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ABSTRACT

We consider solving separable, second order, linear elliptic partial differential equations.
If an elliptic problem is scparable, then, for certain discretizations, the matrices involved in
the corresponding discrete problem can be expressed in terms of tensor products of lower
order matrices. In the most general case, the discrete problem can be written in the form
(4188, +B,®A))C =F. We present 8 new Tensor Product Generalized Alternating Ditec-
tion Implicit (TPGADI) iterative method for solving such discrete problems. We prave con-
vergence and establish computational cfficiency. The TPGADI method is applied to the Her-
mite bicubic collocation equations. We conclude that the TPGADI method is an effective
tool for solving the discrete elliptic problems arising from a [arge class of elliptic problems.




Tensor Product Generalized ADI Methods for Elliptic Problems
Wayne R. Dyksen

1. Introdactlon

We present new methods for solving the discrete problems arising from separable,
second order, lincar clliptic partial differential equations. The methods we present arc
natural products of the classical approach. If a problem is separable, then its solution can be
expressed in terms of tensor products of salutions of lower dimensjonal problems, and hence is
reduced to that of solving much simpler prablems. For certain discretizations, this means that
the matrices involved in the corresponding discrete problem can be expressed in terms of ten-
sor products of lower order matrices. For example, in the most general case the system of
linear equations which constitute the discrete problem can be written as
(4,198, +B;®A;)C =F.

We begin in Section 2 with a brief introduction to some theoretical and computational
aspects of tensor products and matrices. In Section 3 we present a new method which we call
the Tensor Product Generalized Alternating Direction Implicit (TPGADI) method for solving
discrete elliptic problems of the form (A ®B, + B, ®A,)C =F. In Sections 4,5 and 6 we apply
the TPGADI method to solve the Hermite bicubic collocation equations. We show that the
TPGADI method is an effective tool for solving the discrete elliptic problems arising from a

large class of elliptic problems. In Section 7 we summarize our results.



2. Tensor Prodocts of Matrices

Let A ={a,,} and B ={by} bec matrices of order M XN and K xL, respectively. The
tensor product (Kronecker product, direct product) of .1 and B, denoted by A ®B, is the

matrix of order MK XNL given by

GuB apl ... aB

anB axB ... axB
ARB=| . . - |-

dyg 18 a,,-zB wee AunB
Some of the properties of tensor products are summarized below; a detailed account is given
in [Halmos, 1958].
(A{+A4,)®B =A @B +4A,®B
AQ(B;+B,)=A®B,+A®B,
(A1 ®ANB,®B,) =A B, A8,
(A®B)'=4"'®@p!
(A®BY =AT @87,
Note that if x and y are cigenvectors of A and B with eigenvalues A and I, Tespectively, then
x®y is an eigenvector of A @B with corresponding eigenvalue Ap.

The fact that a particular matrix factors into the tensor product of two or more matrices
is of no valuc without algorithms for doing efficient computer manipulation of tensor pro-
ducts. For example, to compute (A ®B)x we must use only the factors A and B, and avoid
explicitly forming the tensor product A ®B. Such algorithms are given in [de Boor, 1979].

When computing with tensor products, it is computationally convenient to represent vec-
tors using matrices. For cxample, when working with (4 ®B)x, we represent the NL-vector x

by the matrix X ={x,} of order L XN defined by




Xin =Xp+L(n-1)

The usefulness of this representation can be seen in the following simple results which give

cfficient procedures for computing (A ®B)x and solving (A ®4,)x =b, respectively.

LEMMA 2.1. Let A ={ap,}, B ={by} and X ={x1,} be marrices of order M XN, K XL and

L XN, respectively. Then the K XM matrix (A ®B)X is given by

A®BX =(ABX) ).

COROLLARY 2.2. Let Ay be matrices of order Ny XN, let X and B be matrices of order

N3 XNy, and consider the linear system
(A;®A)X =B.
If A7) and A3 exist, and if AsY =B and AyZ =Y7, then X =2Z7.

Since we make extensive use of these two basic tensor product opcrations in the case in
which the factors are band matrices, we give here their computational complexity. Let A, be
matrices of order Ny XN, with bandwidth K;, and let B and X be matrices of ordar NaXN,.
Then the work to compute (A;®A,)X is easily computed to be O(2N N (K| +K,)). The work
to solve (A ®A)X =B using Gauss elimination with partial pivoting is given in Table 2.1

which shows that the work is O (2K N +2K 2N 2T W No(K 1+ K2)).

Table 2.1
Work to solve (4, ®A4,)X =8B
Operation Work
Factor A, 2K2N,
Solve L,U.Y =B 3N KN,
Factor A, 2KiN,
Solve L\U/yZ =Y7 | 3K NN,

Observe that dominant work results from handling the multiple right sides 5 and ¥7
since K, <<N,. On a computer which provides the facility for doing parallel processing, the

forward and back substitutions can be done simultaneously for all right sides, reducing the



work by approximately an order of magnitude to O (3(X N +KN3)).

The need to usc band Gauss climination with partial pivoting to solve A,¥ =B and
A,Z =Y7 is, in some sense, a worst case. In particular, we may want to solve (4, ®/)X =B or
perhaps (A, ®A,)X =B where A, is symmetric, positive definite so that the work estimates
given above arc indecd over cstimates. In many applications, A; and/or A, have nice proper-
tics which A1 ®A; does not share.

The linear systems arising from separable elliptic problems da not factor into the simple
form (A;®A)x=b; instead, they are of the form (A;®B,+58,®A)x=b. The simple pro-

cedures considered here are employed to solve such cquations.

3. The Two Dicectional Tensor Prodoct Generallzed AV Methods

Let A, and B, be matrices of order N, X N, , and consider the [incar system
(31) (A1982 +Bl®A2)C =F.

While the tensor product (4; ®B; +B;®A;) is an NN, <N N, matrix, we wish 1o solve (3.1)
by computing only with A;, B; and A4, B»; that is, we wish to solve the two directional prob-
iem (3.1) by using methods employed to solve the one directional problems. We use the term
directional rather than dimensional since one direction may encompass more than one dimen-

sion, as in the Method of Planes [Dyksen, 19844].

For a given set of positive acceleration parameiers py, k =1,2,..,, we define the two
directional Tensor Product Generalized Alternating Direction Implicit (TPGADI) iteration

method by
€D given

(32) [(A: +m +:BD®Bz]C(Hm =F — [B1®(Az - P +|Bz)]cm

[B:1®U2+pri|C 0 =F - a1 -0, By @BJc .




The TPGADI method is a natural extension of the standard Peaceman-Rachford ADI method
[Peaceman and Rachford, 1955]. In fact, with B, =1, the identity matrix of order i, (32)
reduces to the tensor product ADI schemes presented in [Lynch, Rice and Thomas, 1964a,
1964b, 1965).

THEOREM 3.1. Let A, and By, be matrices of order Ny XNy, and consider the linear sys-
tem (3.1) for F given. Suppose thay B{'A, and B3 A, have complete sets of normalized eigenvec-
fors p; and q;, respectively, with corfespouding Ppositive eigenvalues L, and ;. respectively. Than,
for a given set of positive acceleration parameters Pi, k=1,2,..., the two directional Tensor Pro-
duct Generalized Alternating Direction Implicit iterative method, given by (3.2) is convergens, and
C is its only solution.

Proof. Let E®}=C®)_C denote the error of the k™ iterate, and let I, denote the iden-

tity matrix of order . A straightforward computation shows that the error satisfies

EO=cO_pr

(33) E&+ = [(31—141 —prad )(BTIAL +ppyd )
® (B Az +pp o) B A, —py +1!;)]E ®,
It we expand the error £¢Yin terms of the eigenvectors of B; !4, and B;'A, as

Ny Ny
(34) E®=%3 Efp ®q
i=1jm]l

and substitute (3.4) into (3.3), we obtain

N
E(HI)_N' 2N —Prar Hy ~Pr+1
(mtimi| M FPran By Fprag

]E §¥p, ®g;.

Hence, the error E®) may be expressed in terms of the initial error £© as




By — M
E®) = £ &
2-UE-::-: M"‘P: By +p; l} P11 Bq;
so that
o7 2
3 . o
33 § II A,+p, Yy ] g

Since by the hypothesis the cigenvalues X; and p,; arc positive, it follows from (3.5) that

for positive acceleration parameters p,

k |h - -
£} — l—[ T T | 0| —
hm B "l'l'n}' AR R e EP|=o,

so that

lim 11E® 1 =0

| )

which is the desired result O

We see from (35) that E,}? can be made zero for all j by taking p; =\, for some i. This
obscrvation makes transparent the power of the TPGADI method, namely, that many (¥, or
N3) components of the error vector can be annihilated at the same time. Moreover, if the A,
B, and p; are positive, then this annihilation is accomplished without simultaneously magnify-
ing any other components of the error.

COROLLARY 3.2, The TPGADI iterative method (32) can be exact (excepr for round-off)
in a number of iterations equal 1o the number of unknowns in either direction; that is, in N, or N,

iterations.

Proof. Let Ay,..., Ay, be the cigenvalues of Bi'A; and set p; =N;. Then by (35} we

have for all {

Ny Ae=pr By =P
el }=0.
Y H X T ey ] d




Thus,
E®?=p.

The analogous argument for N, iterations completes the proof O

The TPGADI method (32) is one member of a general family of TPGADI methods

defined by

c© given

[(41+pe 80 @B)cE9=F - 3104z —pruiB)|c®

B2 +paB]c®? =[5, @(4; - wps B ]C®
+(1+0)pr (B ®BHCE T

where @ is a fixed scalar and p, arc positive acceleration parameters. The values  =1,0
correspond to generalizations of the Peaceman-Rachford method and the Douglas-Rachford

method, respectively {[Douglas and Rachford, 1956].

To compare the TPGADI method to other schemes, we estimate the computer time (via
operation counts) and computer memory required to implement it. We assume that 4; and B,
are band matrices with bandwidth K; and that all systems of lincar equations are solved by

Gauss climination with partial pivoting. Since the initial guess C® and the acceleration

parameters p, depend on the discretization method used, we assume here that they are given.

The work to compute the 1-direction sweep of the TPGAD] method (3.2) is estimated

using the results of Table 2.1. We obtain the following:



Table 3.1
Work to compute the 1-direction sweep of the TPGADI method
Operation Work
W2=A2~p B2 2KN,
W =(B;@w)c®) NN K1+ K3)
W=F—-W By INZ
Wi =41+ 2K N,
CE=(W,Q@B,)'W | 2KN{+2KIN,+3N N, (K +K2)

Thus, the total work to compute the 1-direction sweep is O[N N o(5(K ¢ +Kz)+’k)]. An analo-
gous cstimate shows that the work for the 2-direction sweep is the same. Hence, the total
waork per iteration is OININZ(IU{KI +Kz)+1)) operations. If Ny=N;=N and K,=K,=K,
then this work estimate simplifies to O (20K~ ?).

Note that the dominant work in Table 3.1 does not result from factoring W, or F,.
Instead, the dominant work involves computing the right side W and doing multiple back sub-
stitutions solving for € ®*®), operations which are often negligible in other applications. On a
computer with parallel computing facilities, a large gain in speed could result by doing the

multiple back substitutions in parallel.

We now compare the TPGADI method to the straight forward method of applying sim-
ple band Gauss climination to the matrix A =(4;®B,+5,®4,). If N;=N,=N and
K,=K3=K, th~n the matrix A is of order N? %X N? with approximate bandwidth KN so that
band Gauss elimination with partiel pivoting applied to it requires O (2K2N*) operations. The
TPGADI iterative method can be a direct method in N itcrations, requiring O (20KN *) opera-
tions. Thus, the TPGADI method is asymptatically much faster than straight forward Gauss

elimination as a direct method of solution.




The analysis warrants a few remarks. First, in order for the TPGADI method to be
direct we must either know a priori the N cigenvalues of B{'A; or B85 A, or must compute
them; in the applications we consider, the computation of these cigenvalues is insignificant.
Second, given the desired cigenvalues, we could use some subset of them to achieve moderate

accuracy with many fewer than N iterations; we discuss this in Section 6.

A simple calculation shows that the amount of memory required to factor the matrix
(A1®B; +B,®A;) by Gauss elimination with partial pivoting is O (3XN> +2¥?) words. The
memory requirements for the TPFGADI mcthod are estimated as follows: &, By, A,, B, each
require O (2KN ) words; W, and W, require O (3KN ) words; and W, F and C each require N2
words. Thus, the total amount of computer memory required is 0(3Nz) words, which is

nearly optimal since it is the same order of magnitude as the number N2 of unknowns.

4. Collocation with Hermlte Bicublcs

We consider an elliptic problem of the form

Leu+Lyu=f inf =[0,1] x[0,1]
(4.1) u=0 onal},

where

Lyu =—ayxh, +a(x)u, +ag(x)u, ay>0,

Lyu ==by(yu, +b,(y)u, +bo(y)u, &3> 0.

We assume for simplicity that we have homogencous Dirichlet boundary conditions. The
analysis is readily extended to problems with nonhomogencous Dirichlet or Neumann boun-

dary conditions [Dyksen, 1984d], [Houstis, et. al., 1983a, 1983b].

The domain {3} is subdivided with a rectangular, tensor product grid with MN rectangles,

We approximate u(x,y) by
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2 2§
Uix.y)=3, Combm ()00 ()

m=lpg=

where ¢, and W, are the standard onc dimensional Hermite cubics with the grid lines as

knots. The Hermite cubics which are zero on 9§} are discarded so that IJ = Q on 51}.

To determine the 4MN unknowns c.,, we place in each subinterval (x,,x,.;) and

. A h,
(¥a>¥n+1)s the two Gauss points T2,y =%(xn + Xaet) = ﬁ y Tom42 = B(Xp +Xp 1) + PV and

Vor 4y = B0 +Yas1) — E%,j- » Vogaz =30y, +¥eap) + -5\-7}3- . These collocation points give a2 fourth

order discretization error for smooth problems [Houstis, 1978], [Percell and Whecler, 1980).
We then collocate the elliptic problem (4.1) et these 4MN points to obtain the Hermite bicubic

colloration equations

i=1,....2M
(42) L:[U)aewvy) + LU ])(ri,v)) =1 (70,0)) j=1,...,2N.

The structure of the linear system in (42) depends on the ordering of the collocation
- points and the basis functions [Rice, 1981a). If they are both ordered in a natural tensor pro-
duct manner, then (4.2) may be written in tensor product form as

(A; ®B, +B, ®A,)C =F,
where

i=1,...2M
(A lim =L a (";I)- [B:]m =bal7:)s m=1,..,2M,

=12
(Al =Ly (0s)s Byl =ul0))e oy 0w,

n =1,....2N j =1'.ll,2N
Com =Croms py=1.,.,2¢, 08¢ Fu=f(v;) ;-4 op

Since the suppert of each Hermite cubic ¢, and {5, spans at most two subintervals, it follows

that A, , B, and A,, B, have bandwidth two, regardless of M or N.




11

5. The TPGADI Method Applled to the Collocatlon Eqoations

We now apply the TPGADI method (32) to the Hermite bicubic collocation equations,
In particular, we establish the convergence of the TPGADI mecthod when applied to the

Discrete Model Problem arising from the Model Problem

-ug, —u, =f in 0l =[0,1} x[0,1]
(.1) u=0 onafl.

For the Discrete Model Problem, the matrices A, B, and A,, B, in (33) are defined by
[A: ]Lm = —d):('rl)o [B:]nu =¢n (‘r,), and [A_r]]n = _lp;,(”,.\‘ )' [BJr]Jn =1, (“J )'
Since convergence of the TPGADI mecthod depends on generalized eigenvalues of

A;c=AB;c and A,¢ =\B,c, we consider the classical cigchvaluc problem

wx)=xu(x), x€(0,1)

(52) u(0) =u(l)=0.

We divide the unit interval into & 'cqua! subintervals of length & =1/N. We approximate an

o
cigenfunction u of (52) by U (z)=2c;¢,(x) for some constants ¢;, where the & are the 2§
im1

Hermite cubics associated with the N +1 grid points x, =&k, and which satisfy
$:(0) =&:(1) =0. For a fixed parameter 0 < 8 < ¥%, we place in each subinterval (x;,x; +;) two
collocation points, 7o;41 =%(xy +x;4) — 04 and 7y, ="%(x, +x; 41} +0k. Substituting U into

(5.2) and collocating at these points, we obtain the generalized eigenvalue problem
(53) Ac=ABe,
where

. I=1,..,2¥
Ay =di(mi)y By =& (u)s ; oy | on.

The generalized eigenvalues and cigenvectors of (53) give the Hermite collocation approxima-

tions to the cigenvalues and eigenvectors of (52).



THEOREM 5.1. The 2N generalized eigenvalues of Ac=\Bc in (53) are given by

(5.42) Ao= 7:'1‘(_92—_%)

(5.4b) Ay = :._,(—022715

(5.4¢) AE=b= za”’ .
where

(552) a =a‘[(1so‘—1se=+3)d —sa=+2],
(55b) b =h2[(—-r12892+48)d +4s],

(55¢) c=192d,

and where

(5.5d) d =tan’(lA=/2).

Proof. Let P be the Hermite cubic collacation approximation of the eigenfunction of
(52) corresponding to the approximate eigenvalue A. Since # =1/N, P consists of N pieces,
Py (x), each of which has support in (x; ,x,47), X =0,...,N ~1. Denoting the k' piece of P¥
by pil(x) =v; +8;x, we have
£2 £
(556) Pr(x)=oy +Bx +T:? +81-"6_ .
We assume for the sake of simplicity that each polynomial piece is centered at the midpoint of

its corresponding interval.

First, we relate the @, 's to the v, ’s and the B,’s to the §,’s by using the eigenvalue prob-
lem. Since P satisfies P¥ =AP at the collocation points, we have pf(= 0k) =Ap, (* 8k), or

equivalently,
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2,2 1.3
(5.7) Tl - Blﬂh =A.[Cl'.* +* ﬂtah +T* ezh = 51. uﬁh ].

Adding and subtracting the equations in (5.7), we obtain, respectively,

6%h2
Yr=A [ﬂx Y ]

2,2
8 =R[Bt +5ka_:— .

from which we have

a, =C = l __th_z
3 a¥Yi X 2 Yr
1 6%?
=Ca8 =|— ——— )
Br =Cp8;: [A 5 ]Sz

Thus, (5.6) simplifies to
x2 3
plx)=IC, +-—i- ]yt + [Cpx +% ]at.

Next, we relate the v, 's to the 8, s by using the continuity of P and P!. Since P is cba-

tinuous, we have p; (h/2) =p; ,,(—h /2), or equivalently,

Cu+"%i ]1’1 + Ca% +% ]Bk = Cq"‘%z ]TH:[" CB_;' "‘{‘g‘ ]5t+|.
which we write as
(5.8) (=¥ +ven) =5 (@ +8,4),
where r =C,+£B?- and s =C‘B% +-:% . Furthermore, since P’ is continuous, we have

pi(h/2)=p{.1(—h[2), or cquivalently,

h A2
Znt Cs"‘?]hu.

h’ k
Cot g ]5& =3 Mmt
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which we write as

2z
Co+

2
¢9) Yet¥ear=0(-8; +8;41), =% 8

h

Now, using (S8) and (5.9), we show that the v,’s and 8,’s both satisfy the same differ-
ence cquation. We consider (5.8) and the equation obtained from it by replacing & by ¥ —1.

We obtain

’(_?t +yea) =58 +8; 1)
FYe-1 ) =5 @Ba o +8;),

(5.10)
which, if added, yicld
(5.11) F(—Yx1t¥ea) =5 By +28; +8:49)-

Similarly, from (5.9) we obtain

Yty =0(8; +8,49)

G12) Ye-tt v =1(-8; 1 +8;),

which, if subtracted, yield

(5.13) Ye-1—Ye 41 =1 (B o1 —28; +83.4).

Substituting (5.13) into (5.11) gives

(5.14) (8, —28, + 8 o) =581 +28, +8..9).

If we subtract the equations in (5.10) and add the equations in (5.12), we obtain, respectively,

F{ve—1= 2y TYea) =5(~3 1 +8;4)
Yi-t1+2v F Ve =1(-8p 1 + 8 ),

which gives

(5.15) re(Yi-1— 2% ¥4 =5 (-1 F 29 Fviar)-
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Now, since the v, 's and 8, ’s satisfy the difference equations in (5-14) and (5.15), we may

in the usual way sat

n =A Lt +C
81 =B.E ;k +D‘.c—£ .

However, the eigenvalue problem is invariant with respect to translation; that is, we must

have y9=* yy . and 8§y =*8y_,. Thus we may set

Vi =Atsin[-(_)—k +I:'ﬁ L +Cycos G+ W)iw Tf Lm ]
(5-16) k + 1) k + %)
8, =Btsin[-(—?)—“ +D;cos ‘(‘—N)—w

Substituting (5.16) into (5.14) and (5.15), and simplifying, we obtain
r:[—4sin2[§;— ]ak] =s[4c052 %‘ ]3,]
rr[—%inzl% ]-u] =s[4c052 % ]-u].

Since r, s, and ¢ depend on ), it follows from (5.17) that the eigenvalues of (53) satisfy

(5.17)

] 2| i | _
(5.18) risin [ZN ]+scos [2:\" ] 0.

We can now obtain the formulas given in (5.4) by considering (5.18) for various values of

I. If I =0, then (5.18) reduces to

or equivalently,

(5.19) M= m s

which is (5.42). Note that (5.19) may also be written as
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6(= 6h) =A(x 64)(0%h% ~ 8%/4),

which shows that the approximate eigenfunction associated with Ap is given up to a multiplica-
tive constant by p; (Ag;x) =x(z2 — 4%/4). Morcover, p, (Ay; x) satisfies the boundary conditions,

pr(hp; £ A/2) =0, and is a piccewisc-approximation to the eigenfunction sin(2¥ wx) of (52).

If { =X, then (5.18) implics rt =0 so that cither

1 6%%  K* _
(520) r —'i' T + 3 =0
aor
2|1 e%?  A?
S |— -——— 4 — =1{).
(521) 1= [x o 8 ] 0
From (520) we obtain (5.4b),
2
Ay =————.
N (- %)

The approximate cigenfunction corresponding to ky is given up to a multiplicative constant by
Pi(Ay;x)==(x2—h%/4). Notc that p,(hy;x) satisfies thc boundary conditions,
oAy ;= h/2)=0, and is a piccewise approximation to the eigenfunction sin(N wx) of (52).

6

From (521) it follows that Ay = —————
(521) ¥ h%0? - 3/8)

with corresponding approximate eigenfunc-
- 342 - -
tion py Ay ;x)=x]x% - ol i Since p,(Ay:=h/2} # 0, Ay is not an eigenvalue of (53).
Finally, for { =1,...,N —1, we have from (5.18) that
2 | L BT
(522) Aretan [ZN Ar =0

which is a quadratic equation in A. If simplified, (5.22) may be written as

(523) ari+b) +c =0,
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where a, &, ¢ and 4 are given in (55). Thus, for each of { =1,...,N —1, (5.23) represents two

eigenvalues of (53) which gives (55¢),

At__bt M'b ""40‘.' O
t 2a

By varying the free parameter 0 < 8 < % in Theorem 5.1, we can vary the location of the
2N collocation points 1;, thereby affecting the accuracy of the approximations to the cigen-

values of (52).
COROLLARY 52. If 0< 0 <, then L{" is ar least an O (h®) approximation to the eigen-

value of smallest magnitude of (52), -w2. If 0= ?375- s then At =—2 +0o (Y.

Proof. From Theorem 5.1 we have

—b + VB —4qc

+ —3
(524) Af o .

where a, b and ¢ and given in (55) and where d =tan’(hw/2). Expanding the right side of

(524) in a Taylor series with respect to k, we obtain,

+__ 2__1 2_qgyetpz_ 1 4 _ 20002 614 6
(525) M= -t = o (1207 - 1)t — e (72004 - 20007 + 13} +0 (%)

so that A = —nw? + O (K?).

.

Setting 126% — 1=0, we obtain 8 = -2% which arc the Gauss points in (0,1). Substituting

6= 2—\1,5- into (5.25), we obtain the desired result,
G4
=—m2-2h L oY0
M=t - TR 40 (h)

We now return to the question of the convergence of the TPGADI method when

applicd to the Discrete Model Problem.




THEOREM 5.3. For a glven set of positive acceleration parameters py, k =1,2,..., the

TPGADI method (32) applied 1o the Discrete Model Problem is convergent.
Proof. The 2M and 2N gencralized eigenvalues of A;c =AB.¢ and 4,c=\B,c arc com-
puted from Theerem 5.1 with ﬂ=-i%-5- . A simple calculation shows that the generalized

cigenvalues of A;c =AB,c are given by

36
Ao==2,
[ kxz
12
Aﬂ_h_‘z H
VaZ+90d +81
apoldAOFOVATXRIFEL |y 4

h2(ad +3)

where

=tanz|-
d tnn[M 2].

Now, since d > 0 for all { =1,...,M —1, and since

=1...,.M -2,

lan[ < tan [I+1 il

it follows that the 2M —2 generalized cigenvalues A" are distinet, real and positive. Hence,
the 2M gencralized eigenvalues of A, e =AB; ¢ are distinct, real and positive. A similar argu-
ment holds for the 2N generalized cigenvalues of A,e=AB,c. Convergence now follows

immediately from Theorem 3.1 0

For reasonable choices of the basis functions end the collocation points, the generalized
eigenvalues of A4, ¢ =\B,c and A,¢ =AB,¢ are accurate approximations to the continuous eigen-
values of L, and L,, respectively. In fact, the simple eigenvalues of an m' order ordinary dif-

ferential equation arc approximated within O (1A %) by collocation at Gauss points with
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piccewise polynomials of degree<m +%k on a set of knots A={0=rp<s;<.., <=1},

where A is the mesh size 1A =m‘axdr, [de Boor and Swartz, 1980, 1981]. For a large class

of operators, the eigenvalues of L; and L, are distinct, real and positive, or at least have posi-
tive real parts. Hence, we expect the TPGADI method to converge for a large class of elliptic
problems for a large class of collocation methods. We apply the TPGADI method to more

general discrete elliptic problems in the next section.

6. Compaoter Implementation and Performance Evaluation

We now consider the performance of a specific computer implementation of the
TPGADI methed applied to the Hermite bicubic collocation equations. The acceleration
parameters p; are computed from the formulas in (5.4); subsequent timings of the TPGADI
method include these computations. The acceleration parameters are used in increasing order
[Lynch and Rice, 1968]. Although BRISPACK [Smith, et. al.,, 1976] contains routines to solve
the generalized eigenvalue problem arising from more general operators, we do not usc them.
However, we belicve that this approach would be cost effective for two and three dimeasional

problems. The initial iterate, Cm). is always taken to be zero.

The computational complexity can be estimated directly from the analysis of Section 3.
The work per x or y direction sweep is cstimated from Table 3.1 to be O (82MN ) operations.
Since the TPGADI method can be a direct method (dcpcnd_ing on the choice of the accelera-
tion parameters) in min(2M 2N) iterations, it follows that the total work to solve
(A @B, + B, ®A,)C =F is less than or cqual to O (164MN min(2M ,2N)) operations. A typical

requirement is that M =N so that the total work is O (328N7).

The matrix (4; ®B, +B; ®A,) has dimension 4MN X4MN and approximate bandwidth
4N . The work required to factor it using band Gauss climination with partial pivoting is

O(128MN%) operations which simplifies to O(128N*%) if M =N. The bandwidth of
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(A; ®B, + B, @A,) can be reduced from 4¥ to 2N by using a finite element ordering of the col-
location points (cquations) and basis functions (unknowns) [Dykscn and Rice, 1894a). Even
so, the computer work required to factor the matrix is O (32MN %) which simplifies to O (328%)

it M =N. Hence, the TPGADI method is asymptotically faster than the straight forward
| approach of applying band Geauss eclimination to (A, ®B, +B, ®4,). We experimentally

explore the performance of all three solution methods in Example 6.1.

OQur implemcntation of the TPGADI method requires O(12MN) words of computer
memory which is nearly optimal since it is only three times the number of unknowns. By con-
trast, O (48MN?) words are required to store (4, ®B, +8, ®4,) in order to factor it using
Gauss elimination with partial pivoting. If the finite element ordering is used, then O (24MN?)
words are required. If M =N, then the threc methods require O(12¥%), O(48N7%) and

0{24N *) words, respectively.

Before considering any numerical examples, we define two error measures. We denote
the Hermite bicubic approximation to the solution # of the elliptic problem at the &% itera-

tion by

2y N
Udx,y)=73, lcm.“’ti.(x)lb.(v)-

malpge=

Two natural ermor measures are

£) _ " _
3%, | —con | I LA CRER EPTERS
gc(t)n =], 2N and Eu(t)= a=l...N
o] LI [uGaon)
m=l...,28 g, N

Note that e (k) is the maximum relative error at the k™ step in approximating the solution C
of the discrete problem, whereas ey (k) is the maximum error on the grid points at the k™ step

in approximating the solution u of the continuous problem.
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The following numerical results were computed on a VAX 11/780 (U'ND{?, 4.1BSD) with

a floating-point accelerator using the Fortran compiler £77 with optimizer in single precision.
EXAMPLE 6.1. Performance of the TPGADI Method with M and N Varied

We solve the Model Problem (5.1) in which f is chosen so that u(r,y)=x(x ~1)(x +2)
y({1-y)¥(3-y). The results are summarized in Table 6.1.

Table 6.1
Hermite bicubic collocation and the TPGADI method applied to
the Model Dirichlet Problem for u(x.y)=x(x —1)}{x +2)

y(1-y)3-y)
ber of 1 |
_ Number o Solution
N =1k | Unknowns | Time (Secs) | @) | ew(@)

4 64 058 2.4628e-06 | 45776e-07

8 258 443 53843e-06 | 83923¢-07
12 576 ° 14.70 13131e-05 | 1.8142¢-06
20 1500 6757 52688c-05 | 4.4144¢-06
28 3136 18657 13512e-04 | 3.14672-06

A logarithmic fit of this timing data gives Time = 0.00937N 2", which agrees with the

theoretical work cstimate of O (328N ) operations.

The error measures in Table 6.1 indicate that the TPGADI method is numerically stable.
Since the discretization uses bicubic polynomials, it follows that e (2¥) and e, (2¥ ) should be

zero within machine round-off. A logarithmic fit of these error measures gives
ec (2N ) =960°10"20N20 and ¢, (2N)=553%10"Ban 142,

Thus, not only is machine round-off achicved, but the round-off errors do not grow signifi-

cantly as N increases.

IUN’IX is a Trademark of Bell Laboratorics
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Contrary to intuition, ey < ec; that is, the error in approximating u is less than that in
approximating the coéfficients of the basis functions of U. Almost three-fourths of the
unknowns correspond to values of U,, U, and U,, at the grid points. However, the basis
functions associated with them are Izcrt:b at the grid points so that the error in approximating

these unknowns does not contribute to e;,. We include the error measure ey since it is com-

mon and the quantity of interest in many applications.

We now compare the TPGADI schente as a direct method to band Gauss elimination
with partial pivoting by solving the same Model Problem within the ELLPACK system [Rice
and Boisvert, 1985]. We obtain & discrete problem using the Hermite bicubic collocation
discretization module INTERIOR COLLOCATION which generates the expanded tensor pro-
duct matrix (4, ®8, + B, ®4,) only with a finitc clement {FE) ordering of the equations and
unknowns. We solve the discrete problem by using the band Gauss elimination solution
module LINPACK BAND [Dongarra, et. al., 1979]. Morcover, we usc a so-called indexing
module to reorder the linear system produced by INTERIOR COLLOCATION so as to give
the tensor product (TP) ordering of the cquations and unknowans; that is, to give the exact
expanded tensor product lincar system (A; ®B, +B, @4,)C =F. We solve this form of the
discrete problem using LINPACK BAND also. The solution timing results are summarized in

Table 62.

 Te— . .
ELLPACK is a very high level computer Innguage devefoped et Purduc University for solving second ord-

er lincar elliptic partial differeatial cquations.




Table 62
Solution time (scconds) for LINPACK BAND and the TPGADI
method applied to the Discrete Model Problem arising from Hermite bi-
cubic collocation

LINPACK BAND
N =1/k | Number of TPGADI
Unknowns | FE Ordering | TP Ordering

4 64 040 041 058
8 256 338 642 443
12 576 1550 2582 14.70
20 1600 9622 164.63 6757
28 3135 339.23 60593 18657

A logarithmic fit of this timing data shows that Timeggyp™ 0.00307N 34,
Timerpp = 0.00313N ** and Timerpgap= 0.00937N 27, We sce that even as a direct method
the TPGADI method is faster than band Gauss elimination. We believe that band Gauss elim-
ination is currently considered to be the best method for solving the collocation equations

[Dyksen, et. al., 1984¢].

The TPGADI solution time can be reduced significantly by taking less than 2V itera-
tions. Most of the accuracy is achieved during the initial iterations by using the p; in increas-
ing order, thereby annihilating the low-frequency components of the error. We solve the
same Model Problem with N =28 (3136 unknowns) using varied numbers of iterations of the

TPGADI method. The results are given in Table 63.
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Tatle 63
Hermite bicubic collocation and the TPGADI method
applied to the Model Dirichlet Problem with N =28 for

u(xy)=x{x —I{x +2) y(1 -y }¥3-y)

Number of Solution
Iterations, K | Time (Secs) ec(K) ey K)

7 21.72 7877304 | 1.4985¢-06
14 43.76 7590005 | 1.4235¢-06
21 ’ 6738 6.8314¢-05 | 76956e-07
28 89.99 T2540e-05 | 7.6956e-07
35 109.74 B.18442-05 | 1.4985c-06
42 13569 8.153%¢-05 | 2.0978e-06
49 16303 122B8e-04 | 2.6223c-06
56 186.57 13512e-04 | 3.1467¢-06

Reasonable accuracy is attained with as few as 7 iterations. For this case, the solution time is
21.72 seconds as compared to 33923 and 605.93 scconds for LINPACK BAND with the two

different orderings of the equations and unknowns.

EXAMPLE 6.2. Performance of the TPGADI Method with Varied Partial Ditferential

Operators

We prove in Section 5 that the TPGADI method converges if applied to the Discrete
Model Prablem. We now solve discrete problems arising from more general separable elliptic
operators. We consider varied operators L, and L, in (4.1) with f chosen so that
d(x,y)=x(x — 1}z +2) y(1-y}3—y). The acccleration parameters are taken to be the Her-
mite cubic collocation approximations to the cigenvalues of ~u_,. We use 1/A =M =N =20

which gives 1600 ucknowns to compute. The results are summarized in Table 6.4,




Table 6.4
The TPGADI method applied to the discrete problem aris-
ing from Hermite bicubic collocation with varied partial
diffcrential operators L for 1/h =M =N =20

Lu=Lu+L,u e (40) 2, (40)
Uy —dy, 52688e-05 | 4414406
~ by —uy, Fuy tu 5.6071e-05 | 3.9655¢-06
— Uy — iy, +sin(yle, +e’u 4.7869¢-05 | 4.4852e-06
— iy —sin(yu,, +cos(y)u, +u | 7.4526e-05 | 3.9655¢-06
— Uy —uy, +1000u 4.7525¢-05 | 13468e-05

Since the discretization is theoretically exact for this choice of u, it follows that e (40)
and ey, (40) should be zcro within machine round-off. The data indicate that the discrete gen-

eralized eigenvalues corresponding to L, cause no ill effects on the iteration process.

EXAMPLE 6.3. Hermite Bicubic Collocation and the TPGADI Method applied to a

Problem from Stratospheric Physics
We solve Problem 6 of [Rice, et. al. 1981b] which is defined by

— iy, —Uy, +(100 + cos(2Znx) +sin(3wy))u =f in Q =[0,1] x[0,1]
a=0 onall,

where f is chosen so that

u(x,y)=-031(54- cus(ﬁx Msin(mx}(y? —y)(54 - co's(41'r3! » [1+_p:x:y_)a - %]

where p(x y) =4(x — %W +(y - B~
For computational purposes we factor the partial differential operator into the sum of
Liu=—u, +cos(Znx)u

and




Lyu =—u, +(100 +sin(3ny))u.

1

The acceleration parameters arc computed from (5.4) with 0 =—== . Although thesc

2V3

acceleration parameters arc not the gencralized eigenvalues of A,e=AB e, we still expect

them to work well since L,u = —u,. The results are given in Table 6.5.

Table 6.5

Hermite bicubic collecation and the TPGADI methed applied to

Problem 6
_ Number of Solution
N =1/ | ypkpowns | Time (Secs) | ¢ w72 cv(N /2)

4 64 0.17 49074e-01 | 4.4000e-02
8 256 115 2.6185¢-02 | 33113e-03

12 576 382 1.5850¢-03 | 7.6008¢c-04

20 1600 17.48 3.1199¢-04 | 9.8924e-05

28 3136 47.42 1.2299¢-04 | 2.6276e-05

A logarithmic fit of these error measures gives ec(N /2)= 184N ®=1842%% and

ey (N /2)= 9.08N 231 =9.08h** which agrees with the theoretical convergence rate of 0 (k).

For additional comparison, we also solve Problem 6 within the ELLPACK system using

the so-called m‘p!e* module MARCHING ALGORITHM which is a “fast” mecthod designed

for scparable, self-adjoint elliptic problems [Bank, 1978]. MARCHING ALGORITHM uses a

symmetric 5-point finite difference discretization to generate a discrete problem which is then

solved using the generalized marching algorithm. The results are summarized in Table 6.6.

¥ . .
In ELLPACK, elliptic problems nre typically solved in threc phascs, diseretization, indexing und soluion.
A tripfe module incorporates all three phases into one module,
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Table 6.6
MARCHING ALGORITHM uscd te solve
Problem 6
1/h Number of Solution Maximum
Unknowns | Time (Sccs) Error

4 9 003 3.1019¢-01
8 49 0.05 6.5795¢-02
16 225 0.18 1.5340e-02
32 961 098 4.0000c-03
64 3969 435 1.0000e-03
128 16129 2022 3.4175e-04
256 65025 8585 3.2596e-03

Figure 6.1 shows a plot of data from Table 65 and Table 6.6. We conclude that in order
to achieve a given accuracy for Problem 6, our implementation of Hermite bicubic collocation
and the TPGADI method is superior to the implementation of the marchihg algorithm in the

module MARCHING ALGORITHM.

7. Concloslons

We have derived a mew Tensor Product Generalized Alternating Direction Implicit
(TPGADI) iterative method to solve discrcte elliptic problems of the form
(A1®B;+B1®A;)C =F. We have demonstrated that a specific implementation of the

TPGADI method for the Hermite bicubic collocation equations is fast and numerically stable.

Although we believe that we have implemented our numerical methods well, there exist
many obvious routes towards improvement. Since the TPGADI method converges rapidly, we
should incorporate some type of automatic stopping critcria into the software. Initial guesses
other than zero should be automatically provided; in fact, smooth initial guesses should be
provided to accelerate convergence. For Hermite bicubic collocation, the boundary conditions

can be interpolated. More general operators can be treated by computing the acceleration
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paramecters by solving the corresponding generalized eigenvalue problem using EISPACK.

The TPGADI method can be used to solve discrete clliptic problems arising from many
diffcrent discretizations. We have used it in conjunction with the Mcthod of Lines [Dyksen,
1982]). We have implemented within the ELLPACK system the TPGADI method for a
discretization method which we call Method of Planes to solve separable elliptic problems with
uncoupled boundary conditions on three dimensional rectangular domains [Dyksen, 19844].
Morcover, we have used the TPGADI method to solve the partial difference equations arising

from Dirichlet problems on three dimensiona! eylindrical domains with holes [Dyksen, 1984¢].
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