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ABSTRACT

Ching-Chih Hsiao, Ph.D., Purdue University, December 1982. Highly Parallel
Processing of Relational Databases. Major Professor: Lawrence Snyder.

New computer architectures are feasible because of the advances in
VL3I design and fabrication technologies. Among them, highly parallel
structures coordinate hundreds of thousands of processing elements that
function cooperatively. These structures are especially useful in solving
computationally intensive problems. This thesis applies the highly parallel
approach to improve the efficiency in processing relational database
queries. High-performance algorithms for basic relational operations are
explored. Efficient{ composition of these algorithms to process whole queries

is also investigated.

Regularity and uniformity are necessary in order to make the highly
parallel computing cost-effective. An efficient primitive, called POP-SORT., is
proposed to unify the relational operations such as sorting, duplicate-
removal, union, intersection, and difference. The three latter operations are
even allowed to have multisets as operands. POP-SORT is based on an easy
scheme which adapts any highly parallel and regular sorting algorithm to

perform all these database operations. The primitive is compared favorably,

This work is part of the Blue CHiP Project. [t is supported in part by the Office of Naval
Research Contracts NG0014-B0-K-0816 and N00O014-81-K-0360. The latter is Task SRO-100.
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in terms of time complexity, with existing algorithms for the five operations.
The optimality of POP-SORT is alsc proved for a restricted but reasonable
type of parallel computation. Furthermore, sublinear time performance is
possible for join operations if argument relations are preconditioned by

POP-S0RT.

For processing a whole query, the operation tree parsed from the query
can be executed by composing individual algorithms for the operations. The
Configurable, Highly Parallel (CHiP) computers have the flexibility to provide
programmable processor interconnections for composing algorithms. Query
embedding is a method of executing whole operation trees to explore max-
imum parallelism on the CHiP computers. It involves the processor alloca-
tion and the embedding of appropriate interconnections, With the bitonic
POP-B0RT, which is a generalization of Batcher's bitonic merge sort. the

query embedding can be simplified significantly.




CHAPTER 1

INTRODUCTION

Computer architects have been attempting to avoid the von Neurnann
structure that a single CPU serially fetches, processes, and restores data
items. Due to the advances of VLS] fabrication and design technologies,
computer architectures are no longer strictly confined by the cost of com-
puting hardware. In the near future it will be feasible to implement highly
parallel computers consisting of hundreds of thousands of processing ele-
ments [HaynB2]. With the use of so many processing elements operating
cooperatively, a speed-up ratic as substantial as many orders of magnitude

is possible.

The highly parallel structures are known to be useful for solving some
compultationally intensive problems in the areas like meteorology. cryptog-
raphy, image processing, ..etc. However, integrating many processing ele-
ments to implement a reliable and cost-effective system is extremely
difficult. Problems suitable for highly parallel computing must show a high

degree of regularity and uniformity. _

Relational data model [Codd70] not only provides a simple view of data-
bases but also calls for a particular feature named relational processing

capability [Codd82]. This feature entails the definition of relational
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operations which treat whole relations as operands. Itis of interest to study
the application of highly parallel architectures and algorithms to the imple-

mentation of relaticnal operations.

Historically, efficiency of database processing has been stressed, but
convenience and expressiveness have been of less concern. Application pro-
grammers’ productivity is thus far behind the demands from end users of
database gystems.. A relational data model, by raising the user interface
from physical details to a higher logical level, provides improved conveni-
ence _and expressiveness. E. F. Codd [CoddB82] also remarked that the rela-
tional processing capability is a key factor leading the relational model
toward a practical foundation for improved productivity. It is therefore very
important to implement a relational processing capability that achieves

high performance,

1.1 Goal and Methodology

The goal of this work is to take advantage of the VL3I computation
power and the highly parallel architectures to improve relaticnal database
precessing, We are concerned both with high-performance implementations

" of individual relational operations and efficient processing of whole queries.

Highly parallel compuling relies crucially on efficient comrounication to
achieve a successful exploitation of parallelism. For solving problems with
parallel computation, more communication time is often required than the
actual computation time [Lint81]. Processor interconnections, hardwired or
software-controlled, on highly parallel computers are usually selected to

suppert efficient communication. Therefore, it is important to identify



communication schemes which are efficient for solving many problems.

Sorting is a necessary operation in many applications. Highly parallel
sorting has been vigorously studied and several efficient algerithms exist
[Bate88, Ston?1, Thom77, Nass79; Mull?5, Hirs78, Prep?78]. For highly paral-
lel processing of relational databases, we unify several operations on a single
communication scheme by reducing those operations to sorting. The primi-
tive operation POP-SORT (Primitive OPeration SORT) is thus proposed for the
database operations such as. sorting, union, intersection, difference, and
duplicate-removal. We also apply POP-SORT to solve join operaticns in sub-

linear time.

POP-S0RT presents the possibility of adapting any sorting algorithm te
become a primitive for the five database operations. For merge-criented
sorting methods, the adaptation can be easily done by replacing the simple
comparison function with a slightly modified one. The simple comparisen
function is extended to have marking capability that marks one of the two
argument items when they are found to be equal. Comparison functions act-
ing only in the local computation at processing elements do not effect the
communication among the processing elements at all. For sorting methods
in general, the adaptation can be done by two marking processes that both
take constant time. The marking processes require communication only as

simple as a linear array.

The efficiency of POP-B0RT in performing the five database operations is
demonstrated by an instance called the bitonie POP-SORT. 1t is a generaliza-
tion of Batcher's bitonic merge sort {Bate68]. The performance of the

bitonic POP-SORT compares favorably with existing algorithms (upper

3




k13

-

4

bounds) for the five database operations. To further evaluate the optimality

of POP-SORT, we lock into the reducibility relationships between it and the

database operations.

The CHiP (Configurable Highly Parallel) computers are capable of pro-
viding dynamie and programmable interconnections [Snyd82]. It is thus
possible to embed required connections for processing whole queries. To
expand the spectrum of parallelism to process whole gqueries, we explore the
feasibility of the query embedding on the CHiP computers. In [Snyd8gZ]
Snyder showed that the CHiP computers have the flexibility to compose
algorithms to solve large and computationally intensive problems. Employ-
ing the bitonic POP-SORT as a primitive for several database operations, the
composition of algorithms to process whole queries can be simplified

significantly.

1.2 Definitions and Notation

A relation is normally a set of unique tuples and each tuple consists of
an ordered sequence of components. As duplicates are artifacts of certain
relational operations, we allow relations to be multisets consisting of dupli-
cate tuples, Basic relational operations like sorting, restriction (selection),
joi::;. Cartesian preduct, and quotient are defined as those in text books (see,
for example, [ULlmB0]). Projection, duplicate-removal, union, intersection,

and difference are defined slightly differently in this work.,

For remove-duplicates we do not insist on discarding the duplicate
items, Givenn data items zg, x,, ..., Z, . the goal of duplicate-removal is to

compute the mark bits w(0), z{1), ..., g{n—1) for these items. In the
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sequence zo#40, 2, #1) x4 we distinguish z; #®) as a duplicate item
if #(i)=1. An additional operation segregafion can be used to pack and
separate marked and unmarked data items in the sequence [SchwB0]. To
perform projection on a relation, we assume that duplicate-removal is not
automatically invoked. The operations union, intersection, and difference
may be relaxed to allow multisets as operands. Without further notice, they

are just set operations as usual.

A highly parallel processor is a processing device which integrates
many processing elements. By "processor” we may refer to a single pro-
cessing element or a system of coordinated processing elements. Usually it
means a processing element unless further indicated by the context. For
example, the CHIiP "p;ocessor“ is a "highly parallel processor” in the collec-

tive sense.

The following notation is used throughout this thesis.

log®y the base two logarithm (logzy )*.

[z ] the least integer greater than or equal to z.

[z ] the greatest integer less than or equal to z.

tp time required for cne data routing step.

te time required for one comparison step.

PE processing element which may have some local memory.
AUB the union of two sets A and B,
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ANFP the intersection of two sets A and 5.
A-B the difference of two sets 4 and 5.
union(A,B) the union of two muitisets 4 and 5.
inter(AB) the intersection of two multisets 4 and B,
differ(A,B) the difference of two multisets 4 and B.
rmdup(4) the duplicate-removal on multiset 4.

1.3 Organization of the Thesis

In Chapter 2, we look at the conventional approaches of database
machine designs. The conventional approaches do not solve the compute-
bound cperations satisfactorily. Several highly parallel structures for solv-
ing the compute-bound operations aré thus proposed by researchers. We
also discuss those structures and the algorithms proposed to be executed

on them.

Chapter 3 presents a methodology to apply parallel sorting to solve
other problems. By reducing union, intersection, difference, and duplicate-
removal to sorting, these operations are unified by the primitive operation
POP-SORT. Two adaptations are shown to extend merge-oriented and cther
sorting methods to become POP-SORT. The adaptation overhead is shown to
be negligible. We also show that POP-S0ORT can be used to perform join

operations in sub-linear time. This application of POP-SORT is especially



suitable for easy join operations that produce only small result relations.

The efficiency of POP-S0RT is investigated in Chapter 4. A complexity
hierarchy showing the reducibility relationships among POP-SORT and the
five database operations is first established. The complexity hierarchy indi-
cates that the optimality of POP-SORT relies on the reducibility of sorting teo
duplicate-removal. We therefore look inte the reducibility of sorting to
duplicate-removal by considering two types of comparison functions, the

weak comparison (=, #) and the strong comparison (<, =,>).

Chapter 5 deals with some interesting aspects of performing the bitonic
sort with the mesh interconnection on the CHIFP computers. We design an
efficient algorithm that rearranges n sorted data items among three major
indexing schemes in less than (3Vn }fg time. Sorting with shadow regions is
a technique that allows the allocation of exactly n: processing elements for
sorting n data items (n is an arbitrary integer). We also demonstrate how
data communication can be improved by properly prograrmnming the switch-
ing elements on the CHIiP computers. Two different methods of serting ken

data items on a CHiP region of n processing elements are also analyzed.

Processing whole queries on the CHiP computers is the subject of
Chapter 6. Relational algebraic ciueries are considered. The idea of embed-
ding whole operation trees parsed from database queries is explored. With
the bitonic POP-SORT, we demonstrate that query embedding is simplified

significantly. We alsc discuss several optimization strategies to improve

query embedding on the CHiP coemputers.




CHAPTER 2

HIGHI.Y PARALLEL. DATABASE MACHINES

Databese machines are specialized computers dedicated to executing
database management functions. They are usually connected to general-
purpose computers as back-end machines. If a database machine is
enhanced with a highly parallel processor to solve compute-bound database
operations, we call it a highly parallel database machine. In Figure 2-1 we
show the configuration of a back-end system consisting of a highly parallel

database machine.

In the back-end system, the host computer acts as the interface
between users and the database machine. -It is responsible for taking users’
requests, translating the high-level data manipulation programs into data-
base machine commands, instructing the database machine to perform the
commands, and returning the response to the users, Besides the highly
parallel processor, there are two major components in the database
machine: the back-end controller and the mass storage. The back-end con-~
troller serves as the interface to the host computer. The mass storage is
content addressable in order to perform searching and update operations as
well as other 1/0-bound database operations efficiently. Between the mass

storage and the highly parallel processor there is a wide data channel to
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support rapid data loading and unloading. This bandwidth is also needed in
associative processor systems [Berr79] and array processor systems

[BateB0].

Oatabase
Machine

"Cantent
addressab| e’
das
Storage

)

~

Users «——

o~

N

Highly
31 Parallel
Processor

Figure 2-1. The system configuration of highly parallel
database machines.

This chapter presents a briel overview of the principal appreaches in
conventional database machine designs. The inability of conventional
approaches to solve compute-bound database operations is discussed.
Highly parallel processors are then proposed as a means of extending the
computation power of database rmachines. Next, we review some highly
parallel structures and their algorithms that have been reported to be use-
ful for database applications. All this serves as a benchmark for evaluating

our research work.
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2.1 Background

As database management techniques are shown to be helpful, users
want them to be larger and more inclusive. But as databases become pro-
gressively larger, conventional general-purpose computers fail to meet the
response time requirements of many applications. With the adoption of
high-level data models and data manipulation languages, high-performance
implementation of database management systems becomes even more cru-
cial. Two well-known implementations of relational database management
systems. System R [Astr?76] and INGRES [StoB76], amply demonstrate the

complexity and difficulty of query processing under these circumstances.

Sinece software techniques on conventional, general-purpese computers
cannot implement database management systems efficiently encugh,
researchers have turned to alternative computer architectures and special-
purpese hardware. Canaday [Cana74] proposed that database management
functions be placed on a dedicated back-end processer which has exclusive
access to the database. By limiting the back-end processor to the perfor-
mance of only database management functions, it can have the advantage of
efficlency through specialization. But the implementation of the eXperimen-
tal Database Management System (XDMS) [Cana?4] failed to show that the
use of a general-purpose computer as back-end is a good appreach. Special-
ized database machines are, therefore, designed to serve as the back-end

computers [Bane79, DeWi79, Schu79].

Many hardware organizations have been proposed to facilitate database
processing although they are not all cornplete designs of database machines.

Two objectives are involved. One is'to improve the non-query aspects of

.
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processing such as searching, retrieval, insertion, deleticn, and
modification. The other is to speed up the query aspects of processing

which may involve some compute-bound operations.

There is a consensus that content addressable memeory is desirable for
efficient searching and updating. But storing databases entirely in associa-
tive memory is infeasibly expensive. Fortunately, the '"logic-per-track"
approach proposed by Slotnick [Slot70] provides a practical solution for
implementing a large-volume memory with content addressability. Many
designs have applied some type of the logic-per-track approach to achieve
the associativity and parallelism for fast searching and updating [Lang78].
Among them are the Content-Address Segment Sequential Memory (CASSM)
[Su75, Su79], the Content Addressed File Store (CAFS) [Babb79], the Data
Base Computer (DBC) [Bane78, Bane79], the Relational Associative Processor
(RAP) [Ozka?5, Schu79], and the Rotating Associative Relational Store

(RARES) [Lin78).

One uselul strategy to reduce the overhead of data movement is to pro-
cess data in place if it is possible. By placing some processing capability at
the mass storage level, the logic-per-track approach performs not only
searching and updating effectively bul cther operations as well. 1/0-bound
relational operations like restriction and projection (without removing dupli-
cates) can be performed at the memory level, Other operations, however,
are not easily supported [SongB8l, DeWiBR2). .Sorting, duplicate-removal,
union, intersection, difference, join, and Cartesian produect all require that
cone data item interact with many others. These operations require complex

processor interconnections that cannot be easily implemented using the
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logic-per-track approach. This is because of the physically dispersed char-
acter of the read/write heads. Implément'mg these operations on the secon-

dary storage level, it seems to require some kind of looping or iteration.

Several techniques help to improve query processing on compute-bound
operations. The overhead incurred by the time-consuming secondary
memeory accesses can be reduced by using intelligent file systems and
memory management. Unnecessary database information can be filtered
out before it is submitted to the processor. The use of special processing
devices is yet another weapon with which researchers attack the compute-
bound problems. Much special-purpose hardware has been proposed for
performing the operations jein and sorting. In addition, in the DBC design
several compute-bound functions or "post-processing functions" [HsiD79]
are performed by a multiprocessor system. These post-processors are
linearly connected, and each has its own lecal memory. Also in [DeWi79] a
multiprocessor architecture called DIRECT was designed to support rela-

ticnal query processing.

Special hardware for a few operations respectively do not sclve the
problem completely or uniformly. The multiprocessor systems propoesed
demonstrate reasonably good, but restricted, performance improvement.
Application of highly parallel processcrs has thus been proposed for data-

base processing [KungB80, Song80, HsiCB1, Lehm81].

2.2 Highly Parallel Processors

A highly parallel processor may consist of hundreds of thousands of

processing elements which function ccoperatively to solve compute-bound
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problermns. The computation power of the processing elements is limited to
that required by database management queries. The instruction set is thus
small and can be tuned to perform query processing more efficiently. When
the highly parallel processor is implemented by VLSI chips, less area for
computing logic implies that more area can be dedicated to the local
memory logic or the processor interconnection circuitry. Being more
important, a larger scale integration of processing elements is possible if

more chip area is available for processor interconnections.

In highly parallel structures, inter-processor communication is the key
to successful expleitation of the available computing power. The processor
interconnection problem has motivated much research recently. An impor-
tant question that needs to be addressed for general computation and data

processing alike is:

What are the most effective interconnection puoths for communicat--
ing PFEs to process database queries?

This section discusses several structures of highly parallel processors and
their algorithms. The highly parallel processers addressed here are: the
systolic array system, the double tree machine, the Ultracomputer, and the
CHiP computer. The first three represent different processor interconnec-
tions, and the last one has the flexibility to provide them (as well as the

mesh interconnection).

In Table 2-1 we first summarize the time complexities of certain data-
base operations on these machines. POP-SORT is the primitive operation
proposed in this thesis which can perform the other five operations (Chapter

3). The complexity is measured by assuming that the argument relations

&7
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have n tuples. Except for the systelic arrays and the tree machine, we
assume that the data is already in the processing device. The effect of pro-

pagation delay is ignored here for the tree machine and the Ultracomputer.

Table 2-1. Algorithms of database operations on
highly parallel machines.

operations UJ M - rmdup sort POP-SORT *

Systolic arrays o(n} Qfn) o(n) O(n) - -

Tree machine 8(n) &(n) eMm) 8(n) 8(n) 8in)
Mesh computer - - - - a(vn) 8(vVn)
Ultracomputer | O(log%n) O(log?n) O(log®n) - G(log®n) O(leg®n)

CHiP - - - - - 0(% "

* An instance of POP-SORT, the bitonic POP-SORT, is used to calcu-

late the time complexities (Chapter 3.1).

** A technique is applied on the CHiP computers to achieve the
speed-up factor s over the mesh-connected computers (Section
5.3). where s = wsc .,

Systolic Arrays

Systolic arrays have been proposed for many applications [Kung?79.

Fost80, KungB82]. Kung and Lehrman [KungB0] used systolic arrays to imple-

ment relational database operations. Lehman [LehmB1] also applied systolic

arrays to processing simple gueries.

They presented two types of systolic arrays to implement database

operations {Figure 2-2). A two-dimensional comparison array and a one-

dimensional accumulation array were used for wunion,

intersection,

difference, and duplicate-removal. The comparison array alone is used for

join operations. Argument relations are "staged” into the comparison array
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in a compenent-parailel and tuple-serial fashion. Tuples from different rela-
tions flow in the opposite directions in the comparison array so that they will
always pass by each other. The comparison results move from left to right.
They are recorded as a bit matrix for join or shifted to the accumulation

array to generate a bit string for the other operations.

refation A

Accumulation
Array

Comparison
Array

TR ¥
relation B resul t

Figure 2-2. The systolic array system for performing
database operations.

In the systolic arrays, the processing elements perform only simple
functions and the interconnections are very regular. Both of the arrays can
be implemented with only a few types of simple cells. An-other advantage is
that computations are pipelined elegantly so that the process'ing time is
completely overlapped with the I/0 time. However, from an algorithmic
point of view, the benefit of data ordering is totally ignored in [Kung80]. The

systolic arrays are fundamentally structures of linear time performance.

Systolic arrays are algorithmically specialized processers [Snyd82]. The
functions performed by systolic arrays are predetermined and rigidly
manufactured into VLSI products. Programmability is minimal. To imple-

ment all the operations required by query processing, an integrated system

iy
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containing several systolic arrays is needed [SongB1].

The BK-tree Machine

The BK-tree, or double tree, was proposed by Bentley and Kung
[Bent79] for pipelining searching operations such as retrieval, insertion,
deletion, and modification. On an n-processor version of this machine, a set
of n data iterns can be maintained such that all the searching problems are
processed in 2logn steps. Tree-structured machines have alsc been pro-
posed as general-purpose processing devices by Browning [BrowB0] angd
many other researchers. In [Song80, SongB1] this architecture was applied

te implement additional basic database functions.

input root node

output root node.

Figure 2-3. The BK-tree machine,

A BK—treeT machine is composed of three kinds of proce-ssing elements:
O-nodes, [lnodes, and V-nodes (see Figure 2-3). The [}nodes contain the data
iterns to be processed. The (O-nodes are responsible for broadcasting
sequences of instructions and data to the [l-nodes. Parallel computation is

carried out by the [l-nodes. Partial results produced are then collected by

t An interesting interpretation of “BK" is that "B" ia mnemonic for broadeasiing information
and "K" for collecting informetion.
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the V-nodes. At last the final result emerges from the output root node.

Sorting can be easily implemented on a tree machine using the heap
sort algorithm [Mead80]. To perform union, intersection, and join on rela-
tions A and B, Song employed two solutions [SongB0]. One is to sort the two
argument relations using the tree machine and to perform further process-
ing elsewhere, The other is to load one relation in [Fnodes and then broad-
cast the other relation onto the {}nodes to perform the required operation.
Partial results produced in the [-nodes may have to be saved before they
can be accepted by the V-nodes (e.g. in performing join). The potential
bottlenecks were resclved by a request/acknowledge communication con-

vention [SongB0Q].

The BK-tree machine is very efficient in pipelining successive searching
operations which take a single data item as the operand. However it does
not perform as well on database operations which take whole relations as
operands. Again, the BK-tree machine is fundamentally a linear time
bounded structure. The performance barrier is inherited from the general
restriction of tree structures that only one data value at a time can flow into
and out of the tree through the root nede. Furthermore, the VLSI layouts of

large trees are susceptible to the propagation delay problem [Pate81].

The Ultracomputer

Ultracomputers [Schw80] are those with powerful and physically real-
ized interconnection patterns. They are composed of a large number of pro-
cessing elements each connected with a fixed number of others. The Ultra-

computer in [SchwB0] is based on the perfect shufile interconnection
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[Ston71]. Other powerful interconnections like the Cube-Connected-Cycles
(CCC) [Prep81] are also in this category which we refer to as ultracomput-

ers.

On the Ultracomputer with the perfect shufile interconnection, all the
permutations of data among processing elements can be realized in logn
routing steps. Sorting, union, intersection, and difference can thus be
solved in logarithmic time. No results about duplicate-removal and join are
reported in [SchwB0]. While the ultracomputer is efiicient in solving certain
compute-bound operations, it is expensive to implement. Expandability is
poor because the interconnection complexity grows at least as a function
n?/log”n of the number of processing elements n [ThomBO]. Moreover pro-
pagation delay problems and synchronization difficulties can become more

severe when n is large.

The CHiP Computer

A Configurable, Highly Parallel (CHiP) [SnydB2] processor permits the
processor interconnections to be dynamically programmed. It does not
limit the communication to one fixed structure among the processing ele-
ments. Nor does it rely on a single interconnection capable of simulating
others to achieve the flexibility of communicating processing elements. It
provides a lattice of programmable switching elements with which dynamic

and flexible interconnections can be specified.

The processing elements are connected to the switeh lattice at regular
intervals. The interval determines an important parameter w of the switch

lattice which is called the corrider width. Two more parameters of the
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switch lattice which are important to this research work are the degree (or
the number of incident data paths) 4 and the cross-over capability ¢ of the
switeches. The eross-over capability denotes the maximum number of
independent data paths that can pass through a switching element. In Fig-
ure 2-4 we show two structures of the switch lattice, The circles represent

switches and the squares represent precessing elements.

(a) (b)

Figure 2-4. Two structures of the switch lattice:
(a)w=1,d=4{b)w=2, d=8,
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At each switching element there is some local memory for stering a
fixed number of switch settings. The controller broadcasts a command to
the switches and the switches then make connections according to a partic-
ular switch setting stored, The total effect of making connections at the
switches constifutes the designated interconnection. The processing ele-
ments then communicate with each other assuming that the right intercon-
nections are realized by the switches. (See [Snyd82] for more detailed
description of the CHiP computer; See [Snyd81] for a discussion of program-

ming processor interconnections.)
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The CHiP computer can be easily configured to be a mesh-connected
computer. With the mesh interconnection, sorting can be done in O(vn)
time using adapted algorithms of Batcher's bitonic sort [Batc8s, Kung'??,
Nass78]. In Chapter 3 we shall present a primitive operation POP-SORT
which can perform the five database operations listed in Table 2-1. POP-SORT
does not require the special architecture of the CHiP computer. On the con-
trary, it represents a methodology of applying parallel sorting to solve other
database operations. POP-SORT can be implemented on the tree machine,
the Ultracomputer, the mesh-connected computer, and the CHiP computer.
If sorting can be implemented with systolic arrays then the systolic arrays

can also be easily modified to implement POP-SORT.
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CHAPTER 3

AN EFFICIENT PRIMITIVE OPERATION

Highly parallel algorithms for database operations have been widely
studied. Several algorithms that perform sorting in sub-linear time exist
[BateB88, Ston7i, Thom77, Nass79; Mull?5, Hirs78, Prep78]. The set opera-
tions union, intersection, and difference are best sclved by performing sort-
ing first [SchwB0]. For duplicate-removal and join, there are linear-time
bounded algorithms [KungB0, SongB1i]. Mentioned above are different algo-

rithims and different machine architectures (see Table 2-1).

VL3I implementation of specialized devices has been vigorously pro-
posed [Kung79, Fost80, KungB0, Kung82]. However, cost-effecliveness of
VLS] implemented systems depends fundamentally on regularity and unifor-
mtty. The initial development expenses of VL3I systems must be offset by
velume production. Thus, for VLSI implementation of highly parallel ver-
sions of database operations, it is important te identify a nuecleus of process-

ing steps common to the many database operations.

On general-purpose, highly parallel computers, programmability of
algorithms again depends on regularity and uniformity. It is extremely
expensive to develop software for highiy parallel computers. Therefeore, for

performing database operations on highly parallel computers, it is alse

-~

o3

‘s
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important to identify an efficient primitive operation.

Much work on highly parallel sorting has been reported and has demon-
strated some efficient solutions [Batc68, Ston7?l, Thom77?, Nass79; Mull?s,
Hirs?8, Prep78]. To identify primitive processes for database operations, we
thus apply algorithmic approach to reduce many database operations to a
sorting-based primitive. Whatever sorting algorithm and machine architec-
ture are chosen, we then always have a unified treatment of those opera-

tions by implementing them with the primitive operation.

In this chapter we shall present POP-SORT (Primitive QPeration SORT)
as a primitive operation for sorting, duplicate-removal, union, intersection,
and difference. The latter three operations are relaxed to have multisets as
operands. This relaxation, surely based on the versatility of POP-SORT on
the one hand, has much practical merit in the context of query processing
on the other hand. For natural join and equi-join, sub-linear time algorithms

are possible if relations are preconditioned by using POP-SORT.

In Section 3.1 we present a special family of POP-SORT which is based
on merge-criented sorting methods. Empleying a new comparison funetion,
any merge-oriented sorting method becomes POP-SORT. An efficient imple-
mentation of the new comparison function and the overall performance of
the POP-SORT are shown in Section 3.2. In Section 3.3 we present a general
adaptation scheme that modifies any sorting algorithm Lo become POP-
SORT. We then show the application of POP-SORT to the natural join and

equi-join operations in Section 3.4.
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3.1 POP-SORT, a Special Example

Among the fast and highly parallel sorting algorithms, we are most
interested in constructive, potentially logarithmic time, and non-
probabilistic algorithms. There are two categories of comparison-based
sorting algorithms that rely fundamentally on pairwise comparisons., One
category can be modeled as sorting networks [Knut73, p.220] that are con-
structed from comparator modules [Bate68B, Ston7i, Thom77, Nass79). The
other is based on the enumerating comparison method that each item is
compared with each of the others [Mull?5, Prep78]. While the former is con-
jectured to require O(log?n) levels of network depth, the latter is able to
reduce the time complexity to O(log n). However a considerable drawback
with the enumeration sort is the requirement of 0{n%) computing com-

ponents or the assumption of a shared, randem access memory.

Batcher's bitonic merge sort [Bate88], described as a sorting network
in Appendix A-1, is one of the most famous. There are many adapted versions
of the bitonie sort. It requires O(v7n) time using mesh interconnection
[Thom 77, Nass79] or O(log?n) steps using shuffle interconnection [Ston7i].
The number of computing components needed for these adapted algorithms

may be as small as O(n).

In this section we shall present a special example of POP-SORT called
the bitonic POP-SORT. This instance of POP-SORT uses a new comparison
function in Batcher's bitonic sorting method. The scheme that adapts the
bitonic sort to become POP-SORT relies on the merge-oriented nature of the
bitenic sort. Therefore, the adaptation scheme is immediately extended to

all the merge-criented sorting methods.

W)

s
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Bitonie sort is based on a simple local operation together with a regular
and efficient way of pairwise data communication (Figure A-1). The local

operation is a simple comparison function which can be described as:

r —- —— min

Yy —- mag

(z,y) » (min(z.y ). max(z, %))

when r = ¥, min = max.

The communication scheme, from another point of view, is actually a
sequence of perfect shuffle on different numb;ers of data items. Perfect
shuffle is so powerful that it can simulate many important communication
functions in time propoertional to the logarithm of the number of data items
[SchwB0]. It should be able to solve other database operations if the simple

comparison is replaced by more sophisticated ones.

Definition The compare-und-maork, operation performs comparison as well

as marking duplicates, and the marking process is idempotent:

(1) (z.%) » (min(z,y), max(z.y)) when = # y;
() (z. .z}, {z".2z),or (z,27) » (z".z) and

(z-.z7)»> (z~.z7),

The basic operation compare-gnd-mark, preserves the ordering among
distinet elements as usual. By marking a duplicate of z as z~ the basic
operation enforces an ordering rule such that z~ is a little smaller than z

but never smaller than any ¥ for ¥ < z. The ordering among the rmarked
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duplicates z™'s is arbitrary. The marking capability of the basic operation is
to magnify the computation power of the bitonie sort to performing
duplicate-removal. Rather than proving this for the bitonic sort only, we
would prove a more general application of compare-and-mark, to all the

merge-oriented sorting methods in the following theorem.

Theorem 3-1. Using the compare-and-mark, operation, any merge-oriented

sorting method can mark off all the duplicates.

[Proof] Consider any comparison-based method which merges two
ordered sub-lists. Every pair of neighboring elements in the result
list must have been compared directly, unless both elements are
from the same sub-list. If both sub-lists have duplicates marked off.
before merge then the result list must have all the duplicates-
marked by using the compare-end-mark, operation. For any
merge-oriented sorting method that starts with merging sub-lists of
length one, it guarantees -no duplicates at all in the very beginning. -
By induction, all the duplicates must have been marked off in the

final sorted list. =

In addition to performing duplicate-removal, any merge-oriented sort-
ing method using compare-and-mark, is able to perform union, Performing
union is the same as performing duplicate-removal on the totality of the two
groups of data items. If our purpose is to unify sorting, duplicate-removal,
and union then compare-and-mark, is powerful enough, However we are aim-
ing at identifying a primitive for more database operations. Intersection and

difference take two sets of data items as operands. One fundamental
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requirement is that we must be able to distinguish data items froem the two
groups in order to perform these two operations. We therefore extend the

compuare-and-mark, operation to handle two groups of data items.

Definition let A and B be multisets, @ ¢ 4 and & ¢ 5. The compare-and-
mark, operation, in addition to performing the simple comparison, enforces

marking duplicates and three ordering rules:

{1) ldempotent marking-minus:
(z,2), (e”,a), or (e, a) = (a".a)
{(a-,a")»(a", a”).

(2) lJdempotent marking-plus:
(b,b) » (b*,b),or(b,b*)~» (b,b%);
(bt 5%} > (b*, b%).

(3) Quasi-stability:

(@, b)or (b, a) > (e,b)for a = b (marked or unmarked).

Similar to that shown in Theorem 3-1 the marking capability of the
compare-and-mark, extends the computation power of the bitonic sort to
performing duplicate-removal and union. Moreover, two separate marking
rules allow us to mark duplicates for two multisets separately. The rule of
quasi-stability insists that A-elements precede B-elements if they all have
the same value, With the local operation having two separate marking
mechanisms and being gquasi-stable, the execution of the bitonif: sort will
end up with a sorted sequence like ..o a"a e b b*b*..., where @ = b. We
then can detect and manipulate all the .2 b.. pairs in constant time. The

bitonic communication scheme together with the compere-ond-mark,
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operation therefore can also implement the intersection and difference
operations too. The three operations unicn, intersection, and difference are
even relaxed to have multisets as operands, We have thus proved the follow-

ing theorem.

Theorem 3-2. (POP-SORT) With the compare-and-mark, operation, any
merge-oriented sorting metheod can be used for duplicate-remeoeval, union,

intersection, and difference,

How do we unify the operations that take a single multiset as operand
and the others that take two multisets? It requires some initial processing
on input operands. In algorithm 3-1, execution of the database operations is
partitioned into three phases: initialization, primitive, and completion. The
input to the algorithm may be one or two multisets. The input conflict is
resolved in the initialization phase. Only in the completion phase may the
database operations invoke different constant-time post-sorting processing.
The output from the algorithm is that all the undesired data are marked off,

either marked asz- or z*.

Algorithm 3-1: The bitonic:POP-SORT.

INTPUT: Data items from one or two multisets 4 and 5.
OUTPUT: All the unmarked data items.

A. Initialization phase

1. Data items are arbitrarily labeled as A-elements for sorting,
duplicate-removal, and union.

2. For intersection and difference, A-elements and F-elements
are labeled differently in order to distinguish them
throughout the whole precessing.

e

L3 .
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B. Primitive phase
1, Run the bitonic sort using the compore-and-mark, operation.

C. Completion phase

1. Remove-duplicates, sorting, and union do not need any
further processing.

2. For intersection and difference, the constant-time processing
in this phase is shown as a program segrnent in the following.

(* cornpletion phase *)
for allt do (* Zp4; = = is a dummy *)
compare I; with z;,,
if both unmarked then
case
intersection: mark z;~;
if not equal then mark z;.,*;

difference: mark z;+;*;
if equal then mark z; 7}

The relaxation that union, intersection, and difference take multisets as
operands of course relies on the versatility of POP-SORT. The practical con-
sideration is that multisets are artifacts of operations such as projection
and concatenation. Evidently many query languages (SEQUEL, QUEL, and
QBE [ULmB0]) provide operators for working with multisets. On many occa-
sions in database query processing, duplicate-removal and union (intersec-
tion, or difference)} are executed subsequently. For example, projection is
first requested before two relations are to be joined, IT1 (R} U Il (RK2), where
I denotes projection. In order to perform the set operation (. duplicate

tuples produced by the operation projection must be removed. We have the

following:

union (A, B) = rmdup (4) U rmdup(B),
inter (4, B) = rmdup (4) N rmdup (B),

dif fer(A, B) = rmdup (A) — rmdup(5),
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With the relaxation the two operations are combined tegether and a single
run of sorting is enough. However, without the relaxation, perferming the
two operations sequentially is necessary. The sequential execution in this

case may imply more data movement and programming overhead,

The result sequence could be sparse due fo the marked-off duplicates.
The marked-off duplicates can be filtered out while outputting the sequence.
Alternatively, in some applications one might want to compress the
sequence internally so that the marked duplicates are squeezed out.
Schwartz presented an ingenious method to separate and pack marked data
on the Ultracomputer in O(logn) time [SchwB0]. If the shuffle-exchange
interconnection is available the compression job can then be best done by
Schwartz's pack algorithm. A desirable solution might be running POP-50RT
again using another comparison function which treats the marked dupli-

caltes as +o.

3.2 Implementation and Performance

Different interconnecticn patterns among precessing elements for the
bitonic sort and their implementations have been reported in the literature
[BateBB, Ston71, Thom77, Nass?9, SchwB0, Prep81]. The local operation at
each processing element is the crucial part that may extend a merge-
oriented sorting algorithm to perform other database operations. We shall

consider only the implementation cof the local operation in this section.

An efficient implementation of the compare-and-mark, operation uses
one extra bit for marking. The mark bit, initially set te be 1, is appended to

each data itern as the least significant bit. The operation works simply to

—i

Falal
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clear one least significant bit whenever two elements are found to be equal.

Similarly the compore-and-mark, can be implemented using two mark
bits, cne for distinguishing A-elements from B-elements and the other for
marking duplicates. The mark bits are tagged to each data item as the two
least significant bits. Let @ and & be I-bit data items concatenated with the
two mark bits, | ceA and b £ 5. Their binary representations are
(-1, @z, .- Q@ Qg Gy, Z_p) and (byy by ... by bg b_, b_p) respectively.
Initially, we have the mark bits set in such a manner that (a_;, 2_z)} = (0,1)
and (b_,, b_5) = (1,0). The compare-and-mark, function can be described

as:

z —- -— min

¥y — --— Inax

ifz =y thenax_p ¢« z_,;

min « min(z,y), max « max{z, ¥);

The compore-ond-mark ; function can be interpreted more clearly using
a state diagram as shown in Figure 3-1. Define the state of a data item as the
value of its two mark bits. There are only four possible states, with {0,1) the
initial state for all the A-elements and (1,0) for B-elements. The rule of
marking-minus changes the state (0,1) to (0,0} for A-elements. Since the
marking is idempotent, once a data item reaches the (0,0) state it remains
in that state. The rule of idempotent marking-plus works in the same way for

FB-elements.
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. idempotent marking
-

a's —> masking i
b'g -~

marking-plus

idempotent marking

Figure 3-1. State digram for two idempotent
marking functions.

After the completion phase of POP-S0RT, all the desired data items may
be in the state either (0.1) or {1,0). Suppose we arbitrarily choose (0,1) as
the final state of all the desired data iterns. To separate and pack all the
unmarked data using POP-SORT again, we need some more bit manipulation
capability. T First, reset the states (1,0) and (1,1) to (0,0). We then may
rotate each data item such that all the desired data has the most significant
bit 1. Alternatively, we may design the second mark bit with some flexibility
so that it may be programmably tagged to each data item as the least or

most significant bit.

Several adapted versions of the bitonic sort show that more data rout-
ing time is required thaﬁ comparison time. Suppose that a merge-oriented
sorting algorithm takes 7T;(n)+fg + Ta(n)e f; time, where T,{n) is the
number of data routing steps and Tp(n) the number of comparison steps.
The POP-SORT based on this sorting algorithm then requires

T\(n)+ tp + Ta(n)e ¢'c time. The only difference is the step size #'¢. That is,

t Unfortunately the bitonic sort is not stable. Otherwise, performing sorting on the two
merk bits would be abie to separate marked and unmarked date items,
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the processing time for one local operation is changed. The marking fune-
tion, on cne or two bits, of the local operation usually takes less time than
the comparison function (I bits). The ratio of f'¢ to £, is bounded by a small

constant, actually close to one.

t
p= -€ <2
Lo

i+2
l

where p = - for bit serial design,

orp = I—Q%Lfor bit parallel design.

In summary, the bitonic POP-SORT, based on.Batcher's bitonic merge
sori, performs as well as the bitonic sort. It compares favorably with other
algorithms known for the five basic database operations (Table 2-1). The
bitonic POP-SORT outperforms Kung's and Song's duplicate-removal algo-
rithms dramatically. For the other operations, we do not sacrifice any
efliciency by using it. Since the bitonic POP-SORT serves as a primitive for
many operations, the overall system performance may improve substan-
tially (e.g. query embedding in Chapter 8). The program loading is no lenger
necessary for every single operation. Data movement can be reduced

because data may stay longer for more processing.

3.3 POP-SORT, in General

Batcher's bitonic merge sort has been shown easily adaptable to
become POP-SORT. The s?way merge sort performs even better than
bitenie sort on a mesh-connected computer when the number of data items

is large |Thom?77]. According to Theorem 3-2, we already have Lhe first



33

order generalization that any merge-oriented serting algoritbhm can employ

the compare-und-merky operation to become POP-SORT. Of course s*

-way
merge sort can be another base sorting alpgorithm for POP-SORT. However,

can we also adapt other sorting methods to become POP-SORT?

In this section, we shall show a general scheme to employ any sorting
algorithm as a POP-SORT. The general scheme again involves extending
some marking capability to a base sorting algorithm. In its most general
sense, POP-SORT thus presents an idea to adapt any sorting algorithm to

become an efficient primitive for many database operations.

The computation power of the basic operation compore-end-mork,, in
addition to the simple comparison function, comes from enforcing the ord-
ering rules of quasi-stability, marking-minus, and marking-plus. For a sort-
ing algorithm that is not merge-oriented, it might not be able to incorporate
all the ordering rules into the comparison function. Nevertheless, given a
sorted sequence of data items, a "shift-copy and compare" scheme, shown in
Figure 3-2, is able to detect and mark all the duplicates. If the linear inter-

connection is available then the marking process requires only 0(1) time.

- - - + + +
3 15 |55 |5 7 |7 3 5 15 171 |7 |9
3 |5 |5 |5 |7 |7 {9 £ 5 15 |5 7] |7] 9

marking-minus marking-plus

Figure 3-Z. A "shift-copy and compare” scheme for
detecting duplicates in a sorted sequence,

{
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Suppose that newSORT is a new and faster-than-ever parallel sorting
algorithm. Whether newSORT is merge-oriented or not, it can be adapted to
become POP-SORT according to the general scheme described in Algorithm
3-2. The general scheme is cormposed of four phases: initialization, sorting,
marking, and completion. A general POP-SORT is exactly the same as a
merge-oriented POP-SORT in the initialization and completion phases. For a
merge-oriented POP-SORT, the second and the third phases of a general
POP-SORT is combined together due to the reinforced computation power of

compare-and-marks.

Algorithm 3-2: A general POP-SORT.

INTPUT: Data items from one or two multisets A and 5.
OUTPUT: All the unmarked data items.

A, Initialization phase

1. Data items are arbitrarily labeled as A-elements for sorting,
duplicate-removal, and union.

2. For intersection and difference, A-elements and F-elements
are labeled differently in order to distinguish them
throughout the whole processing.

B. Sorting phase

1. Sort the data items, labeled as A-elements or BF-elements,
according to the quasi-stability rule using newSORT.

C. Marking phase
1. If not performing sorting then continue.

2. Mark duplicates according to the rules of marking-minus and
marking-plus using the '"shift-copy and compare” scheme.

D. Completion phase
1. If not performing duplicate-removal then centinue.

2. Intersection and difference will invoke constant-time but
different processing as in Algorithm 3-1.
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The theoretical lower bound of the time complexity of newSORT is
Q(log n). The marking phase requires only O(1) time if linear interconnec-
tion is provided. The first and the last phases also requires only constant
processing time. Therefore the POP-SORT using newSORT as its base also
shares the same time complexity as newSORT. This even generalizes
Theorem 3-2 -- Any sorting algorithm can be adapted to a four-phased POP-

SORT without introducing any significant overhead,

Similar to a merge-oriented POP-SORT, an eflicient implementation for
a general POP-SORT needs two mark bits. One of the mark bits is used for
distinguishing two muitisets, and the other is for marking duplicates. In a
general POP-SORT the quasi-stability, marking-minus, and marking-plus
rules are still enferced using the two mark bits. The bit rmanipulation capa-
bility needed in a general POP-SORT is thus no less than that in a merge-

oriented one.

3.4 Applicalion to Join Operations

The number of result tuples after joining two relations A and 5 denotes
the minimum totality of computing work needed .for join. Assuming each
relalion of size n for simplicity, the figure may rarely become as large as
0(n?). Using O(n) processing elements, Kung's [Kung80] and Song's [Song81]
linear time algorithms are optimal in the sense of handling the worst case.
f‘or most situations, the result relation has many fewer tuples. An A-tuple
may have to join with only some B-tuples. By applying POP-SORT to precon-
dition the relations, a join systern shown in this section can perform the

natural jein and equi-join operations in sublinear time.
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Any sorting algorithm can bring together all the elements of the same
value. The groups of elements of the same values are called eggregafes. We
first sort the relations over the joining attributes using POP-SORT. The prim-
itive operation is quasi-stable. It produces aggregates as well as insists that
all the A-tuples precede F-tuples in each aggregate. We then can perform
natural join and equi-join simply by shifting all the B-tuples in one direction

to join with A-tuples. This process is called "easy-catch”.

control ler
I

»D—)Dal}D»D»D»Q—)D»

U S

output result tuples

Figure 3-3. Logical structure of the easy-catch
system for performing join operations.

Define d as the longest distance that a F-tuple needs to shift in order
to catch all the joinable A-tuples. For easy-cateh d is the largest size of the
aggregates. To reach the goal of having sublinear time performance the
catching process is better terminated after d shift steps. Unfortunately d is
usually not known beforehand. In Figure 3-3 we show a solution to halting the
catching process by superimposing a tree interconnection on top of the pro-
cessing elements. A halting controller located at the root of the tree inter-
connection supervises all the processing elements. The tree interconnection
provides the communication paths between the controller and the process-

ing elements. Each processing element is responsible for recporling ils
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activity by sending a "busy” or "idle" message up to the controller. The con-
troller will broadeast the "halt" message when it decides all the processing
elements are idle. If a halting message is received, the processing elements

stop.

The programming of the join system is extremely simple. All the pro-
cessing elements execute the same program and the program is nothing but
a looping over after some initialization. Suppoese there are two registers, a
and b, capable of holding 4 and B tuples' in each processing element. The
processing elements execute the looping program as follows:

for all 7 do
(* initialization *)
a;, bi « nlln
if A-tuple then load g; else load b;;
(* easy-catch: shift and join *)
repeal forever
receive(msg);
if msg = "halt" then stop;
shift; (*&; « by *)

if a; match b; then {perform join; send('busy")}
else send("idle");

The controller detects that all the processing elements are idle after a
logn time delay. Another logn time delay is necessary for broadcasting the
"halt" message to all the processing elements. The time for performing. the
natural join and equi-join is thus the total time for POP-SORT. easy-catch,

and the halting delay.

T = T(POP-SORT) + 0{(d) + O(logn) where d = n.

t The tuple mey only consist of tuple-id and the values for the joining attributes.



38

Since POP-SORT needs only sublinear time, the join operations can be done
in sublinear time as long as & is less than O(n). If d = O(Vn') then the join

operations can be done in O(Vn } time using the bitonic POP-SORT.

The CHIiP computers are good candidates for implementing the join sys-
tem. Suppose that data items from both 4 and B are sorted by POP-SORT in
a quasi-stable fashion into snake-like row-major order (see Chapter 5.) Two
co-existing configurations shown in Figure 3-4 are feasible if there is a
cross-over capability on switches. We assume that fan-in on switches
behaves like a logic "AND", and switches also have fan-out capability to per-
form broadcasting. The linear and tree interconnections for the join system

hence are provided by the two configurations.

OO0 000000000

0 00000000 O

Figure 3-4. Two conflgurations on a CHiP computer
for implementing the easy-catch systern.

For the purpose of area-economy, the join system is implemented as
above in a square CHiP region. Unfortunately, only perimeter processing ele-
ments have 1/0 ports to the peripheral storage devices. There would be a
problem of non-uniferm distribution of result tuples since they would accu-

mulate at some PEs. We cail this the hot spots problem.
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If there is enough memory space in processing elements, the hol spots

problem does not do any harm as long as the result relation is to be dumped -

out of the CHIiP processor. For some cases, the result relation is to be pro-
cessed further (see query embedding in Chapter 8.) Then the hot spots prob-
lem can be solved by the Sprinkle Algorithm as shown in Appendix B. The
Sprinkle Algorithm employs the same communication scheme as a single

stage of the bitonic merge. Let & be the maximum number of result tuples
at hot spots. The Sprinkle Algorithm requires O(;—a V') time using mesh

interconnection. The algorithm works especially well when k has small

values.

This join system can perform other join operations teo. The le-join and
ge-join can Be implemented exactly in the same way as natural join and
equi-join, except that d is no longer the largest size of the aggregates. To
perform ne-join, we need "two-way-catch”, shifting B tuples in both direc-
tions to join with A tuples. The join system is especially suitable for natural
join and equi-join because the value of d is more likely small for the twe

types of join operations.

In summary, the join system in Figure 3-4 provides adaptive perfor-
mance for join operations. "Kasy” joins that requires B-tuples join with only
limited numbers of A-tuples. are suitable for easy-catch implementation.
They can be done with much better performance by avoiding executing

them as "difficult" joins.

S




CHAPTER 4

OPTIMALITY OF THE PRIMITIVE OPERATION

The order of data items often has a profound influence on the speed and
simplicity of algorithms which manipulate them [Knut73]. As a conse-
quence, sorting has been found to be very useful as a pre-processing step for
a wide variety of applications. It is well known that a considerable portion of

the computer running time was and still is spent on sorting.

Although sorting is useful, in some cases it is overused. For example,
selection of the median of » data items requires only ®@(n} comparisons,
although the more expensive sorting is a common way to solve it. Moreover,
sorting is completely useless in some other cases. Researchers found that
the benefit of data ordering yields its ground to the computing power of
parallel hardware on the searching problems {insertion, deletion, and
update) [Bent79]. Despite these observations, the usefulness of sorting

might be underestimated in the context of parallel computation.

While the usefulness of sorting might be over-emphasized in the sequen-
tial case, the feasibility of applying sorting in the parallel case needs more
careful exploration. POP-SORT presents a mechanism to extend sorting to
performing many other database operations. A methodology for applying

parallel sorting to the solution of other problems is thus demonstrated. In



41

order that POP-SORT be an optimal primitive, parallel sorting must be an
optimal way to implement those database operations. However, is parallel

sorting an optimal way of performing these database operations?

In this chapter we shall investigate the optimality of the primitive
operation POP-SORT. We show how the reducibility of sorting to duplicate-
removal plays a crucial role in determining the optimality. We then concen-
trate on studying the reducibility of sorting to duplicate-removal. Two com-
parison functions are considered: the strong comparison (<, =,>) and the
weak compar{son (=, #). We prove the reducibility for all the computations
based on the weak comparison function. We also prove the reducibility for a

subelass of computations based on the strong comparison function.

Section 4.1 establishes a time-complexity hierarchy representing the
reducibility relationships among POP-SORT and the other five database
operalions. These relationships show that the hierarchy would collapse if
sorting is reducible to duplicate-removal. A collapsed hierarchy implies the

optimality of POP-SORT. The important relationship between sorting and

duplicate-removal is then studied. A special model of parallel computation.

suitable for our study and two types of comparison functions are discussed
in Section 4.2, In Section 4.3 and 4.4, we investigate the reducibility of sort-
ing to duplicate-removal on the computation model with the two comparison

functions respectively.

4.1 Collapsing the Complexity Hierarchy

By enforcing some extra ordering rules, any sorting algerithm can be

extended to become POP-SORT without any significant overhead. POP-SORT

BT




42

serves as a primitive operation for sorting, duplicate-removal, union, inter-
section, and difference. The bitonic POP-SORT. an instance of the primitive
operation, improves the upper bound for duplicate-removal over the algo-
rithms in [KungBC] and [SongB1]. Also, the fastest algorithms known for
union, intersection, and difference apply sorting as a pre-processing step
[SchwB0]. Therefore POP-SORT does not sacrifice any efliciency for unifying

these operations.

However, is POP-SORT an optimal primitive for performing these five
database operations? To evaluate the optimality of the primitive operation,
we investigate the complexity relationships between it and the five opera-
tions. The relationships are measured in terms of reducibility. Let P, and
Pz be two problems, and ¥, be any algorithm for solving the problem P,.
The problem Pz is said to be reducible to P, iff there is an algorithm ¥
which applies 4, to solve P,. We are most interested in the case when both

algorithms have time complexities of the same order. i.e.
O(T (1)) = O(T{y))-
Some important reducibility relationships are summarized in the fol-

lowing:

* Al the five operations are reducible to POP-SORT. Chapter 3 presents
POP-S0RT as a primitive operation which can perform sorting,

duplicate-removal, union intersection, and difference.

* POP-SORT is Teducible fo sorf. A “shift-copy and compare" scheme is
shown in Chapter 3 te perform the marking-minus and marking-plus

functions. A general mechanism based on the scheme is presented to
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adapt any sorting algorithm to POP-SORT. The "shift-copy and com-
pare” scheme takes only constant time. The adaptation overhead is

thus negligible.

» Duplicate-remaval is reducible {o union, intersection, and difference.
The operations union, intersection, and difference are allowed to take
multisets as operands. Duplicate-removal thus can be implemented as:
rmdup (A) = union(4,¢) = inter (4,A) = dif fer (4,p), where ¢ is the

empty set.

sorting] ¢——=) |POP-SCRT

T

unian
renove- . § intersection
duplicates di fference

Figure 4-1. Collapsing the time complexity hierarchy
implying the optimality of POP-SORT.

The above reducibility relationships are also depicted as a time com-
plexity hierarchy in Figure 4-1. The arrow "—>" in the figure denotes the
relationship "is reducible to”. To collapse the complexity hierarchy weould
imply the optimality of POP-SORT. The relationship represented by the dof-
ted arrow "---->" therefore plays an important role in collapsing the com-
plexity hierarchy. I'or POP-SOPT to be an optimal primitive, sorting must be
an optimal way to perform duplicate-removal. The key to unifying the five
operations by POP-SORT is the extension of sorting to mark off duplicate

iterns. Hence there is no surprise that the optimality of POP-SORT relies on
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the optimality of sorting to perform duplicate-removal.

Muller and Preparata [Mull?5] showed a constructive switching network
of O(logn) depth which performs sorting. The switching network is an imple-
mentation of the enumeration comparison method. in which each data item
is compared with any other one. This is an evidence that the the benefit of
parallel hardware supercedes that of data ordering. The switching network
can be used to implement POP-SORT achieving the theoretical lower time
bound Q(log=n). This is actually an immediate proof that POP-SORT based on
Muller and Preparata's network is optimal. It is also a proof that sorting is
reducible to duplicate-removal. However the switching network requires
0(n?) comparators and switches. In the following sections we investigate
further the reducibility of sorting te duplicate-removal in the context of

fewer processing components.

4.2 Comparison Functions and Computation Models

This section discusses comparison-based computation on parallel
machines. We point out that there are two Lypes of comparison functions
that must be considered. We also present a universal model of parallel
machines to facilitate our study on the reduribility of soriing to duplicate-

removal.

Comparison between two elements is a primitive instruction for both
sorting and duplicate-removal. According to the law of trichotomy, exactly
one of the possibilities z <y, z =y, z >y is true. However circuit level
implementations of the pairwise comparison can provide this informaltion in

one of the following four ways: (1) <,=,> (8) =,>: (3) <,=; and (4) =, #. They
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all involve different switching logic funetions. The first three are the strong
comparison functions which can be shown equivalently powerful.T The last
one, called the weak comparison function, is not adequate for sorting though

it is for duplicate-removal.

A sorting algorithm should use one of the strong comparison functions
in order tc come out with a total ordering. For a duplicate-removal algo-
rithm, it is not necessary to assess any ordering information. It may use the
data ordering to some extent, or it may completely ignore the data order-
ing. That is, duplicate-removal algerithms may use the weak comparison
alone, the strong comparison alone, or the mixture of both comparisen func-

tions.

A variety of models of parallel computation have been proposed. They

may be grouped into two classes: shared memory machines and fixed con-
nection networks [Prep81, Boro82]. The former class assumes a large ran-
dom access memory shared by all the processing elements or an equivalent
system (see examples in [Fort?78, Gold78, LevB1].) The latter assumes a fixed
interconnection ameong processing elements, or between processing ele-

ments and memory modules (see examples in [BrowB0, Schw80, Prep81].}

In terms of the restrictions on accessing memory modules, shared
memory machines may be classified into three categories: concurrent read
or write, concurrent read but exclusive write, exclusive read or write. Exe-
cution time on shared memory machines is usually measured as the number
of operation steps performed, assuming that the memory access time is

free. This type of computation model overlooks technological feasibility.

Two (=, >) or (<, =)} comparisons are equivalent to one (<, =, >*) comparison.
P q p
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Yhile shared memory machines are suitable for deriving lower time bounds,

they are not appropriate for studying data movement realistically.

For current hardware technologies, fixed connection networks are more
reasonable. However a single interconnection cannot provide optimal hosts
for all the important algerithms. Furthermore, many problems require only
infrequent and irreguiar processof communication. Fixed connection net-
works are too restricted to study the reducibility relationships belween

sorting and duplicate-removal.

PEy [ O o
PE | |— b } M
pEll D_ Inter- _O }'Jl

2 connec- %
PEs [} tion [—O #5

Nel- ’
work

PEn-—BD— —o Mn—z
PEn E}— —O Mp—y

Figure 4-2. PIM machine as a model of
parallel computation.

In order to study sorting and duplicate-removal on a general base, we
need a universal model of parallel machines. The universal model must be
able to represent each specific machine model and is suitable for studying
data ordering and data movement. For these purposes, we present a com-

putation model called the FIM machine shown in Figure 4-2,

The PIM machine has three components: a group of processing ele-
ments, an interconnection network, and a collection of memory modules

(which may be as small as single memory words.) Separate memory modules
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enables us to "observe" data items being processed. We assume that.the
interconnection network has all the flexibility and power which enables the

PIM machine to emulate any parallel machine.

The interconnection network provides communication paths between
the processing elements and the memory modules.. At one extreme, we may
assume that the interconnection network is so powerful that the PIM
machine behaves like a shared memory machine. At or near the other
extreme, we may assume that the interconnection network provides fixed
communication paths as simple as those for the linear array connection.
For emulating reconfigurable computers, the interconnection network has

the reconfigurability to provide different interconnection patterns.

Communication overhead is important on parallel machines, especially
when the interconnection network becomes less powerful. On the PIM
machine, the time complexity is measured by taking both comparison count
and data movement steps into account. Data communication time may be
absorbed by providing feasible interconnections between processing ele-
ments and memory modules. Transmission time is assumed independent of
the lengths of communication paths; the propagation delay problem is not
an issue here. For example, sorting needs O(vn) data routing steps and
O(log?n) comparison steps using the mesh interconnection [Thom?77,
Nass79], or O(log®r) routing and comparison steps using the shufile-

exchange interconnection [Ston?1].
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4.3 On Enumeration Comparison

Based on the weak comparison function, duplicate-removal requires
¥n(n—-1) comparisons since -every pair of data items must be compared
directly. Taking advantage of data ordering, or using the strong comparison
functions, the total comparison count may be reduced. However, the total
processing time is not necessarily decreased because the time complexity is
measured as the sum of paraliel comparison steps and parallel data move-
ment steps. The absolute requirement of the ¥n(n—1) weak comparisons
therefore does not exclude the possibility of a fast parallel algorithm for

duplicate-removal.

In this section, we shall prove that sorting is reducible to any
duplicate-removal algorithm that is based on the weak comparison function.
This is not unreasonable because enumeration comparison methods have
been proposed for sorting [Knu73, Mull?5, Prep78] in which each data item is
compared with every cne of the others. Naturally, sorting requires the

application of one of the strong comparison functions.

Let ¥, be a duplicate-removal algorithm using the weak comparison
function. The execution of the algorithm may be functionally partitioned
into two stages: (1) performing enumeration comparisons, and (2) determin-
ing mark bits (assuming there is a mark bit corresponding to each data
item.) The algorithm thus may be visualized as making the weak comparis-
ons to fill up a triangular table (upper triangular bit matrix) and figure out

the mark bits as shown in Figure 4-3.
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" Notice that the mark bits are obtained, by "ORing" all the bits on each
row. The following program segment describes the abstract function of the

algorithm ;. It is not required that ¥, be actually executed this way.

(*<, 7 :indices; M: matrix *)

(* perform enumeration comparisons *)
for alli < j do
if z; =z, then M[4,5]:= 1 else M[4.j] := O;

(* determine mark bits *)
for all<

my = ORQI[J')I:(L'I['E"J‘]):

T) Tz Tg T4 T5 T Ty

= 00000000 ™
= 3000000 m
= 000000 m

zs (10 0 O-~{0 ™

za 10 000 ™

25 (] g0 s

Zg [ [ ] me

. T _).‘El My

Figure 4-3. The function of enumeration comparison
methods: table filling and row computation.

Now, perform the following procedure to modify the algorithm %;:

1. Substitute the weak comparison function with the strong com-
parison function (<, >).

2. Fill up the whole matrix rather than just the upper triangular
half by entering two entries to the matrix for each comparison
performed.

3. Substitute the "OR" operation with a "SUM" operation.
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The abstract function of the new algorithm, say ¥, may be described as the
following program segment:
(* perform enumeration comparisons *)
foralli < j do
if z; > z; then {M[%,5] := 1: M[7,i]:= O}
else {M[2.7]:= 0; M[7,i] := 1}

(* determine unique ranks *)
for all ¢

T = 21 M[Z.71:

The two algorithms, ¥, and %, are not necessarily implemented in two
clearly separated stages as described in the program segments. The pro-
gram segments, however, manifest the required computation that must be
done by the algorithms. No matter how the twe functional stages of ¥, are
actually executed on PIM machines, ¥ is executed in the same way. The
algorithm ¥, would compute unique ranks for all the data items in spite of
duplicates. Both algorithms share exactly the same time complexity,
assurning all the operations take unit time. We have thus proved the follow-

ing Lemma.

Lemma 4-1. From any duplicate-removal algorithm based on the weak com-
parison function. we can find an algorithm to compute unique ranks for all

the data items in the same time,

Let zg.Z;,...Zn_, be a sequence of data items, z; & [0, m-1] and
m > n. The sequence can be transformed into a sequence of unique ranks

Z0.Zy.....Z,-, {where Z; is the unique rank of z;) by the algorithm ;. Sort-

ing the sequence of unique ranks is much easier than sorting the sequence
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of criginal data items. Thus, a two-phased sorting scheme is indicated. It
first determines unique ranks and then redistributes data items according

Lo their unigue ranks.

Data redistribution given the unique ranks can be done in O(logn) time
with the switching network in [Mull?5)]. With the assumption of a shared
memory, it takes only constant time [Prep78]. For a problem that has one
of its outputs determined by all the n inputs, the theoretical lower time
bound is O(logn). Remove-duplicates or determining unique ranks there-
fore requires no less time than redistributing data items. Hence we have

proved the following theorem.

Theorem 4-1. Sorting is reducible to any duplicate-removal algorithm that

is based on the weak comparison function.

4.4 On Establishing Total Orderings

In this section we investigate if sorting is reducible to duplicate-
removal based on the strong comparison function (<,=,>). Although the
weak comparison function is adequate, duplicate-removal algorithms using
the strong comparison function take advantage of data ordering. To show
the reducibility, we need to prove that the information of data ordering col-
lected by duplicate-removal algorithms can be easily transformed to an

explicit total ordering as produced by sorting.

We first define semi—digreph to represent the minimum set of com-
parisons required for duplicate-removal. By showing that the semi-digraph

must contain a total ordering, we prove that the comparisons required for
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duplicate-removal are also adequate for sorting. While this is enough to
show the sequential reducibility of sorting to duplicate-removal, it is not
sufficient for the parallel reducibility. We therefore pursue the matter
further and show that the parallel reducibility is true at least for a useful

type of homogeneous computation.

LetX ={ =g 21 ....004} be a multiéet consisting of » elements from a
totally ordered set. Define ,,; as the minimum set of comparisons required
for the elimination of duplicates. A semi-digraph which contains both
directed and undirected edges can represent the set C.,:

z; —>ez; il x; >2; or
T; &—e 1; if 2 =ux;.
The semi-digraph is composed of » vertices and no more than %n(n-—1)
edges. For a path between a pair of vertices z; and z;, the path is undirected
if it contains only undirected edges, or the path is directed if it contains at
least one directed edge. In the semi-digraph, directed paths denote the ord-
ering relationship "is greater than" or “is less than", and undirected paths

denote the relationship "is equal to".

To guarantee that all the duplicates are found, there must exist a path
between any pair of vertices =; and z;, © # j. Otherwise the ordering rela-
tionship between them is not known., The path is either undirected or one-
way directed. The graph is conflict free because of the uniqueness of the
ordering relationship between any vertex pair. In other words, exactly one
of the possibilities #; <z;, z; =x;, x; >2; is represented in the graph [or each
pair of vertices. The semi-digraph should contain a subgraph equivalent to

that shown in Figure 4-4, Lemma 4-2 is thus proved,
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Lemma 4-2. The semi-digraph, representing the minimum set of the com-

parisons needed for duplicate-removal, contains a total ordering.

Figure 4-4. The total ordering contained
in the semi-digraph.

By Lemma 4-2 elimination of duplicates always needs those comparis-
ons which are sufficient to come cut with a total.ordering.l Elimination of
duplicates must then have done the comparisons required for sorting. This
is enough to show the sequential reducibility of sorting to duplicate-removal,
since the sequential time complexity can be reflected by the comparison

count alone.

On PIM machines, data communication time is important. Although
duplicate-removal requires at least the same comparisen work as that for
sorting, it does not require that data items be arranged in any particular
order. To arrange data items in order may entail more data movement time
than the total processing time for duplicate-removal. Without further study,
it is not possible to say that sorting is reducible to duplicate-removal.
Nevertheless the existence of the total ordering is guaranteed after per-

forming any duplicate-removal algorithm,

We shall prove the parallel reducibility for a special type of parallel
computation that insists on a "“homogeneous sequence of execulion"

[Knu?3, p.220). Whenever we compare z; with z; the subsequent execution
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for the case z; <z; is exactly the sarﬁe as for the case x; >z;, except with
the data values interchanged. This type of computation is widely epplied in
practical parallel computation since the complexity of the decision struc-
ture is extremely simple. In the fcllowing, we first define general com-
parison networks to simulate the execution of duplicate-removal algorithms
on PIM machines. We then derive versatile comparison networks with fixed

connections which are able to sort and identify duplicates.

Comparison Network Model

Execution of algorithms on PIM machines can be traced by recording
activities at processing elements and value changes at memory locations.

For comparison-based computation, processing elements primarily perform

comparison and data movement. To study data ordering, we focus on -

observing the memory part and further -impose time-variant ordering rela-
tionships (<, =, >) among different memory locations. Concurrent writes to a
memory location are prohibited lest the ordering information should be dis-
rupted. A comparison network is thus presented to simulate one execution

of a comparison-based algorithm on PIM machines.

The execution of a comparison-based algorithm on an input permuta-
tion can be recorded as a sequence of comparison steps and data movernent
steps. One can visualize the execution as applying processing elements to
memory locations as many times as the number of operation steps. A com-

parison network has four irmportant parameters:

7 - problem size or the number of data items,

m - storage capacilty or the maximum number of
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data copies at any instant,

t - depth of network or the number of parallel
comparison/routing steps,

k - degree of parallelism or the largest number
of comparisons that can be performed at a

parallel comparisen step.

O
.- O n
. Youtput
QO loci
O
O m
: locti
- - O
O
O
O
wn- O

Figure 4-5. A general comparison network.

As shown in Figure 4-5, a comp&ison network comnsists of two types of
components: loci (in circles) and comparators (in squares). A "locus” is a
memory lecation capable of helding one data copy. There are totally £
instances of the m loci in the network. The data value at a locus may (1)
retain its previous value, (2) copy from another locus, or (3) receive a value
from a comparater. Thus, a data value may fan out to have multiple copies
(concurrent reads}), but fan-in of many data values is undefined (exclusive
write}. A comparator reads two data values from its source loei, compares
thern, and writes them out fo its object loci. We assume, for generality, the

order of the two outputs (inputs) of a comparator is not important. A
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comparator may route the two data in arbitrary order to its object loci.

The 1/0 of the comparison network is where-oblivious [Lipt81]. The first
n loci are arbitrarily defined as output loci. In the very beginning, n (input
loci) out of the m loci have the » data items. After { comparison and data
routing steps, the n data items are in the output loci with all the duplicates

marked off.

General comparison networks allow broadcasting and multiple copies of
data items. A special example of the comparison networks is called rw-
conflict-free network. Rw-conflict-free networks do not allow fan out of
data values, therefore do not have any memory conflicts, neither read
conflicts nor write conflicts. The sorfing network in [Knu73, pp. 220], or
network of compurator modules, is a restricted form of the rw-conflict-
free network. Sorting networks have exactly = data copies (i.e.n = m) and
strictly route data items in a pre-defined way. To each comparator the

source loci and object loci are the same in sorting networks,

Versatile Network N;

A duplicate-removal algorithm does not have to arrange data items in
any particular order. However, cur approach is, for any duplicate-remmoval
algorithm ¥, to derive a "compatible” algorithm 1 that is able to sort as
well as to remove duplicates. The derived algoriphm does not increase the
time complexity, whereas it would move data items in such a manner as Lo
come out with an explicit total ordering. This approach originates from the

the potential existence of a total ordering described in Lemnma 4-2.
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Suppose that the execution of 4 of a given input permutation is
recorded as a comparison network N. A restricted form of the coruparison
network N, can be derived from N such that N, emulates N in the same
comparison and data routing steps. In the network N, the comparators are
restricted in the sense that the larger inputs are always routed to the upper
object loci. {Nolice that N, shares the four parameters with &, but enforces

data routing differently.)

Define O; as the ordering relationship among the m loci at the <-th
stage in the network N,. The initial relationship 0g contains no information.
The restricted network N, has rigid interconnection and rigid data routing.
By induction, the ordering relationships 0g,0;,...,0; are all known. The ord-
ering relationship 0; must contain a total ordering according to Lemma 4-2.
We can then rearrange the first » loci in &, according to the ranks deter-
mined by the total ordering 0; and come out with a new network N,. Hence
data items are sorted in descending order in N,. Based on this observation,

we prove the following theorem.

Theorem 4-2. Given any algorithm ¥ for duplicate-removal which performs a
homogeneous sequence of execution on exclusive-write PIM machines, there

exists a compatible algorithrn ¥, which runs as fast and is able to sort,

[Proof] Input permutations are not relevant to the execution
sequence because of the homogeneity of execution. Therefore there
is a single comparison network N which simulates the execution of ¥
on any input permutation. Following the procedures mentioned

before, the network N can be transformed into N, then into N
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without changing the network depths. The algorithm ¥, correspond-
ing to the network N, can then perform duplicate-removal and sort-

ing in the same time as ¥ can perform duplicate-removal. =

Without assuming the homogeneous sequence of computation we may
have different comparison networks with different depths for the input per-
mutations. Although they all complete the comparison work represented in
the semi-digraph, the final relationship 0; may not be fixed. Whether
Theorem 4-2 is true for non-homogeneous execution needs further investiga-
tion. As a conclusion, if there exists a single comparison network to model
the execution of a duplicate-removal algorithm for all the input permuta-
tions then we can derive a compatible network to perform sorting. However,
the reducibility of sorting to duplicate-removal does not imply the existence

of the single comparison network.

Applying the proof technique for Theorem 4-2 to an exclusive-write,

exclusive-read network, we have Corollary 4-1.

Corollary 4-1. Given any rw-conflict-free network for duplicate-removal,
there exists a rw-conflict-iree network which has the same depth and is able

to sort.

Some well known parallel machines can be modeled by PIM machines
with fixed interconnection patterns between n processing elements and n
memory modules. Examples are the ILLIAC IV computer [Barn6B], tree
machines, and the ultracomputer. The execution of duplicate-removal algo-
rithms on a particular machine can then be modeled by a especially regular

sorting network. 1f we rearrange the horizontal data lines then the new
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sorting nelwork may not preserve the original pattern of connections. That

is, the interconnection pattern is changed.

Corollary 4-2. Given any algorithm for duplicate-removal on a exclusive-
write PIM machine with interconnection pattern J, there exists an intercon-

nection pattern f/; which enables the algerithm to periorm serting.

It is not necessary that the interconnection patterns / and I; in Corol-
lary 4-2 be different. On the machine with a tree interconnection or a d-
dimensional mesh interconnection, we can prove that both sorting and
duplicate-removal can be solved using basically the same algorithms. On
the tree machine, implementation of the heap sort requires O(n) time
[Mea81]. When the ordered sequence is removed from the root node, all the
duplicates can be found. On the mesh-connected machine, Batcher's sorting
scheme can be implemented in O(n!/%) time, where d is the degree of the
dimension [Thom77]. The bitonic POP-SORT which is based on Batcher’s
sorting scheme and a new comparison function performs duplicate-removal

in the same time.

Due to the 1/0 bottleneck at the root node, linear time is the best per-
formance obtainable from the tree machine. Based on the argument on the
longest distance that data may need to move on the mesh-connected com-
puter, 0{n'/%) is the optimal time [Thom?7]. These two examples show that
duplicate-removal can be best solved by optimal sorting algorithms on the

particular parallel machines,
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CHAPTER 5

BITONIC SORT ON THE CHiP COMPUTERS

Batcher's bitonic sort has been conjectured to be the best network
sorting methodT [Prep78]. It has been intensively studied and several
adapted algorithms for machines of different processor interconnections are
available [Ston71, Thom?7, Nass79, PrepB1]. The bitonic sort can be dene in
O(vn') time on mesh-connected computers [Thom77, Nass?79]. It requires
only O(log®n) time with the shuffle-exchange interconnection [Ston?71} or

the cube-connected-cycles (CCC) [PrepB1].

The bitonic POP-SORT. based on Batcher's bitonic merge sort, is an
important example of POP-SORT. It can simplify the processing of whole
queries on the CHiP processors significantly (see Chapter 6). Implementa-
tion of the bitonic POP-SORT directly refers to the implementation of the
bitonic sort., On a CHiP computer, it is feasible to embed all those intercon-

nections on the switch lattice and perform the adapted algerithms.

C. D. Thompsen proved that any layout of the shuffle-exchange graph
requires at least 0(n%/log®n) area [ThomB8Q). There are layout algorithms
which achieve O(n?/log®n) area, a = 1/2, 1, 3/2, or 2 [Thom80, Hoey80,

KleiB1]. However, the layouts are complicated and unavoidably require

1t O(log®n) depth end O{nlog®n) processing components.
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large areas. The CCC improves the shuffle-exchange layouts on regularity,
bult still requires large embedding areas [PrepBl]. On the CHiP computers,
embedding the shuffle-exchange layouls tends to require even larger areas,

because the CHiP processors are not simple grids,

A lacing technique can be used to exploit the cross-over capability of
switches for embedding layouts on the CHiP processors (see Appendix B).
The lacing technique is very useful in embedding complicated interconnec-
tieons. Nevertheless, embedding powerful interconnections like shuffle-
exchange and CCC would leave a large portion. of processing elements
unused. Furthermore, there are long connection paths in any layout of the
shuffle-exchange graph or the CCC. Long data paths are vulnerable to the
propagation delay problem [BilaB1]. In this chapter we therefore emphasize

the bitonic sort with the mesh and mesh-like interconnections.

We shall report some interesting aspects about performing the bitonic
sort on the CHiP computers with the mesh interconnection or its variations.
Embedding the mesh interconnection is straightforward. The performance
of O(vm ) matches the 1/0 time required for a square CHiP region anyway.
Taking advantage of the switch corridors and the cross-over capability of
switches, one can further improve the communication power over the simple

mesh interconnection.

In Section 5.1, an efficient Rearrangement Algorithm is presented to
recrder sorted data items from one indexing scheme te another. A tech-
nique, called sorting with shadow regions, is shown in Section 5.2. With this
technique, allocation of exactly n processing elements is suflicient for sort-

ing n data items with the bitonic sort {n is any integer, not necessarily a
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power of 2). In Section 5.3, we discuss methods to improve the data routing
over the mesh interconnection with the switch lattices. We then address the
problem of sorting more data items than the number of processing elements

used in Section 5.4.

5.1 Reordering Between Indexing Schemes

Feor serting with the mesh interconnection, there are three important

schemes of indexing the processing elernents:

(1) Shuffled row-major indexing, shown in Figure 5-1{a).

(2) Row-major indexing, shown in Figure 5-1(b).

(3) Snake-like row-major indexing, shown in Figure 5-1(e).
Data items are sorted into particular orders defined by the indexing
schemes. The choice of a particular indexing scheme depends on how the

soried items are te be used.

g 1) 4 5 B 1 2| 3 B _1i[ 2] 3
2| 3] 6| 7 4] 8} B| 7 7 B 5 4
8| 9112113 8] 9(18|11 8] 9/18[11
18]11[14[15 12(13]14]15 15(14{13]12

(a) {b) (c)

Figure 5-1. {a) Shuffled row-major indexing. (b) Row-major
indexing. (¢) Snake-like row-major indexing.

The shuffled row-major indexing comes from an optimal adaptation of
the bitonic sort to the mesh-connected computers [Thom?77]. With this
indexing scheme, the more often the processing elements are required to
communicate with each other, the closer they are physically located. If the

sorted sequence is the final result, or when the sorted items are to be stored
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in secondary memories, the row-major indexing is perhaps preferred. For
the snake-like row-major indexing, it would simplify the embedding of the

linear array connection for any after-sorting processing.

Thompson and Kung [Thom77] designed the optimal adaptation of the
bitenic sort with the shuffled row-major indexing scheme. Their algorithm
takes (14 Vn ) tp + (2 login) £g l;imejr They also proved that data items can
be rearranged to obey other indexing schemes with a relatively insignificant
extra cost of (4 Vn') g time, provided that each processing element can
store Vn data items. On the other hand, Nassmi and Sahni [Nass79] pro-
posed different adapted algorithms of the bitonic sort to sort data items
into the row-major order and the snake-like row-major order. Their alge-

rithms require (14 V) tg + (2 log®n){¢, + #;) time, where f; is the time to

interchange the contents of two registers.

The three indexing schemes all have their own advantages, It is not
unusual for more than one indexing scheme to be needed. One may then
employ different algorithms for different indexing schemes. For query
embedding on the CHiP computers, the shuffled row-major indexing is
chosen for the bitonic POP-SORT for a simple and efficient realization (see
Chapter 6). To perform join operations using the bitonic POP-SORT, we pro-
posed a join system using a linear array connection (see Chapter 3}, Thus,

rearranging data items into the snake-like row-major order is needed.

We shall present an '"easier” Rearrangement Algorithm which
transforms the shuffled row-major order into the row-major order in less

than (B vn) tp time. The algorithm requires only two registers at each

t The lower order terms are truncated.
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processing element. To translate between the row-major order and snake-

like row-major order, (Vn + 1) fp time is sufficient. Since the rearrange-
ment algorithm is reversible, transformation between any two indexing
schemes can be done in {3 V') g time without the requirement of extra

memory space.

Suppose there are two square regions, left and right regions, each of i?
data items. Data items are already sorted in row-major order in both
regions. All the data items in the right region are larger than those in the
left one. let 75, 7y .... 71— denote the rows in the left region and
Ts0. 2.1, ..., Toi-) in the right region. Algorithm 5-1 describes a rearrange-
ment procedure which merges the two regions into a 1:2 rectangular region
with the row-major indexing again. The rearrangement procedure, com-
posed of simply swapping rows and unshufiling columns, constitutes a basic
step for the Rearrangement Algorithm. In Figure 5-2, an example of merg-
iﬁg two 4x4 regions is shown. The triangular interchange scheme shown in

Figure 5-3 can be used to unshuffie columns concurrently.

Algorithm 5-1: A basic rearrangement step.

1. Swap odd rows in the left region with even rows in the right

region; T g4 ¢ Tazj, fOrj = 0.1....(;——1). Time: (i+1) £p.

2. Unshuflle each column. Time: 2(;——1) lp.

Total time: (Ri—1) 5.
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Figure 5-2. Rearrangement merge of two 4x4 regions.

[e] [dlefi] Bk [ElelE [T
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Figure 5-3. A triangular interchange scheme
to perform unshufile,

For a square region of n data items with the shuffled row-major index-
ing, the Rearrangement Algorithm simply applies the rearrangement merge

step for logVn -2 times. The Rearrangement Algorithm starts by merging

2X2 regions, 4x4 regions, ..., and at last —\fz-i-x iz""'—-regions. The total rear-

rangement time of (2vn' ) £ is calculated as follows:

(Be VBH -1) + (2# \{f =1} + - + (Re2-1)
=(m+—‘;—"'{—+ o+ 4) = (logVE - 2)
< 2Vn -logVn,



66

In the case of query embedding, rearranging data items is a require-
ment. Sorting of a large number of data items can also have benefit from
the efficiency of the Rearrangement Algorithm. The s2-way merge algorithm
of [Thom77] is faster than the bitonic sort algorithms of [Thom?7] and
[Nass72] when = > 512. The s*way merge algorithm sorts data items inte
snake-like row-major order. It requires (6n + O(n*¥®))tp +
(n + O(ng,q)) tc time. If £, < 2 {p then (8n) iy is sufficient time for sorting.
Sorting with the s?-way merge algorithm and then rearranging data items
into shuffled row-major order takes less than (11n) tp total time, For large
sorting problems, it is therefore faster to perform the s%way merge sort
first and then some rearrangement algorithm to translate to the right

indexing scheme.

5.2 Sorting with Shadow Regions

The bitonic sorting algorithms of [Thom77] and [Nass79] assume a

square array of mesh-connected processors. Performing the sorting algo-

ogvm
rithms on the CHiP computers thus needs a square region of il B I

pro-
cessing elements for sorting = data items. Without any extra effort, the
sorting algorithms can also be executed on a 1:2 rectangular region. The
fequired CHiP region is thus reduced teo have ollegnt area. However, there

are still 2/ | —» more processing elements used than the number of data

items to be sorted, where 0 < 2/°8r 1 _ 5 = ~1.

On a rigidly mesh-connected computer, allocation of a larger processor
array to sorting a smaller number of data items is inevitable. The sorting

algorithms must also assume a dummy data item (-« or +w) at each
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additional processing element. On the CHIP computers, the proeesser inter-
connection is flexible and conflgurable. We therefore propose to take advan-
tage of the programmable switch lattice to resclve the superfiious alloca-

tion problem and handle the dummy value requirement.

Suppose the bitonic sorting algorithm of [Thom<77] is chosen to sort
data items into the shuffled row-major order. We present a technique, called
sorting with shadow regions, that requires the allocation of exactly n pre-
cessing elements. In Figure 5-4, an example of sorting 176 data items with
two shadow regions is shown. The shadow regions can be allocated to
smaller sorting jobs or solving other smaller problems. Hence the benefit of
sorting with shadow regions is to improve the utilization of the processing

elements,

1. Each square repesents
a 4x4 mesh-connected
regian.

Z. 176 + 4x4 + 8x8 = 256.

Figure 5-4. Sorting 176 data items with
4x4 and BxB shadow regions.

Given m data items, a sorting region of n processing elements is allo-
cated aceording to the shuffled row-major indices from 0 to n—=1, The region
consisting of the other plleen ] _ processing elements is the shadow region.
I the data items are to be sorted in ascending order, the dummy value of

+® is chosen. The communication between the sorting region and the

B

-
ol
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shadow region is therefore nothing but sending and receiving the dummy
value. Using the shadow region merely for the trivial communication is

totally wasteful.

The trivial communication can be simulated at those processing ele-
ments on the boundary with the shadow region. When those processing ele-
ments are requested to read a value from the shadow region, they are given
the dummy value; when they are requested to write to the shadow region,
they just ignore the request. An incomplete mesh interconnection that con-
nects only the processing elements of indices from 0 to n-—1 is thus
sufficient. There are no connections between the serting region and the sha-

dow region. The shadow region is free for other use.

The technique of sorting with shadow regions can be applied to allocate
CHiP regions for sorting jobs in a more compact fashion. Let o, and ny be
the numbers of the data items of two sorting jobs. Together for the two

log{n,+
2[ celayinel l is allocated. The region of (0 ~

sorting jobs, a CHiP region of n =
n,—1) is dedicated to the first job, and the region of (n—ng ~ n—1) is dedi-
cated to the second. They both assume the regions not allocated to them-
selves as shadow regions. They may both choose the dummy value of +oo,
Hence the first sequence is sorted in ascending order and the second. is
sorted in descending order. Interestingly the whole data sequence in the
region of n area becomes a bitonic sequence. The benefit of applying the

technique of sorting with shadow regions will be demonstrated further in

Chapter 6.
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5.3 Improvements on the Data Routing

The bitonic sort with the mesh interconnection requires O(log®n) com-
parison time and O{vn ) data routing time. The comparison time is optimal
with respect to the bitonic sorting method. The data routing time, however,

is due to the restricted communication power of the mesh interconnection.

With the mesh interconnection, data communication between two dis-
tant processing elements is achieved by passing data over. To send a data
itern from a processing element to the other one i locations apart thus
requires 1 routing steps. With the corrider width w and the cross-over capa-
bility ¢, the CHiP computer may provide up to w+c dala paths crossing the
corridors. The availability of the wesc data paths can be used by the pro-

cessing elements to communicate with each other at a distance.

Consider a row of 2¢ processing elements and a horizontal corridor
dedicated to the data communication amoeng the processing elements. The
bitonic sort requires that the i data items at the processing elements in the
left half be sent to those in the right half. This needs at least i/ wwc time
units since the communication bandwidth through the corridor is wec.
Hence any improvement in the data routing on the CHIP computers over the

mesh interconnection is bounded by the speed-up factor wvec.

In additional to performing the passing-over type of communication,
the CHiP compulters can improve the communication power over the mesh

interconnection in the [ollowing ways:
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1. Communicafion with direct connections. It is feasible to provide
direct connections for all the communication requirements of the
bitonic sort. A possible cost is O(log®n) reconfiguration steps and
O{logn) switch settings. Moreover, data transmission through paths
of significantly different lengths needs careful synchronization..
However, cautious application of direct connections, e.g. for short
distance communication, cen avoid the complication of

reconfiguration and synchronization.

2. Communicalion with z-locationsjumps. Direct connections for short
distance communication also provide short cuts for long distance
communication. Direct connections between processing elements z
locations apart can be used to communicate processing elements

i»2 locations apart in i steps of 2 -lecation-jump.

On. different switeh lattices, or different values of w and ¢, we expect
some variations in reaching the optimal improvement on the data routing.
" We are most interested in the practical values of w and ¢ which are 1=w=8
and l=c =4 (the degree of incident data paths to switches € <8). An exam-
ple of w =c =2 and d =B which achieves the speed-up factor wec shall be
demonstrated. For other values of w and c in which we are interested, the

improvement on the data routing can be done in a similar way.

With the switch lattice of w =¢ =2 and d =8, we design three intercon-
nection patterns: Iz J4, and I,4,. Figure 5-5 shows three sub-patterns
which are superimposed to form the pattern 7,5 The interconnection /7,3

provides direct connections required between PEs one or two locations
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apart, both horizontally and vertically. In other words, 7; 2 maps tﬁe neces-
sary connections for the bitonic stages i~4 onto the CHiP switch lattice.
The interconnection [, provides direct connections for PEs four horizontal
locations apart, and J4, for PEs four vertical locations apart. They can be
layout using the lacing technique as in Appendix B. The three interconnec-
tion patterns together map the necessary connections for the bitonic stages
from 1 to 6. For bitonic merge stages 7, B, and so on, the interconnection

patterns I, and f., can be used to speed up the data routing with the 4-

location-jumps.

nona a
[ o gaonoagn toweaa — a a
] = oaon o g na a a s
-] o on a dooaem a a a
o o onnono o oo an a a
o o af]la Oaoan n :||.:| a
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o d .ﬂﬂﬂﬂﬂﬂﬂﬂﬂ "R a

(a) (b) (c)

Figure 5-5. The interconnection pattern / ; composed
of three sub-patterns; (a) 7, {b) Io;. and (c) fg,.

Te perform the bitonic sort with the three interconnection patterns,
the comparison steps remain the same. The routing steps and the

reconfiguration steps are analyzed as follows (w = ¢ = 2).

k
o /2]_1 =0
Wee l
logn
reconfiguring steps = f: i—3 = O(log®n)
i=4

Vn

wed

routing steps = lﬁnj

j=1i=1

e
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When n is large the asymptotic speed-up factor is wec. If we employ only
the interconnection pattern /, ; then the reconfiguration steps are reduced

to one but the speed-up factor becomes wsc /2.

5.4 KHold Sorting

External sorting is expensive. The problem of sorting more data items
than the number of processing elements is thus important. Knuth
addressed that prablem in [Knut73, p.241-242]. He pointed out that a sort-
ing network of n data items can be generalized to sort ken data items if the
comparison operation is replaced by a k-way merge operation. This general-
ization idea was applied to several sorting algorithms by G. Baudet and D.

Stevenscn in [Baud78].

To sort ken data items on n processing elements, the data items are
initially distributed evenly to:each processing element. The data sequence
at each processing element. is then sorted locally. Now, the sequence
@ = @ Q2 ...; & is partially ordered, where & is the sorted sequence of k
elements at PE;. For any sorting algorithm using only the comparison-
interchange operation, Baudet and Stevenson proposed that it can be gen-
eralized to sort the partially ordered sequence & by substituting the
comparison-interchange operation with a merge-splitting operation. Per-
forming the merge-splitting operation on two sequences & and &; is to
merge the two sequences and split into halves to produce the new

occurrences of & and &;.

Assume that m is the local memory size of processing elements on a

CHiP computer, that is, each processing element can hold 7 data items.
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The internal memory capacity is computed as men, provided that a CHiP
region of » processing elements is allocated for the sorting. Only when the
data items to be sorted exceed the internal memory capacity should we

resort to external sorting. However, Baudet and Stevenson's generalization
method does not work when %—( k = m since the merge-splitting operation

needs al least 2k working spaeeJr at each processing element. We therefore
consider twe indexing schemes for the bitonic sort to sort as Many as men
data items on n processing elements. The comparison-interchange opera-
tion does not have to be replaced by a merge-splitting operation; we simply

perform k£ comparison-interchange steps.

The two indexing schemes are extensions to the shufiled row-major one.
The processing elements-are still indexed in the shuffled row-major order.
Since there are k¥ data items at each processing element, we need to index
further those data items at the same processing element. Data items may

be indexed in the following ways:
(1). Aggregation scheme — Index those data itemns at PE; as isk,
iek +1, ..., ik +(k —1).

(2) Projection scheme — Index those data items at PE; as i, n+i,

v (K —1)om+i.

—

Baudet and Stevenson used 3k working space at each processing element.
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Figure 5-8. Indexing 18 data items on 4 processing elemnents:
(a) Aggregation scheme, and (b) Projection scheme.

Assume that both 2 and n are powers of 2, £ = 2F and »n = 29. To sort
the k#n data items using the bitonic sort, p+g stages of the bitonie merge
are required. With the aggregation séheme. the first » stages are to sort
locally each sequence @; of k¥ elements at PE;. Then, § more stages are per-
formed to sort the partially ordered sequence @ = @; @:...; @,. At the
(p +1)-th, .., and (p+g)-th stages, they all perform a local execution of the
first p bitonic stages (see Figure A-1).

The bitonic sort with the aggregation scheme may be medified in two
ways. [ach execution of the first p bitonic merge stages can be replaced by
a faster local sort. To perform &k comparison-interchange steps between two
processing elements may be improved by some overlapping of read/write
and comparison instructions. Let cg be the local sorting time of £ data items
at each processing element, and c¢; be the time saved by integrating the &

comparison-interchange steps. If the bitonic sort is direetly applied without

any modification then cg = z—(logzk +logk) andc, = 0.

o
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Define T(R'.k) to denote the time required to merge the ke¢2' data
items in the processing elements from 0 to 2—1, and S{2% k) the time to
sort the k+2% items in the processing elements from 0 to 2% —1, Notice
that T(l.lc) = 0 and S(1,k) = cqefe. We analyze the time complexity of the

bitonic sort with the aggregation scheme in the following:

T(1,k) =0,
T(Rk) = T(2Lk) + (v’ oc ) £p + & 1. (5.1a)
Sl(l,k) = Curtc,
S(8% k) = §(2RU-N k) + (2% 1 k) + T(2% k). (5.1b)
Solve the recurrences 5.1a for the merge time function,
. [k (3+RC+0/2 _4)—duc,] tp + ivk fp, if4 is 0dd
(@' k)= [4k (RV2—1)—dec,] tp + ek to, if 4 is even. (5.2)

Substitute the above equation inte equation 5.1b,

Sl(llk) = CU*tCI
Sy (PH k)= S\ (R¥ k) + [Thke2! —Bk —(4j —1)e,] tp + (47 —1)k fo.

Solve the recurrences for the sorting time function;

Bk +
S (n.k) =14k (vn —-1) - CB—llogg'n — %logn] tp +
‘i (5.3)
[g—logen + (cn—z)—logn] te.

With the projection scheme, the first ¢ stages are equivalent to per-
forming % runs of the bitonic sort of n data items on » processing elements.
I'rom another point of view, the first g stages with the projection scheme

are the same as with the aggregation scheme except with cg = 0. The next p
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stages are to merge the sequence @ = §1; &2, ...; &, where & is a sorted
sequence of n data items over the n processing elements. Assume that

both  and g are even numbers (k = 2° and n = 27). The required merge

k

5 te + T(n.k), and k tp + T(n k) at the

time at the (g+1)-th stage is

(g +2)-th stage. Let VS be the time for the p merge stages.

VS(nk)=(1+2+..+ %)(g_k tc + RT(n k))
= (log%k + 2logk )k (vVm —1) — -GB—llogn] tp +

(log?% +210gk)[%+ g—logn] te

The total time for the bitonic sort with the projection scheme is thus

Sa(n k) = Si(n.k)|c =0 + VS(n k). (5.4)

Comparing the equations 5.3 and 5.4, one finds that the comparison
time might be reduced with the projection scheme, but the data routing
time is definitely increased, Data routing time is the dominating facfor in
the time complexity of the bitonic sort with the mesh interconnection.

Notice that whenk = 1, ¢cg = ¢, = VS(n,k) = 0. In summary,

Silken, 1) = Sa(ken,1) = O(VEen ) tg + O(log? +logn) i
Sin.k) = Okvn) tp + O(k login +cqlogn) £¢
Saln k) = O(k log®k V7 ) tp + O(k log®n + k log?k logn) ¢

We conclude that the k-fold bitonic sort with the aggregation scheme out-
performs the projection scheme assuming co< O(k log?k). The saving fac-

tor ¢, does not have any significant effect on the time complexities. The

aggregation scheme emphasizes data locality while the projection scheme
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emphasizes parallelism. The former attempts to reduce the routing steps
and the latter attempts to reduce the comparison steps. Only when
cp » O{k®) and k is large may the projection scheme be better than the
agpgregation scheme. In that situation, the sequential sorting time ¢y cannot

be compensated by improving data locality.

‘7
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CHAPTER 6

QUERY EMBEDDING

Partitioning a large problem iﬁto several small. and more tractable sub-
problems, or divide-and-conquer, is a common approach in computing
theory and practice. Subproblems are often referred to as basic operations,
Existing algorithms for thg basic operations are then applicable to solving
many large problems. When each subproblem is very efficiently solved by
highly parallel hardware, one interesting question is: What is the relative

overhead of data movement among the basic operations?

One benefit of the CHIP computer is to imitate the performance
efficiency of algorithmically specialized processors on the same devices.
Owing to its configurable switch lattice, the CHiP computer is capable of
embedding suitable interconnections for performing different algorithms
efficiently. To solve a large and computationally intensive problem, several
algorithms are usually involved. The configurability of the CHiP computer
also provides a potential for composing those algorithms without producing

any bottleneck of data movement [Snyd8g].

Composing algeorithms includes the embedding of interconnections on
the switeh lattices for individual algorithms and the embedding for harmoni-

ous interaction among the algorithms. In [SnydB2], an example of solving a
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system of linear equations is demonstrated. To solve the problem, one
might need an algorilhm for the LU-decompeosition of the coefficient matrix
and a linear recurrence solver to perform the backward substitution.
Snyder showed the interconnection embeddings on a switch lattice which
put together Kung and Leisersen's LU-decomposition algorithm and a sys-

tolic method for the backward substitution [Mead81, Ch.B.3].

To evaluate a database query, several database operations are usually
invoked, Many efficient algorithms exist for implementing those database
operations. Like solving a system of linear equations, techniques of compos-
ing algorithms might also be able to solve query evaluation effectively. How-
ever, 170 and data flow in query evaluation are much more complex. Itis a
multiphased problem that takes mmultiple relations as operands (possibly at
different time) and produces a single relation as result. The problem struc-
ture as well as the problem size, moreover, varies for different database

queries.

Query embedding is the idea of embedding suitable interconnections in
order to process whole queries on the CHiP computer. It involves allocating
a CHIP region and providing appropriate interconnections for efficiently
inputting reclations, solving the multiphased problem, and outputting the
result. If query embedding is done in such a way as to embed individual
operations separately and then to compose them together, the interconnec-
tions for routing results from one operation to the next operation may be
far from Dbeing realistically embeddable. Fortunately the primitive opera-
tion POP-SORT which unifies many database operations gives a hope to avoid

this ditliculty. Composing algorithms would simply become putting different
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runs of the same algorithm together. The bitonic POP-SORT is especially
suitable for query embedding since it works in a particularly regular
manner. Actually, query embedding can be simplified significantly if data-

base operations are implemented by the bitonic POP-SORT.

In this chapter we shall explore techniques of query embedding for pro-
cessing whole queries in a highly parallel fashion on the CHiP computer. In
Section 6.1 we parse algebraic queries into operation trees and discuss a
general scheme of embedding the operation trees. Taking advantage of the
unification provided by the primitive operation POP-SORT, we then demon-
strate how simple query embedding can be done for a restricted type of
operation trees in Section 6.2. Section 8.3 summarizes some general stra-
tegies for improving query embedding. We also extend the embedding tech-

niques to evaluate all the algebraic operation trees in Section 6.4.

6.1 Embedding of Operation Trees

Query languages for the relational data model are based on two types of
abstract languages: relational algebra and relational caleulus [UllmB80, Ch.4].
Both abstract languages are equivalent in expressive power; calculus expres-
sions can always be translated into algebraic expressions. It is trivial that an
algebraic expression can be parsed into a tree of algebraic operations (Fig-
ure 6-1). In the operation trees, internal nodes represent algebraic opera-
tions and external nodes represent input relations. At the root node a final

operation is performed and the result is produced.

Existing query languages are not necessarily the exact implementations

of the abstract ones. They may have certain extensions to the abstracl
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Figure 6-1. An operation tree from parsing a query.

languages, e.g. transitive closure, fixed point, and looping. In the most gen-
eral case, queries are arbitrary functions on relations. Given any query, one
can still represent it as an operation tree, but the operations are no longer
restricted to algebraic ones. Nevertheless the abstract languages serve as a
benchmark for evaluating existing query languages. Efficient evaluation of
algebraic operation trees is thus very important in achieving fast query pro-
cessing.

Since queries are represented and processed as operation trees, query
embedding on the CHiP computer is reduced to the embedding of operation
trees. To evaluate whole queries by embedding operation trees, a wide spec-
trum of parallelism is possible, We may have inter-operation and intra-
operation parallelism in evaluating an operation tree. We may also have
inter-query parallelism if the CHiP computer is big enough to host several
queries. Furthermore, the I/0 overhead can be minimized when whole
queries are evaluated on the CHiP computer. Intermediate results tend to
be kept in the CHiP processor, and therefore the data swapping between the
CHIiP processor and its external storage may be eliminated. The ideal case

occurs when no 1/0 request is issued besides loading input relations onto the
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CHiP processor and outputting the result relation,
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Figure 6-2. A general scheme of composing algorithms
(operations) for query embedding.

To embed and execute an operation tree, a contiguous CHiP region is
allocated. Within the region, interconnections are to be provided to perform
the whole operation tree efiiciently. A general scheme of doing this is as fol-

lows (Figure 6-2).

* First, allocate regions for embedding algorithmically specialized inter-

connections to perform individual operations.

* Secondly, tailer those regions as compactly as possible according to the
170 requirements and the communication requirements among the

operations.

The CHiP region allocated for the whole operation tree, called the query
Tegion, is thus partitioned into three type of regions: operation regions, con-
nection regions, and [/0 regions. Operation regions are those allocated to
embedding suitable interconnections for running efficient algorithms of the
operations. Connection regions are those allocated to providing data paths

from operations to operations. 170 regions connect some of the operation
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regions to the CHiP perimeter where the CHiP processor is connected to its

external storage devices.

Two obvious optimization objectives for query embedding are to reduce
the query region and to minimize the total time for evaluating the whole
operation trees. To minimize. the query region, operation regions should be
kept as small as possible and they should be packed in such a way that the
needed 1/0 regions and connection regions are also small. To minimize the
total time, we want the query.region to be large enough to provide intercon-
nections for performing efficient algorithms and putting them together. The
two objectives may not be achievable together. As space-time tradeofl is a
common phenomenon in computing world, we may also find the trade-off

between the two objeclives.

The general scheme of embedding operation trees, as shown in Figure
B-2, provides a basic strategy of query embedding. Only when there is no
better way would we resort to the general embedding scheme, since the gen-

eral scheme is exposed to the following problems:

¢ The size of the result relation after preforming an operation depends on
the operation itself and the distribution of data values. The amount of
gignificant data items shrinks and swells during the query processing.

It is nontrivial to allocate CHIP regions for the later operations.

* Large 1/0 regions are sometimes necessary. For example, a wide
bandwidth is needed in order that 0P, can read in R4 fast, and the data

paths may be long if 0F; is buried far away from the CHiP perimeter.

Ll
¢
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* QOptimal algorithms {o pack operation regions are extremely difficult to
find. Heuristics may result in requesting large connection and 1/0

regions.

6.2 Buddy System Allocation

Due to the dynamic character of query processing in which the amount
of significant data items varies, the allocation of operation regions is subject
to dynamic strategies. Unlike memory allocation, dynamic allocation of
CHIP regions entails dynamic control of processing elements and dynamic
provision of interconnections.. Moreover, problems like deadlock prevention,
communication blockade between parent and child regions must be solved.
To aveid the dynamic complication we therefore present area-effective

static allocation policies in this section.

The bitonic POP-SORT which is an efficient primitive for many database
operations alsc yields a nice solution to query embedding. In this section we
demonstrate how well the bitonic POP-SORT can simplify query embedding
on the CHiP computer. A restricted type of operation tree is considered. In
Section 6.4, the embedding techniques  are then extended to evaluate all

algebraic operation trees.

Operation trees considered here may contain some or all of the follow-
ing algebraic operations: restriction, projection, duplicate-removal, union,
intersection, difference, and join. Cartesian product and quotient are two
useful algebraic operations being left out. These two operations are
extremely difficult in nature. They are not in the scope directly implement-

able by the primitive operation POP-S50RT. Fortunately, quolients are not
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often executed in query processing and Cartesian products can ‘often be
replaced by joins [Wong76). Hence the restricted type of operation trees

still covers quite a portion of database queries.

Any POP-SORT has the following two important features:
* It employs marking functions to mark off all the unwanted data items.

» It works well even with some marked and unwanted data items in the
input,
Suppose that there are parent and child operations which are all imple-
mented by POP-SORT. The child operations can send the whole chunk of
data possibly consisting of unwanted and marked items to the parent. The
parent operation can then carry on without worrying about the marked-off

items. These operations thus-can be allocated CHIiP regions by some static
strategies.
Based on the two features of POP-SORT, another two valuable cbserva-

ticns are:

Observation 1. Restrictions would just produce more marked items,

and projections would reduce the tuple length. They can be com-
bined with other operations that precede or follow them.

Observation 2. Remove-duplicates are already combined with union,

intersection, and difference due to the versatility of POP-SORT. Thus-
the duplicate-removal before or after these three operations is
redundant.

By merging the internal nodes according to the above cbservations, opera-

tion trees are shrunk to have only external nodes and those internal ones
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for operations excluding restriction and projection (and maybe duplicate-
removal.) The allocation of operation regions now becomes the allocation for

a smaller number of internal nodes.

The bitonic POP-SORT, in particular, works in a very regular manner. As
for query embedding, mesh interconnection is chosen for the primitive
operation in order to keep the operation regions small. Data items are
agsumed to be sorted into shuffled row-major order. For joins, data items
are then rearranged into snake-like row-major order with a relatively
insignificant overhead (Chapter 5.1). In addition to the two features men-

tioned before, the bitonic POP-SORT has another very important one:

* Assuming mesh interconnection and shuffled: row-major indexing. the
bitenic POP-SORT works well on a square region or a 1:R2 rectangular
region.

It is this feature that makes algorithms composition very simple. More
observations implied by this feature are as follows:

Observation 3, The CHiP region for the parent operation can be over-

laid with its child operation regions. No connection regions are
necessary because data items are always in positions ready for next
operation.

Observation 4. The parent operation may only need to execute a

stage of the bitonic merge instead of the whole sorting procedure
since the child operations would have sorted the data items in their

regions.
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As an analogy te the buddy system for dynamic storage allocation

[Knut?3, 1, Chapter 2.5], we present a buddy system for static allocation of —

operation regions. Each operation nede is allocated a CHiP region of size a

power of 2. The two child operation regions are buddies. We do not insist

that buddies be equal in size, but buddies must be located together. Merging

two buddies becomes a larger region and the larger region is for the parent

operation.

Algorithm 6-1; Buddy system allocation.

Al

A2
A3.

B.1.
BR.

!
Compute area for each internal leaf node; ny + 75 > 2[ og{nrm,v)]l

where n; and n; are sizes of input relations.

[

log (n;)
Compute areas for remaining input relations; n; » 2l b I

Compute areas for parent nodes from areas of child nodes
(buddies); 2* + 27 » pmes(ti¥! where 2' and 27 are areas of
buddies.

Allocate a query region for the root node.

Allocate one half of the parent{ region to each of its child
regions. -

Figure 8-3. An example of buddy system allocation.

Algorithrn 6-1 for buddy system allocation is composed of two phases. First,

compute the areas of operation regions from the cperation tree's bottom

£
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up. Secondly, allocate operation regions from the top down. In Figure 8-3 we

show an example of buddy system allocation.

QO XL
O

1. POP-SORT 2. post-sorting 3. bitonic merge
(OP,) processing ( OF g, OPg)

4. post-sorting 5. bitonic merge 8. post-sorting
processing (OP,) processing

[O] perform POP-SORT in the region
perform bitonic merge to merge two regions

] idle

perform post-sorting processing in constant time

Figure 8-4. An example of processing a class of
P
queries using the bitonic POP-SORT.

Processing the whole example query is partitioned into six phases in
figure 8-4. Phases 1 and 2 would complete the execution of OP;, phases 3
and 4 would complete OF; and OPg concurrently, and so on. In phase 1, the

bitonic POP-SORT is performed in each 'circled” region. In phase 2, the
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post-sorting processing is executed in the "crossed” region, and the rest
region does nothing but wait. In phase 3, one stage of the bitonic merge is
sufficient since the data items in the circled regions are already ordered as

bitcnic sequences.

It is surprising that the multiphased query processing can be viewed as
a big sorting job interleaved with other processes, The post-sorting process-
ing for union, intersection, or difference requires only constant time (see
Chapter 3.1). For queries involving only these operations and restriction,
projection, and duplicate-removal, the multiphased query processing thus
works exactly like a big sorting job, except with some constant time pro-
cessing. It guarantees a total processing time of O(V @ e ), Where @o.q is

the area of the query region.

Notice that the bitonic POP-SORT is also very helpful for some of the
equi-join or natural operations. The post-sorting processing for those joins
would involve (1) reordering from shuffled row-major index to snake-like
row-major index, (2) performing easy-catch process, (3) running the sprin-
kle algorithm to resolve the hot spots problem, and (4) restoring the order
of data items by running the bitonic POP-SORT again, For quite a few practi-
cal cases of joins, the post-sorting processing can be done in O(v#n') time,
where n is the area of the region on which the join operation is performed.
Thus the total processing time is still O(v @4 ). However, not all join

operations work well this way. We shall address this problem in Section 6.4.

The allocation algorithm 8-1 does not attempt to pack input relations in
a compact fashion. It packs better when buddies are about of the same size.

However there is a worst case anomaly:
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In general, the area of a query region allocated by Algorithm 6-1 is within a

Letn, =2 andny=ng=nys=ng5= 1.
==> Total input size is fyz = 2°F + 4.

Query region has area Gg.q = 2*3 (R =3).

==> Nearly %— of the query region is wasted!

range as follows:

Isiz = Qorea < zh ‘Is-iz-

20

To resolve the anomaly, we propose two appreoaches. One is to parse queries

into "good” trees which would lead to more compact allocations. This is dis-

cussed in Section 8.3 — query amelioration. The other approach is to modify

the buddy system allocation to pack input relations. A modified version of

the buddy system allocation is shown in the following as Algorithm 6-2. This

improved algorithm represents a packing technique based on the feature

that the bitonic POP-SORT works well with shadow regions {see Chapter 5.2)

Algorithm 6-2: Modified buddy system allocation.

Al

B.1.

B.2.
B.3.

Transferm the binary operation tree into a quaternary tree as
shown in Figure 6-5.

Compute area for each internal leaf noede;

Yog (ny trpa+n, +no)
nyy +7yp + Ny t Rz 2 2 : ! 1 where mn;,, mn;p are

sizes of left input relations, and n,,, n.p are sizes of right input
relations.

{

1
Compute areas for remaining input relations; n; -+ of og {ry} ]

Let 2%, 2¢2, 271 272 be areas for child nodes {buddies). Compute.

areas for parent nodes from areas of child nodes;
otl § 12 ¢ 271 4 272 5 Pi where 2° is the smallest area that is
large enough for all the four buddies.
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C.1. Allocate a query region for the root node.

C.2. Let 0~2*-1 be a parent region. Allocate the regions 21, 2'2 gqub-
sequently from O to 2i-1, if 11 = 2. Allocate the regions 271, 272
subsequently from 2*-1 to 0,if 71 = r2.

Figure 6-5. Transforming an operation tree into a
quaternary tree for more compact allocation.

The medified allocation algorithm tries te pack input relations by
grouping four buddies instead of just two. The success of the packing tech-
nique again relies on the relative sizes of buddies. However, the upper
bound of @y, is already improved significantly. In general,

Toty £ Qarge < RM2¥g,,
sinee the height of a quaternary tree is reduces to /2. Two child opera-
tions might be allocated regions of different areas by the packing attempt.

The synchronization between two child operations therefore cannot count en

the allocation of regions of the same area any more. The operation in a

smaller region would need to wait for the other to finish.
Theoreticully speaking, sorting with shadow regions can be exploited Lo
a very complicated extent. It is then possible to compaci input relations

further. Nevertheless, the more compacily input relations are packed, the

Lot
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more complicated the required synchronization tends to be. It might not be
worthwhile to pursue more compact packing since the operation trees con-
sidered are more likely small, i.e. the value of h is small. Moreover, we may

turn to query amelioration for more compact allocations.

6.3 Query Amelioration

The total CHiP region and the total processing time are the two objects
te be minimized for query embedding on the CHiP computer. Although
"query optimization" is commonly used, query evaluation is not necessarily
optimized over all the possible inputs. The term "query amelioration” would
be more appropriate [UlmB0], especially when there are two inleracting
"qptimization" objectives. Our query amelioration philesophy is to reduce
the total time while still keeping the query region small. In this section, we
shall summarize some general strategies for query amelioration. These stra-
tegies are from two sources: some by re-phrasing the algebraic expressions,

the others based on other implementation considerations.

Queries may take a long time to execute, and the conventional execu-
tion time could be reduced greatly if the queries are rephrased according to
some optimization criteria [Ullm80, Ch.6]. As a rule of thumb, the general
strategies for optimization in [UllmB0, Ch.6] are also valuable on the CHiP
computer. In particular, we summmarize four rules [or rephrasing algebraic

expressions in order to reduce the CHiP region or the total processing time.

1. Perform resiriciions os early as possible, Restrictions tend Lo make
significant data items sparse so that more join operations cun be per-

formed by using POP-SORT. (See also Strategy 5.)
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2. Perform projections as eorly as poassible. Projections tend to reduce
the tuple length, therefore reduce the amount of data Aow in CHiP pro-

cessor. (See also Strategy 5.)

3. Cascade testrictions and projeciions. A sequence of these operations

can be performed all at a once.

4. Combine ceriain resirictions with their prior Carfesion products into
joins, This helps controlling the size of intermediate results. Hopefully

some allocation of large CHIP regions can be avoided.

Among the equivalent expressions there are some which usually take
longer time than the others. The geoal of rephrasing an expression is to avoid
those more time-consuming ones. The first two strategies are feasibie by
commuting restriction with other operations, or by commuting projection
with a Cartesian product, join, union, or intersection (but not difference.)

Strategy 4 is in a sense a special example of Strategy 1.

The way in which a particular expression is evaluated also afiects the
query processing time. We summarize more strategies based on the imple-

mentation considerations in the following.

5. Perform restrictions and projections on the inpul relations on the mass
storage lewel., To reduce the input size and the amount of data flow in
the CHIP processocr, the restriction and projection on an input relation
is better performed on the mass storage level using the approaches as

in the conventional database machines.
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Combrine Testrictions and projections with other operafions that follow
or precede themn. It can be done by loading the restriction predicates
and projection attributes on the processing elements. This simplify the

allocation of CHIiP regions.

Delete redundant duplicafe-removal. Multiset operands are allowed to
union, intersection, and difference. Remove-duplicates before these

operations is thus redundant.

Combine o sequence of unions, A single run of POP-SORT on all the

operand relations would complete a sequence of unions.

Puarse queries info operation frees in a weight-balanced fashion (or pro-
cess smoll relations first.) The buddy system allocation aigorithms

work especially well when buddies are about of the same sizes.

Load input relafions os an ensemble. Input relations are loaded
together onto CHiP processor according to the allocation pattern. 1/0

time of O(/@zrea ) is thus guaranteed.

z/%)}\v " "
TN, Tg TNg TN Tty T2 g
T2

L3

(a) n=ny=ngz=n, (b) na=n,n3= 20 ns=4n,

Figure 6-6, Weight-balanced trees.

el
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Commutative laws and associative laws for unions, intersections, joins,
or Cartesian products are the weapons that we may use to parse queries in a
weight-balanced fashicn. Strategy B presents an even better amelioration
methed on performing a sequence of unicns. It is feasible because of the ver-
satility of POP-SORT to perform union on multisets. Fer a sequence of inter-
sections or a sequence of joins (Cartesian products), Strategy 9 can be
applied to parse the operation sequence inte a weight-balanced tree. Exam-
ples are shown in Figure 8-8. For a sequence of differences, Strategy 9 is

alse useful because of the equivalent law: For any i, 1=1i <k,

k
RiARpA --- AR, =R A - AR A( | Ry) where A denotes the multiset
j=i+l

k
operation difference with left-to-right precedence and () K; denotes the
F=i+1

union of maultisets. Assume. that the examples in Figure 6-6 show Lhe
weight-balanced parsing of a sequence of differences. IL is interesting to
note that the operation nodes on the path from the external node n, to the

root all perform differences and the rest all perform unions.

6.4 Extensions

Although the operation trees considered in Section 6.2 may contain join
operations, not all the join operations work well using POP-SORT with mesh
interconnection on the CHiP computer. Equi-join and natural join are more
likely to work than other join operations. However, even for equi-jein or

natural join, performance may degrade due to the hot spots problem.

In this section we shall present a method of performing Cartesian pro-

duct that generates the result relation in a square CHiP region. Join

LW
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operations can be implemented, at worst, as Cartesian products. Quotient
can also be implemented by Cartesian product, difference, and projection.
Adding Cartesian product to the restricted type of operation trees, we
therefore extend the gquery embedding techniques presented in section 2 to
evaluate all algebraic operation trees. Similarly, we may extend further to

inelude operations other than algebraic ones.

f,
)
Edy . -
>N Y
systolic result .
------ Eea ks aoa aEs —— v ..:;. ms sEY EEs mds bEe mme - --:‘:--- s nl
array #  relation l
>
T
Rg I’("“-——'— Tig —)]

Figure 8-7. Systolic method of Cartesian product.

The systolic method of Cartesian product in [Kung80] produces a resuit
relation in a -- -shaped region (see Figure 6-7). In order to simplify the com-
position of Cartesian product with other operations implemented by POP-
SORT, the result relation needs to be in a square region ( or a 1:2 rectangu-
lar region.) A simple modification of the systelic method can shape the
result relations in square regions. However, the 1/0 bandwidth of a CHiP
processor is assumed proportional to its perimeter. We shall seek a faster
algorithm which takes advantage of the 1/0 ports on the perimeter process-

ing elements,
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R, Rs
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Suin] result
>0 relation
>0-0 >
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Figure 6-8. Cartesian product in a square region.

Let R, and Ry be the two relations, |R;| = n,. |Rg] = g, and ny<mnz. The
square region to hold the result relation requires a size of n2, where
T, = [\/—77.1_"71_;] Notice that n,<n,<mn, Assume that n,=k", for simpli-
ecity. First, allocate a query region of area (n,+2) *n,.. The first two columns,
called the processing columns, are used to produce result tuples. The rest
of the region performs only left-to-right shift and is used to stere the result
relation. The following algorithm would generate the Cartesian product of

R, and R, in a square region (see Figure 6-8) in O{n,.) time.

Algorithm 6-3: Cartesian product.
1. Load & copies of ¥, on the second processing column.

2. If no more R tuples then stop. Otherwise, load another colurnn of Kg
tuples on the first processing column.

3. Rotate n, steps each copy of ®, and produce n; columns of result
tuples. Go to step 2.

Given any algebraic expression, we may proceed to de the following to
evaluate the expression. First, rephrase it according to the query ameliora-

tion Strategies 1~4 summarized in Section 8.3. The rephrased expression is

.o

e
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then parsed into an operation tree possibily containing some harder-than-
sorting operations like Cartr_asian products, differences, and some joins.
Those cperations, not belonging to the restricted type, would partition the
operation tree info single operation nodes and subtrees. Each subtree is
then of the restricted type. The query amelioration strategies in Section 6.3
and the query embedding techniques in Section 8.2 are thus applicable Lo
each subtree. Single operation nodes can be implemented by the methoed of
producing a Cartesian preduct in a square region. For example, join opera-
tions that are not suitable for the easy-catceh implementation can be imple-
mented this way. Significant data items can then be "cornered' to a smaller

square region by performing the bitonic POP-SORT.

Te process any algebraic query, the composition of algorithms is no
longer automatically done by the buddy system allocation. Composing algo-
rithms, in a most general sense, thus becomes a three level appreach.
Ranked in the order of preference, they are: (1) buddy system allocation, (2)
the general scheme shown in Section 6.1, and (3) off-CHiP processing, the

last resort.



99

CHAPTER 7

SUMMARY AND CONCLUSIONS

This thesis applies highly parallel database machines to.improve rela-
tional database processing. The database machines are dedicated comput-
ers enhanced with highly parallel processing capability. Regularity and uni-
formity are mandatory for achieving high-performance and cost-
eflectiveness. This work first deals with unifying several relational opera-

tions on a regular sorting algorithm.

Given a highly parallel processor, we have showﬁ that any sorting algo-
rithm designed to execute on the processor can be easily modified. to
become a primitive operation POP-SORT. The primitive operation can
efficiently perform sorting, duplicate-removal, union, intersection, and
difference. It can also be used to perform join operations requiring no more

than linear post-sorting processing time.

This thesis then applies an instance of POP-SORT, the bitonic POP-SORT,
on the CHIiP processors to process whole queries. Query embedding
presents a methodology which embeds appropriate interconnections for
processing whole queries on the CHiP processors. Due to some interesting
characteristics of the bitonic POP-SORT, query embedding is simplified

significantly.
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In Section 7.1 we summarize the main contributions of this thesis. To
apply the results of this work successfully to a complete design of back-end
system, several important issues need to be investigated further. Section

7.2 discusses briefly those important issues.

7.1 Main Contributions

The main contributions of this thesis are summarized in the following.

1. The methodology of applying sorting to solve other database operations
is presented for highly parallel situations. Two techniques are shown to
adapt, with negligible overhead, merge-oriented and other sorting

methods to solve several database operations {POP-SORT).

2. The efliciency of POP-SORT is studied. POP-SORT based on an optimal
sorting method is proved to be also optimal for performing duplicate-
removal, union, intersection, and difference for a reasonable class of

homogeneous comparison computation.

3. The join system which employs a halting mechanism can terminate join
operations in sublinear time after the argument relations are pre-

conditioned by POP-S0ORT.

4. The algorithm Sprinkle can efficiently redistribute data items such that

they are almost evenly distributed over the processing elements.

5. The bitonic POP-SORT which generalizes Batcher's bitonie sort to
become a powerful primitive defines the (new) upper time bound for per-
forming each of the five database operations — sorting, duplicate-

removal, union, intersecticon, and difference.
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8. The bitonic sort on the mesh-connected computers in [Thom77, Nagg79]
can be improved by a speed-up factor up to wee with mesh-like inter-

connections on.the CHiP computers.

7. Efficient algorithms for 1'ecrdering data items among three major index-
ing schemes and sorting k+n data items on n PEs are-proposed and

analyzed.

B. Query embedding is Lo vxploit all the possible parallelism in processing
whole queries. With the use of the bitonic POP-SORT, query embedding
for a restricted type of jjueries is simple and straightforward. The algo-
rithm to preduce Carte:ian products in square regions further extends

the restricted query embedding to processing all the queries,

9 The lacing technique is shown to exploit the maximum number of data

paths provided by the switch corridors on the CHiP computers.

7.2 Future Research

In this thesis we have concentrated on explering parallelism in process-
ing relational queries with lhe use of highly parallel processors. There are
other issues needed to be nvestigated to complete a reliable design of a

highly parallel database machine.

The 1/0 bandwidth between the mass storage and the highly parallel
processor is required to be arge to prevent the processor from data starva-
ticn. The mass storage shouald be content addressable such that searching
and update can be perform:d on the storage level efficiently. The design of

hardware organizations tc implement the requirements of large 1/0
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bandwidth and content addressability is thus important. More pressing, a
storage model and an 1/0 model for near future technologies are necessary

to measure [/0 complexities and design problem decomposition algorithms.

Given a highly parailel processor with n PEs, we addressed the problem
of partitioning the processor to perform several small jobs. We also
presented algorithrns to allow the total size of argument relations to be ken
if PEs have local memory space k. However, problems with sizes larger than
k+n must be decomposed into several small ones. Fortunately the decom-
position problem is reduced to an external sorting problem for a family of

queries.

The back-end is dedicated to perform database management functions.
With new hardware technologies and architectures the traditional designs of
database management need to be reconsidered. Programming the highly
parallel processor is another important issue. With the unification proposed

in this research work the programming difficulty should be reduced.
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APPENDIX A

BATCHER'S BITONIC SORT

A1 The Bitonic Merpe

Batcher's bitonic sort [Batc68] is based on his-bii;onic merge algorithm
which sorts bitonic sequences. A sequence Zg, Zj, ..., Zp-p IS said to be
bitonic if either

(1) there is an index %, 0<i<n-1, such that zg=z;,=..
LEX 2T = .22y 0T

(2) the sequence can be shifted cyclically so that condition 1 is satisfied
[Ston71].

The bitonic merge algorithm applies logn parallel comparison steps. Each
step partitions a bitonic sequence into low and high bitonic sequences such
that every item in the low sequence is no larger than any cne in the high
sequence. The correctness of the bitonic rmerge algorithm was proved in

[BatcB8] and described as the: following theorem in [Ston71].

Batcher's Theorem Let the sequence X, Z,, ..., En— be bitonic and
g, = min(z;, Tisnsz). by = max(z;, Zians2) for 0=i=n/2. The two
sequences wg, @y, ..., @ysz-; and bg, by, ..., by e~ are both bitonic, and

a; = b; foralliand].
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Figure A-1. Sorting network for Batcher’s bitonic sort.

Batcher's bitonic sort applies his bitonic merge algorithm for logn
times. It can be described as a sorting network shown in Figure A-1 [Knut73,
p.237]. There are logn bitonic merge stages and logi comparison steps at
the i-th stage. Several adapted versions of the bitonic sort with different

processor interconnections are available.

* The bitonic sort can be done in time (logn)fp + %—(logz'n. +logn) tcT

with the perfect shuffle interconnection [Ston71].

* On a mesh-connected computer, the bitonic sort can be done in time
(14(vn —1)-4logn)ip + ;—(log2n+logn)tc if the sequence is to be

sorted into the shuffled row-major order [Thom?7].

1 The actual time required for one routing step or one comparison step depends on different
interconnections or machines.
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‘* On mesh-connected computers, the bitonic sort can be done in time
1 2 9, 2 3 i .

(14(vVn —1)—4logn) ty + -E(log n+logn )ty + (-é—log n + Z-logn)t; if

the sequence is to be sorted into the row-major or the snake-like row-

major order [Nass79].

* With the CCC (or the k-Cube) interconnection the bitonic sort can be

done in time O(log®n)(¢z + ;) [PrepBi].

A2 Effects of Propagation Delay

In practice, sending data from a location to-another location always
takes time. The speed of data propagation in the. ehip is many orders of
magnitude slower than the velocity of light [MeadB0]. For circuit perfor-
mance, the propagation delay in long wires is especially important. How-
ever, it is still controversial how the propegation deley affects the VL3I com-
putation time. Depending on assumptions, the propagation delay function
p(x) varies widely: O(logz)=<p(z) < 0(z?), where z is the wire length

[PateB1].

Three interesting propagation delay models discussed in [Pate8i,
BilaB1)] are described as follows. It is plausible that R-C circuits define a
quadratic propagation delay function. Since resistance and capacitance
both grow linearly with the wire length, the time constant of the transistor
load is thus a quadratic function of the wire length. However, the propaga-
tion delay is about defined by a linear function, provided repeaters are

added to the long wires. If special drivers are used to speed capacitance

t £; denotes the time required to inlerchange the contents of two registers.

L))

o
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charging then the minimum delay, p(z) = logz, is achievable [Mead80].

According to [BilaBl], both current and projected silicon technologies
fall within the realm of the logarithmic propagation:delay function. However,
the special drivers cannot be unlimitedly applied:to arbitrarily long wires
due to the limitations on the current density. Thus the most realistic esti-

mate is perhaps P(z) = vz [PateB1].

In analyzing the asymptotic time complexities, one sheould be particu-
larly careful about the effect of propagation delay since the maximum wire
length may grow with the problem size. Taking the propagation delay into
account, we recompute herc the complexities for the bitonic sort with
different processor interconnections. We consider only the communication
time because the computation time is not so susceptible to the propagation
delay as the [ormer. The following table summarizes the results of our
recomputation.

Table A-1, Effects of propagation delay on the bitonic
sort with different interconnections.

p(z) 1 c,logz eaVz
shuffle log®n e, logn co VR logn
mesh Vn vn v

; 1 o o
CHiP S—\/-r_f s—\/ﬁ' s—\/'?f

The average length of the edges in a planar embedding of the shuffle-
exchange graph is 0(n/log®n) [ThomB0]. I p(z) = ¢,logz then the compu-
tation time is ¢,log(n/log’n)+log?n which is approximately ¢;login. Ii

p(z) = ¢c;vVz then the computation time is cy;Vn/login rlog?n which is
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czVn logn. Other powerful interconnections like the CCC and the k-Cube

should be as susceptible to the propagation delay as the shuffle-exchange.

On the CHiP computers, the technique of z-location jurmps can be used
to improve the data routing on the mesh-connected computers (Section
5.3). The improvement asymptotically achieves a speed-up factor up to z,
z < wsc, where w is the corridor width and e¢ the cross-over capability of
the switches. Let s denote the speed-up factor, and thus s £z € wse. In
the table, we introduce another factor a which denotes the propagation
delay required by the z-location jumps. Due fo the practical copsideration
of high ukilization of components, w+c is bounded by a small constant,.say
32, The propagation delay of the z-location jumps is thus relatively con-
stant. Assuming that i-location jumps take unit time, the factor o should be
small, & » 1. Hence we do not distinguish two «’s for the two non-constant
propagation delay functions, The CHiP computers may also embed the
shuffle-exchange interconnection, but the effect of propagation delay will be

more severe than that on the shuffle-exchange as shown in the table.
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APPENDIX B
SPRINKLE ALGORITHM
Given n processing elements PFy, PEy, ..., PF,.; and a sequence of

data items distributed over the processing elements. The quantity of data
items is not evenly distributed: there are z; items at PE; for all 4 in {0, n~1].
The Sprinkle Algorithm is designed to redistribute the data items so that the
sequence is approXimately equally distributed over the processing elements.

ln—l
w5

i=0

n=1 .
That is, 7172 x5 J <7 =< . where Z; is the number of data items at
i=0

PE; after the redistribution.

step 1l step 2 step 3

i
2T
S
7 1

Figure B-1. The communication scheme of logn steps
applied in the Sprinkle Algorithm for n = B.

The redistribution problem is more difficult than the problem of finding
the average of the number sequence {z;] which can be best dene in O(logn)

sieps. However, a communication scheme of O{logn) steps as shown in
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Figure B-1 is still sufficient for the redistribution problem. In Figure B-i,
each arrow denotes an operation that redistributes the data items at the
two PEs, After the cperation, the tweo PEs both have the same number of
data items, or the one pointed by the arrow head has one meore data item.
n. the following example we show how important the directions of the arrows

ara.

Example. To redistribute data items among four PEs, the following
figures shows (a) the communication scheme leading to the correct
result, and (b) » communication scheme possibly leading to wrong
results.

{a) : {b)
2 3 2 3
= 45 = 4%
12 7 12 G
1)- B 12 7

The Sprinkle Algorithm repeatedly compares the nummbers of data items

o a
o] N

between pairs of PEs and then ships data items to redistribute them approx-
imately evenly between the pairs of PEs. It involves logn computation steps
to determine the redistribution strategies. In addition, the data shipment
requires more communication time which depends on the original distribu-
tion {z;}] and the available processor interconnections. Assume that

0<z;, <k, where k£ is a small constant. The Sprinkle Algorithm needs at

most (ﬁ—+1)¢1ogn tp communication time if the appropriate interconnec-
Pt

tion is provided. With the mesh interconnection, the communication time

required is no more than (z—+1)s4\/€ tp.
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The communication scheme in Figure B-1 is similar to and is actually a
, ¥ portion of that needed in the bitonic sort (Appendix A). Programming the
CHiP computers to perform the Sprinkle Algorithm thus does not demand

much additional effort.



11%

APPENDIX C

THE LACING TECHNIQUE

On the CHiP computers, the maximum number of data paths allowed to
eross the corriders is bounded by wec, with the corridor width w and
cross-over capability ¢ of the switéhes. 1If d > 2c, where d is the degree of
incident data paths to the switches, then the maximum bandwidth wer is
feasible with an embedding technique called lacing. The technique is to
embed straight data paths as well as zig-zag ones that exploit the maximum
bandwidth. Here we show the lacing technique by an example of embedding

the perfect shuffle interconnection on a switeh lattice.

Figure C-i. The schematic perfect shuffle of n data items
between two rows of n/ 2 processors, n = 16.

Figure C-1 shows the n perfect shufile connections between two rows of
n/ 2 processing elements for n = 16. Notice that there are n/ 2 connections

passing through the dotted bisection line. To embed the interconnection on

2

the CHiP’ computers, ?u/m horizental corriders are needed. If n = 32 then

H
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two corridors are needed to host the interconnection on the switch lattice of
w=4rc =2 and d = B. Figure C-2 shows the embedding of the perfect
shuflle interconnection for n = 32. Tigure C-3 depicts some basic com-

ponents which construct the embedding in Figure C-2.

o060 oo o pte ©c000O0O0O0O
o ! cdoooole
oo o 6C 000 RK0PO
o o p4o og °
OB/V\jBO osN\jo
02 Wo ono
cdjo oo do o 0,00 e 0o
0000000 O 00 0DOO0COO

Figure C-3. Some basic components constructing the
embedding in Figure C-2.

The four little pieces shown in Figure C-3(b) exploit the n/2 possible

n/e
T ¥C

data paths pas-sing through the bisection line in horizontal corridors.

This lacing technique can be generalized to embed the perfect shufile for
larger values of » and on other switch lattices. The two data per processing
element structure excludes the necessity of exchange edges as in the
shuffle-exchange graph. The embedding in Figure C-2 can be extended to
build multistage bitonic sorters as in [Bate68] or unistage bitonic sorters as

in [Ston71] on the CHiP computers.
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