
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1984

Edge Grammars: Decidability Results and Formal Language Edge Grammars: Decidability Results and Formal Language

Issues Issues

Francine Berman

Gregory Shannon

Report Number:
84-489

Berman, Francine and Shannon, Gregory, "Edge Grammars: Decidability Results and Formal Language
Issues" (1984). Department of Computer Science Technical Reports. Paper 408.
https://docs.lib.purdue.edu/cstech/408

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

,

Edge Grammars: DeeldabUlty Results
and Formal Language Is..es

Francine Berman
Gregory Shannon
PurdUl! University

Motivation
Graphs and graph families are a fundamental tool in almost every area of coma

puter science. They are used to represent algorithms, architectures, data structures,
data flow, automata, etc.

Many applications use graphs and graph families as an abstraction and require a
formal means of definiog graphs, in the same way that context·free grammars are
used to defined Type 2 languages in the construction of compilers. In [B]. we intrQoo
duced edge grammars as a formalism in which to define and manipulate graphs and
graph families~ Essentially, edge grammars are systems which define graph families
by generating pairs of strings which represent edges in tbe individual graphs. These
pairs are generated by derivations using the productions of the edge grammar in
much the same way strings in conventional formal languages are generated. Edge
grammars were developed to 611 a gap left by other graph generating systems: In
particular, we were interested in representing graph families commonly used as inter
connection networks in parallel computation, (e.g. shuffle-exchange graphs, cube
connected cycles. meshes; ·trees, etc.) many of which could not"' be represented by
existing graph grammars and graph generating systems [CER], [ENR]. To this end,
we explored the relationship of edge grammars to parallel computation in the intro-
ductory paper._.

In this paper, we provide a solid context for the study of edge grammars by
relating edge grammars to conventional formal language theory and to the existing
work on graph grammars. We also explore decidability issues for edge grammars. In
presenting the d~idabi1ity results, we come full circle and resolve questions impor
tant in the motivating applications.

Section 1: Definitions
In. this section, we give a brief review of edge grammars and an example of a

graph family generated by one. For a more tborough description of edge grammars,
see [B].

Definition: A (Type 0) edge grammar is a 4-tuple < N,T,G,P> where N is a set of
nonterminal symbols, T is a set of terminal pairs {(v,w)} (v and w are strings over a
finite alphabet), G in N is the' start symbol and P is a set of productions. Productions
in P have the form x.. y where x and y are strings in (NUT)- and x is not empty.
Note that we interpret the concatenation of two pairs (a,b)(c,d) to be the pair
(ac,bd).

Essentially, a Type 0 edge grammar is exactly like a Type 0 (Chomsky) grammar
except that instead of single terminal symbols, edge grammars have terminal pairs.

Definition: An edge grammar is Type 3 (right linear) if the productions have tbe
form A.. B, A .. (atb)B or A- (atb) where A and B are nonterminals and (a,b) is a

-2-

terminal pair; Type 2 if the productions have the form A... xy or A- x where A is a
nonterminal and x and yare either nonterminals or terminal pairsj and Type 1 if for
every production in P, the number of terminals and nODtcrminals on the left-hand
side of the production does Dot exceed the Dumber of terminals and nonterminals on'
the right-hand side.

Definition: Let r be an edge grammar. The nth graph generated by r, Go' is the
undirected graph with vertices

Vn ~ {vi For some w, (G- '(v,w) or G- '(w,v» and 1vI~IwI~n}

and edges
E ~ {(v,w)1 G~ '(v,w), v¢ w and IVI~IwI~n}.

n .
In otber words, the nth graph Gn is the graph all of whose edges have length n
labels.

Definition: Let r be an edge grammar. The graph family generated by r, G(T') is
the set {Gn}n>0 where Gn is the nth graph generated by f.

Edge grammars generate pairs of labels. If those labels have the same length,
say length n, then we consider them to be an edge in graph G . In this way. the
edges generated by an edge grammar can be naturally partitiont:! into a family of
graphs {G }. Note that the index n in Gn refers to the length of the labels in G
and not nePcessariIy the number of nodes in Gn. n

To illustrate how· edge grammars work. consider" the faoiily""ofsbuffle-exchange
graphs. A sbuffle-.exchange graph SEn consists of 2° vertices. Each vertex is
labelled by a binary n bit string. Adjacent vertices have labels which are either left
or rigbt (circular) shifts" of one anotber (the shuffle edges) such as (1000,0001) and
(1000, 0100). or have labels in which the last bit is complemented (the exchange
edges) such as (1000, 1001). Shuffle--cxchange graphs Bre particularly effective as
parallel architectures for algorithms for soning, fast fourier transform. performing
permutations, etc. [Pl, [Sl. Shuflle-exchange graphs SEl' SEz and SE3 are shown in
Figure 1. 010 all

]0] I 000 00] 1\] I]

I IW /0
00 0]]00 10]

SE] SE 2 SEs
Flgnre 1

Shuffle-exchange graphs SE/' SEZ and SE3.

The following is a (Type 3) edge grammar for generating the family of shuflle-
exchange graphs {SEn}.

G- E
E- (O,O)E
E~ (l,l)E
E~ (0,1)

·3·

Edges in {SE } are generated by applying a sequence of productions as in conven
tional formal 'anguage theory. For example, the following derivation yields the edge
(ool, 010) in this edge grammar:

G- 80- (O,~)N0- (O,~)(O,O)N0- (~.O)(O,O)(l.I)N0

- (O).)(O,O)(I.I)(~,O) ~ (oo/, 010)

Since both labels in (ool, 010) have length 3, (ool, 010) is an edge in E3 (in SE3) and
001 and 010 are vertices in V3"

The usefulness of edge grammars as a representation for graph families is
dependent upon bow much information about a graph or graph family we can deter
mine from its edge grammar. In the next section, we focus on decidability properties
and dc,,:clope a correspondence between edge grammars and graph grammars.

SecUDn 2: DecJd.hillly Resnlls for Edge Grammars.
Edge grammars were originally developed as an automatable representation for

graph families as part of a solution to the problem of mapping large-sized instances
of parallel algorithms onto smallasized parallel machines IBS], IB]. In this context, it
is important to resolve decision problems such as the membership problem: Given a
graph H and an edge grammar r. is H isomorphic to a member 0/ the graph/amity G(rj?

The membership .prob~em and other decision problems a,r.~~critical in assessing
the effectiveness of edge grammars as a representation for graphs and_graph families.
Although we found- tbat tbe m~mbership problem was undecidable in general, the
problem is decidable when there are additional constraints on r. For example, if the
graph vertex sets V """Of r are bounded from below by an unbounded -monotone
increasing function ethen the membership problem is decidabl~. (We caU such edge
grammars monotone edge grammars). Since many of the commonly used parallel
interconnection architectures can be generated by monotone edge grammars, the
undecidability of the general problem has not proved debilitating to the use of edge
grammars in the parallel computation application. The following theorem catalogues
some useful decidability results on edge grammars.

Theorem
The following questions are nndecldable.
1) Given a graph H and an edge grammar r. is H isomorphic to a member of

G(r)?
2) Given a graph H and a Type 3 edge grammar r. is H isomorphic to a subgraph

of any member of G(I')?
3) Given an edge grammar T, are the graphs in G(f) planar? connected? hamil

tonian?
4) Given edge grammars r 1 and r 2" are the graphs in G(f1) isomorphic to the

graphs in G(!:2)? Is there a graph isomorphic to a memoer of G(I'I) and a
member of Gtl-2)? (intersection)

The following questions are decidable.
5) Given a Type 3 Edge grammar r, is G(f) finite? infinite? empty?

- 4 -

6) If H is a graph and there exists a monotone, unbounded function f with
IVole!: £(0) for all a, is H isomorphic to a member of 0(1')1

Proof:
To prove I), 3) and 4), we reduce arbitrary NLC grammars [JR]to edge gram

mars and use the undecidability results for NLC grammars. An NLC grammar is a
graph grammar in which graphs are generated from a set of initial graphs by applying
productions from a fixed set. Upon applying a production A- J to a graph H, a sin
gle node of H labelled by nonterminal A is replaced by graph J. and J is joined to H
according to a given connection cbart.

Let G be an NLC grammar. We will construct an edge grammar whose graph
family is the family L(G) generated by G. We will do this by constructing a Turing
Machine which nondeterministically halts with an edge from L(G) on the tape. By
the Hierarchy Theorem in section 3. it is then straightforward to construct an edge
grammar r wbich yields the edges on the tape and for which G(r)~L(G). . .

Given an NLC G, we construct a Turing Machine M which performs the follow
ing procedures:

t) Construct M by encoding the productions 3I!-d connection chart in the TM
program.. The tape will be divided into 3 sections:

#counter#graph#Work area#

The counter is initialized to the maximum number of nodes in an initial
graph plus· one~' ·The state is initialized to qt' The' graph is initialized to
one of the initial graphs in G. Graphs are represented in the middle sec
tion as a sequence of- pairs «vJy)(w-,lw»where (v,w) is an edge in the
graph, I is the label of v, and I is the label of w. The work area is ini-
tialized fo the empty string. w

2) If A is a nonterminal and H is a graph, M simulates the application of-pro
ductioD. A- H by first building subgraph H in the work area. (H is
represented as pairs of (vertex.Iabel) pairs analogous to the grapb in the
graph area). The TM then scans the current graph (in the grapb area) and
changes the 5ubgraph in the work area according to the connection chart.
In the graph area, the interconnection structure of the node labelled with
A is also changed. The connected subgraph H in the work area is unioned
with the modified graph in the graph area yielding a new current graph '(in
the graph area). The state is reset to qt and another production can be
applied to the new current graph.
Throughout this procedure, the counter is used to create new nodes.
When H is constructed in the work area, the counter contains the unary
number for the next new vertex. When a new vertex is created, its vertex
number becomes the number in the counter, and the counter is incre
mented with the number for the next new vertex.

3) After the application of any production in a derivation, the Turing
Machine may go into state q2 and check if the label of every vertex is a
Donterminal in the NLC grammar. If so, the Turing Machine enters state
q3' otherwise, it may re-enter qt.

4) In state q3' we may assume that the graph has only termiIial labels. The
workspace can then be erased so that the tape loads like

#couDter#graph#

- 5-

At this point. M is ready to nondeterministically choose one of the edges in
the NLC graph and convert it into an edge for an edge grammar graph.
The TM scans the graph area. nondeterministically chooses an edge and
copies the edge to the right of the graph area.

The TM then encodes the couruer#graph section of the tape into a unique
unary number N and replaces this section with this number.

Finally. M replaces ...~e current coqJents of the tape with the edge (x,y)
where rxl=lyl, x=lVot"l~V, and y=lw(t'-w. After returning the tape head to
an initial position. the TM halts. The tape now contains a terminal pair
whose left and right coordinates have equallengtb.

S) By tbe Hierarchy Theorem (section 3), it is straightforward to construct an
edge grammar which generates (x,y). Each NLC graph in L(G) will now
appear as a member of the graph family generated by the edge grammar r
which simulates M, Le. L(G)=G(r).
(Note that the TM will not halt if the terminal graph family generated by
the NLC grammar G is empty. However this can be decided in advance
and if L(G) is empty, it is trivial to construct an edge grammar whose
graph familyis also empty). .. .__ ..

To show that I), 3) and 4) are undecidable, it is now sufficient to observe that
these problems are ·undecidable ·for arbitrary NLC grammars [JR] and hence by our
construction, for edge.$t:amJ:!lars.

To prove 2), we first show that the question "Given a Type 3 edge grammar r.
does arry member G of G(f) contain a self-loop'!' is undecidable: This is a straightfor
ward reduction frOm the Post Correspondence Problem. Let C be a correspondence
system with pairs {(ui'vi)}' Construct a Type 3 grammar r with productions

G~ (u.,v.)G
I I

G~ (ui'vi)
for each i. Then G contains a self-loop iff C has a match. Since the Post Correspon
dence PrOblem is undecidable, the self-loop problem is undecidable. To show that
the subgraph problem is undecidable, note that if we could determine for a given
graph H and a given Type 3 edge grammar f whether H was isomorphic to a sub
graph of G(r), then we could instantiate H to he a self-loop and decide the self-loop
problem.

To prove 5), note that given a Type 3 edge grammar r, the vertex set Vr of r is
contained in the family of context-free languages (see the Hierarchy Theorem in Sec
tion 3). Since finiteness, emptiness, and infiniteness are decidable for CFLs. they are
decidable for Yr. 5) follows from observing that if Vr is finite, infinite or empty,
then G(I') must also be finite, infinite or empty. (Note that even if Vf is infinite,
G(r) may still he isomorphically equivalent to a finite set of graphs).

To prove 6), we use a simple counting argument. Let f be a monotone,
unbounded function such that IV Ie: f(n) for all n. Let H be a graph and let
IVHI=m. Since f is unbounded anN monotone, there exists an N such that f(n» m
for all n> N. Test all G with nS N for isomorphism with H. If some one of these
G. is isomorphic to H, tBen H is isomorphic to a member of G(T'); if not, then H is
odt isomorphic to a member of G(f)._

·6·

In the same way that conventional grammars form the Chomsky Hierarchy, the
graph families generated by Type 0, Type 1, Type 2 and Type 3 edge grammars also
form a hierarchy. In the next section, we describe the relationship between the edge
grammar hierarchy and the conventional Chomsky Hierarchy.

Sectlon 3: Edge Grammars and the Chomsky IDerarchy
To compare the edge grammar hierarchy to the Chomsky hierarchy, we need to

compare the same types of objects. Conventional (Chomsky) grammars generate
languages whose members are single strings. The language of an edge grammar.r is a
graph family G(r)=IGn} each of whose graphs Gn consists of a sel of edges E and
their length n incident vertices V0" We can compare the edge grammar and Chom
sky hierarchies by comparing the vertex sets of graphs in the edge grammar bi~rarcby

with languages in the Chomsky hierarchy.
Let r be an edge grammar and let V(r} denote the set of all vertex labels in the

graphs of G(f), Le. V(r} = UVn where for each n, V n is the vertex set of Gn" For
X=O,I,2 or 3, let VX = lV(r)1 r IS a Type X edge grammar}. In olher words, we leI
VX denote the class of all vertex sets for Type X edge grammars:. Let (D)LX be the
class of (deterministic) languages generated by Type X Chomsky grammars. The fol
lowing theorem relates the vertex sets VX of the edge grammar hierarchy with the
languages LX of the Chomsky hierarchy.

Hierarchy Theorem .
a) we V3e L2e V2\;;; VIa LIe VO= LO.
b} V3 is iocomparablt"witb DL2.

VO=LO

VI=LI

V2

FIgn... 2
Relationship of the Chomsky and edge grammar hierarchies.

., ' ·7·

Proof:
Berman in [B] sbowed L3 C V~, L2 C V2, VI ELI, and VO = LO. VI C VO

follows from the demonstration in [HU] that Ll C LO. V2 ~ VI is true by
definition.

To show V3C L2, let r be a Type 3 edge grammar. Assume without loss of gen
erality that for every production A.. (a,b)B in r, lal=O or 1 and Ib[=O or 1. We will
construct a PDA M which accepts vertices in Vr' M takes as input a string w and
nondeterministically chooses a derivation of w as the left coordinate of a terminal
pair or as the right coordinate of a terminal pair. During the derivation, the stack is
used to keep track. of the disparity in lengths between the left and right coordinate
strings of the currently derived terminal pair. More specifically, let r be an edge
grammar. Construct a PDA M with the following productions:

(S,A,~)~ (GL,A)
(S,~,~)~ (G ,A)
(AL'a,y)~ (It',x), (AR,b,y).. (BR,x)
where A- (;-;'5)B is a production In r and

if lal=O, Ibl=l, and y=+, tben x~++
if lai=O, Ibl=l, and y=., then X=A
if lal=I, Ibl=O, and y=+, then X=A
if lal=I, lbl=O, and y=-, then x=--
if lal=lbl, then x=y

(AL'a,y).. (f,x), (AR,b,y)~ (f,x)
where A- (a,b) is a production in r and x and y are as given above..--. -.. . .. ~.- -,

It is straightforward to show that M nondeterministically simulates the derivation of
a string as the right or left coordinate in a terminal pair and accepts with an empty
stack and in the final state only those strings in Vr- Proper containment of V3 in L2
comes from showing tha.t V3" and DL2 are incomparable.

To show that V3 and DL2 are incomparable, we show that V3 is not contained
in DL2, and DL2 is not contained in V3 by techniques similar to those found in [Fl.
To show that V3 is not contained in DL2. consider the language

L~{anbm.znb2ml n,m> OJ.

By the pumping lemma for context·free languages, it is straightforward ·to show that
L is not in L2. However, L- is in V3. To see this, observe that
C =LIUL2UL3UL4ULS wbere

L ={a bj"·a+b+a+b+
L~~{atib>mb:12n<m, n>Oj
L3~{a~b a~b 12n> m, m> OJ
L4={a+b:a+b:12n<m,.n>O}
LS~{a b a b 12n>m, m>Oj

Ll is in L3 and hence in V3. L2 is contained in the vertex set V(r) generated by the
following Type 3 edge grammar. (Tbe otber strings in V(f) are in L I).

G~ (~,a)G' G'~ (~,a)G'

G'~ (a,oo)A A~ (a,aa)A
A- (b,aa)B B~ (b,a)B
B- (oo,a)C C- (aa,a)C

D- (b,a)D

·8·

c- (aa,a)D
D- (b,a)

By sligbtly modifying the edge grammar given above, it is easy to construct Type 3
edge grammars whose vertex sets contain L3, L4, LS and pans of L t " Since V3 is
closed under union, L- =UL. is in V3. Assume towards a contradiction that L- is
also in DL2. Then the complement of L-, L, must also be in DL2. But L is not even
in L2. Hence L- cannot be in DL2, and V3 cannot be a subset of DL2.

We next show that DL2 cannot be contained in V3. Let L = {aDbD}. L is in
DL2. We show that L is not in V3. Assume towards a contradiction that r is a Type
3 edge grammar whose vertex set is L. Then all terminal pairs of r must be self
loops of the form (aDbD ,aDbo). We show that L is not in V3 by sbowing that any
"loDg~enough" derivation can eventually pump the left and right coordinates produc
ing strings not in L. Let ~\!h1J1~berof nonterpinals in r. Consider a deriva
tion of the terminal pair (a b ,a ,b) where M=N .

Assume the derivation contains a loop A- ·(a.Z,f3Z)A whose net coordinate
difference is zero (laZI=If3zl) i.e.

G- 'Ia/'~ /)A- 'Iat>2'~/~2}A- 'Ia/a2a3'~/~2~3}=laNbN
,aNbN).

Then this loop can be pumped in the same way looping derivations in regular
languages can be pumped. In our context, the result will be a terminal pair (w,w)
such that w is in Vcr) but not in L. This contradicts the assumption that L is the
vertex set of a Type 3 edge grammar.

Now assume that' the 'derivation of (aMbM,aMbM) contains-no loop whose net
coordinate difference is zero. The derivation can be visualized as a graph in which
the horizontal axis is labelled by the nonterminals at each step of the derivation
sequence with the start,symbol at the origin (Figure 3). The vertical axis gives the
net difference IXl-1y1 of the left and right coordinates of the currently derived pair
(x,y). For the final terminal pair to be in V(r), the graph must start and stop with
difference O. We can assume without loss of generality that after each application of
a production (at each nonterminal along the horizontal axis), the height of the graph
changes by +1, -1 or O.

+2

+1

G A B B

G- la,A)A- lab).}B- lab,a}B- lab,ab}

Figaro 3
A derivation and 1M graph of its net coordintJte differences.

Consider the first loop A... ·(x."y)A in the derivation of (aMbM,aMbM):
Assume without loss of generality tha1 t~e difference in the x and y coordinates is
positive qhe case is ana!,:,gous if the first loop is negative). Since tbe'derivation bas
length N ,there are no zero-difference loops and the net difference must end up to
be zero, there must be a negative loop B- ·(x4'Y4)B in the derivaIJe\t0Rle~ere
after the positive loop. We can then rewrite the derivation of (a b ,a b) as

- 9-

. follows

G~ '(zl'Yj)A~ '(zi'2'YjY2)A

- '(zi'rj'YJY2Yj)B- '(xi'rr4'YJY2YjY4)B- ·(aMb
M

,aMbM)

M M M M
where (a b ,a b)~(x:Lx.,x3x<lxS' Y1YZY3'4YS)· Let M~1x2r·IyZI and Q=lx41-1y41.
By assumption, M> 0 and Q<: O. Let Dbe a posItive integer. ConsIder the pair

_ IQln Mn IQln Mn
(wl'w2)-(zi'2(z2) zrlz4r xs ' YjYlYz) YfflY4f - Ys)·

Note that IW11=lwZI and the derivation for (aMbM,aMbM) can be pumped to yield a
derivation for (wl'w2). Hence (wl'wZ) is in V(r). But wI and W,z are not in L since
by pumping, there are either too many alternations of a's and b s or the a's and b"s
are unbalanced. Hence DL2 cannot be contained in V3.

Sommary
Edge grammars were first introduced as an automatable representation for

graph families in the context of parallel computation. They have proved useful not
only for this application but also as a general system for generating many commonly
-used graphs and graph families which cannot be defined by existing graph grammars
and graph generatin$_!YSt~~s. _.. _~~_ "

In this paper, we have developed a solid context for edge grammars by relating
them to conventional formal language theory and graph grammars. We explored the
decidability of determining if a given graph is isomorphic to a member or a subgraph
of a member of a giveb.'·edge grammar. By showing that families of graphs generated
by NLC grammars can also be generated by edge grammars, we showed that the
membership problem, planarity, connectedness and other problems were undecidable
for edge grammars. However when additional constraints are made on edge gram
mars (e.g. moootooicity), many of these problems have decision procC?du~es.

In Section 3, we related edge grammars to conventional formal languages. We
showed that the classes of vertex sets in the edge grammar hierarchy fit within the
language classes of the Chomsky hierarchy in a "sawtoothed" fashion. This is illus
trated in Figure 2.

· 10-

Acknowledgements
We would like to thank Art Sorkin for his interest and encouragement in this

work.

Bibliography
[B] Berman, F.• II'Edge Grammars and Parallel Computation," Proceedings of the

1983 Allerton Conference. Urbana, lllinois.
[BS) Berman, F. and L. Snyder, "On Mapping Parallel Algorithms into Parallel

Architectures," Proceedings of the 1984 International Parallel Processing
Conference, Bellaire, Michigan.

[CER] Claus, V., Ehrig, H. and G. Rozenberg, Lecture Notes in Computer Science
73: Graph Grammars and TMir Application to Computer Science and Biology,
Springer-Verlag, 1979.

[ENR] Ehrig, H" Nagle. M. and G. Rozenherg, Lecture Notes in Computer Science
153: Graph Grammars and Their Applica/ion 10 Computer Science -- 2nd Interna
tional Workslwp, Springer-Verlag, 1983.

[F) Fischer. P., --ruring Machines with Restricted Memory Access," Information
and Control 9, p. 364-370, 1966.

[HU] Hopcroft, J..a;~d ..r.. Ullman, lntrodudion to AUlomala•. T..ly:ory. Languages and
CompUlalion. Addison-Wesley, 1979.

[JR] Janssens, D: and G. Rozenberg, "Decision Problems for Node Label Con·
trolled Graph 9.rammars," JCSS 22, p. 144-177, 1981.

[P] Parker, D., IINotes on Shuffle-Exchange Type Switching Networks," IEEE
Transactions on Computers C-Z9, p. 213-222. March, 1980.

[S] Stone, H., "Parallel Processing with the Perfect Shuffle: IEEE Transactions
on Computers C-20, p. 153-161, February, 1971.

~ .. .

	Edge Grammars: Decidability Results and Formal Language Issues
	Report Number:
	

	tmp.1307986960.pdf.RwdjL

