A Tensor Product Generalized ADI Method for Ellipic Problems on Cylindrical Domains with Holes

Wayne R. Dyksen
Report Number:
84-495

Dyksen, Wayne R., "A Tensor Product Generalized ADI Method for Ellipic Problems on Cylindrical Domains with Holes" (1984). Department of Computer Science Technical Reports. Paper 415.
https://docs.lib.purdue.edu/cstech/415

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

A TENSOR PRODUCT GENERALIZED ADI METHOD FOR ELLIPTIC PROBLEMS ON CYLINDRICAL DOMAINS WITH HOLES

Wayue R. Dyksen
Department of Computer Sciences
Purdue University
West Lafayette, Indiana 47907

CSD-TR 495
October 1984

Abstract

We consider solving second order linear elliptic partial differential equations together with Dirichlet boundary conditions in three dimensions on cylindrical domains (nonrectangular in x and y) with holes.

We approximate the partial differential operators by standard partial difference operators. If the partial differential operator separates into two factors, one depending on x and y, and one depending on \mathbf{z}, then the discrete elliptic problem may be written in tensor product form as $$
\left(T_{s} \otimes I+I \otimes A_{x,}\right) U=F .
$$

We consider a specific implementation which uses a Meshod of Planes approach with unequally spaced finite differences in the $x y$ direction and symmetric finite difference in the \mathbf{z} direction. We establish the convergence of the Tensar Product Generalized Alternating Direction Implicit iterative method applied to such discrete problems. We show that this method gives a fast and memory efficient scheme for solving a large class of elliptic problems.

A Tensor Product Generalized ADI Method for Elliptic Problems on Cylindrical Domains with Holes

Wayne R. Dyksen

1. Introdaction

Elifiptic problems in three dimensions on nonrectangular domains present several difficulties. First is the often ignored problem of approximating the domain. This may be, in some sense, as difficult as the rest of the problem. Second, straightforward discretizations give very large linear systems, even for relatively coarse grids. Third, these systems often do not possess nice properties, and using simple band Gauss elimination is very expensive. We present a fast method for elliptic problems which separate into two factors, one depending on x and y, and one depending on 2 . We obtain a discrete problem of the form

$$
\begin{equation*}
\left(T_{s} \otimes I+I \otimes A_{x}\right) U=F . \tag{1.1}
\end{equation*}
$$

using tensor products of matrices. We then apply a fast, tensor product ADI method to solve (1.1) efficiently.

In Section 2 we briefly introduce the Tensor Product Generalized Alternating Direction Implicis (TPGADI) method. We use finite differences to derive a tensor product formulation of the discrete problem in Section 3. In Sections 4 and 5, we apply the TPGADI method to this discrete problem, proving convergence for the Dirichlet problem. We explore a specific implementation in Section 6, showing that it is efficient both in time and memory.

2. The Two Directional Tensor Prodact Generallzed ADI Methods

Let A_{k} and B_{k} be $N_{k} \times N_{k}$ matrices, and consider the linear system

$$
\begin{equation*}
\left(A_{1} \otimes B_{2}+B_{1} \otimes A_{2}\right) C=F \tag{2.1}
\end{equation*}
$$

We wish to solve the two directional problem (2.1) by using methods employed to solve the one directional, simpler problems involving A_{1}, B_{1}, A_{2} and B_{2}. The term direcrional is used rather than dimensional since one direction may encompass more than one dimension.

For a given set of positive acceleration parameters $\rho_{k}, k=1,2, \ldots$, the two directional Tensor Product Generalized Alternating Direction Implicir (TPGADI) iteration method is defined by

$$
C^{(0)} \text { given }
$$

$$
\begin{align*}
& {\left[\left(A_{1}+\rho_{k+1} B_{1}\right) \otimes B_{2}\right] C^{(k+k)}=F-\left[B_{1} \otimes\left(A_{2}-\rho_{k+1} B_{2}\right)\right] C^{(k)}} \tag{2.2}\\
& {\left[B_{1} \otimes\left(A_{2}+\rho_{k+1} B_{2}\right)\right] C^{(k+1)}=F-\left[\left(A_{1}-\rho_{k+1} B_{1}\right) \otimes B_{2}\right] C^{(k+k)} .}
\end{align*}
$$

We use the following results in subsequent analysis; details are found in [Dyksen, 1984a].
THEOREM 2.1. Les A_{k} and B_{k} be marrices of order $N_{t} \times N_{1}$, and consider she linear syssem (2.1) for F given. Suppose thas $B_{1}^{-1} A_{1}$ and $B_{2}^{-1} A_{2}$ have complese sets of normalized eigenvecsors p_{i} and q_{j}, respectively, wish corresponding posirive eigenvalues λ_{i} and μ_{j}, respectively. Then, for a given set of positive acceleration paraneters $\rho_{1}, k=1,2, \ldots$, the two directional Tensor Praduct Generalized Alsernating Direction Implicit iterative method, given by (2.2) is convergent, and C Ls ifs only solution.

Conollany 2.2. The TPGADI iterative method (2.2) can be exact (exceps for round-off) In a number of iterations equal to the number of unknowns in either direction; that is, in \boldsymbol{N}_{1} or $\boldsymbol{N}_{\mathbf{2}}$ iterations.

Discrete clliptic problems arising from other discretizations in both two and three dimensions can be solved using the TPGADI method. In two dimensions we bave considered the Method of Lines [Dyksen, 1982] and Hermite bicubic collocation [Dyksen, 1984a]. We also have solved problems on three dimensional rectangular domains using Hermite bicubic collocation in x and y, and finite differences in z [Dyksen, 1984b].

3. The Tensor Product Formalation of the Dlscrete Problem

Let Ω_{2} be a bounded two dimensional domain contained in the rectangle $R=\left[a_{x}, b_{x}\right] \times\left[a_{y}, b_{y}\right]$. A three dimensional cylindrical domain Ω_{3} is formed by the tensor product $\Omega_{3}=\mathbf{\Omega}_{2} \times\left[a_{s}, b_{\mathbf{r}}\right]$. We consider partial differential equations of the form

$$
\begin{align*}
L_{x y} u+L_{x} u & =f \text { in } \Omega_{3} \\
u & =g \text { on } \partial \Omega_{3} \tag{3.1}
\end{align*}
$$

where
(32a) $L_{x y} u=-a(x, y) u_{x x}-b(x, y) u_{y y}+c(x, y) u_{x}+d(x, y) u_{y}+e(x, y) u, \quad a, b>0, e \geq 0$,

$$
\begin{equation*}
L_{z} u=-\left(p(z) u_{x}\right)_{x}+q(z) u, p>0, q \geq 0 \tag{3.2b}
\end{equation*}
$$

and where f and g are given functions of x, y and z.

We first consider the subproblem of solving elliptic problems of the form

$$
\begin{aligned}
L_{n} u=f & \text { in } \Omega_{2} \\
u=g & \text { on } \partial \Omega_{2}
\end{aligned}
$$

where f, g and u arc functions of x and y. To solve such problems, we must approximate both the nonrectangular domain Ω_{2} and the operator $L_{x y}$.

For given positive integers N_{x} and N_{y}, the rectangle R containing Ω_{2} is subdivided by a rectangular grid defined by the grid lines

$$
x_{i}=a_{x}+h_{x}, h_{x}=\frac{b_{x}-a_{x}}{N_{x}+1}, \quad \text { and } \quad y_{j}=a_{y}+h_{x}, h_{y}=\frac{b_{y}-a_{y}}{N_{y}+1}
$$

The interior of the domain $\boldsymbol{\Omega}_{2}$ is approximated by $\tilde{\Omega}_{2}$, the set of grid points $\left(x_{1}, y_{j}\right)$ in the interior of $\mathbf{\Omega}_{2}$. The boundary $\partial \boldsymbol{\Omega}_{2}$ is mpprorimated by $\partial \boldsymbol{\Omega}_{2}$, the intersection of the grid lines with $\partial \Omega_{2}$. Figure 3.1 shows an example of a nonrectangular domain. Note that small changes in N_{x} and $N_{\text {, }}$ can substantially change the nature of the interior grid elements near the boundary. In practice, it is not always possible to choose the grid lines so that they intersect with $\partial \Omega_{2}$ in a nice way. However, as $N_{x}, N_{y} \rightarrow \infty$, these effects become less dramatic.

We approximate $L_{r g} u$ by finite difference operators. Consider a grid point $\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{2}$, and let the distance to its nearest neighbor to the west, east, north and south be denoted by $h_{\mathrm{r}}, h_{E}, h_{N}$ and h_{5}, respectively; that is, we have the following five points for the finite difference approximations.

$$
\left(x_{i}, y_{j+1}\right)=\left(x_{f}, y_{j}+h_{N}\right)
$$

$$
\begin{gathered}
\left(x_{i-1}, y_{j}\right)=\left(x_{i}-h_{W} y_{j}\right) \quad\left(x_{i}, y_{j}\right) \quad\left(x_{i+1}, y_{j}\right)=\left(x_{i}+h_{E}, y_{j}\right) \\
\left(x_{i}, y_{j-1}\right)=\left(x_{i}, y_{j}-h_{S}\right)
\end{gathered}
$$

The partial differential operators in (32a) are replaced by the unequally spaced partial difference operators defined by

$$
\begin{align*}
& u_{\Sigma X} I_{i j}=\frac{2}{h_{\nabla}\left(h_{E}+h_{F}\right)} u_{i-1,}-\frac{2}{h_{\nabla} h_{E}} u_{i j}+\frac{2}{h_{E}\left(h_{E}+h_{\nabla}\right)} u_{i+1_{J}}+O\left(h_{\Sigma}\right) \\
& u_{x} l_{i j}=\frac{-h_{E}}{h_{W}\left(h_{E}+h_{W}\right)} u_{i-1, j}+\frac{h_{E}-h_{W}}{h_{W} h_{E}} u_{i j}+\frac{h_{W}}{h_{E}\left(h_{E}+h_{W}\right)} u_{i+1, J}+O\left(h_{X}^{2}\right) \\
& u_{p} l_{j}=\frac{2}{h_{s}\left(h_{N}+h_{5}\right)} u_{i, N-1}-\frac{2}{h_{S} h_{N}} u_{l j}+\frac{2}{h_{N}\left(h_{N}+h_{5}\right)} u_{i j+1}+O\left(h_{y}\right) \tag{3.3}\\
& u_{T} l_{i j}=\frac{-h_{N}}{h_{S}\left(h_{N}+h_{S}\right)} u_{i, N-1}+\frac{h_{N}-h_{S}}{h_{S} h_{N}} u_{i /}+\frac{h_{S}}{h_{N}\left(h_{N}+h_{S}\right)} u_{i,+1}+O\left(h_{J}^{2}\right)
\end{align*}
$$

Flgure 3.1 A nonrectangular domain from a probiem involving heat flow in the shicld of a nuclear riactor approximated with $N_{s}=N_{y}=7$ and with $N_{x}=N_{y}=8$ [Houstis, et. al., 1978]
where $u_{j j}=u\left(x_{i}, y_{j}\right)$ (see [Forsythe and Wasow, 1960], Theorems 20.2 and 20.4). Note that $\max \left(h_{W}, h_{E}\right) \leq h_{F}$ and $\max \left(h_{S}, h_{N}\right) \leq h_{y}$.

There are two distinct types of grid points in $\bar{\Omega}_{2}$: regular points which have all four of their nearest neighbors in $\boldsymbol{\Omega}_{2}$, and frregular points which have one or more nearest neighbors on the boundary $\partial \Lambda_{2}$. At irregular grid points, the finite difference approximations in (3.3) give only $O\left(h_{x}\right)$ and $O\left(h_{y}\right)$ approximations to $u_{x r}$ and u_{v}, respectively. At regular grid points, we have $h_{V}=h_{E}$ and $h_{N}=h_{S}$ so that (3.3) reduces to the standard equally spaced finite differences giving $O\left(h_{x}^{2}\right)$ and $O\left(h_{y}^{2}\right)$ approximations to $\mu_{x x}$ and μ_{n}, respectively. We see from Figure 3.1 that, as $N_{s}, N_{y} \rightarrow \infty$, most of the interior grid points in Ω_{2} are regular grid points. Thus, the discretization error in the finite difference approximation to $L_{x 7}{ }^{u}$ is locally $O\left(h_{x}^{2}\right)+$ $O\left(h_{3}{ }^{2}\right)$ at most of the grid points in $\boldsymbol{\Omega}_{2}$. If u has a bounded fourth derivative in Ω_{2}, then the global discretization error is pointwise $O\left(h^{2}\right)$, where $h=\max \left(h_{x}, h_{7}\right)$ [Bramble and Hubbard, 1963, Theorem 3.1].

If we form the difference equations for cach point $\left(x_{i}, y_{j}\right) \in \AA_{2}$, subtracting the boundary values on $\partial \bar{\Omega}_{2}$ from the right side, we obtain a system of simultancous linear equations in the unknowns $U_{i j} \approx u\left(x_{1}, y_{j}\right)$, which we write as

$$
\begin{equation*}
A_{x} \mathrm{~g}=\mathrm{t} \tag{3.4}
\end{equation*}
$$

If Ω_{2} is rectangular, then $u_{\left(+N_{A} U-1\right)}=U_{i J}$. The matrix $A_{x y}$ has dimension equal to the number of grid points in Ω_{2} which is less than or equal to $N_{x} N_{y}$. If the grid points are ordered in a natural way (south to north, west to east), then A_{x} hes bandwidth less than or equal to N_{y} depending on the domain.

We now return to the original problem of solving three dimensional elliptic problems of the form (3.1) by using a "Method of Planes" approach. For a given positive integer M, we approximate the cylindrical domain Ω_{3} by $M+2$ two dimensional cross sections defined by the planes

$$
z_{j}=a_{x}+j h_{r}, \quad h_{z}=\frac{b_{z}-a_{r}}{M+1}, j=0,1, \ldots, M+1
$$

On each interior two dimensional domain $\boldsymbol{\Lambda}_{\mathbf{2}} \otimes_{z_{j}}$, we approximate $\boldsymbol{L}_{\boldsymbol{x}}$, at each point in the interior of $\boldsymbol{\Lambda}_{2} \otimes z_{j}$ by the partial difference operators (3.3). We approximate L_{i} by the standard symmetric finite differences. If we now let $\boldsymbol{U}_{i j} \approx u\left(x_{i}, y_{i}, z_{j}\right)$, then our finite difference approximation to (3.1) results in a system of linear equations in the unknowns $U_{t j}$, which can be written in tensor product form as

$$
\begin{equation*}
\left(T_{x} \otimes I+I \otimes A_{x}\right) U=F, \tag{35}
\end{equation*}
$$

where T_{1} is the symmetric tridiagonal matrix of order $M \times M$ defined by

$$
T_{s}=\text { tridiag }\left[d_{j}^{-} d_{j} d_{j}^{+}\right],
$$

where

$$
\begin{align*}
& d_{j}^{-}=\frac{-p\left(\left(j-y_{h}\right) h_{t}\right)}{h_{t}^{2}} \\
& d_{j}=\frac{p\left(\left(j-h_{i}\right) h_{t}\right)+p\left(\left(j+h_{z}\right) h_{s}\right)}{h_{s}^{2}}+q\left(j h_{r}\right) \tag{3.6}\\
& d_{j}^{+}=\frac{-p\left(\left(j+\mu_{2}\right) h_{s}\right)}{h_{x}^{2}},
\end{align*}
$$

and $A_{\text {g }}$ is defined in (3.4). Note that we use I to denote the identity matrix of possibly different orders.

4. The Tensor Prodact Generalized ADI Method for Cylladrical Domaln:

For a given set of positive acceleration parameters $\rho_{k}, k=1,2, \ldots$, the TPGADI method for the partial difference equations in (35) is given by
$U^{(0)}$ given

$$
\begin{align*}
& {\left[\left(T_{s}+\rho_{t+1} I\right) \otimes I\right] U^{(k+k)}=F-\left[I \otimes\left(A_{x y}-\rho_{k+1} I\right)\right] U^{(k)}} \tag{4.1}\\
& {\left[I \otimes\left(A_{\Sigma y}+\rho_{k+1} I\right)\right] U^{(k+1)}=F-\left[\left(T_{x}-\rho_{z+1} I\right) \otimes I\right] U^{(t+k)}}
\end{align*}
$$

This special case of the TPGADI method (2.1) with $B_{1}=B_{2}=I$ is similar in nature to the Peaceman-Rachford method [Young, 1971, Chapter 17]. In traditional three dimensional ADI applications, the partial differential operator is required to separate into three factors, and the domain is required to be a rectangular right prism. The resulting discrete elliptic problem is

$$
(A \otimes I \otimes I+I \otimes B \otimes I+I \otimes I \otimes C) U=F
$$

which is solved using a three directional ADI scheme [Varga, 1962, Section 7.4]. By combining the x and y dimensions into one factor, we can solve a considerably larger class of problems while still using an efficient TPGADI method.

5. Convergence of the Tensar Product Generallzed ADI Method

We now establish the convergence of the TPGADI iterative method (4.1) if applied to the discrete elliptic Dirichlet problem (3.5).

Theorem 5.1. For h_{r}, h_{y} and h_{s} sufficiensly small, the TPGADI nethod (4.1) is convergent if applied to the discrete elliptic problem (3.5).

Proof. Let $E^{(k)}=U^{(t)}-U$ denote the error of the $k^{\text {th }}$ iterate. A straightforward computation shows that the components of the error satisfy

$$
\begin{equation*}
E_{i j}^{(k)}=\prod_{i=1}^{k}\left[\frac{\lambda_{i}-\rho_{i}}{\lambda_{i}+\rho_{i}} \frac{\mu_{j}-\rho_{i}}{\mu_{j}+\rho_{i}}\right] E_{i} j^{(0)} \tag{5.1}
\end{equation*}
$$

where λ_{i} and μ_{j} denote the eigenvalues of T_{s} and $\Lambda_{r g}$, respectively.

Now, for h_{y} sufficiently small, the tridiagonal matrix T_{s} resulting from the \mathbf{z} direction symmetric finite difference approximation to $\boldsymbol{L}_{\boldsymbol{L}} \omega$ is symmetric positive definite so that its eigenvalues are real and positive. Since the acceleration parameters p_{l} are always taken to be real and positive, it follows that for all $\boldsymbol{i}, \boldsymbol{l}$

$$
\begin{equation*}
\left|\frac{\lambda_{1}-p_{1}}{\lambda_{1}+p_{i}}\right| \leq \in<1 \tag{5.2}
\end{equation*}
$$

For h_{x}, h_{y} and h_{r} sufficiently small, A_{x} is diagonally dominant [Forsythe and Wasow, 1960, Section 20.7]. Moreover, since the domain Ω_{2} is connected, and since strict inequality holds for the boundary equations, it follows that $\boldsymbol{A}_{\boldsymbol{1 g}}$ is irreducibly diagonally dominant. Hence, since $\boldsymbol{A}_{\llcorner\mathrm{g}}$ has positive diagonal elements, its eigenvalues satisfy $\mathrm{Re}_{\boldsymbol{\mu}}>\mathbf{>}$ [Varga, Theorem 18]. Thus, for all j, t we have

$$
\begin{equation*}
\left|\frac{\mu_{j}-p_{i}}{\mu_{j}+p_{i}}\right| \leq \varepsilon<1 \tag{53}
\end{equation*}
$$

Combining the inequalities in (52) and (53), we see from (5.1) that

$$
\lim _{k=\infty}\left|E_{i j}^{(k)}\right|=\lim _{t-\infty} \prod_{i=1}^{k}\left|\frac{\lambda_{i}-\rho_{i}}{\lambda_{i}+\rho_{i}} \frac{\mu_{j}-\rho_{j}}{\mu_{j}+\rho_{i}} E_{i}{ }^{(0)}\right|=0
$$

which implies that

$$
\lim _{t \rightarrow \infty}\left\|E^{(t)}\right\|=0 \square
$$

We note that the latter part of the proof of Theorem 5.1 is merely a proof of the fact that Theorem 2.1 is still valid under the weaker assumptions that $\mathrm{Re}_{\boldsymbol{i}}>\mathbf{0}$ and $\mathrm{Re}_{\boldsymbol{\mu}} \boldsymbol{>}>\mathbf{0}$.

6. Compater Implementation and Performance Evelantion

We use some of the advanced features of ELLPACK ${ }^{\dagger}$ [Rice and Boisvert, 1985] to

[^0]implement our numerical method for elliptic problems on cylindrical domains. The implementation takes the form of an ELLPACK program together with supplemental Fortran subprograms. ELLPACK automatically discretizes the two dimensional domain $\boldsymbol{\Omega}_{2}$ and partial differential operator $L_{\text {кj }}$. Thus, we use existing software parts in a novel way to solve at least two difficult subproblems of the original problem. The supplemental subprograms discretize $L_{1} u$ and solve the resulting discrete problem using the TPGADI method. ELLPACK "thinks" that we are solving a two dimensional problem. A sample ELLPACK program is given in Appendix A.

We now consider briefly the computational complexity of the TPGADI method derived for the discrete elliptic problem $\left(T_{2} \otimes I+I \otimes A_{x}\right) U=F$. Recall that the tridiagonal matrix T_{s} has dimension $M \times M$. We assume that $A_{x y}$ has dimension $N_{x y} \times N_{x y}$ with bandwidth $K_{x y}$; recall that $N_{x y}$ and $K_{x y}$ depend on the two dimensional nonrectangular domain Ω_{2}, with $N_{x y} \leq N_{x} N_{y}$ and $X_{r y} \leq N_{y}$. Moreover, we assume that $M=O\left(N_{x}\right)=O\left(N_{y}\right)$ since this is a most likely case for typical applications. The work required to compute one iteration of the TPGADI method (22) is in [Dyksen, 1984a]. For the special case $B_{1}=B_{2}=I$ as in (4.1), the work per iteration is summarized in Table 6.1.

Table 6.1
Work to compute one sweep of the TPGADI method for partial difference equations on cylindrical domains

z-direction sweep		$x y$-direction sweep	
Operation	Work	Operation	Work
$\begin{aligned} & W_{2}=A_{5}-\rho_{k+1} I \\ & W=\left(I \otimes W_{2}\right) U^{(k)} \\ & W=F-W \\ & W_{1}=T_{k}+\rho_{k+1} I \\ & U^{(t+z)}=\left(W_{1} \otimes I\right)^{-1} W \end{aligned}$	$\begin{gathered} u N_{x y} \\ 2 M K_{n} N_{x y} \\ M N_{x y} \\ M M \\ 2 M+3 M N_{x y} \end{gathered}$	$\begin{aligned} & W_{1}=T_{z}-\rho_{k+1} I \\ & W=\left(W W_{1} \otimes I\right) U^{(z+b)} \\ & W=F-W \\ & W_{2}=A_{x y}+\rho_{t+1} I \\ & U^{(z+1)}=\left(I \otimes W_{2}\right)^{-I} W \end{aligned}$	$\begin{gathered} \underline{H M} \\ 2 M N_{x y} \\ M N_{x y} \\ 1 / N_{x y} \\ 2 K x y^{2} N_{x y}+3 M K_{x y} N_{x y} \end{gathered}$

Thus, the work required per iteration for the 2 -direction sweep is $O\left(2 M K_{x y} N_{r y}\right)$ and for the
$x y$-direction sweep is $O\left(3 M K_{x} N_{n g}\right)$ so that the total work per iteration is $O\left(S M K_{r y} N_{x y}\right)$. Since the TPGADI iterative method can be a direct method in M iterations, it follows that the total work to solve the discrete problem (3.5) is $O\left(5 M^{2} K_{n g} N_{r y}\right)$. For the simple "worst case" $N=M=N_{x}=N_{y}, N_{x y}=N_{x} N_{y}$ and $K_{x y}=N_{x y}$, this simplifies to $O\left(5 N^{5}\right)$.

By contrast, $\left(T_{x} \otimes I+I \otimes A_{x y}\right)$ has dimension $M N_{x y} \times M N_{n}$ and approximatc bandwidth $N_{\lambda 1}$. The work to factor it using band Gauss elimination with partial pivoting is $O\left(M N_{x j}^{3}\right)$ operations. For the simple worst case considered above, this simplifies to $O\left(N^{7}\right)$. Thus, even as a direct method, the TPGADI method is asymptotically much faster than band Gauss elimination.

The memory required by the TPGADI method is nearly optimal, $O\left(3 M N_{x y}+6 K_{x y} N_{x y}\right)$ words. For the simple worst case considered above, this simplifies to $O\left(9 N^{3}\right)$ words, nine times the number of unknowns. To factor ($T_{1} \otimes I+I \otimes A_{\pi}$) using band Gauss elimination, $O\left(3 M N_{x y}^{2}\right)$ words are required; $O\left(3 N^{5}\right)$ words if $M=N_{x}=N_{y}, N_{x y}=N_{x} N_{y}$ and $K_{x y}=N_{x y}$. Thus, the TPGADI method gives a potential for using a relatively large number of grid lines to solve three dimensional clliptic problems.

The following numerical results were computed on a VAX 11/780 (UNLX, 4.1BSD) with a floating-point accelerator using the Fortran compiler f77 with optimizer in single precision. The acceleration parameters p_{k} are computed to be the eigenvalues of the symmetric positive definite matrix T_{x} by the EISPACK routine IMTQLI [Smith, et. al., 1976], [Wilkinson, 1962]; the time required to compute these eigenvalues is always included in timings of the TPGADI method. They are used in increasing order [Lyach and Rice, 1968]. The initiat iterate, $U^{(1)}$, is always taken to be zero.

Example 6.1. Performance of the TPGADI Method with N Varied

Let $\mathbf{\Omega}_{2}$ be the two dimensional circular domain defined by

$$
\Omega_{2}=\left\{(x, y) \left\lvert\,\left(x-\frac{y}{h}\right)^{2}+(y-1 / 2)^{2}<u h\right.\right\},
$$

and let Ω_{3} be the right circular cylinder defined by $\Omega_{3}=\Omega_{2} \otimes[0,1]$. We consider the Model Dirichles Problem

$$
\begin{align*}
-u_{x x}-u_{r y}-u_{x x} & =f & & \text { in } \Omega_{3} \\
u & =g & & \text { on } \partial \Omega_{y} \tag{6.1}
\end{align*}
$$

where f and g are chosen so that $u(x, y, z)=x^{2} y^{2} z^{3}$. We solve (6.1) with $1 / h=4,8,16,32$ where $N=M=N_{x}=N_{y}$ so that $h=h_{x}=h_{x}=h_{y}=\frac{1}{N+1}$. The maximum relative error at the grid points interior to $\boldsymbol{\Omega}_{3}$ is computed. The results are summarized in Table 6.2.

Table 6.2
The TPGADI method applicd to the partial difference equations arising from the Model Diricblet Problem on a cylindrical domain

$N+1=1 / h$	$K_{r 7}$	$N_{\lambda 7}$	Number of Unknowns	Number of Iterations	Solution Time (Secs)	Maximum Error
4	3	9	27		3	0.12
8	7	45	315	7	$3.4190 e-08$	
16	15	193	2895	15	111.45	$5.5426 e-06$
32	31	793	24583	31	4075.00	$7.9324 e-05$

A logarithmic fit of this timing data shows that Time $\approx 680^{*} 10^{-4 *} N^{4.48}$ which agrees with the worst case theoretical work estimate of $O\left(5 N^{5}\right)$ operations. Note that we are using the TPGADI method as a direct method; in practice, one would use many fewer than N sweeps. The partial difference operators in (33) and (3.6) are theoretically exact on the Model Dirichlet Problem with solution $u(x, y, z)=x^{2} y^{2} z^{3}$. Machine round-off is achieved, and the round-off crrors do not grow significantly since Error $=334^{*} 10^{-9}{ }^{\circ} N^{2 月 5}$.

The TPGADI method uses a relatively modest amount of memory to solve this three dimensional problem. For the case $1 / h=32(N=31)$, we use on the order of 220,000 words of memory. The matrix $\left(T_{x} \otimes I+/ \otimes A_{x}\right)$ has dimension 24583×24583 with appronimate bandwidth 793. The amount of memory required to store and factor it using band Gauss elimination is approximately 585 million words.

Example 6.2. The TPGADI Method Applied to the Partial Difference Equations Arising from Problem 18

Let Ω_{2} be the two dimensional nonrectangular domain given in Figure 3.1 and let Ω_{3} be the cylindrical domain defined by $\mathbf{\Omega}_{\mathbf{3}}=\mathbf{\Omega}_{\mathbf{2}} \otimes[0,1]$. We extend to three dimensions the two dimensional elliptic opcrator of Probtem 18 of the population of partial differential equations in [Rice, et. al., 1981]; in particular, we consider

$$
\begin{align*}
-u_{x x}-(1+x y) u_{y y}-\left(\sin (z) u_{s}\right)_{y}-\cos (x) u_{x}+e^{-x} u_{y}+\left(3+z^{2}\right) u & =f \text { in } \Omega_{3} \\
u & =g \text { on } \partial \Omega_{3} . \tag{62}
\end{align*}
$$

where f and g are chosen so that $u(x, y, z)=\sin (2 \pi x) \cos (4 \pi y) e^{x}$.
We solve (6.2) using $h=h_{t}=h_{x}=h_{j}=\frac{1}{N+1}$. The smallest $(N+1) / 2$ eigenvalues of T_{s} are used as the aeceleration parameters. The results are given in Table 6.3.

Table 63
The TPGADI method applied to the partial difference equations arising from Problem 18 on a cylindrical domaia

$N+1=1 / h$	$K_{\text {rg }}$	$N_{\boldsymbol{g}}$	Number of Unknowns	Number of Iterations	Solution Time (Secs)	Maximum Error
4	2	3	9	2	0.04	$6.42666-01$
8	5	17	119	4	0.53	$12656 e-01$
16	11	88	1320	8	18.80	$3.0372 \mathrm{e}-02$
32	23	394	12214	16	706.24	$7.9741 e-03$

We obtain Error $\approx 110 h^{2.11}$ which agrees with the theoretical convergence rate of $O\left(h^{2}\right)$. The number of iterations is chosen a priori, somewhat arbitrarily; it is possible that fewer iterations would produce satisfactory results. Figure 6.1 contains contour plots of two cross sections of the error in solving Problem 18 for the case $h=1 / 16$. Note that the errors on some of the contours are larger than the maximum error given in Table 6.3; this is due to the error in the interpolation scheme used by ELLPACK ncar the boundary.
λ

error contours contour value	
1	-. 13e+00
2	-. $10 \mathrm{e}+00$
3	-. $76 \mathrm{e}-01$
4	-.49e-01
5	-. $21 \mathrm{l}-01$
6	. 63 e-02
7	. $34 \mathrm{e}-01$
8	.61e-01
9	.89e-01
10	. $12 e+00$
.	

$\begin{array}{l}\text { error } \\ \text { contours } \\ \text { contour velue }\end{array}$		
1		$-.10 e+00$
2		

Flgure 6.1 Contour plots of two cross sections of the efror in solving Problem 18 on the planes $z=1 / 2$ (top) and $z=1 / 4$ (bottom) for the casc $h=1 / 16$

Example 6.3. The TPGADI Method Applied to the Partial Difference Equations Arising from a Cylindrical Domain with a Hole

ELLPACK provides a so-called HOLE segment which defines a hole to be removed from a two dimensional nonrectangular domain defined by a BOUNDARY segment. The discretization module 5 PODNT STAR is designed to handle such domains. As a result, our implementation allows cylindrical domains with holes. Let Ω_{2} be the two dimensional nonrectangular domain with a hole given in Figure 6.2. Let Ω_{3} be the cylindrical domain defined by $\Omega_{3}=\Omega_{2} \otimes[0,1]$. We consider the heat conduction problem defined by

$$
\begin{align*}
-u_{\text {II }}-u_{\eta y}-u_{x x} & =0 \text { in } \Omega_{3} \\
u & =g \text { on } \partial \Omega_{3}, \tag{6.3}
\end{align*}
$$

where g is defined by

$$
g(x, y, z)= \begin{cases}1600[z(1-z)]^{2} & \text { if }(x-1 / 4)^{2}+(y-1 / 4)^{2}=1 / 16 \\ 0 & \text { elsewhere }\end{cases}
$$

The solution u to (6.3) can be interpreted as the steady state temperature distribution within Ω_{3}, given that the boundary is kept at the temperatures defined by g.

We see from Figure 6.1 that the domain $\widehat{\Omega}_{2}$ is difficult to approximate particularly since the hole is so close to the left boundary $x=0$. For example, even if $h_{r}=1 / 16$, there would be only one grid line between them. We solve (63) using $h_{x}=h_{y}=1 / 32, h_{x}=1 / 16$ and $h_{x}=1 / 64$, $h_{J}=1 / 32, h_{x}=1 / 16$, giving 8400 and 17,190 unknowns' to compute, respectively. We use 8 itcrations of the TPGADI method resulting in solution times of 364.74 seconds and 769.28 seconds, respectively. Figure 6.3 and Figure 6.4 are contour plots of a cross section of the computed solution on the pianes $z=1 / 2$ and $z=1 / 4$. The computed solution shows the heat flowing out from the hole through \mathbf{n}_{3} to the outer cool boundaries of $\mathbf{\Omega}_{3}$. Note that even though the contour plots look similar on the two different planes, the maximum value in the solution differs by a factor of two.

Flgare 6.2 A graph of a cross section of the domain for Example 62 with the grid lines for the cascs $h_{x}=h_{y}=1 / 32$ (top) and $h_{x}=1 / 64, h_{y}=1 / 32$ (bottom)

u contours contour value	
1	$-.34 e-08$
2	$.11 e+02$
3	$.22 e+02$
4	$.33 e+02$
5	$.44 e+02$
6	$.56 e+02$
7	$.67 e+02$
8	$.78 e+02$
9	$.89 e+02$
10	$.10 e+03$
.	

u contours

contour value	
1	$-.17 e-08$
2	$.63 e+01$
3	$.13 e+02$
4	$.19 e+02$
5	$.25 e+02$
6	$.31 e+02$
7	$.38 e+02$
8	$.44 e+02$
9	$.50 e+02$
10	$.56 e+02$

Flgure 6.3 Contour plots of two cross sections of the computed solution to a heat conduction problem on the plancs $z=1 / 2$ (top) and $z=1 / 4$ (bottom) for the case $h_{r}=h_{3}=1 / 32, h_{1}=1 / 16$

contours

contour value	
1	$-.87 e-01$
2	$.11 e+02$
3	$.22 e+02$
4	$.33 e+02$
5	$.44 e+02$
6	$.56 e+02$
7	$.67 e+02$
8	$.78 e+02$
9	$.89 e+02$
10	$.10 e+03$

4 contours contour value	
1	-.55e-01
2	. $62 e+01$
3	. $12 \mathrm{e}+02$
4	. $19 \mathrm{e}+02$
5	. 25 e +02
6	. 31 e+02
7	. $38 \mathrm{e}+02$
8	. $44 \mathrm{e}+02$
9	. $50 \mathrm{e}+02$
10	. $56 \mathrm{e}+02$

Flgure 6.4 Contour plots of two cross sections of the computed solution to a heas conduction problem on the planes $z=1 / 2$ (top) and $z=1 / 4$ (bottom) for the case $h_{s}=1 / 64, h_{y}=1 / 32, h_{f}=1 / 16$

7. Reference:

1. G. Bitkhoff, R. S. Varga and D. M. Young, "Alternating direction implicit methods", Advances in Computers, Academic Press, New York, 3(1962), 189-273.
2. G. Birkhoff and R. E. Lynch, Numerical Solution of Eliptic Problens, SIAM, Philadelphia, 1985.
3. R. F. Boisvert, "Families of high order accurate discretizations of some elliptic problems", SIAM J. Scl. and Star. Comp., 2(1981), 268-284.
4. J. H. Bramble and B. E. Hubbard, "A theorem on error estimation for finite difference analogues of the Dirichlet problem for elliptic equations", Contributions to Differential Equations, 2(1963), 319-340.
5. C. de Boor, "Efficient computer manipulation of tensor products", ACM Trans. Math. Software, 5(1979), 173-182.
6. J. Douglas, Jr. and H. H. Rachford, Jr., "On the numerical solution of heat conduction problems in two or three space variables", Trans. Amer. Math. Soc. 82(1956), 421-439.
7. W. R. Dyksen, "Tensor Product Generalized Alternating Direction Implicit Methods For Solving Separable Sccond Order Linear Elliptic Partial Differential Equations", Ph.D. Thesis, Purdue University, 1982.
8. W. R. Dyksen, "Tensor product generalized ADI methods for elliptic problems", Purdue University, Computer Science Department Report CSD-TR 493, September 1984, submitted for publication.
9. W. R. Dyksen, "A tensor product generalized ADI method for the method of planes", Purdue University, Computer Science Department Report CSD-TR 494, October 1984, submitted for publication.
10. W. R. Dyksen and J. R. Rice, "Symmetric versus nonsymmetric differencing", SIAM J. Sci. Stat. Comp., 6(1985), 45-48.
11. G. E. Forsythe and W. R. Wasow, Finite Difference Methods for Partial Differential Equations, John Wiley and Sons, New York, 1960.
12. E. N. Houstis, R. E. Lynch, J. R. Rice and T. S. Papatheodorou, "Evaluation of Numerical Methods for Eliptic Partial Differential Equations", J. Compur. Phys., 27(1978), 323 350.
13. R. E. Lynch, J. R. Rice and D. H. Thomas, "Direct solution of partial difference equations by tensor product methods", Numer. Math., 6(1964), 185-199.
14. R. E. Lynch, J. R. Rice and D. H. Thomas, "Tensor product analysis of alternating direction implicit methods', J. Soc. Indust. Appl. Math., 13(1965), 995-1006.
15. R.E. Lynch, and J. R. Rice, "Convergence rates of ADI methods with smooth initial error", Mark. Comp., 22(1968), 311-355.
16. R. E. Lynch, and J. R. Rice, "High accuracy approximations to solutions of elliptic partial differential equations", Proc. Naı. Acad. of Sci., 75(1978), 2541-2544.
17. R. S. Martin and J. H. Wilkinson, "The implicit QL algorithm", Numer. Marh., 12(1968), 377-383.
18. D. W. Peaceman and H. H. Rachford Jr., "The numerical solution of parabolic and elliptic differential equations", J. Soc. Indust. Appl. Math., 3(1955), 28-41.
19. J. R. Rice, E. N. Houstis and W. R. Dyksen, "A population of linear, second order, elliptic partial differential equations on rectangular domains, Parts 1 and 2", Math. Comp., 36(1981), 475-484.
20. J. R. Rice, "Numerical computetion with general two dimensional domains", ACM Trans. Math. Sofiware, 10(1984).
21. J. R. Rice and R. F. Boisvert, Solving Elliptic Problems using ELLPACK, Springer-Verlag, New York, 1985.
22. B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigensystem Routines - EISPACK Guide, Springer-Verlag, New York, 1976.
23. R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1962.
24. J. H. Wilkinson, "Calculation of the eigenvalues of a symmetric tridiagonai matrix by the method of bisection", Numer. Math., 4(1962), 362-367.
25. D. M. Young, herative Solution of Large Linear Systems, Academic Press, New York, 1971.

8. Appendix A - A Smple ELLPACK Program

Our qumerical method for elliptic problems on cylindrical domains with holes is implemented within the ELLPACK system [Rice and Boisvert, 1985]. We use an ELLPACK program supplemented with Fortran subprograms. The two dimensional domain $\mathbf{\Omega}_{\mathbf{2}}$ and partial differential operator $L_{\Sigma y}$ are discretized by ELLPACK. The discretization of L_{x} and the TPGADI solution of the discrete problem is done by the supplemental non-ELLPACK subprograms. Note that ELLPACK "thinks" that we are solving a two dimensional problem. A sample ELLPACK program is given Figure 8.1 for the Poisson problem on a right circular cylinder.

The ELLPACK language provides a simple and natural way to express a two dimensional nonrectangular domain by specifying a sequence of parameterized sides together with boundary conditions. For example, the domain in Figure 3.1 is defined in ELLPACK by the following so-called BOUNDARY segment:

BOUNDARY.

$$
\begin{aligned}
& U=0.0 \mathrm{CN} X=0.5^{\circ} \operatorname{SIN}(T), Y=0.5^{\circ} \operatorname{COS}(T) \text { FOR } T=0 \text {. TO PI/2. } \\
& \text { ON LINE 0.50,0.00 TO 1.00,0.00 TO 1.00,0.25 TO } \\
& 0.75,0.25 \text { TO } 0.75,0.50 \text { TO } 0.50,0.50 \text { TO } \\
& 0.50,0.75 \text { TO } 0.25,0.75 \text { TO } 0.25,1.00 \text { T0 } \\
& 0.00,1.00 \text { TO } 0.00,0.50
\end{aligned}
$$

In this BOUNDARY segment, homogeneous Dirichict boundary conditions are specified on all sides of the domain.

A two dimensional, nonrectangular domain is discretized within ELLPACK using the scheme described in Section 3 [Rice, 1984]. The domain processor overlays the rectangular grid of points on the domain, determines which grid points are inside and outside of the domain, determines which interior grid points are next to the boundary, and finds the intersections of the grid lines with the boundary of the domain. The boundary intersection points must be determined accurately relative to the discretization error so that the Dirichlet boundary data is evaluated accurately.

```
: SAMPLP ELLPACK PROGFAM FOR PARTIAL DIFFRENCE EQUMTIONS ON
glozal.
    COMMDN / TPZZZZ / Z
DECLARATIONS.
    PARAMETER (NGDINDK = 9)
        PARAMETER (NPLNMX = NGIMNX-2)
    PARAMETER (NEDMAX = $IJNGRY - 2)
    PARANETER (NOOLMX = 2*NRDMAX + 1)
    PARAMETER (NWXIXY = SIMMEO*(NBRMAX + 1))
    OCMMDN I TPRSID / TPRSID($I1MNEO,NPLNNX)
    OMNDN / TPUNKN / TPUNKN(SIIMNEQ.NPLNMX)
    COMMDN / GRIDEZ / GRIDZ(NCLONX)
    REAL
    A TZ(NPLNMX,2),
    B AXY($1 1MNEO,NCOUNK)
    C WORKNN($I IMNBO,NOOLMNK).
    D WORKMN(NPLNMX;$IIMNBO),
    E WORK(NWXLXY),
    F FID(NPLNMK) 23 2 3 2 2
```



```
EOUATION.
    - UXX - UYY = - (2.*Y** 2* Z** 3 + 2.* X** 2* Z** 3 + 6.* 'X** 2**'** 2*Z)
BCOUNDARY.
    U=X**2* Y**2* Z**3 ON X=COS(T),Y=SIN(T) FCR T=0.0 TO 2.*PI
GRID.
    9 X POINTS -1.0 TO 1.0
    9 Y POINTS - 1.0 TO 1.0
FORTRAN.
C
C DEFINE Z GRID
    AZ = -1.0
    BZ = 1.0
    NGRIDZ =9
    HZ = (BZ-AZ)/(NGRIDR-1)
    NCDOMR = NGRIDE-2
    GRIDR(1) = AZ
    DO 10 KZ =2, NGRIDE-1
        GRILZ(KZ) = AZ + (KZ-1)}\mp@subsup{}{}{\prime}H
    10 ONNTINUE
    GRIDZ(NGRIDE) = BZ
```

Figore 8.1 Sample ELLPACK program for partial difference equations on cylindrical domains and the TPGADI iterative method. Supplementary Fortran program are loaded from a precompiled library.
C DISCRETIZE X,Y OPERATOR, BUILD THE RIGHT SIDE TPRSID
C AND GUESS THE SOLUTION TPUNKN
C
discretization. 5 point star
FORTRAN.
C INIERFACE 5 POINT STAR OUTPUT FOR INPUT TO TPGADI
C
CALL EIJAAXY (R1COEF, AXY, I 1 IDCO, I $1 \mathrm{MNEQ}, \mathrm{I}$ IMACO,
A IIENDX, IIUNDK,NBANDU,NBANDL)
C DISCRETIZE THE Z OPERATQR $-(P(Z) U)+Q(Z) U$
C CALL BILDIZ (TZ,NPLNXX)
C COMPUTE THE ITERATION PARAMETERS KHO(K)
C \quad [RIO $=1$
NITERS = NGRIDZ-2
CALL SETRIEO (IRHD, HHD, NGRIDZ, NITERS, TZ, NPLNNX,WORK)
C SCLVE (IZXI C (IXAXY) TPUNKN $=$ TPRSID
C NZAAND $=1$
MOYBND $=$ MAXO (NEANDL, NBANDU)
CALL TPGADI (TZ, BZZ,NPLNMK, MGDTNZ, NZAAND,AXY, BKY, I MMNED, I JNEDN
A
MXYBND, TYRSID, TPUNKN, BZFACT, BXYFCT, WORKMM, WORKNN,
WORKRN, WOKKBZ, WRKBXY, WORK , NITERS , FHO)
\mathbf{C}
\mathbf{C}
\mathbf{C}
DO $20 \mathrm{KZ}=1$, NGDASZ
$\mathbf{Z}=G R I D Z(K Z+1)$
PRINT *, $\bullet \bullet$ PLANE $Z={ }^{\prime}, \mathbf{Z}$
INITL $=1$
OUPUT . MAX(THUE) 3 MAX(ERROR)
FORTRAN
20 CONTINUE
SUBPROTRAMS .
C
C
C
FUNCTION ZPOOE(Z)
ZPCOE = - 1.
RETURN
END
FUNCTIUN ZOOOE (Z)
2000E $=0$.
RETURN
END
C
C
C
FUNCTION TRUE (X,Y)
COMAN / TPZZEZ IZ
TKIJ $=X^{*+2}+Y^{*-2} \cdot Z^{*-3}$
REIURN
END
END.

Flgure 8.1 (Continued)

Given the graph of a domain and the grid lines as in Figure 3.1, the task of "processing" a nonrectangular two dimensional domain is easy to do "by eye". However, the automation of this process within a computer program is nontrivial. The domain processor consists of approximately 1450 lines of executable Fortran. By contrast, the totality of subprograms which construct and solve the discrete elliptic problem contain approximately 1200 lines of code. Hence, to implement our numerical method on cylindrical domains, the problem of approximating the domain is in some sense as difficult (as measured by the amount of Fortran code) as that of approximating the solution of the elliptic problem.

The ELLPACK discretization module 5 POINT STAR uses the output from the domain processor to construct the matrix $A_{x y}$ in (3.5); that is, 5 PONNT STAR approximates $L_{x y}{ }^{4}$ on a two dimensional cross section $\boldsymbol{\Omega}_{2}$ of the three dimensional cylindrical domain $\boldsymbol{\Omega}_{\mathbf{3}}$. The original version of 5 PONT STAR was modified slightly to evaluate the right side of the partiai differential equation and eliminate the Dirichlet boundary conditions on each cross section. The matrix T_{z} approximating $L_{z} \mu$ is computed by a BILDTZ. The z direction operator, $L_{s}=-\left(p(z) u_{r}\right)_{t}+q(z) u$, is specified in the function subprograms ZPCOE and ZQCOE. The z variable is made available to all subprograms through so-called global common.

The discrete problem is solved by TPGADI which implements the TPGADI method (4.1). The routinc BLDAXY interfaces the output from 5 POINT STAR for input to TPGADI. The acceleration parancters ρ_{k} are computed to be the eigenvalues of the symmetric positive definite matrix T_{f} by SETRHO which uses the EISPACK routine IMTQL1 [Smith et al., 1976], [Wilkinson, 1962]. They are used in increasing order [Lynch and Rice, 1968]. The initial iterate, $U^{(0)}$, is always taken to be zero. Although the source for these supplementary programs could be included in the SUBPROGRAMS segment of the ELLPACK program, we automatically load them from a separate, precompiled library.

[^0]: ${ }^{\dagger}$ ELlpack is a very bigt level computer language developed at Purduc Univerity for miviog mecond order linear elliptic partial differential equations.

