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ABSTRACT

We consider solving second order linear clliptic partial differential equations together
with Dirichlet boundary conditions in three dimensions on cylindrical domains (nonrectangu-
lar in x and y) with holes.

We approximate the partia! differential operators by standard partial difference opera-
tors. If the partial differential operator separates into two factors, one depending on x and y,
and onc depending on z, then the discrete elliptic problem may be written in tensor product
form as

(T, ®F +1 @A) =F.

We consider a specific implementation which uses a Method of Planes approach with unequally
spaced finite differences in the xy direction and symmetric finite difference in the z direction.
We establish the convergence of the Tensor Product Generalized Alternating Direction Implicit
iterative method applied to such discrete problems. We show that this method gives a fast
and memory cfficient scheme for solving a large class of clliptic problems.




A Tensor Product Generalized ADI Method for Elliptic Problems
on Cylindrical Domains with Holes

Wayne R. Dyksen

1. Introdaction

Elliptic problems in three dimensions on nonrectangular domains present several diffi-
culties. First is the often ignored problem of approximating the domrin. This may be, in
some sense, as difficult as the rest of the problem. Sccond, straightforward diecretizationa
give very large lincar systems, even for relatively coarse grids. Third, these systems often do
not possess nice propertics, and using simple band Gauss elimination is very expensive. We
present a fast method for elliptic problems which separate into two factors, one depending on

x and y, and one depending on 2. We obtain & discrete problem of the form
1.1 (T, @I +1 @A, )V =F.

using tensor products of matrices. We then apply a fast, tensor product ADI.method to solve

(1.1) efficiently.

In Section 2 we briefly introduce the Tensor Product Generalized Alrernasing Directlon
Implicit (TPGADI) mcthod. We usc finite differences to derive a tensor product formulation
of the discrete problem in Section 3. In Sections 4 and 5, we apply the TPGAD] method to
this discrete problem, proving convergence for the Dirichlet problem. We explore a specific

implementation in Section 6, showing that it is efficient both in time and memory.




2. The Twoa Directlonal Tensor Prodact Generalized ADI Methods

Let A, and B, be Ny XN, matrices, and consider the lincar system
(2.1) (A, ®B;+B,®A)C =F.

We wish to solve the two directional prablem (2.1) by using mecthods employed to solve the
one directional, simplcr problems involving Ay, By, A, and B;. The term direcrional is used

rather than dimensiona! since one direction may encompass more than one dimension.
For a given set of positive acceleration parameters g, , k=1,2,..., the two directional

Tensor Product Generalized Alternating Direction Implicit (TPGADI) iteration method is

defined by

c® piven

(22) [(41 +py +151)®BZ]C(““)=F - [H1®(‘4lz"F't+1""2)]c(n
[51 ®(Az *py +:*“37.)]':'-'(l HW=F - [(Al —Ppra181)©B2|CEHY,

We use the following results in subsequent analysis; details arc found in [Dyksen, 1984a].

THEOREM 2.1. Let A, and By be matrices of order Ny XNy, and consider she linear sys-
tem (2.1) for F given. Suppose that B 'A, and B;'A, have complete sets of rarmalized eigenvec-
tors p; and qy, respectively, with corresponding positive eigenvalues A, and u,, respectively. Then,
for a given set of positive acceleration parameters p;, k = 1,2,..., the two directional Tensor Pro-
duct Generalized Alternating Direction Implicit iterative method, given by (22) is convergent, and

C it irs only solution.

COROLLARY 2.2. The TPGADI iterative method (22) can be exact (exceps for round-off}
In a number of iterations equal 1o the number of unknowns in either direction; shat Is, in Ny or N,

iterations.



Discrete clliptic problems arising from other discretizations in both two and three dimen-
sions can be solved using the TPGADI methad. In two dimensions we have considered the
Method of Lines [Dyksen, 1982] and Hermite bicubic collocation [Dyksen, 1984a]. We also
have solved problems on threc dimensional rectangular domains using Hermite bicubic collo-

cation in x and y, and finite differences in 2 {Dyksen, 1984b].

3, The Tensor Product Formualation of the Discrete Problem

Let fl, be a bounded two dimensional domain contained in the rectangle
R =[a, .b.] X[a,,b,]. A three dimensionel cylindrical domain {1, is formed by the tensor pro-

duct ;=0 X[a, .b,]. We consider partial differential equations of the form

Lou+Lu =f in (I,

G1) u=g ondl,,

where

(32a)L,u =—a(x,y)u., —b(x,y)u, telx,y)u, +d(x,y)u +elx,y}u, a,6>0,e=0,
(32b) Lu=—(p@) +q(z)u, p>0,¢=0,

and where f and g are given functions of x, y end z.

We first consider the subproblem of solving clliptic problems of the form

L‘,Il =f in nz
u=g ondfl,,

where [, g and o arc functions of x and y. To solve such problems, we must approximate
both the nonrectangular domain {) ; and the operator L.

For given positive integers N, and ¥,, the rectangle R containing {1 is subdivided by a

rectangular grid defincd by the grid lines




b, —a b —
5o i, =, and Y=o ey, by =
x h

The interior of the domain {1, is approximated by (1, the set of grid points (x;,y;) in the
interior of N,. The boundary 2}, is epproximated by 3415, the intersection of the grid lines
with a0} ,. Figure 3.1 shows en cxample of a nonrectangular domein. Note that small changes
in N, and N, can substantially change the nature of the interior grid elements near the boun-
dary. In practice, it is not always possible to choose the grid lines so that they intersect with

38}, in a nice way. However, as ¥, N, — ©, these effects become less dramatic.

We approximate Lu by finite difference operators. Consider a grid point (x;,y;) € 0,
and let the distance to its necarest neighbor to the west, east, north and south be denoted by
e, hg, by and kg, respectively; that is, we have the following five points for the finite differ-

ence approximations.
(e -)'14-1) =(x Wyt hy)
(xi—1yp) = (x; —bg ) i) (x; 1) = (x +hg.y))
(xyy-1) = (x-, »¥y —hs)

The partial differential operators in (32a) are replaced by the unequally spaced partial differ-

cnce operators defined by

2

2 2
lyy = ————————maam g e —— e — +0
el Ay (hg +hy) -1y hy kg 1 he(hs +he) bisly (&:)

u, | =—-———-—_h£ X +’l'3_""r hw
U by the) T hghg “

+
¥ Tths oy Mt O

(33)

2 2 2
] = e — - +
“P 0T hs (b +hs5) a1 hohy o hy (hy +hs) g1t O (hy)

h

S Y hy —hs h
ol hs(hy +hs)

cd 2
ey ————— +
bk T Tl 1Ay i TG
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Flgure 3.1 A nonrcctangular domain from a problem involving heat flow in the
shield of a nuclear rcactor approximated with N, =N, =7 and with N, =N, =8
[Houstis, et. al., 1978]




where u; =u(x;,y;) (see [Forsythe and Wasow, 1960), Theorems 202 and 20.4). Note that
max(hy ,hg) <k, and max(hs,hy)<h,. .

There are two distinct types of grid points in {1 5: regular points which have all four of
their nearest neighbors in 1 ,, and irregular points which have onc or more nearest neighbors
on the boundary 3f1,. At irregular grid points, the finite difference approximations in (3.3)
give only O (k) and O (k,) approximations to u,, and uy,, respectively. At regular grid points,
we have ke =k and hy =hs so that (3.3) reduces to the standard equally spaced finite differ-
ences giving O (h?) and O (h?) approximations to u,. and u,,, respectively. We sce from Fig-
ure 3.1 that, as N, ,N, ~ =, most of the intcrior grid points in (1, arc regular grid points.
Thus, the discretization error in the finite difference approximation to L u is locally O (57) +
O(h,z) at most of the grid points in {1,. 1f 4 has & bounded fourth derivative in 01 5, then the
global discretization error is pointwise O (#%), where b =max(h,,h,) [Bramblc and Hubbard,

1963, Theorem 3.1).

If we form the difference cquations for cach point (x;,¥;) € fi,, subtracting the boun-
dary values on 301, from the right side, we obtain a system of simuitancous lincar equations

in the unknowns Uy, = u(x;,y,}, which we writc as

(3.4) A

0=l

If £}, is rectangular, thea v4n, -1y =Uy- The matrix 4, has dimension equal to the number
of grid points in 1, which is less than or equal to N.N,. If the grid points are ordered in a
natural way (south to north, west to cast), then A hes bandwidth less than or equal to N,

depending on the domain.

We now rcturn o the original problem of solving three dimensional elliptic problems of
the form (3.1) by using a “Method of Planes” approach. For a given positive integer M, we
approximate the cylindrical domain £14 by M +2 two dimecnsional cross sections defined by the

planes



b, —a,

= j = ey +1.
TR IR 0,1,...,M+1

2y =a; +jh, &

On each interior two dimensional domain l'iz@z,, we epproximate L., at each point in the
interior of 1,8z, by the partial difference operators (33). We approximate L, by the sten-
dard symmetric finite differences. If we now let Uy; = u(x;,y:,2;), then our finite difference
approximation to (3.1} results in a system of lincar equations in the unknowns U, which can

be written in tensor product form as
(35 (T, +IQAN =F,
where T, is the symmetric tridiagonal matrix of order M XM defined by

T, =tridiag [d)._ d, d‘,*'].

where
gt (uh; Wh,)

6 R _"‘)"‘),:f G +mh) |
g 22U )

h2

and A,, is defined in (3.4). Note that we use I to denote the identity matrix of possibly dit-

ferent orders.

4. The Tensor Product Generalized ADI Method for Cyllndrical Domalns

For a given sct of positive acceleration parameters p;, £ =1,2,..., the TPGADI method

for the partial difference equations in (3.5) is given by

e e e




U® given

@) 7. +ean@ifue*® = - |1 ®4s ~pun)|U®

[ &, +pran)|u e =F [, -peiny @I e,

This special case of the TPGADI method (2.1} with B;=8,=1I is similar in nature to the
Peaceman-Rachford method [Young, 1971, Chapter 17]. In traditional three dimensional ADI
applications, the partial differential operator is required to separate into three factors, and the

domain is required to be a rectangular right prism. The resulting discrete elliptic problem is .
(AQI®I+I QB! +1 I QC)U =F,

which is solved using a three directional ADI scheme [Varga, 1962, Section 7.4]. By combining
the x end y dimensions into one factor, we can solve a considerably larger class of problems

while still using an cfficient TPGADI method.

5. Convergence of the Tensar Product Generallzed ADI Methad

We now establish the convergence of the TPGADI iterative method (4.1} if applicd to

the discrete elliptic Dirichlet problem (3.5).

TREOREM 5.1, For k., h, and h, sufficiently small, the TPGADI method (4.1} is conver-

genr if applied to the discrete elliptic problem (3.5).

Proof. Let E®)=y®) —p denote the error of the k™ jterate. A straightforward compu-

tation shows that the components of the error satisfy

ElAi—pr 1y — P4
S ‘5‘ E Ay tpp opy o ls

where A; and p; denote the cigenvalues of T, and A, respectively.




Now, for k. sufficiently small, the tridiagonal matrix T, resulting from the z direction
symmetric finite difference approximation to L, u is symmetric positive dcfinite so that its
eigenvalucs are real and positive. Since the acceleration parameters p; are always taken to be
real and positive, it follows that for all {, I

A —py

52
52) A +py

=e<]1.

For k., k, and k, sufficiently small, A,, is diagonally dominant [Forsythe and Wasow,
1960, Section 20.7]. Moreaver, since the domain 0, is connected, and since strict inequality
holds for the boundary cquaﬁons, it follows that A, is irreducibly diagonally dominant.
Hence, since A, has positive diagonal elements, its eigenvalues satisfy Rep, > 0 [Varga,
Theorem 18]. Thus, for all j, ! we have

By

=<1
) e

(33)

Combining the inequalitics in (52) and (53), we see from (5.1) that

ik IM Pt Py —D;
lim 1E*1 = lim Ef?|=0
k-m E-w oith Fr Byt i

which implics that

lim HE®) 1 =00

k- o

We note that the [atter part of the proof of Theorem 5.1 is merely a proof of the fact

that Theorem 2.1 is still valid under the weaker assumptions that ReA, > 0 and Rep; > 0,

6. Compuoter Implementation and Performance Evaloation

We use some of the advanced features of ELLPACK* [Rice and Boisvert, 1985] to

IELLPACK is & very high level computer language developed nt Purdue University for solving second ord-

er Lioear elliptic partial differential equations.
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implement our numerical method for elliptic problems on cylindrical domains. The implemen-
tation takes the form of an ELLPACK program together with supplemental Fortran subpro-
grams., ELLPACK automatically discretizes the two dimensional domain 2, and partial dif-
ferential operator L. Thus, we use existing softwarc parts in a novel way to solve at lcast
two difficult subproblems of the original problem. The supplemental subprograms discretize
L,u and solve the resulting discrete problem using the TPGADI method. ELLPACK “thinks”
that we are solving a two dimensional problem. A sample ELLPACK program is given in

Appendix A.

We now comsider briefly the computational complexity of the TPGADI method derived
for the discrete elliptic problem (T, @ +7 ®A,)U =F. Recall that the tridiagonal matrix 7,
has dimension M XM . We assume that A, haes dimension N, XN, with bandwidth K, ;
recall that N, and K,, dcpend on the two dimensional nonrectangular domain 01,, with
N = NN, and K, sN,. Morcover, we assume that M =O (N} =0 (¥,) since this is a most
likely case for typical applications. The work required to computc omc iteration of the
TPGADI method (22) is in [Dyksen, 1984a]. For the special case By =B, =/ as in (4.1), the
work per iteration is summarized in Table 6.1.

Table 6.1

Work to compute one sweep of the TPGADI method for partial difference equations
on cylindrical domains

z-direction sweep xy-direction sweep
Operation Work Operation Work
Wo=A, ~prad WV o Wi=T, —pasd M
W= owW® MR N, || W =W, @nue™ 2MN
W=F-W MN,, W=F-W MN,,
W1=T. +pl+1l waf W2=A:’ +Pt+1! !éN_.,
Ut =(w, Q1) W | 2M +3MN,, || ULV =0 ®W)'W  2KxyN,, +3MK N,

Thus, the work required per iteration for the z-direction sweep is O (2K Ny ) and for the
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xy-direction sweep is O (3MK, Ny, ) so that the total work per iteration is O (SMK N, ). Since
the TPGADI iterative mecthod can be a direct method in M iterations, it follows that the total
work to solve the discrete problem (3.5) is O(SM%K,,N_). For the simple “worst casc”
N =M =N, =N, Ny =N.N, and K, =N, this simplifics to O (SN ).

By contrast, (T, @I +1 ®A_) has dimension MN,, XMN,, and approximate bandwidth
N,. The work to factor it using band Gauss elimination with partial pivoting is O (MNJ3)
operations. For the simple worst case considered above, this simplifies to O(N 7). Thus, even
as a direct method, the TPGADI method is asymptotically much faster than band Gauss elimi-

nation.

The memory required by the TPGADI method is nearly optimal, O (3MN,, + 6K, N,,)
words. For the simple worst case considered above, this simplifies to @(9N¥%) words, nine
times the number of unknowns. To factor (T, ®F +1 ®A,) using band Gauss climination,
O(3MNJ) words are required; O(3N®) words if M =N, =N,, Ny, =N,N, and K, =N_.

Thus, the TPGADI method gives a potential for using a relatively [arge number of grid lines

to solve three dimensional clliptic problems.

The following numerical results were computed on a VAX 11/780 (UNIX, 4.1BSD) with
a floating-point accelerator using the Fortran compiler f77 with optimizer in single precision.
The acceleration parameters p, are computed to be the eigenvalues of the symmetric positive
definite matrix T, by the EISPACK routine IMTQL1 [Smith, et. al., 1976], [Wilkinson, 1962];
the time required to compute these cigenvalues is always included in timings of the TPGADI
method. They are used in increasing order [Lynch and Rice, 1968]. The initiel iterate, U@, is
always taken to be zero,

EXAMPLE 6.1, Performance of the TPGADI Mcthod with N Varied

Let £} be the two dimensional circular domain defined by

f,={(x2) | (x 8P+ —¥)?< ¥},




and let 0, be the right circular cylinder defined by f1,=101,®[0,1]. We consider the Model

Dirichlet Problem

—uy iy, —u, =f infl,

6. u=g ondfl,,

where f and g are chosen so that u(x,y,z)=x%%3. We solve (6.1) with 1/h =4, 8, 16, 32

where ¥ =M =N_, =N, so that h =h, =h =h, = . The maximum relative crror at the

N +1
grid points interior to §} 5 is computed. The results are summarized in Table 6.2.

Table 62
The TPGADI method applicd to the partial difference equations arising from the
Mode! Dirichlet Problem on a cylindrical domain

_ Number of | Number of Solution Maximum
N +1=1/k [ K5 | ¥5 | Upknowns | Iterations | Time (Secs) Error
4 3 9 27 3 0.12 9.4150¢-08
8 7 45 315 7 303 7.2651e-07
16 15 | 193 2895 15 11145 55426c-06
3z 31 | 793 24583 31 407590 7.9324c-05

A logarithmic fit of this timing data shows that Time = 6.80* 10~*N*# which agrces with the
worst case theoretical work estimate of O(SN®) operations. Note that we are using the
TPGADI method as a direct method; in practice, one would usc many fewer then N sweeps.
The partial difference operators in (33) and {3.6) are theoretically exact on the Model Diri-
chlet Problem with solution wu{x,y,z)}=x%%"

Machine round-off is echieved, and the
round-off errors do not grow significantly since Error = 334*107°N 288

The TPGADI mcthed uses a relatively modest amount of memory to solve this three
dimensional problem. For the case 1/& =32 (N =31), we use on the order of 220,000 words of
memory. The matrix (T, ©f +/®4,,) has dimension 24583 X 24583 with approximate
bandwidth 793. The amount of memory required to store and factor it using band Gauss clim-

" ination is approximately 585 million words.
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EXAMPLE 62. The TPGADI Method Applied to the Partial Difference Equations Aris-

ing from Problem I8

Let {}; be the two dimensional nonrectangular domain given in Figure 3.1 and let £} 5 be
the cylindrical domain defined by [1,=0,8[0,1]. We extend to three dimensions the two
dimensional elliptic opcrator of Problem 18 of the population of partial differential equations
in [Rice, et. al., 1981]; in pariicular, we consider

—sg —(1+ 2y u, — (sinzdu, ), ~cos{x)u, +eu, +(3+z9u =f in 0,

(62) u=g onafl,

where f and g are chosen so0 that u{x,y,z)=sin(2wx)cos(4myde’.

1
N +1

We solve (62) using k =k, =k, =h, = . The smallest (¥ +1)/2 cigenvalues of T,

arc used as the acceleration parameters. The results are given in Table 6.3.

Table 63
The TPGADI mcihod applied to the partial difference equations arising from
Praoblem 18 on a cylindrical domaia

_ Wumber of | Number of Solution Maximum
N+1=1/k | Ky | Ng Unknowns | Iterations | Time (Sccs) Error

4 2 3 9 2 0.04 6.4266¢c-01

8 5 17 119 4 053 12656¢-01

16 11 88 1320 8 18.80 3.0372=-02

32 23 | 3 12214 16 70624 79741e-03

We obtain Error = 110A%!! which sgrees with the theoretical convergence rate of O (h?).
The number of iterations is chosen a priori, somewhat arbitrarily; it is posdble that fewer
iterations would produce satisfactory results. Figure 6.1 contains contour plots of two cross
sections of the error in solving Problem 18 for the case k =1/16. Note that the errors on some
of the contours are larger than the maximum error given in Table 6.3; this is due to the error

in the interpolation scheme used by ELLPACK ncar the boundary.
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EXAMPLE 6.3. The TPGADI Method Applied to the Partial Difference Equations Aris-

ing from a Cylindrical Domain with a2 Hole

ELLPACK provides a so-called HOLE segmens which defines a hole to be removed from
a two dimensional nonrectangular domain defined by a BOUNDARY segment. The discreti-
zation module 5 POINT STAR is designed to handle such domains. As & result, our imple-
mentation allows cylindrical domains with holes. Let £1; be the two dimeasional nonrectangu-
lar domain with a hole given in Figure 62. Let £33 be the cylindrical domain defined by

1,=0,8[0,1). Wc consider the heat conduction prablem defined by

—bg — iy —u,, =0 inll;

(63) u =g on 3},

where g is defined by

1600[z (1 - 2)F if (z ~1/4)* +(y - 1/4% =1/16
g(x.y.2)= 9 elsewhere.

The solution # to (6.3) can be interpreted as the steady state temperature distribution within

f1,, given that the boundary is kept at the temperatures defined by 2.

We see from Figure 6.1 that the domain {1, is difficult to approximate particularly since
the hole is so close to the left boundary x =0. For example, even if &, =1/16, thcfc would be
only one grid line betwcen them. We solve (63) using &, =h, =1/32, k, =1/16 and A, =1/64,
k, =1/32, k, =1/16, giving 8400 and 17,190 unknowns to compute, respectively. We use 8
iterations of the TPGADI method resulting in solution times of 364.74 scconds and 76928
seconds, respectively. Fiéurc 63 and Figure 6.4 arc contour plots of a cross section of the
computed solution on the planes z =1/2 and z =1/4. The computed solution shows the heat
flowing out from the hole through 11,4 to the outer cool boundaries of }4. Note that cven
though the contour plots look similar on the two different planes, the maximum valne in the

solution differs by a factor of two.
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Flgure 6.4 Contour plots of two cross scctions of the computed solution to 2 heat
conduction problcm on the plancs z =1/2 (top) and z =1/4 (bottom) for the case

k, =1/64, k, =1/32, b, =1/16
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8. Append!x A - A Sample ELLPACK Program

Our oumerical method for elliptic problems on cylindricel domains with holes is imple-
mented within the ELLPACK system [Rice and Boisvert, 1985]. We use an ELLPACK pro-
gram supplementcd with Fortran subprograms. The two dimensional domain f); and partial
differential operator L., are discretized by ELLPACK. The discretization of L, and the
TPGADI solution of the discrete problem is done by the supplemental non-ELLPACK subpro-
grams. Note that ELLPACK “thinks” that we are solving a two dimensional problem. A sam-
ple ELLPACK program is given Figure 8.1 for the Poisson problem on a right circular

cylioder.

The ELLPACK language provides a simple and natural way to express a two dimensional
nonrectangular domain by specifying a scquence of parameterized sides together with boun-
dary conditions. For example, the domain in Figure 3.1 is defined in ELLPACK by the fol-

lowing so-called BOUNDARY segment:

BOUNDARY .

U=0.0CNX=0.5*SIN(T), Y = 0_.5*C0OS(T) FOR T=0. TO PL/f2.
N LINE 0.50,0.00 TO ]1.00,0.00 TO 1.00,0.25 TO
0.75,0.25 TO 0¢.75,0.50 TO 0.50,0.50 TO
¢.50,0.75 TO 0.25,0.75 TO 0.25,1.00 TO

©.00,1.00 TC 0.00,0.50
In this BOUNDARY segment, homogeneous Dirichlet boundary conditions are specified on

all sides of the domain.

A two dimensional, nonrectangular domain is discretized within ELLPACK using the
scheme described in Section 3 [Rice, 1984]. The domain processor overlays the rectangular
grid of points on the domain, determines which grid points are inside and outside of the
domain, determines which interior grid points are next to the boundary, and finds the inter-
sections of the grid lines with the boundary of the domain. The boundary intersection points
must be determined accurately relative to the discretization error so that the Dirichlet boun-

dary data is evaluatcd accurately,
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AT ET R R LR .
L]

. SAMPLE ELLPACK PROGRAM FOR PARTIAL DIFFERENCE EQUATIONS ON .
. CYLINDRICAL DOMAINS AND THE TPGADI [TERATIVE METHID .
GLOBAL .

COMN / TPZZZZ | Z
DECLARATIONS

FARAMETER (NCD2O( = 9)

PARAMETER (NFLNMX = NGDZMX-2)

PARAMETER (NEIMAX = $1INGRY - 2)

PARAMETER (NOOIMX = 2°NEDMAX + 1)
PARAMETER (NAXLXY = $TIMNEQ® (NBDMAX + 1})
OCMMON / TPRSID / TPRSID($I1MNEQ,NPLNMX)
OOMMDN / TPUNKN / TPUNKN($IIMNEQ,NPLRVX)
COMDN / GRIDZZ ! GRIDZ{NGDZMX)

REAL

A TZ(NPLNMX, 2) ,

B AXY($11MNEQ, NCOLM) ,

C VIORKNN( $ [ IMNEQ, NCOLMX) .

D WORKMN (NPLMNMVX, $ 1 IMNEQ) ,

E WORK (NAEILXY) ,

F KID(NPLNWX )
. 23 23 22
. .U -U -U =.(2¥YZ +2XZ +6XYZ)
. X YY zz
EQUATION.

- w - m - - [2..Y..2.Z.'3 o+ z-‘x..z.z..a + 6.IXI-2.Y-.2.Z)

U=X';‘2 e yes2 * Z2°=3 ON X=COS(T). Y=SIN(T) FOR T=0.0 TO 2.°PL

QRID.
9 X POINTS -1.0 TO 1.0
9 Y POINTS -1.0 TO 1.0

FORTRAN.

C

C DEFINE Z GRID
C

AZ = -1.0

BZ = 1.0

NGRIDZ = 9

HZ = (BZ-AZ)/ (NGRIDZ-1)

NEDZM2 = NGRIDZ-2

GRIDZ(1) = AZ

DO 10 KZ = 2, NGRIDZ-1

GRIDZ(KZ) = AZ + (KZ-1)"HZ

10 CONTINUE

GRIDZ(NGRIDZ) = BZ

Figure 8.1 Sample ELLPACK program for partial difference equations on cylindri-
cal domains and the TPGADI iterative method. Supplementary Fortran program
are loaded from a precompiled library.



DISCRETIZE X,Y OFERATOR, BUILD THE RIGHT SIDE TFPRSID
AND GUESS THE SOLUTION TPUNKN

anan

DISCRETIZATION. 5 POINT STAR
FORTRAN.

INTERFACE 5 POINT STAR QUTPUT FOR INPUT TO TPGADI

nan

CALL BLDAXY (RI1OOEF ,AXY,I11DC0, [IMNEQ, [ IMNCO,
A 11ENDIK, 1 1UNCX , NBANDU , NBEANDL }

DISCRETIZE THE Z OPERATOR -{P(Z)U ) + Q(Z)U
y A A
CALL BILDTZ (TZ,NPLRMX)

OCMPUTE THE ITERATION PARAMETERS RHD(K)

OO0 0oon

IRHD = ]
NITERS = NGRIDZ-2
CALL SETRHED (IRHD,RFD,NGRIDZ,NITERS.TZ ,NFLNMX WORK )

SOLVE ( TZX I + [ X AXY ) TPUNKN = TPRSID

aan

NZBAND = 1

MIYBND = MAX(Q{NBANDL ,NBANCU)

CALL TPGADI (TZ,BZZ NPLNMX,NGDZM2 ,NZEAND AXY,BXY . [ IMNEQ. I JNECN,
A MXYBND, TPRSID, TPUNKN, BZFACT , BXYFCT , WORKMJ , WORKNN ,
B WORIGA , WORKBZ \WRKBXY ,WORK , NITERS , RHD)

EVALUATE SOLUTION AND ERROR ON EACH PLANE

ann

DO 20 KZ = 1, NGDZM2
Z = GRIDZ(KZ+1)
PRINT *, '*** PLANE Z =', Z
INITL = 1
OUTPUT. MAX(THUE) $ MAX(ERROR)
FORTRAN.
20 CONTINUE

SUBPROGRAMS .
c
C COEFFICIENTS OF Z DIRECTION OPERATOR
c
FUNCTION ZPODE(Z)
ZPCOE = - 1.
RETURN
END
FUNCTION ZQOOE(Z)
ZOCOE = 0.
RETURN
END

TRUE SOLUTION

anan

FUNCTION TRUE(X,Y)
OO [ TPZZZZ [ 2
TRUE = X**2 * Y"*2 * Z*"}
RETURN
END

END.

Figure 8.1 (Continued)




Given the graph of a domain and the grid lines as in Figure 3.1, the task of “processing”
a nonrectangular two dimensional domain is easy to do “by eye”. However, the automation of
this process within a computer program is nontrivial. The domain processor consists of
approximately 1450 lines of cxccutable Fortran. By contrast, the totality of subprograms
which construct and solve the discrete elliptic problem contain approximately 1200 lines of
code. Hence, to implement our numerical method on cylindrical domains, the problem of
approximating the domain is in some scnsc as difficult (as measured by the amount of Fortran

code) as that of approximating the solution of the elliptic problem.

The ELLPACK discretization module 5 POINT STAR uses the output from the domain
processor to construct the matrix Aq in (3.5); that is, 5 POINT STAR approximates L., u on a
two dimensional cross section f), of the three dimensional cylindrical domain f1,. The origi-
nal version of 5 POINT STAR was modificd slightly to evaluate the right side of the partial
differential equation and climinate the Dirichlet boundary conditions on cach cross section.
The matrix T, approximating L # is computed by a BILDTZ. The z direction operator,
L, =—{(p(z)u;), +q(z)u, is specificd in the function subprograms ZPCOE and ZQCOE. The

7 variable is made available to all subprograms through so-called global common.

The discrete problem is solved by TPGADI which implements the TPGADI method
(4.1). The routine BLDAXY interfaces the output from 5POINT STAR for input to
TPGADI. The acccleration paramecters p; are computed (o be the cigenvalues of the sym-
metric positive definite matrix T, by SETRHO which uses the EISPACK routine IMTQL1
[Smith et al, 1976], (Wilkinson, 1962]. They are used in increasing order [Lynch and Rice,
1968]). The initia! iterate, U© is always taken to be zero. Although the source for these sup-
plementary programs could be included in the SUBPROGRAMS segment of the ELLPACK pro-

gram, we automatically load them from a separate, precompiled library.
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