanism that initiates the cycles in the

-3-

various cells is different in the two types of networks. More specifically, systolic
networks employ a global clock to initiate the cycles of all the cells in the network
simultaneously, while the cycles of each cell in self-timed networks are initiated

independently by the availability of input data.

Conceptually, an internal communication link /; , directed from a cell ¥ to a
cell ¢ is a buffer that has a certain capacity of, say, b data items. Only cell k¥ may
write on the buffer (if it is not full), and only cell ¢ may read from the buffer (if it
is not empty). Here, we will refer to this buffer as either "the buffer at the input
port of cell ¢” or “the buffer at the output port of cell k™. In practical implementa-

tions, however, the buffer may be distributed between the two ports.

In addition to internal communication links, we may have network
input/output links that connect cells in the network to a host system. In order to
isolate the effect of data interlock among the cells of the network from any delay
that may be caused by slow communication with the host, we assume that data are
provided on the network input links as soon as they are needed, and consumed
from network output links as soon as they are produced. In other words, the
buffers on the network input links are never empty and those on the network out-

put links are never full.

5 [-FL] 3 a1y 3
242 3 a33 & aza
B d32 3 az3 5
Iy a31 b d33 5 a13
O:OH 5 az“l [ﬂlz L]
Iy 0y
0 5 ﬂl.l B 6
- 8 3 x 3 X z,3x.5...
-2 -1 0 1 2
Ve R Y30 Y2 o Y1

* Figure 1 - The network MV, during the third cycle

-4.

For example, consider the network MV, shown in Fig 1 [14]. This network
may be used for the computation of the product vector y of an # X n banded matrix
A = {a;;} by an n-dimensional vector x. For simplicity, we assume that the
number of upper diagonals of A is equal to the number of lower diagonals, namely
By, and bence, the band-width of A is B = 2B, + 1. In Fig 1, we let B, =2 and
label the cells by integers in the range [-B, , B,]. Any cell in the network has three
input ports and two output ports, namely [y, [, I3, O and O, respectively. Its
operatic;n may be described by one of the following algorithms, depending on the
type of synchronization used. (Here, O ~ o means that a is written on the output
port O and {7] denotes the data item on the input port /. When this item is read, it
is removed from the input buffer).

ALGI : A systolic cycle

1) Wait for phase 1 of the global clock ;

a=[L];B=[11]iv=1[1,]

Dp=a+B*y

3) Wait for phase 2 of the global clock

40;-B; O,-p.

ALG2 : A self-timed cycles
1) Wait until the buffers at [, /5 and I, are not empty ;

a=[]iB=[I1];v=[13]
p=a+PB*y
3) Wait until the buffers at 0 and O, are not full

4 0,-B; Oy-p.

In Figure 1, we show the sequence of elements that should be applied on each

-5

’
tnput link of the network. Namely, the-elements of the k™ off diagonal of A,
-By =k =B, are applied 1o port I of cell &, the elements of x are applied to
port I of cell By, and the elements of the result vector y (initialized to zeroes) are
applied to port I of cell -B,. For the systolic operation, successive elements are
applied at consecutive time units, while for the self-timed operation timing is not
crucial as long as the order of the elements is preserved. As a result, in systolic
operation, it is usually necessary to pad the sequence with don’t care elements
whose values are irrelevant to the computation. These don’t care elements are

denoted by b and may be removed in the self-timed network {18].

The elements y,, ... , y, of the product vector may be computed in 2n-1 sys-
tolic or self timed cycles. Adding to this 28, +1 cycles that are needed to fill in the
initial data and flush the results, we conclude that the total execution time of the
network is the time for the completion of 2(8, + n) cycles. More precisely, we
have

T;y:(MVI) =2 (Bh + ") (TC,.IT.I' + m)
and

Ty MV) =2 By + 1) (T s + T)

Where =, is the time for a floating point multiply/add operation, and Teays @nd
Tcseyy @re defined as the time needed for communication during the execution of
one systolic or self timed cycle, respectively. This includes the time for reading
data from the buffers associated with the input ports and for writing data on the
buffers associated with the output ports, plus the time for the transmission of signals
and any synchronization overhead (clock propagation or shake hand protocol). Note
that the execution time of one cycle of ALG2 is equal to =, sef T T only if the
input buffers are not empty when step 1 is reached and the output buffers are not

full when step 3 is reached.

-6 -

Assuming that {% of the elements in the band of the matrix A are zeroes, then
it is clear that {% of the resources in either the systolic or the self timed versions of
MV, are wasted in the execution of trivial operations in step 2 of ALG1 and
ALG2. In order to reduce this waste, we may attempt to skip the floating point
operation whenever [/5] =0. More specifically, we may replace step 2 in ALGI
and ALG2 by

2) IF;('yEO) THEN 2Dp=a
ELSE 22)p=a+B*y

An execution of a cycle that goes through step 2.1 is called a trivial execution
of the cycle, otherwise the execution is called non trivial. In the case of systolic
networks, the time for completing either a trivial or a non-trivial execution is the

same, namely, the period of the global clock.

On the other hand, trivial executions of self timed cycles may, or may not, be
shorter than non trivial executions, depending on the time spent in steps 1 and 3 of
the cycle. Hence, the total execution time of the self timed network, denoted in
this case by T, juip(MV 1), depends primarily on the effect of data conflict on the
execution of the individual cells.

How much, if at all, do we gain by skipping trivial operations in self timed net-
works?, or stated differently, how much of the {% inefficiency in T ooy (MV 1) may
be restored in Ty /,,(MV1)?. The precise answer to this question necessitates the
construction of a mathematical model for the estimation of Tseif fskip» Which is very
complex due to the asynchronous concurrency that exists between the cells of the
network. Alternatively, we may apply a worst case analysis to obtain an upper

bound on T oy /4, and then use this bound to estimate safely the speed-up ratio

Toor / Toelp fokip-

-7-

In order to pursue the second alternative, we consider a new hypothetical type
of networks that are both data driven and synchronous, namely Pseudo Systolic net-
works. Each cell in such a network repeats the execution of the following algo-

rithm:

ALG3 : Psendo Systolic Cycle
1) Wait until the buffers at £, I, and I, are not empty ;
a=[I1];B=[I];v=[1;]

2) IF (y=0) THEN 2.1) Wait until the buffers at 0, and 0, are not full
22)01«a; O;-B
23) Go To step 1.

3) Wait for a synchronization signal

dp=a+Pry
5) Wait until the buffers at 0, and 0, are not full,

6)0;+-B; O;~p.

In other words, trivial operations are first skipped until a non trivial operand is
found in [/3], then, the multiplication is performed. The role of the synchroniza-
tion in step 3 will be discussed later. Note, however, that if this synchronization is
removed, then the execution of the network will be identical to the execution of the
self-timed network. The only difference is that trivial executions of successive self

timed cycles are executed in a single pseudo systolic cycle.

Because a slow down in the execution of any cell in the self-timed network
cannot speed up the execution of the entire network, we may conclude that pseudo
systolic nefworks cannot be faster than self-timed networks. Hence, T, /4, (MV 1) 3
is bounded from above by T4, (MV p); the execution time of the pseudo systolic

version of MV 1-

-8-

At this point, we note that we may avoid the transmission of zero operands to
the pseudo systolic network (or the self timed network) by using the same tech-
niques applied to sequential sparse matrix manipulation [9,10]. Namely, transmit-
ting to cell & only the non zero elements in the k'* off diagonal of A along with the
position of each element in that diagonal. In order to keep track of the position of
the' elements of x and y received on I, #nd I, respectively, each cell is equipped
with a counter that is set initially to zero and is incremented after each read opera-
tion. More specifically, assuming that a record { [I,]elem and [I,]position } is

received on [4, the cycle of each cell may be described by
ALG4 : Pseudo systolic cycle with reduced network/host communication.
1) Wait until the buffer at /4 is not empty ;v =[15]
2) Wait until the buffers at I, and 7, are not empty ;
a=[I11];B =[12]; Counter = Counter + 1
3) IF (Counter # vyposition) THEN 3.1) Do steps 2.1 and 22 m ALG3
32) Go To step 2.

4) exccute steps 3, 4, 5 and 6 in ALG3 with v replaced by yelem.

Clearly, ALG4 does eliminate the need for supplying the network with trivial
date, thus relieving the host system from an unnecessary burden. However, this has
no effect on possible data conflicts between the cells of the network, and hence, has
very little effect on the execution time of the entire network. For this reason, the

simpler algorithm, namely ALG3, will be considered in the remainder of this paper.

The purpose of statement 3 in ALG3 is the synchronization of all the cells such
that the execution of the network alternates between two phases; a communication
phase, and a processing phase. During the communication phase, the ﬂata is mov-
ing in the network until each cell is either blocked due to data interlock (step 1, 2.1

or 5), or is blocked in step 3 (with [I3] # 0). We assume that all the cells are

-9.

connected to a controller that detects the termination of the communication phase
and issues a synchronization signal. At that instant, all the cells that are blocked at
step 3 perform the multiplication (step 4), simultaneously, while the other cells
remain idle. This is the processing phase. A communication phase followed by a

processing phase is called 2 global cycle of the network.

3. Efficiency and speed of pseudo systolic networks

3.1. Consistency of data flow.

In order to estimate the execution time of pseudo systolic networks, we first
formalize two conditions that are necessary for the consistency of any stream of
data zy, z5,. .. flowing through a series of linearly connected cells ¢, €3, - -. (see
Figure 2). These conditions ensure that the order of data is preserved and that the
capacity of the communication lines is not violated. More preciscly, if at any
instant, z; is at cell ¢; and z; is at cell ¢g» With k > ¢, then

CI) ¢ <j,

C2) (j—-I1)=b (k~gq), where b is the number of data items that can be

buffered between any two consecutive cells.

Figure 2 - Data flow through linearly connected cells.

3.2. Computation fronts

In this section, we will introduce the concept of computation fronts using the
pseudo systblic version of the network MV | as an example. It should be clear, how-
ever, that the same concept may be applied to any systolic or pseudo systolic net-

work. It may also be applied to self timed networks in which data communication

-10 -

and actual processing take place in separate phases of execution (see for e.g. [16]).

Given a specific sparse matrix A, we assume that MV ; completes the multipli-
cation y=Ax in N; pglobal cycles, and we define the function
o :[-By ,B,] X[IN]~A such that a(k,i) is the element of 4 that appears on
port I3 of cell k at the beginning of the processing phase of the i” global cycle.
Here, « is a total function by the assumption that the elements of A are supplied to

the retwork as soon as they are needed.

Although 2 data item is always available on I'; of any cell during a specific pro-
cessing phase, only those cells that receive the corresponding elements of the vec-
tors x and y on I, and /,, respectively, perform a floating point operation, while the
other cells remain idle. We let M, be the subset of cells that are not idle during the
i** processing phase and we define the i** computation front as the set of elements

of A that are operated upon during this phase. More precisely, we define
CF; = {a(k i) | k e M;}
Note that the members of CF;, for any i, are non zero elements of A.

Computation fronts may be constructed directly from the structure of A by
appiying {he conditions of Section 3.1. In order to be more specific, we note that
successive inputs to port [5 of cell k are the elements of the ™ off diagonal of A.
In other words, we may define the function d : [-B, ,B, | X [IN]~ [I,n] such
that a(k f) = ay4 jyaq i)+~ Hence, at the beginning of the i'"" processing phase
the data items at [y, I, and I3 of any cell k e M; are x;4 iy4x> Yoes) and
a4k i)d (k i)+k» Tespectively. Similarly, the corresponding data at any other cell
g € M; are xye iy+gr Ya(g i) ANG G4 i) a(gi)+gr TESPECtively. assuming that & > g
and applying the conditions for the consistency of data flow on the y and x data

streams, respectively, we get

0<d(gi)-dki)=b (k-q) ()

-11 -
0<d(k) tk-dl@d)-q=b (k -q) @

Now, consider the two axes I and J shown in Figure 3. The line joining any
two elements gy ;) g j)+¢ and Q4(gi)d(g4)+g It A has a slope s on the J axis

given by

___d{kJi)~d(gJ)
d(ki)+k - d(g,i)q

If these elements are in the same computation front CF;, then s should satisfy (1)

3

and (2). For this, straight forward manipulation gives

—o<ys <()
That is, if the elements of a specific computation front are joined by a piece-wise
linear curve (see Figure 3), then, its line segments should have a slope in the range
(50°, 180°).

Sl o /

PN
ey

| o4 e

Figure 3 - Construction of computation fronts

With this result, we may now construct successive computation fronts graphi-
cally by §1a:th1g at the top left corner of A and joining the non zero elements of 4
by piecewise linear curves that satisfy (4). This construction is shown in Figure 3
where it is found that 16 fronts are required to complete the computation for the

given sﬁcciﬁc structure of A. Thatis N, = I6.

-12 -

On the other hand, if the operations involving zeroes are not skipped, then
2n - 1 =23 computation fronts are needed for the given matrix (each having a

slope = 135°). However, 33 elements of the 72 entries in the band of the given

matrix are zeroes, that is -,‘;—g- = 46% of the computation is wasted in trivial opera-

tions. In terms of computation fronts, this is equivalent to 23 * 46% = 10 wasted
fronts. Clearly, by skipping trivial operations, we reduced the number of fronts by
7, that is we restored about 70% of the wasted resources. Of course, data conflict is

the reason that prevents the complete restoration of the wasted resources.

It is obvious that the number of computation fronts is determined by both the

number of zeroes in A and the distribution of these zeroes. In particular, consider a _

matrix with non zero diagonal elements. The condition that computation fronts
cannot be parallel to the diagonal of the matrix implies that its non zero elements

cannot be covered with less than 1n computation fronts. That is the maximum
speed up factor that may be obtained by skipping trivial operations is -—2'—'—:—1 =32,

irrespective of the number of zeroes in the matrix. Given that most of the matrices
that result from practical applications have non zero diagonal elements, it seems
necessary to reorganize the network such that computation fronts parallel to the

diagonal of the matrix are allowed.

3.3. A Network for Matrices with non zero diagonals,

Consider the network MV ; shown in Figure 4. It is a linear network composed
of B cells labeled by the integers 1,...B. Each cell has two input ports and two
output ports, namely {4, [;, O and O,, respectively, and is equipped with a counter
'Ct’ and an accumulator 'Acc’. Assuming systolic (or self timed) synchronization,

the cycle of each cell may be described by the following algorithm:

-13 -

0 apy 857 a1y ags gy 0gq ag7 day Oyeepg

Ll DOz &3y O3, &=« Gyp G717+ dyp O Apgndis gy

932 O34 Oys dps Ay Opx Oge Sypdpjapo

i D4y Oai @ix Gap 8¢z Gpy deg App apg LATRALATAS

13 934 Oyr Agx Gry dpy Eme Spwdpy Ay o dy

o

0,0r,

I

Figure 4 - A snap shot of MV , after two cycles (B = 5)
ALGS .
/* Initially, C = B, + 1. This allows data to fill-in during the ﬁrst_B,, cycles */
1) Wait for phase 1 of the clock (or until the buffers at 7 1 and [, are not
empty) ; a«=[I];B=[1;]
2)p=[Acc]+a"‘ B
3} Wait for phase 2 of the clock (or until the buffer at 01 is not full)
4)IftCr =B) THEN O;«-a ; Oz+p ; [Acc]=0 ; Ct =1

EISE Oj~a ;Acc ~p ; Ct =Ct +1

The elements of the vector x are applied to port 7, of cell B, and the elements
in the rows k, k+8, k+2B, ..., of the matrix A are concatenated and applied to
port [, of cell £ (see Fig 4). More precisely, we may define a new B.x n matrix,
A", such that for i=1,...8 and j=1,...n, we have a; = i+r8,j» Where
r = (j-i+B,) + B. That is the band of the matrix A is sliced every B rows, and all
the slices are concatenated into the matrix A®. With this, the inputs to port [of
cell £ are s"m:lply the elements of row k in the matrix A",

Given this input, it may be easily seen (or formally verified using the models in

{17,19] or [7]) that the elements y;,. . .,y5 of the result vector are produced on port

-14.

O, of cells 1,.. B, respectively, at the end of cycle B, + B. The elements
Yp+1y - - - Y2p are produced on the same ports at the end of cycle B, + 28, and in
general, Y541, - - - ¥r+5, T =0,1,.. are produced at the end of cycle B, + (r +1)B.
That is, the computation terminates after B, + BB cycles, where B =
((n-1) + B) + 1. This result applies to both systolic and self timed synchronization
and hence the time for the completion of the computation in either case is

Tos(MV3) = (B, +BB) (3 + 7 1) (-a)
or

Tub" (MVZ) = (Bh + B B) (‘rﬂ'l + Tc,.u.ﬂ") (S-b)

As for the case of MV, the execution time of the self timed version of MV,
may be reduced if we replace step 2 in ALGS5 by a conditional statement that skips
trivial operations. The execution time of the resulting computation, namely
Ty sskip(MV 2), is bounded by the execution time of the corresponding pseudo sys-

tolic computation, namely T .py, (MV 3).

Computation fronts for pseudo systolic executions of MV, may be constructed
by applying the conditions C1 and C2 of Section 3.1 on the x data stream. More
precisely, we let N, be the number of global cycles needed for the completion of
the computation for a specific matrix A and we define the function
g : [1,B] X [1N4] = [1,n] such that for any 1 < k = B, the element “:.s(UJ of A*
is at port [of cell-k at the beginning of the processing phase of the i global
cycle. If M; is the subset of cells that are not idle during this phase, then we may

define the i computation front by

Noting that for any cell k£ e M;, x;, 4) is at port I, at the beginning of the i™

processing phase, we may apply the conditions C1 and C2 to conclude that if

8 g (ki) aNd ag oo ;

y are in CF;, and ¢ <k, then

215 -
0<g(ki)-glai)=b (& - q) ©

Given the two axes shown in Figure 5, we may use (6) to prove that the slope
s (on the J axis) of the line joining any two elements in the same computation

front should satisfy

<5 <w o

where b is the buffer capacity of any communication line in the network.

P - S o) cr, € L o
:;|.\0 \lu\;u u\ﬂ;\'u\'u a9 \lu:\o nl_&o \a _,\a a\a \a \. o\ 0
CF.I - =
B 0} 022 n\"“\"‘d u\"’-’\""\'” Nt O ‘\0 LI 0\'11\“:.1 a\ll!..'!\ﬂu\nu U\m o
\lu LITR TR 0\‘1.- LA u\ﬂw 0 dpy ayy 8y ay3 0 D\au o\" o

837 #s3 O o 0wy D

TR ANRNEE

(ayb=1 (b})b=2
Figure 5 - Computation fronts for MV,
Condition (7) may be used to construct computation fronts for any sparse
matrix. The result of this construction for the same matrix used in Section 32 is
shown in Figures 5a and 5b, where we assumed, respectively, that 5 = 1 and b = 2.

From (7), the slope of a computation front is restricted to the range [45° , 90°) if
b =1, and [tan'1% ,90°) if & =2. Clearly, 10 and 9 fronts are needed, respec-
tively, to complete the computation.

The number of computation fronts may be used for the comparison of the
speed of different computations provided that the time for physically moving the
data in ‘the network is negligible with respect to the time for floating point opera-

tions, that is T, o, << 7,. This assumption may be justified in the case of local

WA AR
AN "“\:\" y \\ Q\ '"Qﬁ}"\ RN

N

-16 -

dedicated interconnections, especially if the synchronization and the communication
protocols are implemented in hardware. On the other hand, if these protocols are
implemented in software, or common communication channels are used, then the
value of 7, ., may be relatively large and hence the time for the communication

phases of pseudo systolic networks should not be ignored.

3.4. Commupication time in MV ,

The synchronization of pseudo systolic networks is such that all possible com-
munications take place during the communication phases of the global cycles. More
specifically, during the i”* communication phase, each cell transmits from I 110 04
successive elements of the vector x corresponding to zero elements of A. This pro-
cess continues until either an element of x corresponding to a non zero element of

A is received on {4, or no more data items become available at /.

In order to estimate the time of the communication phases, we define for each
global cycle i the x-stream profile, xP;, to indicate the content of the buffers on the
communication links transmitting the elements of the vector x. Future inputs to
the network are included in xP; by assuming that they are stored in an arbitrarily
long buffer associated with the input link of cell B. More precisely, we define the
function xP; : [1,B] X {1, 2,.. .} = {x; ; j=1,.,n} such that xP;(k ,g) is the content of
location ¢ in the buffer associated with the input port 1 of cell k¥ at the beginning
of the i processing phase. If this buffer location is empty, then xP;(k.q) is
undefined (denoted by t). Note that the domain of the second argument to xP; is
taken to be the set of posi!i\:'e integers rather than [1,b], where b is the capacity of
each buffer. This is consistent with the assumption that the input buffer to cell B
may be arbitrarily long.

We also define the inverse function xP; ! : {xj ;i=lLn}-[1,B]x{1,2,..}

such that xP,-'l(xj) is the location of x; in the i** profile. More precisely

-17 -

. (k.q) if xP;(kq) = x;
P = if x; § range of xP;
Given a certain buffer location (k ,¢), the following predicate tests whether this

Jocation is occupied or not at the beginning of the i* processing phase

0 ifxPi(kg)="1
occ;(k 4) = [1 otherwise

In order to construct the profile xP; from the i t* computation front, we assume
that M; = { €1, €2, -« ., Cn} With ¢ < €3 <...<¢p. For each cell ¢, e M;, we
know that xg(, ;) is at port 7 of ¢, during the i ™ processing phase. Hence, we
may set xP;(c,,1) = x5,) Moreover, given any two cells ¢, and cg41,
1=a =m-l, fhe elements Xy (. i) « « « » Xgleyui)1 of the vector x should occupy
consecutive buffer locations on the communication lines between ¢, and c, 4 start-
ing at cell ¢,. Finally, the elements xy(c_ i) Xg(ea,i)+ir - - - should occupy consecu-
tive buffer locations on the communication lines following cell ¢,,. More precisely,

xP; may be computed as follows:

FOR a=1,...,m DO
1) IF(a #m) THEN =g(cea1f) —8(6H) ~1
ELSEd =n ~ glcmf)
2) k=¢ ; g=1
3) FOR! =g(c,id),..-,8(c.i)+d DO
30 xPi(k g) = x;
32) /* Get the next buffer location */
. IF(g <bORk=B) THENg =¢+l
ELSEL =k+l ; g=1

Before the beginning of execution, the data profile may be defined by

-18 -

Xq fork =B, and¢=1,.n
xPolk 4) = 1 otherwise

That is all input items are stored in the buffer of cell B. Noting that the data
profile do not change during processing phases, then it becomes clear that the time
for the i"* communication phase is the time required to change the data profile
from xP;_; to xP;. If we denote this time by 4;, then the execution time for the

entire pseudo systolic computation may be expressed by

N,
Tpscudo (M VZ) = §1 (Al + Tm) (8)

assuming that A;(x;) is the time needed to move x; from its position in xP; 4 to

its position in xP;, then we may write
A; = max {A(x;) ; x; e range of xP; }

The mathematical formula for the computation of A;(x;} for any X; € xP;, is
complex and it seems that the simplest way for the evaluation of 4, is the discreate
simulation of the transformation from xP; 4 to xP,. However, an upper bound may
be easily obtained for A (x;). For this, we let (k,g)=xP'(x;) and
(k') = xPi(x;) be the locations of x; in xP; and xP;y, respectively. Then, the
maximum number of read/write sub-cycles that have to elapse before x; reaches the

position (k ,¢) starting from (k “,¢) is bounded by o;(x;), where

o;(x;) = (k" - k) + E—"l i occ;(u,v) + QE- oce;(k”°v)

w=k v=1 y=2
From this and (8), we may establish the following bound

T.re{f [skip (M 4 ?J = Tpuudo (M VZ) =0T self +N 2 Tm (9)

N,
where o = $ max {o;(x;) ; x; € range of zP,; }.
i=l

-19 -

3.5. Pértiﬁom‘ng the computation by folding rows

So far, we assumed that the number of cells, say A, in MV, is equal to the
band width B of the matrix A, and hence that each row of the modified matrix A"
is allocated to one cell in MV ,. If, however, B is larger than A, then the rows of
A" may be partitioned into X groups that are allocated to the X cells of MV ,. More
specifically, if B = r\, for some r, then every consecutive r rows of A", namely
rows (rk — i), for some &k, 1 = k =B and i{=0,. . .r-1, may be allocated to cell k¥ in
MVZ. Whenever an element x; is received by that cell, it is multiplied by the
corresponding r elements any_; j» =0, ...,-1in the allocated rows before it is
passed to the next cell. For this mode of operation, each cell should be equipped
with r accumulators to store the partial results corresponding to the r rows. Note
that if A does not divide B exactly, then r = ((B - 1) +) + 1 rows are allocated to
each cell except the last cell that is allocated the last B - r(A-1) rows. In the

remainder of this paper, we will call r the "degree of folding”.

Systolic, self-timed and pseudo systolic cycles for the cells of MV, may bc
easily written for a general degreé of folding r. However, we will only be con-
cerned here with the effect of such folding on the efficiency of pseudo systolic net-

works when operations involving zeroes are skipped.

Assume, as before, that at most one floating point operation may be executed
in each computational cells in a global cycle, and define the i** computation front
CF, as the set of elements of A" that are operated upon during the processing

—ju and

phase of the i global pseudo systolic cycle. Then, any two elements ay
“:q-P wl=kg=Xx, 0=<jp =<r-1,in the same computation front should reside
in two. different cells, that is k¥ # g. Moreover, the application of conditions C1
and C2 of Section 3.1 shows that if the slope s of the line joining these two ele-

ments is defined by

s =k=-4

u-v

-20 -

then s should satisfy the same condition (7). Given this, consecutive wave fronts
may be constructed and the number of global cycles may be estimated. Moreover,
the communication time A; for each global cycle i may be estimated using the same

concept of data profile discussed in the last section.

4. Numerical experiments
In order to test the effect of data interlock on the pseudo systolic version of
the network MV ;, we wrote a program that constructs the computation fronts and

the data profiles for any given matrix A, assuming a specific number of buffers b

and degree of folding r.

Besides the number of global cycles N, and the total number of communica-

tion subcycles o, the program also computes the utilization of the network p. defined

by

&

M,
w= X

1
N,y

Il
._.

M;
where A is the number of cells in the network and ~ is the percentage of cells

that are not idle during the processing phase of the i global cycles.

* The yalue of i may be a good measure for the efficiency of the pseudo systolic
network for sparse matrix computation. It also gives a lower bound on the
efficiency of the self timed network in which trivial operations are skipped. How-
ever, in order to measure the gain obtained by skipping trivial operations, we may

compute the relative speed up 1 defined by

_ Tseff (MVZ)
Tsdf [skip (M VZ)
From (5) and (9) we get
Top (MV 5) > Ny G + 70 car) _ Ty T, (10)
Tp.mldo(MVZ) NZ ™ to Te gelf T P + 7, (1 — Pe)

-21-

Te el - . P .
where p. = —=2¥ __ i the relative cost of communication in a

Tm + T Self

read/compute/write cycle, N, =r (B, + B B) is the number of cycles in the systolic

N
(or self timed) computation, r is the degree of folding and =, = -N—’ and
2

N
T = -—j* are the costs of actual processing and communication, respectively, in the

self timed network relative to the corresponding costs in the pseudo systolic net-

work,

We analyzed the performance of the network MV, for many specific sparse
matrices that result from the application of the finite element analysis to boundary
value problems. However, due to space limitations, we report here the results of

the analysis for only five of these matrices.

First, we consider the regular prid that covers the domain shown in Figure 6a.
We assume that each one of the 432 triangular elements of the grid has three nodes
located at its comers and, then, we generate the stiffness matrix by assembling
these elements. Given that the bandwidth and the profile of the resulting 270 x 270
matrix depend on the method used to number the nodes of the grid, we generate
two matrices A and A, from two different numbering schemes. More specifically,
A; is obtained by numbering the godes row-wise in a regular way, and A, is
obtained by applying the Cuthill-Mckee scheme [8] starting from the node at the
upper left corner of the grid. The bandwidthes of A; and A, are 39 and 79, respec-
tively, and only 16% of the elements in the band of A; and 7% of the elements in
the 5and of A, are non zero elements. In other words, the time for the multiplica-

tion of Ay and A; by a vector on self timed computational arrays may be improved

by up to mar = l—fg = 6.36 and -—1—,?2 =~ 1493, respectively, if trivial operations

are shppéd

-
dvavara’a j o v
AR Y A7) ==
r2? Vi
L/
1
7 ==
[V <
72
' %
i VAV T4
é'l.) l§' WAL
(2) The grid used to generate A, and 4, (b) The grid used to generate A,

Figure 6
In the second example, we consider a three dimensional 7 X 7 X 7 grid that
covers a cube with 343 elements, each having 8 nodes located at its corners. Again,
a regular plane-wise/row-wise numbering is used to obtain a matrix A; and a
Cuthill-Mckee scheme is used to obtain another matrix A,. Both matrices are of
order 512 and their bandwidthes are 147 and 341, respectively. The percentages of
non zero elements in the bands of Ay and A, are 12% and 5%, respectively, that is

Ty mae ~ 8.12 and 21.76, respectively.

Finally, we consider the domain shown in Figure 6b. We cover this domain by
a grid that contains 402 quadrilateral, 9-node elements (Lagrange elements), and we
use a regular, column-wise, numbering to label the 1780 nodes in the grid. The
resulting matrix A 5 is of order 1780. Its bandwidth is 209, with only 7% non zero

elements in the band. That is 7y, 4, = 14.88.

The results of the analysis are shown in Tables 1,2 and 3, where the values of

the utilization ., the number of computation fronts N ,, the speed up in processing

time 7, and the slow down in communication time 1 are reported for different
1Tc

degrees of folding » and number of buffers 5. Following are some comments on

the results:

Results for 4, Results for Ay
B2, [=0.16, p ey =636 B=79, {007, =, ., w1493
bl ha | w { M) om | N [N [
T e

L[1[[®[756 (4867 | 1455 ([| 25 | % | 6017 | 1501
2 1)[39) 740 | 58 | 505|180 (m| 5| ® | 0105 | 15
3[1llm |75 o4 [sam [1s)|m| 53| 3 | 91 | 1522
4|1l | g5 | 52 [s615 [1747 || ™ | 53| B | 918 | 1806
1] 220|266 |35 [1854 | 7097 [[40 | a2 | 295 | za07 | 6361
22 ||2o{09)| 118 | 4949 [1579 || 40 | 414 | 101 | 7030 | 1570
3| 2(l20| 309} 8t asus | 170\ 40 | 606 | & | 1029 | 1ass
4| 22|75 | ws|s407 | 1760 ||a0 | s3] &3 | 1227 | 1451
S [21[20] 722 | 107 | 543 [1860 [[40 | 53 | &3 | 1127 | 1ss
3] 4 J[10F 487 [344 | 3355 | 242 || 20 | 520 | 281 | 546 | 22
4lallw| 72|z 50m | 18|20 557) 19) 9467 | 1425
5| af[sof 741|226 35068 (17620 | 574 [124 | 1145 | 1211
6 |4 l10] 764|209 | 533 [1548 |20 7 | 20 | 12 | 136
714llw0]| 24 sas|tws || s7 | 20| nm | 14
5[6]f7 [516 | 383 [4515 | 1435 || 14 | 454 | 263 [G099 | 1251
6|67] 72|36 5214|1500 [[14{ 557 | 200 | 1085 | 1425
76|71 728330 5300 [1820)14 | w75 | 177 | 123 | 13m0
86l 7 |7 im0 sams 1o | o)1) 28 | 1301
9 |67 |74l 20 8670 | 1502 |14 | 709 [170 | 1253 | 1420
T 8[5 [7% |1 [5297 [1476 || 1D | 559 | 299 | 9498 | 186
8 | 8 5] 505|416 | 5815 1784 |10 | 563 | 252 | 1177 | 1300
9 | 8| s s34 |ssr0 126810 | 721 [22) 1224] 133
1008 (15| 58| 407|570 1366 |10) 743 | 225 | 1282 | 1285
nl8|is | g5t |ses|ims|w] |z | 285 | 135
$ I«] 825507 |57m | 1475 || 8 | £28 | B5 | 080 | 118
10 |10 4 | 254 {as0 | 509 | 1651 || 8 | 597 | 300 [113 (1285
i p10f 4 | Bst | 485 | 6008 | 1851 | 8 | 70 | 285 | 1246 | 1296
12 (10 4 [868 | <2 | 60| 17408 | 763 | 278 | 1296 | 1358
Blw) 4|86 |4 [610|152]8 | 777|290 | B0 | 1473

Table 1 - Results of the analysis for A, and 4,

Results for Ay Resules for 4,
B=147, {=0.12, 7. . =B.12 B =341, {005, o o =21.76
1 1
b r A 18 Na m, -y A T8 M L py
V[V][147) 650 | 105 [6295 | 1251 [[3a1 | 257 | 20 | 4280 | 6275
2 1] 147] 650 | 105 | 6295 | 1271 [[341 | 245 | 128 { 6536 | 294
3| 1|47 890} 105 | 6295 | 1352 |41 | 255 | 123 | 6927 | 3035
4 | 1 |i147 | 690 | 105 [6295 | 1382 |[341 | 255 | 123 | 6577 | 32
U E B ESEEDED RG]
2 (2] | gas| 210 | 6295 [1475 {171 | 295 [21 | 5308 | 5917
3 2| 7 | ses| 210 | 6295 [1595 || 11 | 3z | 14 | 8784 | 25
& | 2| 74 | g5 | 210 | 6295 | 1634 || 11 | 347 | 180 | 9467 | 258
512307 | sas) 210 | 6295 [1ss7)| [351 | 178 | 9573 | 2481
24T a2] 98 | 3788 | 4799 1) 86 | 134 | 675 | 5099 | 240
< | 437 | s8s | 420 | 6295 | 1565 || 86 | 255 | 487 | 6998 | 3539
(St 4 l37 | 207 | 407 | 6496 (1534 || 86 | 336 | 20 | 9211 | 234
6 | 4 || 37 | 707 | 407 | 6496 [1511 || Bs | 398 | 329 | 1038 | 23
70437 || 405 | 6528 | 1605) 86 | 8 | 32 | 1082 | 2s;m
78|19 | 609) 920 | 5748 | 2224 || 43 | 311 | 798 | 8541 | 2209
g1 a1 | 72| 76 {650 [1239 || 43 | 349 | 713 | 950 | 202
9l e W |72 768 [65m | 150 || 43 | 322 | 650 | 1049 | 153
0815|732 766 |69 | 159 || 43 | a3 { =7 | 1161 | 1907
niejw || [som|isn| o |2 | 2| s
(1510 |70 1404 [6837 [2062 | 23 | 398 | 113 | 1089 | 1292
151510 {26 | 70m|21% || 2 | 418 | m1| uso | 18
63 15] 10 { 9% 1400) 7067 | 2312 || 23 | 438 | w082 | 1205 | 1817
175l 10 | 759 | 1oz 7072 [23% || B | a%0 | sonn | 1254 | 1918
18) 15[| 759 | w2 [70m {242l 3 | 4m) 962 | 1328 | 1904

Table 2 - Results of the analysis for A; and 4,

-2% .

1) m, > 1 and %, <1, for any r and A. That is, by skipping trivial operations, the
time for arithmetic computation decreases and the time for data communication
increases. The actual speed up ratio depends on the relative values of 1, and
Tese 25 Eiven by equation (10). For example, if MV, is emulated on 2 system like
the Pringle [13], where 7, = 7. .4 (all data communication share one pipelined
communication channel), then large speed ups should not be expected. On the
other hand, if dedicated links are used for data transmission between neighboring
cells, thlen Tm > T, and large speed ups may be obtained. Example of this type of
machines are the wave front machine {16} and the CHiP system [22].

2) It is very inefficient to use & <r. The reason for this inefficiency may be
clarified by an example: Consider a diagonal matrix diag(ay,, . .. @gz) and a net-
work with A = 4 cells, that is r = 2. If »=2, then it is clear that the matrix may be
processed in two global tycles. More specifically, the computation fronts are
CFy={ayy,a33,d55,a77t and CF3 ={a33, a4, dgg, aggl. On the other hand, if
b=1 and x is at cell 1 during a specific cycle, then x4 may not be at cell 2 during
the same cycle because there are no buffers to store x; between cells 1 and 2. Due
to this type of data interlock, five cycles are needed to complete the computation
and the corresponding fronts are: {ayi}, {a32, @33}, {a44, assl, {agg, a7} and

{ags})

3) Given a specific r, any increase in b (up to a certain limit) results in a larger .,
that is a better performance: In Figure 7a, we plot the valves of p versus b for A
and r=8. It may be seen that, for b = r, the best improvement in performance
occurs when b is changed from r to r +1. Hence, if we consider the "performance
improvement per additional buffer” as an optimality criteria, then b = r 41 gives
the optime-l.l performance. This curve is typical in all the examples that we studied,

with the exception that, in some cases, the optimal performance is obtained at

b= r-l'-2 instead of b = r +1.

4) Better performance is obtained at higher degrees of folding. That is to say, parti-

tioning of the computation improves the performance. This is illustrated in Figure

ar
7b where we fix b = r+1 and we plot p and :T--m— versus r, for A;. Note that
mmax

both p and Tm_ approache unity as r approaches B (A = 1). Note also that p is
W mar

not monotonically increasing. For example, p = 0.653 and 0.635 at r = 11 and 12,
respectively. The reason for this is obvious; For r = 11, nineteen cells are used and
each cell operates on the elements of exactly 11 rows. On the other hand, for r =

12, eighteen cells are used with the last cell operating on only 5 Iows. In other

5 .
words, the utilization of the last cell may not exceed 1 which reduces the average
utilization of the network.
1N
H
0.6+
results for 4y
B=208, [=007, T oy ™1458 061
b | r by m Mg . L y
T O a4+
1| 1 [[209 | a5 288 [6000 | 1785 :
2|1 |l200 | 504 [261 | 7008 | 181
311 29| 514 | 245 | 806 | 1940 0.2t
1| 2105 125 | 200¢ | 1581 | 557
2| 2 jlws | 506 | 47 | 7588 { 3243 ' b
32 (105] 26 42 | s408 | 199 0.0 , ' —
s 12105 | 88| 4m | om6 | 206 0 s 1 15 20 28
3]« s | 22215 3888 | 64817 () r-s
2| 4|) 529 %3 | 8am | 35m
54| 3| 58| 83) 9308 | 2005
61415 | 65| an[9m|Loss
TUB 27 | 4225 | 7169 | 8%
{B 8 127 | 5T7 01695 | 9369 | 3077 :
Po 8 |27 | m17 ! 1ses | 1o | 2398
i10 8127 | 5357 | 101 | 2345
B4 (15 [61 [2881 | 5446 | 2687
4 s | osss | 269 | 1032 | 29m
5114} 15 | 672 | 2621 | 1060 | 262
16 | 14 L5 | 477 | 2600 { 1048 | 2472 0.4+ T
19°] 20 | 11 | 886 | 365 | 1085 | 3075 - e
2020 1 | 666 [3605 | 1101 | 2975
2t || n | 872|355) 111 | 260 0.2+ —_—
Rlzn | sm]an| ne
: r
0.0 -
v 11 b 33 iz 55
(v) ber-1
Table 3 - The results for A Fig 7 - Performance of MV, for A

=26 -

5) The range of variation of p, m, and _ with » and r depends on the method
used to number the nodes of the finite element grid. More specifically, if a regular
numbering is used, the efficiency of the network is relatively high, but only slight
improvement in performance is obtained by increasing r and 5. On the other hand,
if a non regular numbering is used, as for example the Cuthill-Mckee scheme, then
the efficiency is relatively low for r = b =1, but improves noticeably at higher »
and r. The reason for this is that the structure of the matrix is more regular in the
first case than in the second, and a well structured matrix, where the elements are
clustered around few off diagonals is particularly suited for the propagation of the
type of computation fronts encountered in MV ,. However, this does not leave too
much room for improvement as p and 7, may not exceed their limits, namely 1

and T, .., , r€spectively.

Finally, we note that the pattern of behavior described above was obtained
consistently in all the other examples that we used to test MV,. Hence, we are led
to believe that this behavior is typical for the type of matrices that result in finite

element analysis.

5. Conclusion

We suggested a technique for the estimation of lower bounds on the efficiency
of self timed computational arrays. Although this technique is quite general, it was
applied in this paper to specific networks for the multiplication of a sparse matrix by
a vector. The propagation of the computation fronts in such networks is resiricted
by some conditions that are-necessa:y for the consistency of data flow. The study
of these restrictions was shown to be crucial for the choice of networks that are
suitable for special types of matrices. For example, networks that do not allow
computation fronts to be parallel to the diagonal of the matrix are expected to per-

form poorly on matrices with non zero diagonal elements,

-7 -

The network presented tn Section 3 for sparse matrices with non zero diagonal
elements was extensively tested using many examples drawn from finite element
analysis. The experimental results showed that the efficiency and utilization of the
network are, in general, satisfactory. Moreover, if the size of the network is small
with respect to the given matrix, and the computation is partitioned such that each
cell operates on more than one row of the matrix, then the effect of data interlock
is reduced, thus improving the efficiency of the network. The results also showed
that the number of buffers on the communication links has a major effect on the
efficiency of the network. In particular, the efficiency deteriorates severely when
the number of buffers b is decreased below the degree of folding r. These results
may be easily extended to the computation of the product of a matrix by more that
one vector, and to the product of two matrices. The extension of the evaluation
technique to more complex networks, (e.g. networks for matrix factorizations)

seems possible, but requires further study.

Finally, we note that our approach for the analysis of self timed networks
measures the effect of data interlock on computations without any assumption
about the technology used for the implementation of the networks. ~More
specifically, our results are independent of the parameters 1, and T, setf » that
depend strongly on the architecture and technology. This type of results may not

be obtained by the straight forward simulation of self timed computations.

References
1. L. Adams and R. Voigt, “Design, Development and Use of the Finite Element
Machine,” ICASE report 172250, NASA-Langley Research Center, Oct. 1983,

2. H. Ahmed, J. Delosme, and M. Morf, “Highly Concurent Computing Struc-

tures for Matrix Arithmetic and Signal Processing,” Computer, Jan. 1982.

3. H. Amaﬁo, T. Yoshida, and H. Aiso, “(SM)2 : Sparse Matrix Solving

10.

11.

12.

13.

-28 .

Machine,” Proc. of the 1983 international Conference on Parallel Processing,
1983,
C. P. Amold, M. L. Parr, and M. B. Dewe, “An Efficient Paralle} Algorithm

for the solution of Large Sparse Linear Matrix Equations,” /EEE Trans. on
Computer, vol. C-32, pp. 265-272, 1983.

S. H. Bokhari, “On the Mapping Problem,” Proc. of the 1979 International
éogg" erence on Parallel Processing, 1979.

A. Chen and C. Wu, “Optimum Solution to Dense Linear Systems of Equa-
tions,” Proc. of the 1984 International Conference on Parallel Processing, pp.
417424,

M. C. Chen and C. A. Mead, “Formal Specification of Concurrent Systems,”
USC Workshop on VLSI and Modern Signal Processing, Nov. 1982,

E. Cuthill and J. McKee, “Reducing the Bandwidth of Sparse Symmetric
Matrices,” Proc. of ACM national conference, New York, pp. 157-172, 1969.

S. Eisenstat, M. Gursky, M. Schultz, and A. Sherman, “Yale Sparse Matrix
Package,” Tec. Reports 112,114, Computer Science, Yale University, 1977.

A. George and I. Liu, “Computer Solutions of Large Sparse Positive Definite

Systems,” Prentice-Hall Series in Compwtational Math., 1981.

L. Johnsson, “Computational Arrays for Band Matrix Equations,” Tec. Report.
#4287TR81, California Institute of Technology, 1981,

H. F. Jordan, “A Multiprocessor System for Finite Element Structural

Analysis,” Computer and Structures, vol. 10, pp. 21-29, 1979.

A. Kapauvan, K. Wang, D. Gannon, J. Cuny, and L. Snyder, “The Pringle: An
Experimental System for Parallel Algorithm and Software Testing,” Proc. of
the I§84 International Conference on Parallel Processing, pp. 1-6.

14.

15.

16.

17.

18.

19.

21

22.

-29 .

H T. Kung and C. E. Leiserson, “Systolic Arrays for VLSL” in Introduction to
VLSI Systems, ed. Mead C. and Conway L., Addison-Wesley, Reading - Mass.,
1980.
H. T. Kung, “Why Systolic Architecture,” Computer Magazine, pp. 3746, Jan.
1982.
S. Y. Kung, K. S. Arun, R. J. Gabezer, and B. Rao, “Wavefront Array Proces-

sor, Language, Architecture and Applications,” IEEE Trans. on Computer, vol,
C-31, pp. 1054-1066, 1982.

R. G. Melhem, “Formal Analysis of a Systolic System for Finite Element Stiff-
ness Matrices,” Technical report ICMA-83-55, The University of Pittsburgh,
May 1983." (Accepted for publication in the Journal of Computer and System
Sciences)

R. G. Melhem, “Verification of a Class of Deadlock-Free, Self Timed, Compu-
tational Arrays,” Report ICMA-84-76, The University of Pittsburgh-, Sept 1984.
R. G. Melhem and W. C. Rheinboldt, “A Mathematical Model for the

Vertfication of Systolic Networks,” SIAM J. on Computing., vol. 13, no. 3, pp.
541-565, Aug. 1984.

D. A. Reed and M. L. Patrick, “A Model of Asynchronous Iterative Algo-

_rithms for Solving Large, Sparse, Linear Systems,” Proc. of the 1984 Interna-

tional Conference on Parallel Processing, pp. 402-409.

C. L. Seitz, “System Timing,” in Introduction to VLSI Systems., ed. C. Mead and
L. Conway, Addison-Wesley, Reading - Mass., 1980.

L. Snyder, “Introduction to the Configurable Highly Parallel Computer,” Com-
puter Magazine, vol. 15, no. 1, pp. 47-56, Jan 1982,

U. Weiser and A. Davis, “A Wavefront Notation Tool for VLSI Array
Design,” in in VLS Systems and Computations, ed. H. T. Kung, B. Sproull and

-0 -

G. Steele, pp. 226-234, Computer Science Press, 1981.
24. O. C. Zienkiewicz, The Finite Element Method, McGraw-Hill, 1979. Third edi-

tion.

	A Study of Data Interlock in VLSI Computational Networks for Sparse Matrix Multiplication
	Report Number:
	

	tmp.1307986960.pdf.6S5Ri

