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ABSTRACT

We collsider IlOlving separable, second order. linear elliptic partial differential equations.
If an elliptic problem is separable, then, for certain discretizations. the matrices involved in
the corresponding discrete problem can be expressed in terms of tensor products of lower
order matrices. In the most general case. the discrete problem can be written in the form
(Al@Bz +81i&lA,2)C ==F. We present a new Tensor Product Generalized AltematLog Dirc~c.

tion Implicit (TPGADI) iterative method for solving such discrete problems. We prove con­
vergence and establish computational etriciency. The TPGADI method is applied to the Her­
mite bicubic collocation equations. We conclude that the TPGADI method is an effecti.ve
tool for solving the discrete elliptic problems arising from a large class o[ elliptic problems.



Tensor Product Generalized ADI Methods for Elliptie Problems

Wayne R. Dyksen

I. Introdllctloa

We present new melhods for solving the discrete problems arising from separable,

second order, linear elliptic partial differential equations. The methods we present are

natural products of the classical approach. If a problem is separable, then its solution can be

expressed in terms of tensor products of solutions of lower dimensional problems, and hence is

reduced to that of solving much simpler problems. For certain discretizations, this means that

the matrices involved in the corresponding discrete problem can be expressed in term.5 of ten­

sor products of lower order matrices. For example, in the most general case the system of

linear equations which constitute the discrete problem can be written as

(Al@Bz +B1@A z)C=F.

We begin in Section 2 with a brief introduction to some theoretical and computational

aspects of tensor products and matrices. In Section 3 we present a new method which we call

the Tensor Product Generalized Alternating Direction Implicit (TPGADI) method for solving

discrete elliptic problems of the form (A I@B2+B I@Az)C =F. In Sections 4, Sand 6 we apply

the TPGADI method to solve the Hermite bicubic collocation equations. We show that the

TPGADI method is an effective tool for solving the discrete elliptic problems arising from a

large class of elliptic problems. In Section 7 we summarize our results.
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2. TeDJOr Product. of Matrlces

Let .... ;;::::{a_} and B ={bu } be matrices of order M xN and K XL, respcctively. The

tensor product (Krobed.er product, dLrect produd) of .\ and B. denoted by A ~B. is the

matrix of order MK xNL given by

auB allB alNB

auB a'ZJ!l tl2.yB

Some of the properties of tensor products are summarized below; a detailed account is given

in [Haimes, 1958].

Note that if II and, are eigenvectors of A and B with eigenvalues A and 110. respectively. then

ll~" is an eigenvector of A@B with corresponding eigenvalue AiL.

The fact that a particular matrix factors into the tensor product of two or more matrices

is of no value without algorithms for doing efficient computer manipulation of tensor pro-

ducts. For example, to compute (A @B)K we must usc only the factors A and B. and avoid

explicitly forming the tensor product A 'i!JB. Such algorithms are given in [de Boor, 1979].

When computing with tensor products, it is computationally convenient to represent vce-

tOI3 using matricc:a. For example. when working with (A ~B)s. we represent the NL.yec10r:l

by the matrix X ={~,.} ot order L xN defined by
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The usefulness of this representation can be seen in the following simple results which give

efficient procedures for computing (.4. ~B)x Bnd solving (A 10A:z)x == b, respectively.

LEMMA 2.1. ut A :::{a..... }. B ={b.tl} and X ={X,.} be mtlIrlces of order M XN. K XL and

L XN, respectiYely. Then the K xM nuuru (.4.@B)K is given by

(A ~B)X =(A(BX)')'.

COROLLAIV 2.2. Let A.I: be malT/as of order HI: XN".lel X and B ~ maJrlceJ of order

N 2 xN I_ and consider t~ linear ryslem

Sinee we make extensive use of these two basic tensor product operations in the case in

which the faetors are band matrices, we give here their computational complexity. Let A,l- be

matrices of order N1 xN" with bandwidth KI:o and let B and X be matrices of order N 2 XN 1-

10 solve (AI~A2}X =8 using Gauss elimination with partial pivoting is given in Table 2.1

which shows that the work is 0 (lK {N I +2K IN z +3N IN z(X I+ K z».

Table 2.1
Work to solve (A I tSAz}X =B

Operation Work

Factor A z 2KIN z
Solve LzUzY =B 3N 1KzNz

Factor Al 2K{N 1

SolveL1U1Z =yT 3K tN IN z

Observe that dominant work results from handling the mUltiple right sides B and yT

since KJ:«NJ:. On a computer which provides the facility for doing parallel processing, the

forward and back substitutions can be done simUltaneously for all right sides, reducing the
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work by approximately an order of magnitude to 0 (3(K 1N J +K -Ii 2».

The need to usc band Gawa elimination wi.th panial pivoting to solve AzY =8 and

A1Z =yT is. in some sense, B worst CBSC. In particular, we may want to solve (Al~l)X =8 or

perhaps (A I@A:z)X =8 where Az is symmetric, posilive definite so that the work esti.mates

given above arc indeed over csrimatclI. In many applications, A 1 and/or Az have nice proper­

ties which A 1~A2 does not share.

The linear systems arising (rom separable elliptic problems do not factor into the simple

form (Al@A2)s=b; instead, they are of the form (Al@B2+Bl~Mi):II:=b. The simple pro­

cedures considered here are employed to solve such equations.

3. The Two D1rectlouJ Teasor Product Generalized ADI Melba'"

Let A.l Bod HI; be matrices of order Nt XNt • and consider the linear system

(3.1)

While the tcnsor product (AI@B2 +81~M.i) is an N IN 'l xN IN 'l matrix, we wish 10 solve (3.1)

by computing only with At. 8 1 and A'l. 8 2; that is, we wish to solve the two directional prob­

lem (3.1) by using mel hods employed to solve the one directional problems. We usc the term

dlr~ctioM1 rather than dimensional since one direction may encompass more than one dimen­

sion, as in the Method of Planes [Dyksen. 1984<1].

For a given set of positive tU:Ct!I~raliOri partuMurs P.t, k = 1,2, •••, we define the two

directional T~nsor ProdlU:t G~,,~raIlzed AlterlUUinB Direction Implicit (TPGADI) iteration

method by

(32)

C(O) given

[(AI +P.t +IBV~B'l]C(H\I)=F - [B I~(A'l- P.t +IB:Z>]C<,t)

[B 1~(A2 + P.t+IBZ>]C(.t +1) =F - [(AI -p,t+lBI)~B'l]C(.t +11\).



The TPGADI method is a natural extension or the standard Peaceman·Rachford ADI method

[Peaceman and Rachford, 1955]. In fact, with BJ: =1J., the identity matrix of ordcr 1', (3.2)

reduces to the tcnsor product ADI schcmes presented in [Lynch, Rice and Thomas, 1964a,

1964b, 1965].

lors Pi and qJ. respeclively, with corresponding posilive eigenvalues A./ and ILJ' respectively. Then.,
for a given set of posilive accelerarion parameters PJ:' k = 1,2, •••, l~ lwo directional Tensor Pro-

duct Generalized AllernaJing Direclion Implicit iteralive me/hod, given hy (3.2) is convergelll, and

c u irs only solution.

Proof· Let £(J:}=C(I:)-C denote the error of the k th iterate, and let II; denote the iden-

(ity matrix of order I. A straightforward computation shows that the error satisfies

(33)

If we expand the error £(1:) in tcrms of (he eigenvcclon of Bt1A 1 and B
2
- IA

2
as

(3.4)

and substitute (3.4) into (33). wc obtain

Hence, the error E(I:) may be expreS5ed in terms of the initial error E(O) as
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IioJ -P,

....1 +Pl

so that

(3.5)

Since by the hypothesis the eigenvalues A, and Po] are positive, it follows from (3.5) that

for positive acceleration paramcten PI

IJ.} -PI

....J +PI

so that

lim lIE{J:)1I =0,..
which is the desired result c

We see from (35) that E,f> can be made zero [or all J by taking PI ="-, for some i. This

observation makes transparent the power of the TPGADI method, namely, that many (N lor

Ni) components of the error vector can be annihilated at the same time. Moreover, if the A..

..../ and PI are positive. then tbis anni.hilation is accomplished without simultaneously magnify-

ing any other components of the error.

COROLLARY 3.2. The TPGADI irerari...e method (32) can ~ ao.CI (acepl for round-DfJ)

in a number of iteralions equal 10 rhe number of ImknowlU' In eilMT direction; thai is, in N I or N 2

ireTa/10m.

Proof. Let ).h•••• >..N, be the eigenvalues of BrIAr and set PI =X,. Then by (35) we

have for alii
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Thus,

E(N t ) =0.

The analogotL! argument for N 2 iterations completes the proof []

The TPGADI method (32) is one member of a general family of TPGADI methods

defined by

c(O) given

[81@(AZ+P.l:+1B,,>]C(l:+l) = [BI@(AZ-CtlPJ:+IB:Z>]C(I:)

+(1 +CIl)P.l:+1(B10Bz}C(.l: +1\)

where Ctl is a fixed scalar and PI: arc positive acceleration paramcten. The values (J) =1,0

correspond to generalizations of the Peaceman-Rachford method and the Douglas-Rachford

method, respectively [Douglas and Rachford, 1956).

To compare the TPGADI method to other schemes, we estimate the computer time (via

operation counts) end computer memory required to implement it. We assume that AI: and 81:

arc band matrices with bandwidth XI: and that all systems of linear equations Brc solved by

Gauss elimination with partial pivoting. Since the initial guess C(O) and the accelerati.on

parameters P1: depend on the discretization method used. we assume here that they are given.

The work to compute the I-direction sweep of the TPGADI method (32) is estimated

using the results of Table 2.1. We obtain the following:
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Table 3.1
Work to compute the I-di.rection sweep of the TPGADI method

Operation Work

W 2=A2 -p.l:+1B1 2X"',
W =(BI~W,)C[') 1.N 1N 2(K 1+X,)

W=F -w IJJN IN'2.

Wt =A 1 +p.l:+IBI 2X 1N!
C(J:+~)=(Wt~Bi)-lW 2 K{N 1+2KiN2+'3N IN 2(K 1 +K,)

Thus. the total work to compute the I-direction sweep is O(N IN'2,(5(K 1 +Kv+ tk»). An analo--

gous estimate shows that the work for the 2·direction sweep is the same. Hence, the folal

work per iteration is O(N IN 2(10(K I +K,) +1») operations. If N 1 = N '2. =N and K I = K'2. '" K •

then this work estimate simplifies to O(20KN~.

Notc that the dominant work in Table 3.1 does DOt result from factoring WI or B2_

Instead, the dominant work involves computing the right side W and doing multiple back sub-

stitutions solving for C(t+1t), operations which arc often negligible in other applications. On a

computer with parallel computing facilities. a large gain in speed could result by doing the

multiple back substitutions in parallel.

We now compare the TPGADI method to the straight forward method of applying sim-

pie band Gauss elimination to the matrix A =(Al@B2+BI~Mz). If Nt=Nz=N and

K 1= K z = K , t" ':In the matrix A is of order H 2 x N Z with approximate bandwidth XN so that

band Gauss elimination with par1iBl pivoting applied to it requires 0 (2K 2N') operations. The

TPGADI iterative method can be a direct method in N iterations, requiring o (20KN; opera-

tions. Thus, the TPGADI method is asymptotically much faster than straight forward Gauss

elimination as a direct method of solution.
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The analysis warrants a few remarks. Fint. i.n order for the TPGAD! method to be

direct we must either know a prior; the N eigenvalues of BllA I or B1-
1Az or must eompute

them; in the applications we consider. the computation of these eigeo\laIues is insignificant.

Second, given the desired eigenvalues, we could use some subset of them to achieve moderate

accuracy with many fewer than N iterations; we discuss this in Section 6.

A simple calculation shows that the amount of memory required to factor the matrix

memory requirements for the TPGADI method arc estimated as follows: At. 8 10 A 2• 8 2 each

require 0 (2KN) words; W I and W2 require 0 (3KN) words; and W. F and C each require HZ

words. Thus, the total amount of computer memory required is D(3N 2) words, which is

nearly optimal since it is the same order of magnitude 35 the number N Zof unknowns.

4. CoUocaUOD with Hermite Blcublcs

We consider an elliptic problem of the form

(4.1)
L~ u +L,u =f in n =[0,11 x [0,11

u=o onan,

where

L~u =-az(x)uu +al(x)u~ +ao(x).IoI, az> O.

We assume for simplicity that we have homogeneous Dirichlet boundary conditions. The

analysis is readily extended to problems with nonhomogeneous Dirichlet or Neumann boun.

dary conditions [Dyksen, 1984<1], rHousti5, et. aI., 1983a, 1983b].

The domain 0 is subdivided with a rectangular, tensor product grid with MN rectangles.

We approximate .101 (x,y) by
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2M,.
U(r,y)= I Ic_4>.(r)My)

",-1,,-1

where et,I... and 1/1.. are the standard ODe dimensional Hermite c;ubics with the grid lines as

knots. The Hermite cubics which arc zero on an are discarded 50 that U I!! 0 on an.

To determine the 4MN unknowns c_. we place in each subinterval (.X....X"'+I) and

. (~ ~6'" ,>',,+1). the two Gauss POlDtS T:z",+l =Jh x. +.r.,+v - 2\13 ' T2.w+2 =1k(x", +X",+I) + 2"v'3 Bnd

\/2.Ir +1 = 'h(y" +)'" +1) ~ 2~ • "211 +2 = 'h(yll +y" +0 + 2~ . These collocation points give a fourth

order discretization ettor for smooth problcDl.5 [Hcustis, 1978], [Percell and Wheeler, 1980].

We then collocate the elliptic problem (4.1) at these 4MN points to obtain the H~rmJt~ bicJJJic

collocation equatiollS

(42)
j = I,•••• 2M

j =1,...,2N.

The structure of the linear system in (42) depends on tbe ordering of the collocation

points and tbe basis functions [Rice, 1981a]. If they are both ordered in a natural rensor pro-

ducr manner. then (42) may be wrinen in teni!lOI' product form llJ

(A, 'iilB, +B, 'iilA,)C = F •

where

; = 1•.• •• 1M

m=I••••• 1M.

J "" 1••••• 2N
R=I••••• 2N.

II = 1••••• m
m=I••••• 2AI. and

Since the support of each Hermite cubic "",II and ~~ spans at most two subintervals. ir follows

that A.... B... and A,. B, have bandwidth two. reaardlea of M or N .
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5. The TPGADI Method. Appilled til the CoUoutlon EquallolU

We now apply the TPGADI method (32) to the Hermite bicubic collocation equations.

In particular, we establish the convergence of the TPGADI method when applied to the

Discrete ModeJ Problem arising from the Model Problem

(5.1)
-u~ -." ~f in n ~[D,l) x [D,l)

u=O ouan.

For the Discrete Model Problem, the matrices A,r. 8.r: and A,. B, in (3.3) are defined by

Since convergence of the TPGADI method depends on generalized eigenvalues of

AzC: = "ABz.e and A,e = "-Byc, we consider the classical eigenvalue problem

(52)
UU(x)=>.u(.l'). x E (0,1)
u(D)=u(l)~D.

We divide the unit interval into N 'equal subintervals of length h = IfN. We approximate an

2N
eigenfunction u of (52) by U (x) = ICI~I(.r) for some constants c,. where the q,., arc the 2N

'-I
Hermite cubics associated with the N +1 grid points Xl =kh, and which satisfy

~I (0) =q,,(l) =0. For a fixed parameter 0 < &< 1/l, we place in each subinterval (.;(t .X.. +1) two

collocation points, T21+1 = lh.(x.. +Xt+l) - Oh and T2.t+2 = lh.(.1'.. +x.. +1) + Oh. Substituting U into

(52) and caHocating at lhese points, we obtain the generalized eigenvalue problem

(5.3)

where

Ac=XBc,

The generalized eigenvalues and eigenvectors of (53) give the Hermite collocation approxima-

tions to the eigenvalues and eigenvectors of (52).
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TOED REM 5.1. TM'2N geMrtJllzed eigenvallUs of Ac =A.Bc In (53) au given by

(5.4a)

(5.4b)

(5.40)

(55a)

(55b)

(55,)

and where

(55d)

• _ 2
N - h'(e' _"')

+ -b+Yb2-4a.cA.r= 2a .1=l•.•.•N-l

b =h'[(-l28o'+48)d +48J.,

c=l92d,

Proof. Let P be the Hermite cubic collocation approximation of the eigenfunction of

(52) corresponding to the approximate eigenvalue A.. Since h = liN. P consists of N pieces,

p,,(.l'}. each of which bas support in (.1'.to.1'.l:+I), k =O•.••• N -1. Denoting the kth piece of pll

(5.6)

We assume for the sake of simplicity that each polynomial piece is centered at the midpoint of

its corresponding interval.

First, we relate the Ql: 's to the -'1: 's and the ~.I:'s to the &1: 's by using the eigenvalue prob-

(em. Since P satisfies pll =AP at the collocation points, we have p:(~9h)=),.Pk(:!:.eh).or

equivalently,
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(5.7)

Adding and subtracting the equatioDs in (5.7), we obtain, respectively.

from which we have

,

al =C..'Yl = (~

f!.t=C p3.1: =(~

Thus. (5.6) simplifies to

Next, we relate tbe "II; 's to the 3t 's by using the continuity of P and pl. Since P is cbn-

tinuous, we have Pi (h/2) =PI:+l( -h/2), or equivalently,

which we write as

(5.8)

where .'r=C .. + S and .'+-
48 Furthermore, since pI is continuous, we have

pHh/2) =pl+1 (-h/2), or equivalently,
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which we write as

(5.9)

Now. using (5.8) Bnd (5.9), we show that the "h'S and &.1; 's botb satisfy the same differ-

cncc equation. We consider (5.8) and the equation obtained from it by replacing k by k -1.

We obtain

(5.10)

which, if added, yield

(5.11)

,~-'Y.t + 'Y.t+t) =s (3.t +&.t+v
r(-'Y.t-I +''h) =J' (3.. _t +&.t).

Similarly, from (5.9) we obtain

(5.12)

which, if subtracted, yield

'''Il +"'1+1 = t (-&1. + 3.l+1)

''h-l +"11, =t( -3.t-1 +&.t).

(5.13)

Substituting (5.13) into (5.11) gives

(5.14)

If we subtract the equations in (S.10) and add the equations in (5.12), we obtain, respectively,

r h.l: -1 - 21l- +'1.1:+1) =s( -3.1:-1 +31+0
'Y,I:-I +Z"h +11+1 =t(-&J:_I +&I:+U.

which gives

(5.15)
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Now, since the 'VI: 's and 3,,'5 satisfy the difference equations in (5.14) and (5.15), we may

in the usual way set

"tl =Al:t" +CL-C-t

&1; =B.l:C! +DkCl-.

However. the eigenvalue problem is invariant with respect to translation; that is, we must

have 'Yo =;'; "IN -1 and 80 = ± liN -1- Thus we may set

(5.16)

A . [('+\\)I~"It = tsm N

& -8 . [Cl' +'11:)1'71'
I: - "SIn N

) +CtCOS( Cot +;>1'71' )

1+D.'OS[ (' +N\\)I~ ).

Substituting (5.16) into (5.14) and (5.15), Bnd simplifying, we obtain

(5.17)
+4~n'[~ h]~+o"[~ ]8.)
+4sin'[~ H~+""[~ H·

Since r. s. and I depend on~. it follows from (5.17) that the eigenvalues of (53) satisfy

(5.18)

We can now obtain the formulu given in (SA) by considering (5.18) for vario~ values of

I. U I = 0, then (5.18) reduces to

or equivalently,

_ e2
h

z ]!!.
6 2

h'
+ 48 =0,

(5.19)

which is (5.4a). Notc that (5.19) may also be weinel] as
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6(: eh) = h(: Ml(e'h' -h'/4).

which shows that the approximate eigenfuDction associated with Xo is given up 10 a multiplica-

live constant by Pot (~o;.%) =z(z2 - hZ/4). Moreover, p.t(Ao;z) satisfies the boundary conditions,

Pot ("-0; ± h/2) =0. and is a piecewise. approximation 10 the eigenfunction sin(m '!"X) of (52).

H I = N • then (5.18) implies rl = 0 so that either

(520)

0'

(521)

1
r=-

h

t = ~ (~

From (520) we obtain (S.4b),

+ liZ =0
8

+E..:]=o8 .

The approximate eigenfunction corresponding to A.N is given up to a multiplicative constant by

Pi (AN; ± h/2) = 0, and is a piecewise approximation to the eigenfunction !lin(N 1I'Z) of (52).

- 6From (521) it follows that AN = 2 2 with corresponding approximate eigenfunc-
h (e -3/4)

Since PI: (AN; ± II /2) =I 0, AN is not an eigenvalue of (53).

Finally. for I = I,. ",N -I, wc have from (S.18) that

(522)

which is a quadralic equarioD in >... If simplified. (5.22) may be written as

(523)
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where a. b. c and d are given in (5.5). Thus, for each of I = 1•.. .,N -1, (523) represents two

eigenvalues of (53) which gives (5.5C),

By varying the free parameter 0 < 8 < :Ik in Theorem 5.1, we can vary the location of the

'IN collocation points 'fl. thereby affecting the accuracy of the approximations to the eigen-

values of (5.2).

COROLLARY 5.2. If 0< 8 <:Ik. IMIl >..t is all~asl an o (h 2) opproximaJion 10 1M ~lgen.

value of smallest magnitude of (52), _1f2.

Proof· From Theorem 5.1 we have

1'f.~_1- thenA.+=.....".2+ 0 (h.)2\13 • 1 .

(524)

where a, band c and given in (5..5) and where d =tan2(hll'/2). Expanding the right side of

(524) in a Taylor series with respect to h. we obtain.

Setting 1202-1 =0, we ohtain 9 = ~ which arc the Gau&! points in (0,1). Substituting

1
9 = 2\13 into (525), we obtain the desired result.

We now return to tbe question of tbe convergence of tbe TPGADI metbod wben

applied to tbe Discrcte Model Problem.
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THEO.EM 5.3. For a given ut of po~lIivt! acce1erallon par~un Pb k =1.2••••• 1M

TPGADI mellwd (32) applied 101M DbcTete Model Problem i$ com>ergenl.

Proof. The 2M and ']}I generalized eigenvalues of Azc=AB..,c and A,c=>dlJ'c arc com­

puted from Theorem 5.1 with 9 = 2~ . A simple calculatioD shows that the generalized

eigenvalues of Az c = AB.., c are given by

36
>"0=""2 •

h.

where

11. j: _ 7d +9=F6Yd 2+90d +81
I - h}(4d +3)

.1=l•.•••M-l.

d = '1lIl'[_' :!'..]M 2 .

Now, since d > oiar all I =l•..••M-l.and since

[I,,] ['+1,,]180-- <te.n---
M 2 M 2 •

I =1•..••M-2.

it follows that tbe 2M - 2 generalized eigenvalues 'Al' are distinct, real and positive. Hence,

the 2M generalized eigenvalues of AJ:c =),.8... e are distinct, real and positive. A similar argu-

ment holds for the 2N generalized eigenvalues of A,c=ABJ'c, Convergence now follows

immediately from Theorem. 3.1 0

For reasonable choices of the basis functions Bnd the collocation points, the generalized

eigenvalues of Azc; "" ABzc and A,.c = 'AB,c are accurate approximations to the continuous eigen-

values of Lz Bnd L,. respectively. [n fact, the simple eigenvalues of an m1h order ordinary dif­

ferential equation are approximated within 0(141 21 ) by collocation at Gauss poinls with



19

piecewise polynomials of degree < m +k on a set of knots 4 ={O=ro< 11 < ••• < Ii =ll,

where 161 is the mesh size 14 r =maxb.l/ [de Boor and Swartz, 1980, 1981). For a large class,
of operators, the eigenvalues of L;r: and 4 are distinct, real and positi....e. o. at least have posi.

live real parts. Hence, we expect the TPGADI method to converge for a large class of elliptic

problems for a large class of collocation methods. We apply the TPGADI method to more

general discrete elliptic problems in the next section.

6. Compoter Implementation aDd Performance Evaluation

We now consider the performance of a specifi.c computer implementation of the

TPGADI method applied to the Hermite bicubic collocation equations. The acceleration

parameters PI are computed from the formulas in (5.4); subsequent timings of the TPGADI

method include these computations. The acceleration parameters are used in increasing order

[Lynch and Rice, 1968}. Although ElSPACK {Smith, et. a1., 1976] contains routines to solve

the generalized eigenvalue problem arising from more general operators, we do not usc them.

However, we believe that this approach would be cost effective for two and three dimensional

problems. The initial iterale, C(O), is always taken to be zero.

The computational complexity can be estimated directly from the analysis of Section 3.

The work per J: or y direction sweep is estimated from Table 3.1 to be o (82MN) operations.

Since the TPGADI method can be a direct method (depending on the choice of the acc:elera·

tion parameters) in min(2M;J.N) iterations, it follows that the total work to solve

(A..,@B, +H.., @A,.)C ~F is less than or equal to 0 (l64MN min(Uf ;J.N» operations. A typical

requirement is that M =N so that the total work is o (328N 3).

The matrix (A..,@B, +B..,@A,.) has dimension 4MN x4MN and approximate bandwidth

4N. The work required to factor it using band Gauss elimination wilh partial pivoting is

o (128MN 3) operations which simplifies to o (128N 4) if M ~N. The bandwidth of
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(A... @B, +Bz 0~) can be reduced from 4N to'1N by using afinite de~lIl ordering of the col·

location points (equations) and basis functi.ons (unknowns) [Dyksen and Rice, 1894a]. Even

so, the computer work required to factor the matrix is O(32MN 3) which simplifies to O(32N4)

if M =N. Hence. the TPGADI method is asymptoticaUy faster than the straight forward

approach of applying band Gauss elimination to (A..,@B, +B.. @.4,.). We experimentally

explore the performance of all three solutioD methods in Example 6.1.

Our implementation of the TPGADI method requires O(l2MN) words of computer

memory which is nearly optimal since it is only three times the number of unknowns. By coo-

frast, O(48MN~ words are required to store (A.. @B, +8.. 0A,.) in order to factor it using

Gauss elimination with partial pivoting. If the finite element ordering is used, then 0 (24MN 2)

words are required. If M =N, thea the three methods require 0(12N~. 0(4&\'3) and

O(Z4N') words, respecti.vely.

Before considering any numerical e:r.amples. we define two error measures. We denote

the Hermite bicubic approximation to the solution Il of the eUiptic problem at the klb Hera-

tion by

2M :IN
U(')«,y)= I I<~)<1>.«)~"(y)·

.. -1,,"1

Two natural enor measures are

max Ic2;>-c_1
.. -I•.•• ,2N

l!'d.l:) = .... I•••••2M

max 1<_1
.. ·I,•.••2N
..... 1.....211

and

max lu(l)(x..,J'J.)-u(x... ,y.. )1
.....0 11

l!'u(.i:)= ....O ,N

max 1.«.".)1
"' ..0•••• ,11
....O,•••,H

Note that l!'c(k) is the muimum relative error at the.l: lb step in approximaling the solution C

of the discrete problem, whereas l!'u (.I:) is the maximum error on the grid points at the .l: tb step

in approximating the solution Il of the continuous problem.
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The following numerical results were computed on a VAX 111780 (UNlX.t, 4.1BSD) with

B floating-point accelerator using the Fortran compiler fl7 with optimizer in single precision.

EXAMPLE 6.1. Performance of the TPGADI Method with M and N Varied

We solve the Model Problem (5.1) in which f is chosen so that" (x,y) =x(.r -l)(x + 2)

y(1-y)(3-y). The results are summarized in Table 6.1.

Table 6.1
Hermite bicubic collocation and the TPGADI method applied to
the Model Dirichlet Problem for Il (x ,y )=x (x - l)(x +2)
y(1-y)(3-y)

N ~1/h
Number of Solution

~c(2N) ~u(2N )Unknowns Time (Sees)

4 64 058 2.4628e-06 4Sn6e-07
8 256 4.43 538430·06 839230-07

12 576 • 14.70 13131c-OS 1.8142e-06
20 1600 6757 52688c-OS 4.4144e-06
28 3136 18657 135120-04 3.1467e·06

A logarithmic fit of this timing data gives Time=:: 01lO937N 297• which agrees with the

theoretical work estimate of o (328N J) operations.

The error measures in Table 6.1 indicate that the TPGADI method is numerically stable.

Since the discretization uses bicubic polynomials, it follows that ~d2N) and ~u(2N) should be

zero within machine round-off. A logarithmic fit of these error measures gives

Thus, not only is machine round-off achieved, but the round-off errors do not grow signifi-

cantty as N increases.

+UNIX is a Trademark of Bell Laboralories
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Contrary to intuition, eu < t!c; that is, the error in approximating II is less than that in

approximating the coefricicnts of the basis functioDs of U. Almost three-fourths of the

unknowns correspond to values of Uu U, and U;t:J at the grid points. However, the basis

functions associated with them are zero at the grid points so that the error in approximating

these unknowns docs not contribute to t!u. We include the error measure t!v since it is com-

mon and the quantity of interest in many applications.

We now compare the TPGAD[ scheme as a direct method to band Gauss elimination

with parlial pivoting by solving the same Model Problem within the ELLPACKt system [Rice

and Boisvert, 1985]. We obtain a discrete problem using the Hermite bicubic collocation

discretization module INTERIOR COLLOCATION which generales the expanded tensor pro-

duct matrix (A~ @B, +B~ @A,) only with a finite clement (FE) ordering of the equations and

unknowns. We solve the discrete problem by using the band Gauss elimination solution

module UNPACK BAND [Dongarra, et. aI., 1979]. Moreover, we use a so-called induing

module to reorder the linear system produced by INTERIOR COLLOCAT[ON so as to give

the tensor product (TP) ordering at the equa.tions and unknowns; tha.t is, to give the exact

expanded tensor product linear syatem (A~ ~B, +B~ ~A,)C =F. We solve this form of the

discrete problem using UNPACK BAND also. The solution timing results are summarized in

Table 62.

fELLPACK i•• very blJb levd f;OlllpUtcr IlaJUAle devdoped AI Purdue Uaivetlity for BOlvio! lCC:oad ord_
er lioear cWptif; panlal differClJtiai cquatlODl.
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Table 62
Solution time (seconds) for UNPACK BAND and the TPGADI
method applied to the Discrete Model Problem arising from Hermite hi­
cubic collocation

UNPACK BAND
N =1/h Number of TPGADI

Unknowns FE Ordering TP Ordering

4 64 0.40 0.41 058
8 256 3.88 6.42 4.43

12 S/6 1550 25.82 14.70
20 1600 9622 164.63 6757
28 3136 33923 605.93 18657

A logarithmic fit of tbis timing data shows tbat Tim~/LB::::::0.00307N3.46,

TimOrPILB::::: OD0313N J
.64 and TimCuGADI::::: OJJOO37N 2

!n. We see that even as a direct method

the TPGADI method is faster than band Gauss elimination. We believe that band Gauss cUm-

ination is currently considered to be the best method for solving the collocation equations

[Oyksen, ct. aI., 1984c].

The TPGADI solution time can be reduced significantly by taking less than 2N Hera-

tions. Most of the accuracy is achieved during the initial iterations by using the Pi in increas-

ing order, thereby annihilating the low-frequency components of the error. We solve the

same Model Problem with N =28 (3136 unknowns) using varied numbers of iterations of the

TPGADI method. The results are given in Table 63.
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Table 6.3
Hermite bicubic collocation and the TPGAOI method
applied to the Model Dirichlet Problem with N =28 for
• (x,y )=x(x -1)(x +2) y(l-y)(3 -y)

Number of Solution
.c(K) 'u(K)Iterations. K Time (Sees)

7 21.72 7.8773c-04 1.498Se-06
14 43.76 7.59OOe-05 1.42350·06
21 6738 6.831<0-05 7.69S6c-07
28 89.99 72S4Oc·05 7.69560·07
35 109.74 8.1844<:·05 1.4985c-06
42 135.69 8.15390·05 2.Q978e-06
49 163.03 12288c-Q4 2.6223e-06
56 186.57 135120·04 3.1467e-06

Reasonable accuracy is attained witb as few as 7 iterations. For this case, the solution time is

21.72 seconds as compared to 33923 and 605.93 seconds for UNPACK BAND with the two

different orderings of tbe equati.ons and unknowns.

EXAMPLE 6.2. Performance of the TPGADI Method with Varied Partial Differential

Operators

We prove in Section 5 that the TPGADI method converges if applied to the Discrete

Model Problem. We now solve discrete problema arising from morc general separable elliptic

operators. We consider varied operators Lz. and L, in (4.1) with f chosen so that

11 (..r.y) :::::..r(..r -l)(..r +2) y(l-y )(3 - y). The acceleration parameters are taken to be the Her-

mite cubic collocation approximations 10 the eigenvalues of -11..... We use l/h :::::M :::::N :::::20

which gives 1600 unknowns to compute. The results are summarized in Table 6.4.
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Table 6.4
The TPGADI method applied to the discrete problem an.s.
ing from Hermite bicubic collocation with varied partial
differential operators L for l{h = M ""N = 20

Lu =LJlu +L," <C<4O) ~u(40}

-U.u -uT.! 526880-05 4.41440-06

-u,o: -lin +17 +u 5.6071e-05 3.96550-06

-U..u -~ +sin(y)u, +e'u 4.78690-05 4.48920-06

- Uu - sin(y)u". +cos(y)u,. + II 7.4526e-OS 3.9655e-06

- "..... -un + 100011 4.7525e-05 1.3468e-05

Since the discretization i5 theoretically exact for this choice of ". it follows tbat l!'c(40)

and eu(40) should be zero within machine round-off. The data indicate that the discrete gen-

eralized eigenvalues corresponding to Ly cause no ill effects on tbe iteration process.

EXAMPLE 6.3. Hermite Bicubic Collocation and the TPGADI Method applied to a

Problem from Stratospheric Physics

We solve P['oblem 6 of [Rice, ct. aI. 1981b] which is defined by

- ".... -un + (100 + cos(21f'x) +sin(3T1"Y»u = f in n = [0,1) x [0,1]

u =0 on an.

where f is chosen so that

u (.x lj) = -0.31(5.4 - cos(41r.x »sin(TI".x )(y2 - Y )(5.4 - cos(4wy» [ 1 4 - -21 ]
1+p (.x lj)

For computational purposes we factor the partial differential operator into the sum of

Llou = -u= +cos(2T1".x)u

and
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L,. ~ -.." +(100 +sin(3wy) •.

The acceleration parameters arc computed from (5.4) with e ===~ Although these

acceleration parameters arc not the generalized eigenvalues of A~e =ABJ:c, we still expect

them to work well since Lzu ::::: -",go The results are given in Table 65.

Table 65
Hermite bicubic collocation and tbe TPGADI method applied to
Problem 6

N ~llh
Numbcrof Solution

'cCN /2) •• (N /2)
Unknowns Time (Sees)

4 64 0.17 4.9074e-01 4.4OOO<-m
8 2S6 1.15 2.61850-02 33113<:-03

12 516 3.82 15850<-03 7.6OO8e-M
20 1600 17.48 3.1199e-04 9.8924e·OS
28 3136 47.42 l.229ge-04 2.62760-05

A logarithmic fit of these error mCll$ures gives ec<N /2)::::: 184N--4.39=184h4.3~ and

I!u (N /2)::::: 9.0BN -3.!1 = 9.D8h 3A1 which agrccs with the theoreti.cal convergence rate of O(h').

For additional comparison, we also solve Problem 6 within the ELLPACK system using

the so-called triplet module MARCHING ALGORITHM which is a "fast" method designed

for separable, self-adjoint elliptic problems [Bank, 1978]. MARCHING ALGORITHM uses a

symmetric S-point finite difference discretization to generate a discrete problem which is then

solved using the generalized marching algorithm. The resulls are summarized in Table 6.6.

f ln ELLPACK. c.lliptie problclDII I.fC typically IOlvcd in lbree pb_. dbunlUltlrm. 1/Od"I,., I.Dd IDlllllrm.
A frlpt~ module ineorporalCll aU Ibrce pbucs iato ODe module.
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Table 6.6
MARCHING ALGORITHM used to solve
Problem 6

1/. Number of Solution Maximum
Unknowns Time (Sees) Error

4 9 0.03 3.10lge-0l
8 49 0.05 657950·02

16 225 0.18 1.534Oe-02
32 961 0.98 4.0000e-03
64 3969 435 1.0000e-03

128 16129 2022 3.4175e-04
256 65025 85.85 325960-03

Figure 6.1 shows a plot of data from Table 65 and Table 6.6. We conclude that in order

to achieve a given accuracy for Problem 6, OUf implementation of Hermite bicubic collocation

and the TPGADI method is superior to the implementation of the marching algorithm in the

module MARCHING ALGORITHM.

7. Concloslons

We have derived a new Tensor Product Generalized Alternating Direction Implicit

(TPGADI) iterative method to solve discrete elliptic problems of the form

(A I@B2 +Bt @A 2)C=F. We have demonstrated that a specific implementation of the

TPGADI method for the Hermite bicubie collocation equations is fast and numerically stable.

Although we believe that we have implemented our numerical methods well, there exist

many obvious routes towards improvement. Since the TPGADI method convcrges rapidly, we

should incorporate some type of automatic stopping criteria into the software. Inilial guesses

other than zero should be automatically provided; in facl, smooth initial guesses should be

provided to accelerate convergence. For Hermite bicubic collocation,the boundary condilions

can be interpolated. More general operators can be treated by computing the acceleration
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paramcters by solving the corresponding generalized eigenvalue problem using EISPACK.

The TPGADI method can be: used to solve discrete elliptic problems arising from many

different discretizations. We have used it in conjunction with the Method of Lines [Dyksen,

1982J. We have implemented within the ELLPACK system the TPGADI method for a

discretization method which we call Method. of Planes to solve separable elliptic problems with

uncoupled boundary conditions on three dimensional rectangular domains [Dyksen. 1984d].

Moreover, we have used the TPGADI method to solve the partial difference equations arising

from Dirichlet problems on three di,mensional cylindrical domains with holes [Dyksen, 1984cJ.
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