View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1984

Edge Grammars: Decidability Results and Formal Language
Issues

Francine Berman

Gregory Shannon

Report Number:
84-489

Berman, Francine and Shannon, Gregory, "Edge Grammars: Decidability Results and Formal Language
Issues" (1984). Department of Computer Science Technical Reports. Paper 408.
https://docs.lib.purdue.edu/cstech/408

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4951531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

TR~ 459

Edge Grammars: Decidabllity Resnlts
and Formsal Langoage Issnes

Francine Berman
Gregory Shannon
Purdue University

Motivation

Graphs and graph families are a fundamental tool in almost every area of com-
puter science. They are used to represent algorithms, architectures, data structures,
data flow, autcmata, etc,

Many applications use graphs and graph families as an abstraction and require a
formal means of defining graphs, in the same way that context-free grammars are
used to defined Type 2 languages in the coastruction of compilers. In [B], we intro-
duced edge grammars as a formalism in which to define and manipulate graphs and
graph families. Essentially, edge grammars are systems which define graph families
by generating pairs of strings which represent edges in the individual graphs. These
pairs are generated by derivations using the productions of the edge grammar in
much the same way strings in conventional formal languages are generated. Edge
grammars were developed to fill a gap left by other graph generating systems: In
particular, we were interested in representing graphk families commonly used as inter-
connection networks in parallel computation, {(e.g. shuffle-exchange graphs, cube-
connected cycles, meshes; trees, etc.) many of which could mot-be represented by
existing graph grammars and graph generating systems [CER], [ENR]. To this end,
we explored the relationship of edge grammars to parallel computation in the intro-
ductory paper. —

In this paper, we prov:de a solid context for the study of edge grammars by
relating edge grammars to conventional formal language theory and to the existing
work on graph grammars. We also explore decidability issues for edge grammars. In
presentmg the decidability results, we come full circle and resolve questlons impor-
tant in the motivating applications.

Sectlon 1: Definitions

In. this section, we give a brief review of edge grammars and an example of a
graph family generated by one. For a more thorough description of edge grammars,
see [B].

Definfrion: A (Type 0) edge grammar is a 4-tuple <N,T,G,P> where N is a set of
nonterminal symbols, T is a set of terminal pairs {(v,w)} (v and w are strings over a
finite alphabet), G in N is the start symbol and P is a set of productions. Productions
in P have the form x- y where x and y are strings in (NUT)" and x is not empty.
Note that we interpret the concatenation of two pairs (a,b)(c,d) to be the pair
(ac,bd).

Essentially, a Type 0 edge grammar is exactly like a Type 0 {Chomsky) grammar
except that instead of single terminal symbols, edge grammars have terminal pairs.

Definition: An edge grammar is Type 3 (right linear) if the productions have the
form A~ B, A~ (a,b)B or A~ (a,b) where A and B are nonterminals and (a,b) is a

-2.

terminal pair; Type 2 if the productions have the form A~ xy or A~ x where Ais a
nonterminal and x and y are either nonterminals or terminal pairs; and Type 1 if for
every production in P, the number of terminals and nonterminals on the left-hand
side of the production does not exceed the number of terminals and nonterminals on’
the right-hand side.

Definition: Let I' be an edge grammar. The nth graph generated by I', G 0’ is the
undu'ccted graph with vertices

n = {vl For some w, (G-~ *(v,w) or G~ *(w,v)) and lvI=lwi=n}
and edgcs
E, = {(v,w)I G~ *(v,w), v# w and Ivi=Iwl|=n}.

In other words, the nth graph G_ is the graph all of whose edges have length n
labels.

Definition: Let I’ be an edge grammar. The graph family generated by I', G(') is
the set {Gn}n> 0 where Gn is the nth graph generated by I.

Edge grammars generate pairs of labels. If those labels have the same length,
say length n, then we consider them to be an edge in graph G_. In this way, the
edges generated by an edge grammar can be naturally partitioned into a family of
graphs {G }. Note that the index n in G refers to the length of the labels in G
and not necessanly the number of nodes in G

To illustrate how edgé grammars work, consider the famﬂy of shufﬂc—cxchange
graphs. A shuffle-exchange graph SE_ consists of 2% vertices. Each vertex is
labelled by a binary n bit string. Adjacent vertices have labels which are either left
or right (circular) shifts of one another (the shuffle edges) such as (1000, 0001) and
(1000, 0100), or have labels in which the last bit is complemented (the exchange
. edges) such as (1000, 1001). Shuffle-exchange graphs are particularly effective as
paralle] architectures for algorithms for sorting, fast fourier transform, performing
permutations, etc. [P], [S]. Shuffle-exchange graphs SE,, SEZ and SE3 are shown in

Figure 1. 010 011
10 1] a]u]n] 001 - 111
110 }
D 1 | /
oo 01 100 101
SE, SE, SE5
Figore 1
Shuffle-exchange graphs SEI' SEZ and SE3.

The following is a (Type 3) edge grammar for generating the family of shuffle-
exchange graphs {SE_}.

E- E%O)E d AN . S(B

E- (1.1)E N1 OON, 1~P (0,0) N°

E- () Nj- (LN; No- (1LONg
Ni- (1) & Ng- (v0)

-3

. Edges in {SE_} are generated by applying a sequence of productions as in conven-
tional formal lfanguage theory. For example, the following derivation yields the edge
(001, 010) in this edge grammar:

G~ Sy~ (0N g~ (OXJOON g~ (MOXOONLIN,,
~ (OA)(0.0)(1,1)(1.0) = (001, 010)

Since both Iabels in (001, 010) bave length 3, (001, 010) is an edge in E3 (in SE.3) and
001 and 010 are vertices in V.

The usefulness of edge grammars as a representation for graph families is
dependent upon how much information about a graph or graph family we can deter-
mine from its edge grammar. In the next section, we focus on decidability properties
and develope a correspondence between edge grammars and graph grammars.

Section 2: Decidability Resolts for Edge Grammars.

Edge grammars were originally developed as an automatable representation for
graph families as part of a solution to the problem of mapping large-sized instances
of parallel algorithms onto small-sized parallel machines [BS], [B]. In this context, it
is important to resolve decision problems such as the membershlp problem: Given a
graph H and an edge grammar T, is H isomorphic to a member of the graph family G(T)?

The membership problem and other decision problems are critical in assessing
the effectiveness of edge grammars as a representation for graphs and graph families.
Although we found that the membership problem was undecidable in general, the
problem is decidable when there are additional constraints on I'. For example, if the
graph vertex sets V_-of I' are bounded from below by an unbounded monotone
increasing function t",1 then the membership problem is decidable. (We call such edge
grammars monotone edge grammars). Since many of the commonly used paralle}
interconnection architectures can be generated by monotone edge grammars, the
undecidability of the general problem has not proved debilitating to the use of edge
grammars in the parallel computation application. The following theorem catalogues
some useful decidability results on edge grammars. '

Theorem

The following questions are ondecidable.

1) Given a graph H and an edge grammar I, is H isomorphic to a member of
G(I')?

2) Given a graph H and a Type 3 edge grammar I, is H isomorphic to a subgraph
of any member of G([')?

3) Given an edge grammar T, are the graphs in G(I') planar? coanected? hamil-
tonian?

4) Given edge grammars I':l and I‘z, are the graphs in G(IT',) isomorphic to the
graphs in G(I',)? Is thére a graph isomorphic to a mem%er of G(I‘l) and a
member of G(I'5)? (intersection)

The following questions are decidable.

5) Given a Type 3 Edge grammar ', is G(I') finite? infinite? empty?

-4.

6) If H is a graph and there exists a monotone, unbounded function f with
v, 1= f(n) for all n, is H isomorphic to a member of G({I")?

Proof:

To prove 1), 3) and 4), we reduce arbitrary NLC grammars [JR] to edge gram-
mars and use the undecidability results for NLC grammars. An NLC grammar is a
graph grammar in which graphs are generated from a set of initial graphs by applying
productions from a fixed set. Upon applying a production A~ J to a graph H, a sin-
gle node of H labelled by nonterminal A is replaced by graph J, and J is joined to H
according to a given connection chart.

Let G be an NLC grammar. We will construct an edge grammar whose graph
family is the family L(G) generated by G. We will do this by constructing a Turing
Machine which nondeterministically halts with an edge from L{G) on the tape. By
the Hierarchy Theorem in section 3, it is then straightforward to construct an edge
grammar I’ which yields the edges on the tape and for which G(I')=L{G). "

Given an NLC G, we construct a Turing Machine M which performs the follow-
ing procedures:

1) Construct M by encoding the productions and connection chart in the TM
program. The tape will be divided into 3 sections:

#counter#graph#work area#

The counter is initialized to the maximum number of nodes in an initial
graph plus one. The state is initialized to q,. The graph is initialized to
one of the initial graphs in G. Graphs are represented in the middle sec-
tion as a sequence of pairs ((v)(w',lw)) where (v,w) is an edge in the
graph, 1_ is the label of v, and 1_"is the label of w. The work area is ini-
tialized {o the empty string.

2) If A is a nonterminal and H is a graph, M simulates the application of pro-
duction. A- H by first building subgraph H in the work area. (H is
represented as pairs of (vertexlabel) pairs analogous to the graph in the
graph area). The TM then scans the current graph (in the graph area) and
changes the subgraph in the work area according to the connection chart.
In the graph area, the interconnection structure of the node labelled with
A is also changed. The connected subgraph H in the work area is unioned
with the modified graph in the graph area yielding a new current graph (in
the graph area). The state is reset to q; and another production can be
applied to the new current graph.

Throughout this procedure, the counter is used to create new nodes.
When H is constructed in the work area, the counter contains the unary
number for the next new vertex. When a new vertex is created, its vertex
number becomes the number in the counter, and the counter is incre-
mented with the number for the next new vertex.

3) After the application of any production in a derivation, the Turing
Machine may go into state q., and check if the label of every vertex is a
nonterminal in the NLC gradimar. If so, the Turing Machine enters state
93, otherwise, it may re-enter q3-

4) In state q,, we may assume that the graph has only terminal labels. The
workspace can then be erased so that the tape loods like

#counter#graph#

-5.

At this point, M is ready to nondeterministically choose one of the edges in
the NLC graph and convert it into an edge for an edge grammar graph.
The TM scans the graph area, nondeterministically chooses an edge and
copies the edge to the right of the graph area.

#counters#graph#((v,1),(w.1_))

The TM then encodes the counter#graph section of the tape into a unique
unary number N and replaces this section with this number.

#N (in unary)#((v.1),(w 1)

Finally, M replaces he current ccg“ents of the tape with the edge (x,y)
where IxI=lyl, x=1" and y=1% After returning the tape head to
ap initial position, the TM halts. The tape now contains a terminal pair
whose left and right coordinates have equal length.

5) By the Hierarchy Theorem (section 3), it is straiphtforward to construct an
edge grammar which generates (x,y). Each NLC graph in L{G) will now
appear as a member of the graph family generated by the edge grammar I
which simulates M, i.e. L(G)=G(T').

{Note that the TM will not halt if the terminal graph family generated by
the NLC grammar G is empty. However this can be decided in advance
and if L(G) is empty, it is trivial to construct an edge prammar whose
graph family is also empty). : o

To show that 1), 3) and 4) are undecidable, it is now sufﬁment to observe that
these problems are undecidable for arbitrary NLC grammars [JR] and hence by our
construction, for edge grammars.

To prove 2), we first show that the question "Given a Type 3 edge grammar T,
does any member G_ of G(T') contain a self-loop?” is undecidable. This is a straightfor-
ward reduction from the Post Correspondence Problem. Let C be a correspondence
system with pairs {(u,,v;)}. Construct a Type 3 grammar I’ with productions

G- (u v)G T

G- (u v)
for each i. Then G contains a self-loop ifi C has a2 match. Since the Post Correspon-
dence Problem is undecidable, the self-loop problem is undecidable, To show that
the subgraph problcm is undecidable, note that if we could determine for a given
grapk H and a given Type 3 edge grammar I' whether H was isomorphic to a sub-
graph of G(T'), then we could instantiate H to be a self-loop and decide the self-loop
problem.

To prove 5), note that given a Type 3 edge grammar I, the vertex set V. of T is
contained in the family of context-free languages (see the Hierarchy Theorem in Sec-
tion 3). Since finiteness, emptiness, and infiniteness are decidable for CFLs, they are
decidable for V... 5) follows from observing that if V.. is finite, infinite or empty,
then G(I') must also be finite, infinite or empty. (Note that even if V. is infinite,
G(T") may still be isomorphically equivalent to a finite set of graphs).

To prove 6), we use a simple counting argument. Let f be a monotone,
unbounded function such that IV_I=f{n) for all n. Let H be a graph and let
IVi,l=m. Since f is unbounded and' monotone, there exists an N such that f(n)>m
forall n>N. Test all G, with n<N for lsomorphlsm with H. If some one of these
G. is isomorphic to H, thlen H is isomorphic to a member of G(T'); if not, then H is
not isomorphic to a member of G(I'). i

-6-

In the same way that conventional grammars form the Chomsky Hierarchy, the
graph families generated by Type 0, Type 1, Type 2 and Type 3 edge grammars also
form a hierarchy. In the next section, we describe the relationship between the edge
grammar hierarchy and the conventional Chomsky Hierarchy.

Section 3: Edge Grammars and the Chomsky Hierarchy

To compare the edge grammar hierarchy to the Chomsky hierarchy, we need to
compare the same types of objects. Conventional (Chomsky) grammars generate
languages whose members are single strings. The language of an edge grammar " is a
graph family G(I')={G_} each of whose graphs G consists of a set of edges E_ and
their length n incident’vertices V_. We can compare the edge grammar and Chom-
sky hierarchies by comparing the vertex sets of graphs in the edge grammar hierarchy
with languages in the Chomsky hierarchy.

Let " be an edge grammar and let V(I") denote the set of all vertex labels in the
graphs of G(I'), i.e. V(I') = UV where for each n, V is the vertex set of Gn' For
X=0,12 or 3, let VX = {V(I')I T 1s a Type X edge grammar}. In other words, we let
VX denote the class of all vertex sets for Type X edge grammars, Let (D)LX be the
class of {deterministic) languages generated by Type X Chomsky grammars. The fol-
lowing theorem relates the vertex sets VX of the edge grammar hierarchy with the
languages LX of the Chomsky hierarchy.

. PR ' s HMe—

Hierarchy Theorem
a) L3C V3IC L2 C V2 ¢ Vl=11C Vo
b) V3is incomparable'withi DL2.

LO.

Figore 2
Relationship of the Chomsky and edge grammar hierarchies.

Proof:

Berman in [B] showed L3 C V3,L2 C V2,Vl= L], and VO = L0. V1 C VO
follows from the demonstration in [HU} that L1 C L0. V2 € V1 is true by
definition.

To show V3C L2, let I’ be a Type 3 edge grammar. Assume without loss of gen-
erality that for every production A~ (a,b)B in I', lal=0 or 1 and Ibl=0 or 1. We will
construct a PDA M which accepts vertices in V.. M takes as input a string w and
nondeterministically chooses a derivation of w as the left coordinate of a terminal
pair or as the right coordinate of a terminal pair. During the derivation, the stack is
used to keep track of the disparity in lengths between the left and right coordinate
strings of the currently derived terminal pair. More specifically, let I" be an edge
grammar. Construct a PDA M with the following productions:

(SAN)-~ (G A)
(SAA)= (GgA)
(ALianY)" ()x): (AR!b!Y)* (BRrx)
wheére A- (a,b)B is a production 1o I" and
if lal=0, ibl=1, and y=+, then x=++
if lal=0, Ibl=1, and y=-, then x=A
if lal=1, Ibl=0, and y=+, then x=\
if lal=1, 1bl=0, and y=-, then x=--
if lal=Ibl, then x=y

(AL:a,Y)" (f,X), (AvavY)" (f,X)

where A~ (a,b) is a production in I and x and y are as given above.
It is straightforward to show that M nondeterministically simulates the derivation of
a string as the right or left coordinate in a terminal pair and accepts with an empty

stack and in the final state only those strings in V.. Proper containment of V3 in L2
comes from showing thit V3 and DL?2 are incomparable. -

To show that V3 and DL2 are incomparable, we show that V3 is not contained
in DL2, and DL2 is not contained in V3 by techniques similar to those found in [F].
To show that V3 is not contained in DL2, consider the language

L={a"b™a2%%2™ n m> 0},

By the pumping lemma for context-free languages, it is straightforward to show that
L is not in L2. However, L is in V3. To see this, observe that
L =L,UL,ULZUL,ULg where

L1={at}>}_‘;_-ambia+b+

L.2={a b+a b+l Zn<m, n> 0}
Ly={a"b a:{‘b (20> m, m> 0}
L4={a+bza+b$I 2n<m, n> 0}
L5={a ba b |120>m, m>0}

L, isin L3 and hence in V3. L, is contained in the vertex set V(I') generated by the
fo]llowing Type 3 edge grammar.” (The other strings in V(I') are in L,).

G- (Aa)G G- (A&
G'- (a,aa)A A~ (a,aa)A
A~ (b,aa)B B~ (b,a)B

B~ (aa,a)C C- (aa,a)C

-8-

C~ (aa,a)D D- (b,a)D
D- (b,a)

By slightly modifying the edge grammar given above, it is easy to construct Type 3
edge grammars whose vertex sets contain L,, L,, L5 and parts of L,. Since V3 is
closed under union, L™ =UL. is in V3. Assume towards a contradiction that L is
also in DL2. Then the compllement of L, L, must also be in DL2. But L is not even
in L2. Hence L. cannot be in DL2, and V3 cannot be a subset of DL2.

We next show that DL2 cannot be contained in V3. Let L = {anbn}. L is in
DL2. We show that L is not in V3. Assume towards a contradiction that I" is a Type
3 edge grammar whose prertex set is L. Then all terminal pairs of I' must be self-
loops of the form (a b2 ,altp?)- We show that L is not in V3 by showing that any
l"long-ei:lough" derivation can eventually pump the left and nght coordinates produc-
ing strings not in L. Let h ber of nonterminals in I'. Consider a deriva-
tion of the terminal pair (NM ‘Mmﬂ) where M—NEl

Assume the derivation contains a loop A- (az,Bz)A whose net coordinate
difference is zero (Iazl ||32|) i.e.

G *a B A~ *o 028 BolA~ ¥ ayasB BB~ 1" o b

Then this loop can be pumped in the same way looping derivations in regular
languages can be pumped. In our context, the result will be a terminal pair (w,w)
such that w is in V(T') but not in L. This contradicts the assumption that L is the
vertex set of a Type 3 edge grammar.

Now assume that the ‘derivation of (aMbM,aMbM) contains no loop whose net
coordinate difference is zero. The derivation can be visualized as a graph in which
the horizontal axis is labelled by the nonterminals at each step of the derivation
sequence with the start.symbol at the origin (Figure 3). The vertical axis gives the
net difference Ixl-lyl of the left and right coordinates of the currently derived pair
(x,y). For the final terminal pair to be in V(I'), the graph must start and stop with
difference 0. We can assume without loss of genérality that after each application of
a production (at each nonterminal along the horizontal axls), the height of the graph
changes by +1, -1 0r 0.

+2 -1

+1-~

0 } } ! !
G A B B

G- {a,\JA~ {ab\)B~ (ab,a)B~ (ab,ab}

Figure 3
A derivation and the graph of its net coordinare differences.

Consider the ﬁrst loop A~ (x:,t, JA in the derivation of (aMbM,aMbM)
Assume without loss of generality th e difference in the x and y coordinates is
positive ghe case is analngous if the first loop is negative). Since the derivation has
length N, there are no zero-difference loops and the net difference must end up to
be zero, there must be a negative loop B- (x4,y4)B in the derivati lhsoiaeﬂlere
after the positive loop. We can then rewrite the derivation of (a

follows
G- *x Y])A" *x Jar])'z)A

- M proEgy B Y5 rgE gy prayyy g B M)

where (aMbM,aMbM)=(x xéx y) Let M= Iy, | and Q=ix 41yl
By assumption, M>0 and b 4Let n a posnwc mteger &ansrder the pair

(WI-W2)=(1112(12) nle4(x4)M Xg»)’])'2{}’2))'3)'4{Y4)"{ny5)-

Note that lw.I=Iw.,! and the derivation for (a M MM) can be pumped to yield a
derivation for (w,,w,). Hence (w,,w) is in V(). But Wy and w W, are not in L since
by pumping, there aTe either too many alternations of as and b’s or the a’s and b's
are unbalanced. Hence DL2 cannot be contained in V3.

Sommary

Edge grammars were first introduced as an automatable representation for
graph families in the context of paralle] computation. They have proved useful not
only for this application but also as a general system for generatmg many commonly
used graphs and graph families which cannot be defined by existing graph grammars
and graph generating systems. s

In this paper, we have developed a solid context for edge grammars by relating
them to conventional formal language theory and graph grammars. We explored the
decidability of determining if a given graph is isomorphic to a member or a subgraph
of a member of a giveh edge grammar. By showing that families of graphs generated
by NLC grammars can also be generated by edpe grammars, we showed that the
membership problem, planarity, connectedness and other problems were undecidable
for edge grammars. However when additional constraints are made on edge gram-
mars (e.g. monotonicity), many of these problems have decision procedures

In Section 3, we related edge grammars to conventional formal languages We
showed that the classes of vertex sets in the edge grammar hierarchy fit within the
language classes of the Chomsky hierarchy in a "sawtoothed” fashion. This is illus-
trated in Figure 2.

- 10 -

Acknowledgements
We would like to thank Art Sorkin for his interest and encouragement in this
work.

Bibliography

[B] Berman, F., "Edge Grammars and Parallel Computation,” Proceedings of the
1983 Allerton Conference, Urbana, Illinois.

[BS] Berman, F. and L. Snyder, "On Mapping Parallel Algorithms into Parallel
Architectures,” Proceedings of the 1984 International Parallel Processing
Conference, Bellaire, Michigan.

[CER] Claus, V., Ehrig, H. and G. Rozenberg, Lecture Notes in Computer Science
73: Graph Grammars and Their Application to Computer Science and Biology,
Springer-Verlag, 1979.

[ENR] Ehrig, H., Nagle, M. and G. Rozenberg, Lecture Notes in Computer Science
153: Graph Grammars and Their Application to Computer Science -- 2nd Interna-
tional Workshop, Springer-Verlag, 1983,

[F] Fischer, P., "Turing Machines with Restricted Memory Access,” Information
and Control 9, p. 364-370, 1966.

[HUl Hopcroft, J. and J. Ullman, Introduction to Automata, Theory, Languages and
Computation, Addison-Wesley, 1979.

[fJR] Janssens, D. and G. Rozenberg, "Decision Problems for Node Label Con-

[P]
(5]

trolled Graph Grammars,” JCSS 22, p. 144-177, 1981.

Parker, D., "Notes on Shuffle-Exchange Type Switching Networks,” IEEE
Transactions on Computers C-29, p. 213-222, March, 1980.

Stone, H., "Parallel Processing with the Perfect Shuffle,” IEEE Transac‘tions
on Computers C-20, p. 153-161, February, 1971.

	Edge Grammars: Decidability Results and Formal Language Issues
	Report Number:
	

	tmp.1307986960.pdf.RwdjL

