
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1982

Highly Parallel Processing of Relational Databases (Thesis) Highly Parallel Processing of Relational Databases (Thesis)

Ching-Chih Hsiao

Report Number:
83-460

Hsiao, Ching-Chih, "Highly Parallel Processing of Relational Databases (Thesis)" (1982). Department of
Computer Science Technical Reports. Paper 379.
https://docs.lib.purdue.edu/cstech/379

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

.
•

HIGHLY PARALLEL PROCESSING OF
RELATIONAL DATABASES

A Thesis

by

Ching-Chih Hsiao

(

Dedicated to my parents, my wife, and my family

This work is parL oi the Blue CHiP Project.. It is supported in part by the Office of
Naval l~csci:irch Contracts N00014~BO-K~OB16and N00014·B1-K-0360. 111e latter is
Ta:;k SRO-I00.

..

ii

ACKNOWLEDGEMENTS

Deepest appreciation is expressed to my major professor. Lawrence

Snyder. His encourgement and guidance in my research and writing has

been invaluable. I am very grateful to Professors Janice Cuny. Dennis Gan-

non, and Vincent Shen for serving on my graduate committee and their help

throughout this research work. I am also indebted to Jeremy Epstein- for

some early, stimulating discussions.

Thanks are also extended to Professor S. Bing Yao who was my advisor

before he left Purdue and Tom Putnan who was my supervisor when I worked

at C1NDAS.

Many thanks go to all the friends that have made my stay in West Lafay-

ette so enjoyable, especially Kye Hedlund. Tom Rafetto, Steve Thebaut,

Andrew Wang, and all the Blue CHiPpers. I would also like to thank Julie K.

Hanover, the secretary of the Blue CHiP project.

Last but not least, I want to thank my parents. my brothers, and my sis-

tel' for their support. My wife Nien-Tsu also deserves special thanks for her

love and understanding.

This research is partially supported by the Office of Naval Research

under Contract N00014-BO-K-OB16 and Contract N00014-Bl-K-0360. Special

Research Opportunities Program !ask SRO-l00,

f

iii

TABLE OF CONTENTS

Page

LIST OF TABLES vi

LIST OF FIGURES vii

ABSTRACT x

CHAPTER 1 - INTRODUCTION 1

1.1 Goal and Methodology 2
1.2 Definitions and Notation 4
1.3 Organization of the Thesis " " 6

CHAPTER 2 - HIGHLY PARALLEL DATABASE MACHINES B

2.1 Background 10
2.2 Highly Parallel Processors 12

CHAPTER 3 - AN EFFICIENT PRIMITIVE OPERATION 21

3.1 POP-SORT. a Special Example 23
3.2 Implementation and Performance 29
3.3 POP-SORT, in General. 32
3.4 Application to Join Operations 35

CHAPTER 4 - OPTIMALITY OF THE PRIMITIVE OPERATION 40

4.1 Collapsing the Complexity Hierarchy 41
4.2 Comparison Functions and Computation Models .44
4.3 On Enumeration Comparison 48
'1-.4 On Establishing Total Orderings 51

CHAPTER 5 - BlTONIC SORT ON THE CHiP COMPUTERS 60

5.1 Reordering Between Indexing Schemes 62
5.2 Sorting with Shadow Regions 66
5.3 Improvements on the Data Routing 69
5.4 K-fold Sorting 72

iv

Page

CHAPTER 6 - QUERY EMBEDDING 76

6.1 Embedding of Operation Trees , 80
6.2 Buddy System Allocation 84
6.3 Query Amelioration , ,.. " , 92
6.4 Extensions , , 95

CHAPTER 7 - SUMMARY AND CONCLUSIONS 99

7.1 Main Contributions , , 100
7.2 Future Research 101

LIST OF REFERENCES 103

APPENDIX A - Batcher's Bitonic Sort, ,."" 109

A,I The Bitonic Merge , , 109
A.2 EtIects of Propagation Delay 111

APPENDIX B - Sprinkle Algorithm 114

APPENDIX C - The Lacing Technique 117

VITA 120

,

,

v

UST OF TABLES

Table Page

;

,

2-1 Algorithms of database operations on
highly parallel machines , 14

Appendix
Table

A-l Effects of propagation delay on the bitonic
sort with different interconnections 112

vi

IJST OF FIGURES.

Figure Page

2-1 The system configuration of highly
parallel database machines ········ .. ·.···· 9

2-2 The systolic array system for
performing database operations ., , , 15

2-3 The BK-tree machine , 16

2-4 Two structures of the switch lattice:
(a) w;l. d;4; (b) w;2, d;8 ·.················· 19

3-1 State diagram for two idempotent
marking functions , , 31

3-2 A "shift-copy and compare" scheme for
detecting duplicates in a sorted sequence 33

3-3 Logical structure of the easy-catch system
for performing join operations , ,., , , 36

3-4 Two configurations on a CHiP computer for
implementing the easy-catch system , 38

4-1 Collapsing the time-complexity hierarchy
implying the optimality of POP-SORT ,.. , "., ,········ .. , 43

4-2 PIM machine as a model of
parallel computation , , ··· .. · .. ··· 46

4-3 The function of enumeration comaprison methods:
table filling and row computation , , · .. ····.49

4-4 The total ordering contained in
the semi-digraph , 53

4-5 A general comparison nelwork .. , , ·,,·· .. ··· .. ·· ·· .. ·55

,

"

"

vii

5-1 (a) Shuffled row-major indexing. (b) Row-major
indexing. (c) Snake-like row-major indexing 62

5-2 Rearrangement merge of two 4x4 regions 65

5-3 A triangular interchange scheme
to perform unshu:tIle, ,. , 65

5-4 Sorting 176 data items with 4x4
and BxB shadow regions 67

5-5 The interconnection patterns 1 1.2
composed of three sub-patterns:
(a) 1

"
(b) I"" and (0) I,v 71

5-6 Indexing 16 data items on 4 processing
elements: (a) Aggregation scheme,
and (b) Projection scheme 74

6-1 An operation tree from parsing a query 81

6-2 A general scheme of composing algorithms
(operations) for query embedding 82

6-3 An example of buddy system allocation 87

6-4 An example of processing a class of
queries using the bitornc POP-SORT 88

6-5 Transfroming an operation tree into a quaternary
tree for more compact allocation 91

6-6 ''feight-balanced trees 94

6-7 Systolic method of Cartesian product 96

6-8 Cartesian product in a square region 97

Appendix
Figure

A-1 Sorting network for Batcher's bitornc sort 110

B-1 The commWlication scheme of logn steps applied
in the Sprinkle Algorithm for n ;;; 8 114

C-l The schematic perfect shuffle of n data
items between two rows of n /2 processors
for n ;;; 16 , , , " ,.. , " ,.. , , , 117

•

viii

C-2 An embedding of the perfect shuffle for
n = 32 on a CHiP switch lattice, , " , , 118

C-3 Some basic components constructing the
embedding in Figure C-2 ,.. ,." , , , , , 119

..

..

lx

ABSTRACT

Ching-Cruh Hsiao, Ph.D.. Purdue University, December 1982. Highly Parallel
Processing of Relational Databases. Major Professor; Lawrence Snyder.

New computer architectures are feasible because of the advances in

VLSI design and fabrication technologies. Among them, highly parallel

structures coordinate hundreds of thousands of processing elements that

function cooperatively. These structures are especially useful in solving

computationally intensive problems. This thesis applies the highly parallel

approach to improve the efficiency in processing relational database

queries. High-performance algorithms for basic relational operations are

explored. Efficient composition of these algorithms .to process whole queries

is also investigated.

Regularity and Uniformity are necessary in order to make the highly

parallel computing cost-effective. An efficient primitive. called POP-SORT, is

proposed to unify the relational operations such as sorting, duplicate-

removal, union. intersection. and difference. The three latter operations are

even allowed to have multisets as operands. POP-SORT is based on an easy

scheme which adapts any highly parallel and regular sorting algorithm to

perform all these database operations. The primitive is compared favorably,

This work is part of the Blue CHiP Project. It is supported in Pll.Tt by the Office of Naval
Research Contracts NOOOl4-BO-K-OB16 and NOOOl4-81-K-QS60. The latter is Task SRo-IOO.

x

in terms of time complexity, with existing algorithms for the five operations.

The optimality of POP-SORT is also proved for a restricted but reasonable

type of parallel computation.. Furthermore. sublinear time performance is

possible for join operations H argument relations are preconditioned by

POP-SORT.

For processing a whole query, the operation tree parsed from the query

can be executed by composing individual algorithms for the operations. The

Configurable. Highly Parallel (CHiP) computers have the flexibility to provide

programmable processor interconnections for composing algorithms. Query

embedding is a method of executing whole operation trees to explore max-

imum parallelism on the CHiP computers. It involves the processor alloca-

lion and the embedding of appropriate interconnections. With the bitonic

POP-SORT, which is a generalization of, Hatcher's bitonic merge sort. the

query embedding can be simplified significantly.

..

~,

C

1

CHAPTER 1

INTRODUCTION

Computer architects have been attempting to avoid the von Neumann

structure that a single CPU serially fetches, processes, and restores data

items. Due to the advances· of VLSI fabrication and design technologies,

computer architectures are no longer strictly confined by the cost of com-

pUling hardware. In the near future it will be feasible to implement highly

parallel computers- consisting of hundreds of thousands of processing ele­

ments [HaynB2]. With the use of so many processing elements operating

cooperatively, a speed-up ratio as substantial as many orders of magnitude

is possible.

The highly parallel structures are known to be useful for solving some

computationally intensive problems in the areas like meteorology. cryptog-

raphy, image processing, ... etc. However. integrating many processing ele-

ments to implement a reliable and cost-effective system is extremely

difficult. Problems sUitable for highly parallel computing must show a high

degree of regularity and uniformity.

Relational data model [Codd70] not only provides a simple view of data-

bases but also calls for a particular feature named relational processing

capability [CoddB2]. This feature entails the definition of relational

operations which treat whole relations as operands. It is of interest to study

the application of highly parallel architectures and algorithms to the imple­

mentation of relational operations.

Historically, efficiency of database processing has been stressed. but

convenience and expressiveness have been of less concern. Application pro­

grammers' productivity is thus far behind the demands from end users of

database systems. A relational data model, by raising the user interface

from physical details to a higher logical level, prOVides improved conveni­

ence and expressiveness. E. F. Codd [CoddB2] also remarked that the rela­

tional processing capability is a key factor leading the relational model

toward a practical foundation,for improved productivity. It is therefore very

important to implement a relational processing capability that achieves

high performance.

1.1 Goal and Methodology

The goal of this work is to take advantage of the VLSI computation

power and the highly parallel architectures to improve relational database

processing. We are concerned both with high-performance implementations

of individual relational operations and efficient processing of whole queries.

Highly parallel computing relies crucially on efficient communication to

achieve a successful exploitation of parallelism. For solving problems with

parallel computation. more communication time is often required than the

actual computation time [LintBl]. Processor interconnections. hardwired or

software-controlled. on highly parallel computers are usually selected to

support efficient communication. Therefore. it is important to identify r

3

communication schemes which are efficient for solving many problems.

Sorting is a necessary operation in. many applications. Highly parallel

sorting has been vigorously studied and several efficient algorithms exist

[Batc68. Storr7!, Thorn??, Nass79; Mull75. Hirs78, Prep78]. For highly paral-

leI processing of relational databases. we unify several operations on a single

communication scheme by reducing those operations to sorting. The primi-

live operation POP-SORT (Erirnitive OPeration SORT) is thus proposed for the

database operations such as sorting, union, intersection, difference. and

duplicate-removal. We also apply POP-SORT to solve join operations in sub-

linear time.

POP-SORT presents the possibility of adapting any sorting algorithm to

become a primitive for the five database operations. For merge-oriented

sorting methods, the adaptation can be easily done by replacing the simple

comparison function with a slightly modified one. The simple comparison

function is extended to have marking capability that marks one of the two

argument items when they are found to be equaL Comparison functions act-

ing only in the local computation at processing elements do not effect the

communication among the processing elements at all. For sorting methods

in general, the adaptation can be done by two marking processes that both

take constant time. The marking processes requir,e communication only as

simple as a linear array.

The efficiency of POP-SORT in performing the five database operations is

demonstrated by an instance called the bitonic POP~SORT, It is a generaliza­

tion of Batcher's bitonic merge sort [Batc6B]. The performance of the

bitonic POP-SORT compares favorably with existing algorithms (upper

.'

"1'.-

4

bounds) for the five database operations .. To further evaluate the optimality

of POP~SORT, we look into the reducibility relationships between it and the

database operations.

The CHiP (Configurable Highly Parallel) computers are capable of pro-

viding dynamic and programmable iI:iterconnections [SnydB2]. It is thus

possible to embed required connections for processing whole queries. To

expand the spectrum of parallelism to process whole quel'ies, we explore the

feasibility of the query embedding on the CHiP computers. 10 [SnydB2J

Snyder showed that the CHiP computers have the flexibility to compose

algorithms to solve large and computationally intensive problems. Employ-

tog the bitonic POP-SORT as a primitive for several database operations, the

composition of algorithms to process whole queries can be simplified

significantly.

1.2 Definitions and Notation

A relation is normally a set of unique tuples and each tuple consists of

an ordered sequence of components. As duplicates are artifacts of certain

relational operations. we allow relations to be multisets consisting of dupli-

cate tuples. Basic relational operations like sorting. restriction (selection),

join, Cartesian product, and quotient are defined as those in text books (see.

for example, [DUmBOD. Projection, duplicate-removal, union, intersection,

and difference are defined slightly differently in this work.

For remove wduplicates we do not insist on discarding the duplicate

items. Given n data items xo. XI, ...• Xn-I. the goal of duplicate-removal is to

compute the mark bits ,u(O). ,u.(1), ... , ,u.(n-l) for these items. In the

,
I,,.,'
'I

5

sequence zoJJ.(O). x l,u(l) ...• X n _l p(n-l), we distinguish Xi .u(i) as a duplicate item

if jJ.(i) =1. An additional operation segregation can be used to pack and

separate marked and unmarked data items in the sequence [SchwBO]. To

perform projection on a relation, we asswne that duplicate-removal is not

automatically invoked. The operations union, intersection, and difference

may be relaxed to allow multisels as operands. Without further notice. they

are just set operations as usual.

A higWy parallel processor is a processing device which integrates

many processing elements. By "processor" we may refer to a single pro-

cessing element or a system of coordinated processing elements. Usually it

means a processing element unless further indicated by the context. For

example, the CHiP "processor" is a "highly parallel processor" in the collec-

tive sense.

The follOWing notation is used throughout this thesis.

log:C y

Ix I

Ix J

FE

the base two logarithm (log2Y):C'

the least integer greater than or equal to x.

the greatest integer less than or equal to x.

time required for one data routing step.

time required for one comparison step.

processing element which may have some local memory.

the union of two sets A and B. i
!
I

~,

::~:j
....:

AnB

A-B

union(A,B)

tntBr(A,B)

dijfBr(A,B)

rmdup(A)

the intersection of two sets A and B.

the difference of two sets A and B.

the union of two multisets A and B.

the intersection of two multisets A and B.

the difference of two multisets A and B.

the duplicate-removal on multiset A,

6

1.3 Organization of the Thesis

In Chapter 2. we look at the conventional approaches of database

machine designs. The conventional approaches do not solve the compute­

bound operations satisfactorily. Several highly parallel structures for solv­

ing the compute-bound operations are thus proposed by researchers. We

also discuss those structures and the algorithms proposed to be executed

on them.

Chapter 3 presents a methodology- to apply parallel sorting to solve

other problems. By reducing union, intersection. difference, and duplicate­

removal to sorting, these operations are unified by the primitive operation

POP-SORT. Two adaptations are shown to extend merge-oriented and other

sorting methods to become POP-SORT, The adaptation overhead is shown to

be negligible. We also show that POP-SORT can be used to perform join

operations in sub-linear time. This application of POP-SORT is especially

7

suitable for easy join operations that produce only small result relations:

The efficiency of POP-SORT is investigated in Chapter 4. A complexity

hierarchy showing the reducibility relationships among POP-SORT and the

five database operations is first established. The complexity hierarchy indi-

cales that the optimality of POP-SORT relies on the reducibility of sorting to

duplicate~rernoval. We therefore look into the reducibility of sorting to

duplicate-removal by considering two types of comparison functions. the

weak comparison (=. #) and the strong comparison «, =, ».

Chapter 5 deals with some interesting aspects of performing the bitonic

sort with the mesh interconnection on the CHiP computers. We design an

efficient algorithm that rearranges n sorted data items among three major

indexing schemes in less than (S....tn)tR time. Sorting with shadow regions is

a technique that allows the allocation of exactly n: processing elements for

sorting n data items (n is an arbitrary integer). We also demonstrate how

data communication can be improved by properly programming the switch-

ing elements on the CHiP computers, Two different methods of sorting k_n

data items on a CHiP region of n processing elements are also analyzed.

Processing whole queries on the CHiP computers is the subject of

Chapter 6. Relational algebraic queries are considered. The idea of embed-

ding whole operation trees parsed from database queries is explored. With

the bitonic POP-SORT, we demonstrate that query embedding is simplified

significantly. We also discuss several optimization strategies to improve

query embedding on the CHiP computers.

B

CHAPTER 2

IDGHLY PARALLEL DATABASE MACHINES

Database machines are specialized computers dedicated to executing

database management functions. They are usually connected to genel"al­

purpose computers as back-end machines. If a database machine is

enhanced with a higWy parallel processor to solve compute-bound database

operations, we callil a highly parallel database machine. In Figure 2-1 we

show the configuration of a back-end system consisting of a highly parallel

database machine.

]n the back-end system. the host computer acts as the interface

between users and the database machine. It is responsible for taking users'

requests, translating the high-level data manipulation programs into data­

base machine commands, instructing the database machine to perform the

commands, and returning the response to the users. Besides the highly

parallel processor I there are two major components in the database

machine: the back-end controller and the mass storage. The back-end con­

troller serves as the interface to the host computer. The mass storage is

content addressable in order to perform searching and update operations as

well as other liD-bound database operations efficiently. Between the mass

storage and the highly parallel processor there is a wide data channel to

,

9

support rapid data loading and unloading. This bandwidth is also needed in

associative processor systems [Berr79] and array processor systems

[BatcBO].

r···· ·······------..·················.·----········· ----.-;
Database i
Mach i ne "Content j

addressab 1e'
Mass

Storage

Users~r:JI"--+)Back-end Al
<~D ContrOI'er

L
, ---,

Highly
Parallel
Processor

................- __._--_ -.-.._--_ _-- -.

Figure 2-1. The system con:figuration of highly parallel
database machines.

This chapter presents a brier overview of the principal approaches in

conventional database machine designs. The inability of conventional

approaches to solve compute-bound database operations is discussed.

Highly parallel processors are then proposed as a means of extending the

computation power of database machines. Next. we review some highly

parallel structures and their algorithms that have been reported to be use-

fut for database applications, All this serves as a benchmark for evaluating

our research work,

'oj

•, '
~'J.'

10

2.1 Background

As database management techniques are shown to be helpful, users

want them to be larger and more inclusive. But as databases become pro-

gressively larger. conventional general-purpose computers fail to meet the

response time requirements of many applications. With the adoption of

high-level data models and data manipulation languages, high-performance

implementation of database management systems becomes even more cru-

cia!. Two well-known implementations of relational database management

systems. System R [Astr76] and lNGRES [StoB76]. amply demonstrate the

complexity and difficulty of query processing under these circumstances.

Since software techniques on conventional, general-purpose computers

cannot implement database management systems efficiently enough.

researchers have turned to alternative computer architectures and special-

purpose hardware, Canaday [Cana74] proposed that database management

functions be placed on a dedicated back-end processor which has exclusive

access to the database. By limiting the back-end processor to the perfor-

mance of only database management functions, it can have the advantage of

efficiency through specialization. But the implementation of the eXperimen-

tal Database Management System (XDMS) [Cana74] failed to show that the

use of a general-purpose computer as back-end is a· good approach. Special-

ized database machines are, therefore. designed to serve as the back-end

computers [Bane79. DeWi79, Schu79].

Many hardware organizations have been proposed to facilitate database

processing although they are not all complete designs of database machines.

Two objectives are involved. One is~to improve the non-query aspects of

)

11

processing such as searching, retrievaL insertion, deletion, and

modification. The other is to speed up the query aspects of processing

which may involve some compute-bound operations.

There is a consensus that conlent addressable memory is desirable for

efficient searching and updating. But storing databases entirely in associa­

tive memory is infeasibly expensive. Fortunately, the "logic-per-track"

approach proposed by Slotnick [Slot70] provides a practical solution for

implementing a large-volume memory with content addressability. Many

designs have applied some type of the logic-per-track approach to achieve

the associativity and parallelism for fast searching and updating (Lang7B].

Among them are the Content-Address Segment Sequential Memory (CASSM)

[Su75, Su79], the Content Addressed File Store (CAFS) [Babb79], the Data

Base Computer (DBC) [Bane7B. Bane79]. the Relational Associative Processor

(RAP) [Ozka75, Schu79], and the Rotating Associative Relational Store

(RARES) [Lin76].

One useful strategy to reduce the overhead of data movement is to pro­

cess data in place if it is possible. By pLacing some processing capability at

the mass storage leveL the logic-per-track approach performs not only

searching and updating effectively but other operations as well. liD-bound

relational operations like restriction and projection (Without removing dupli­

cates) can be performed at the memory level. Other operations, however,

are not easily supported [Song81, DeWi82]. Sorting. duplicate-removal,

union, intersection, difference. join. and Cartesian product all require that

one data item interact with many others. These operations require complex

processor interconnections that cannot be easily implemented using the

12

logic-per-track approach. This is because of the physically dispersed char­

acter of the read/write heads. Implementing these operations on the secon­

dary storage level, it seems to require some kind of .looping or iteration.

Several techniques help to improve query processing on compute-bound

operations. The overhead incurred by the time-consuming secondary

memory accesses can be reduced by using intelligent file systems and

memory management. Unnecessary database information can be filtered

out before it is submitted to the processor. The use of special processing

devices is yet another weapon with which researchers attack the compule­

bound problems. Much special-purpose hardware has been proposed for

performing the operations join and sorting. In addition, in the DEC design

several compute-bound functions or "post-processing functions" [HsiD79]

are performed by a multiprocessor system. These post-processors are

linearly connected. and each has its own local memory. Also in [DeWi79] a

multiprocessor architecture called DIRECT was designed to support rela­

tional query processing.

Special hardware for a few operations respectively do not solve the

problem completely or uniformly. The multiprocessor systems proposed

demonstrate reasonably good, but restricted. performance improvement.

Application of highly parallel processors has thus been proposed for data­

base processing [KungBO. SongBO, HsiCBl, LehmBl].

2.2 Highly Parallel Processors

A highly parallel processor may consist of hundreds of thousands of

processing elements which function cooperatively to solve compute-bound

r

13

problems. The computation power of the processing elements is limited to

that required by database management queries. The instruction set is thus

small and can be tuned to perform query processing more efficiently. When

the highly parallel processor is implemented by VLSI chips, less area for

computing logic implies that more area can be dedicated to the local

memory logic or the processor interconnection circuitry. Being more

important, a larger scale integration of processing elements is possible if

more chip area is available for processor interconnections.

In highly parallel structures, inter-processor communication is the key

to successful exploitation of the available computing power. The processor

interconnection problem has motivated much research recently. An impor-

tant question that needs to be addressed for general computation and data

processing alike is:

What f1.re the most effective interconnection path.!; fOT communicat­
ing PEs to process database queries?

This section discusses several structures of highly parallel processors and

their algorithms. The highly parallel processors addressed here are: the

systolic array system, the double tree machine, the Ultracomputer, and the

CHiP computer. The first three represent dillerent processor interconnec-

lions, and the last one has the fleXibility to provide them (as well as the

mesh interconnection).

1n Table 2-1 we first summarize the time complexities of certain data-

base operations on these machines. POP-SORT is the primitive operation

proposed in this thesis which can perform the other five operations (Chapter

3). The compleXity is measured by assuming that the argument relations

14

have n tuples. Except for the systolic arrays and the tree machine, we

assume that the data is already in the processing device. The effect of pro-

pagatlon delay is ignored here for the tree machine and the Ultracomputer.

Table 2-1. Algorithms of database operations on
highly parallel machines.

operations U n - rmdup 'ort POP-SORT·

-
Syslolic arrays 0(71.) O(n) 0(71.) O(n) - -
Tree machine Sen) 5(71.) Sen) 8(71.) Sen) 8(71.)

Mesh computer - - . - S(Vn) S(Vn)

Ultracomputer O(Iog2n) O(1og"') O(1og"') - O(1og"') O(log2n)

CHiP . - - - - oc...;:;;,)"f',

• An instance of POP-SORT, the bitonic POP-SORT. is used to calcu­
late the time complexities (Chapter 3.1).

.. A technique is applied on the CHiP computers to achieve the
speed-up factor s over the mesh-connected computers (Section
5.3). where s :=;; w.c.

Systolic Arrays

Systolic arrays have been proposed for many applications [Kung79.

FostBD, Kung82]. Kung and Lehman [KungBD] used systolic arrays to imple-

ment relational database operations. Lehman [LehmBl] also applied systolic

arrays to processing simple queries.

They presented two types of systolic arrays to implement database

operations (Figure 2-2). A two-dimensional comparison array and a one-

dimensional accmnulation array were used for union. intersection,

difference. and duplicate-removal. The comparison array alone is used for

join operations. Argument relations are "staged" into the comparison array

15

in a component-parallel and tuple-serial fashion. Tuples from different rela-

lions flow in the opposite directions in the comparison array so that they Win

always pas,s by each other. The comparison results move from left to right.

They are recorded as a bit matrix: for join or shifted to the accumulation

array to generate a bit string for the other operations.

relation A

Comparison
Array

~~... ~...1-.. +---BI
r-el'ation B re~ul t

Accumulation
Array

(

Figure 2-2. The systolic C'.rray system for performing
database operations.

In the systolic arrays, the processing elements perform only simple

functions and the interconnections are very regular. Both of the arrays can

be implemented with only a few types of simple cells. Another advantage is

that computations are pipelined elegantly so that the processing time is

completely overlapped with the I/O time. However. from an algorithmic

point of view, the benefit of data ordering is totally ignored in [KungBO]. The

systolic arrays are fundamentally structures of linear time performance.

Systolic arrays are algorithmically specialized processors [Snyd82]. The

functions performed by systolic arrays are predetermined and rigidly

manufactured into V1SI products. Programmability is minimal. To imple-

ment all the operations required by query processing, an integrated system

lq

· c"·

16

containing several systolic arrays is needed [SongSl].

The BK-tree Machine

The BK-tree, or double tree. was proposed by Bentley and Kung

[Bent79] for pipelining searching operations such as retrieval, insertion,

deletion. and modification. On an n-processor version of this machine, a set

of n data items can be maintained such that all the searching problems are

processed in 2logn steps. Tree-structured machines have also been pro-

posed as general-purpose processing devices by Browning [BrowBD] and

many other researchers. In [SongBD. SongSl] this architecture was applied

to implement additional basic database functions.

input root node'

output root node.

Figure 2-3. The BK-tree machine.

A BK-tree t machine is composed of three kinds of processing elements:

o-nodes, [J-nodes. and V-nodes (see Figure 2-3). The [J-nodes contain the data

items to be processed. The o-nodes are responsible for broadcasting

sequences of instructions and data to the D-nodes. Parallel computation is

carried out by the [J-nodes. Partial results produced are then collected by

t An interesting interpretation of "BK" is that "8" is mnemonic for broadcasting inforTIl<ltion
and "K" for collecting information.

)

17

the 'V-nodes. At last the final result emerges from the output root node.

Sorting can be easily implemented on a tree machine using the heap

sort algorithm (MeadBO]. To perform union. intersection. and join on rela-

lions A and B. Song employed two solutions [SongBO]. One is to sort the two

argument relations using the .tree machine and to perform further process-

ing elsewhere. The other is to load one relation in [J-nodes and then broad-

cast the other relation onto the [}-nodes to perform the required operation.

Partial results produced in the O-nodes may have to be saved before they

can be accepted by the V-nodes (e.g. in performing join). The potential

bottlenecks were resolved by a request/acknowledge communication coo-

vention [SongBO].

The BK-tree machine is very efficient in pipelining successive searching

operations which take a single data item as the operand. However it does

not perform as well on database operations which take whole relations as

operands. Again. the BK-tree machine is fundamentally a linear time

bounded structure. The performance barrier is inherited from the general

restriction of tree structures that only one data value at a time can flow into

and out of the tree through the root node. Furthermore, the VLSI layouts of

large trees are susceptible to the propagation delay problem [Pate6!].

The Ultracomputer

Ultracomputers [Schw6D] are those with powerful and physically real-

ized interconnection patterns. They are composed of a large number of pro-

cessing elements each connected with a fixed number of others. The Ultra-

computer in [Schw6D] is based on the perfect shuffle interconnection

!'-

16

[Ston71]. Other powerful interconnections like the Cube-Connected-Cycles

(GeG) [Prep81] are also in this category which we refer to as ultracomput-

ers.

On the Ultracomputer with the perfect shufile interconnection. all the

permutations of data among processing elements, can be realized in log n

routing steps. Sorting, union, intersection, and difference can thus be

solved in logarithmic time. No results about duplicate-removal and join are

reported in [SchwBO]. While the ultracomputer is efficient in solving certain

compute-bound operations, it is expensive to implement. Expandability is

poor because the interconnection complexity grows at least as a flUlction

n 2/1og 2n of the number of-processing elements n [ThornBD]. Moreover pro­

pagation delay problems and synchronization difficulties can become more

severe when n is large.

The CHiP Computer

A Configurable. Highly Parallel (CHiP) [SnydB2] processor permits the

processor interconnections to be dynamically programmed. It does nol

limit the communication to one fixed structure among the processing ele­

ments. Nor does it rely on a single interconnection capable of simulating

others to achieve the t1.exibility of communicating processing elements. It

provides a lattice of programmable switching elements with which dynamic

and flexible interconnections can be specified.

The processing elements are connected to the switch lattice at regular

intervals. The interval determines an important parameter w of the switch

lattice which is called the corridor width. Two more parameters of the

19

switch lattice which are important to this research work are the degree (or

the number of incident data paths) d and the cross-over capability c of the

switches. The cross-over capability denotes the maximum number of

independent data paths that can pass through a switching element. In Fig-

ure 2-4 we show two structures of the switch lattice. The circles represent

switches and the squares represent processing elements.

(a) (b)

Figure 2-4. Two structures of the switch lattice:
(a) w =1, d =4; (b) w =2, d=8.

At each switching element there is some local memory for storing a

fixed number of switch settings. The controller broadcasts a command to

the switches and the switches then make connections according to a partic-

ular sWitch setting stored. The total effect of making connections at the

s'witches constitutes the designated interconnection. The processing e1e-

ments then communicate with each other assuming that the right intercon­

nections are realized by the s'?ritches. (See [Snyd82] for more detailed

description of the CHiP computer; See [Snyd81] for a discussion of program-

ming processor interconnections.)

I
tj",1. "

i

20

The CHiP computer can be easily configured to be a mesh-connected

computer. With the mesh interconnection, sorting can be done in O(..Jn)

time using adapted algorithms of Batcher's bitonic sort [Batc68, Kung??,

Nass79]. In Chapter 3 we shall present a primitive operation POP-SORT

which can perform the five database operations listed in Table 2-1. POP-SORT

does not require the special architecture of the CHiP computer. On the con-

trary. it represents a methodology of applying parallel sorting to solve other

database operations. POP-SORT can be implemented on the tree machine,

the Ultracomputer. the mesh-connected computer. and the CHiP computer.

If sorting can be implemented with systolic arrays then the systolic arrays

can also be easily modified to implement POP-SORT.

21

CHAPTER 3

AN EFFICIENT PRIMITIVE OPERATION

Highly parallel aigorithms for database operations have been widely

studied. Several algorithms that perform sorting in sub-linear time exist

[Balc68, Ston?l, Thorn?? Nass79; Mu1l75, Hirs7B, Prep78]. The set opera-

lions union, intersection. and difference are best solved by performing sort-

ing first [SchwBD]. For duplicate-removal and join. there are linear-time

bounded algorithms [KtulgBO. Song8!]. Mentioned above are different algo-

rithrns and different machine architectures (see Table 2-1).

YLSI implementation of specialized devices has been vigorously pro-

posed (Kung79, FostBD. KungBO, Kung82]. However, cost-effectiveness of

VLSI implemented systems depends fundamentally on regularity and unifor-

mity. The initial development expenses of VLSI systems must be oti'set by

volume production. Thus, for VLSI implementation of highly parallel ver-

sions of database operations, it is important to identify a nucleus of process-

ing steps common to the many database operations.

On general-purpose, highly parallel computers, programmability of

algorithms again depends on regularity and uniformity. It is extremely

expensive to develop software for highly parallel computers. Therefore, for

performing database operations on highly parallel computers. it is also

22

important to identify an efficient primitive operation.

Much work on highly parallel sorting has been reported and has demon­

strated some efficient solutions [Batc68, Stan71 , Thorn??, Nass79; Mu1l75.

Hirs78, Prep78]. To identify primitive processes for database operations, we

thus apply algorithmic approach to reduce many database operations to a

sorting-based primitive. Whatever sorting algorithm and machine architec­

ture are chosen, we then always have a unified treatment of those opera­

tions by implementing them with the primitive operation.

In this chapter we shall present POP-SORT (E.rimitive OPeration SORT)

as a primitive operation for sorting, duplicate-removal. union. intersection,

and difference. The latter three operations are relaxed to have multisels as

operands. This relaxation, surely based on the versatility of POP-SORT on

the one hand, has much practical merit- in the context of query processing

on the other hand. For natural join and equi-join, sub-linear time algorithms

are possible if relations are preconditioned by using POP-SORT.

In Section 3.1 we present a special family of POP-SORT which is based

on merge-oriented sorting methods. Employing a new comparison function.

any merge-oriented sorting method becomes POP-SORT. An efficient imple­

mentation of the new comparison function and the overall performance of

the POP-SORT are shown in Section 3.2. In Section 3.3 we present a general

adaptation scheme that modifies any sorting algorithm to become POP­

SORT. We then show the application of POP-SORT to the natural join and

equi-join operations in Section 3.4.

'.-'.

23

3.1 POP-SORT, a Special Example

Among the fast and highly parallel sorting algorithms, we are most

interested in constructive. potentially logarithmic time, and nonw

probabilistic algorithms. There are two categories of comparison-based

sorting algorithms that rely fundamentally on pairwise comparisons. One

category can be modeled as sorting networks [Knul73, p.220] that are con-

structed from comparator modules [Batc6B, Ston?l, Thorn??, Nass79]. The

other is based on the enumerating comparison method that each item is

compared with each of the others [Mul175, Prep7B]. While the former is con­

jectured to require 0 (log2n) levels of network depth, the latter is able to

reduce the time complexity to O(log n). However a considerable drawback

with the enumeration sort is the requirement of O(n2
) computing com-

ponents or the assumption of a shared, random access memory.

Hatcher's bitonic merge sort [Halc68], described as a sorting network

in Appendix A-l, is one of the most famous. There are many adapted versions

of the bitonic sort. 1t requires O(vn) time using mesh interconnection

[Thom77, Nass79] or O(10g2n) steps using shutIle interconnection [Ston71].

The number of computing components needed for these adapted algorithms

may be as small as O(n).

1n this section we shall present a special example of POP-SORT called

the bitonic POP-SORT. This instance of POP-SORT uses a new comparison

function in Hatcher's bitonic sorting method. The scheme that adapts the

bitonic sort to become POP-SORT relies on the merge-oriented nature of the

bitomc sort. Therefore, lhe adaptation scheme is immediately extended to

all the merge-oriented sorting methods.

24

Bitonic sort is based on a simple local operation together with a regular

and eft'icient way of pairwise. data communication (Figure A-i). The local

operation is a simple comparison function which can be described as:

x -n- min

y -LJ- max

(x, y) -> (min(x, y), max(x, y));

when:r: = y, min = max.

The communication scheme. from another point of View, is actually a

sequence of perfect shuffle on different numbers of data items. Perfect

shuffle is so powerful that it can simulate many important communication

functions in time proportional to the logarithm of the number of data items

[SchweD]. It should be able to solve other database operations if the simple

comparison is replaced by more sophisticated ones,

Definition The compare-and-m.rL7'k 1 operation performs comparison as well

as marking duplicates, and the marking process is idempotent:

(1) (x,y) -> (min(x,y), max(x,y)) when x "y;

(2) (x,x), (x-,x), or (x,x-) -> (x-,x) and

(x-,x-) -> (x-,x-),

The basic operation comprrre-and-mrLTk 1 preserves the ordering among

distinct elements as usuaL By marking a duplicate of x as x- the basic

operation enforces an ordering rule such that x- is a little smaller than z

but never smaller than any y for y < x. The ordering among the marked

25

duplicates x-'s is arbitrary. The marking capability of the basic operation is

to magnify the computation power of the bitonic sort to performing

duplicate-removal. Rather than proving this for the bitonic sort only, we

would prove a more general application ot compare.-and-mark 1 to all the

merge-oriented sorting methods in the following theorem.

Theorem 3-1. Using the compare-and-rnark 1 operation, any merge-oriented

sorting method can mark off all the duplicates.

[Proof] Consio.cr any comparison-based method which merges two

ordered sub-lists. Every pair of neighboring elements in the result

list must have been compared directly, unless both elements are

from the same sub-list. If both sub-lists have duplicates marked off '

before merge then the result list must have all the duplicates'

marked by using the compa:re-and-m.ark 1 operation. For any

merge-oriented sorting method that starts with merging sub-lists of

length one, it guarantees no duplicates at all in the very beginning..

By induction. all the duplicates must have been marked off in the

final sorted list. •

In addition to performing duplicate-removal, any merge-oriented sort-

ing method using compare-and-m.ark 1 is able to perform union. Performing

union is the same as performing duplicate-removal on the totality of the two

groups of data items. If our purpose is to unify sorting, duplicate-removal,

and union then compare-and-mark 1 is powerful enough. However we are aim-

ing at identifying a primitive for more database operations. Intersection and

difference take two sets of data items as operands. One fundamental
1"-

26

requirement is that we must be able to distinguish data items from the two

groups in order to perform these two operations. We therefore extend the

c:ompars-and-mark'i operation to handle two groups of data items.

Definition Let A and B be multisets, a E: A and b e B. The compare-and­

mark 2 operation, in addition to performing the simple comparison. enforces

marking duplicates and three ordering rules:

(1) Idempotent marking-minus:

(a,a), (a-,a), or (a,a-) ~ (a-,a);

(a-, a-) ~ (a-, a-).

(2) Idempotent marking-plus:

(b , b) ~ (b +, b), or (b , b+) ~ (b, b+);

(b+, b+) ~ (b+, b+).

(3) Quasi-stability:

(a,b)or(b, a) -> (a,b)lora = b (marked or unmarked).

Similar to that shown in Theorem 3-1 the marking capability of the

compars-and...lfflark 2 extends the computation power of the bitonic sort to

performing duplicate-removal and union. Moreover. two separate marking

rules allow us to mark duplicates for two multisets separately. The rule of

quasi-stability insists that A-elements precede B·elements if they all have

the same value. With the local operation having two separate marking

mechanisms and being quasi-stable. the execution of the bitonic sort will

end up with a sorted sequence like ...a.-a.-a-a b b+b+... , where a = b. We

then can detect and manipulate all the .. a b .. pairs in constant time. The

bitomc communication scheme together with the compare-and·mark 2

27

operation therefore can also implement the intersection and difference

operations too. The three operations union. intersection, and difference are

even relaxed to have multisels as operands. We have thus proved the follow-

ing the orem.

Theorem 3-2. (POP-80RT) With the compaTB-and""'mark2 operation, any

merge-oriented sorting method can be used for duplicate-removal, union,

intersection, and difference.

How do we unify the operations that take a single multiset as operand

and the others that take two multisets? It requires some initial processing

on input operands. In algorithm 3-1, execution of the database operations is

partitioned into three phases: initialization, primitive, and completion. The

input to the algorithm may be one or two multisets. The input contlict is

resolved In the initialization phase. Only in the completion phase may the

database operations invoke different constant-time- post-sorting processing.

The output from the algorithm is that all the undesired data are marked off,

either marked as x- or x+.

Algorithm 3-1: The bitonic:POP-SORT.

INTPUT: Data items from one or two multisets A and B.

OUTPUT: All the unmarked data items.

A. Initialization phase

1. Data items are arbitrarily labeled as A-elements for sorting,
duplicate-removal, and union.

2. For intersection and difference, A-elements and B-elements
are labeled differently in order to distinguish them
throughout the whole processing.

28

B. Primitive phase

1. Run the bitonic sort using the compa:re-and-m.ark 2 operation.

C. Completion phase

1. Remove-duplicates, sorting, and union do not need any
further processing.

2. For intersection and difference, the constant-time processing
in this phase is shown as a program segment in the following.

('" completion phase .)
for all i do (. Xn+1 = DO is a dummy"')

compare xi with Xi+!

if both unmarked then
case

ip.tersection: mark Xi-;

if not equal thenmarkxi+l+;
ditrerence: mark xHI+;

if equal then mark xi.-:

The relaxation that union, intersection, and difference lake multisets as

operands of course relies on the versatility of POP-SORT. The practical con-

sideration is that multisets are artifacts of operations such as projection

and concatenation. Evidently many query languages (SEQUEL, QUEL, and

QBE [UllmBO]) provide operators for working with multisets. On many occa-

sions in database query processing, duplicate-removal and union (intersec-

tion, or difference) are executed SUbsequently. For example. projection is

first requested before two relations are to be joined, n (HI) U n (R2). where

n denotes projection. In order to perform the set operation U' duplicate

tuples produced by the operation projection must be removed. We have the

following:

union (A,B) = rmdup(A) U rmdup(B),

inteT(A, B) = rmdup(A) n rmdup(B),

diffeT(A, B) = rmdup (A) - rmdup(B),

29

With the relaxation the two operations are combined together and a single

run of sorting is enough. However, without the relaxation. performing the

two operations sequentially is necessary. The sequential execution in this

case may imply more data movement and programming overhead.

The result sequence could be sparse due to the marked-of[duplicates.

The marked-off duplicates can be filtered out while outputting the sequence.

Alternatively, in some applications one might want to compress the

sequence internally so that the marked duplicates are squeezed out.

Schwartz presented an ingenious method to separate and pack marked data

on the Ultracompuler in O(logn) time [SchwBD]. If the shuffle-exchange

interconnection is available the compression job can then be best done by

Schwartz's pack algorithm. A desirable solution might be running POP-SORT

again using another comparison function which treats the marked dupli-

cates as +00.

3.2 Implementation and Performance

Different interconnection patterns among processing elements for the

bitonic sort and their implementations have been reported in the literature

[Batc6S, Ston71, Thom??, Nass79, SchwSD, PrepSl]. The local operation at

each processing element is the crucial part that may extend a merge-

oriented sorting algorithm to perform other database operations. We shall

consider only the implementation of the local operation in this section.

An efficient implementation of the compare-and-Tnark 1 operation uses

one extra bit for marking. The mark bit, initially set to be 1, is appended to

each data item as the least significant bit. The operation works simply to

30

clear one least significant bit whenever two elements are found to be equaL

Similarly the comprJ.Te-and-'7nrJ.rk2 can be implemented uSing two mark

bits. one for distinguishing A-elements from B-elements and the other for

marking duplicates. The mark bits are tagged to each data item as the two

least significant bits. Let a and b be l-bit data items concatenated with the

two mark bits, a e A and b e B. Their binary representations are

(aI-I. rLl-2. "', aI, av, a_I, [!-2) and (b t _ 1. bt - 2. ...• b 1, b o, b_l. b_2) respectively.

Initially, we have the mark bits set in such a manner that (a-I, rL_2) = (0.1)

and (b_1• b_2) = (1,0). The compare-and-7nrJ.rk 2 function can be described

as:

x ---0---
y --- ---

min

max

if:z; :;;; y then X_2 +- X-I;

min +- min(x ,y), max +- max(x, y);

The compaTe-and~mark.~function can be interpreted more clearly using

a state diagram as shown in Figure 3-1. Define the state of a data item as the

value of its two mark bits. There are only four possible states, with (0, l) the

initial state for all the A-elements and (1,0) for B-elements. The rule of

marking-minus changes the state (O,l) to (0,0) for A-elements. Since the

marking is idempotent, once a data item reaches the (0,0) state it remains

in that stale. The rule of idempotent marking-plus works in the same way for

B-elements.

marking-minus

idempoterrt. me:rking

~
<1's-> ®
b'S-->@
~ """lOng-plus

'D idempotent :mm-king

Figure 3-1. State digram for two idempotent
marking functions.

31

After the completion phase of POP-SORT, all the desired data items may

be in the state either (0.1) or (1,0). Suppose we arbitrarily choose (0,1) as

the final state of all the desired data items. To separate and pack all the

unmarked data using POP-SORT again, we need some more bit manipulation

capability. t First, reset the states (1,0) and (1,1) to (0,0). We then may

rotate each data item such that aU the desired data has the most significant

bit 1. Alternatively, we may design the second mark bit with some flexibility

so that it may be programmably tagged to each data item as the least or

most significant bit.

Several adapted versions of the bitonic sort show that more data rout~

ing time is required than comparison time. Suppose that a merge-oriented

sorting algorithm takes T1(n)# tR + T2(n)., tc time, where T1(n) is the

number of data TOUting steps and T2(n) the number of comparison steps.

The POP-SORT based on this sorting algorithm then requires

T1(n)# tR + T2(n)# t'c time. The only di.:fference is the step size t'c. That is,

t Unforlunalely the bitonic sort is not stable. Othe:rw:ise, performing sorting on the two
merk bits would be able to separlrte marked and unmarked datil. items.

,
__ ."L
U'"

':.1

32

the processing time for one local operation is changed. The marking func-

tion, on one or two bits, of the local operation usually takes less time than

the comparison function (l bits). The ratio of t'c to t c is bounded by a small

constant. actually close to one.

t'
P ~ ---.£...< 2

t e

where p;:: _l~2 for bit serial design,

or p;;;; log (I +2)
log I

for bit parallel design.

In summary, the bitornc POP-SORT, based on. Balcher's bitonic merge

sort, performs as well as the bitonic sort. It compares favorably with other

algorithms known for the five basic database operations (Table 2-1). The

bitonic POP-SORT outperforms Kung's and Song's duplicate-removal algo-

rithms dramatically. For the other operations. we do not sacrifice any

efficiency by using it. Since the bitonic POP-SORT serves as a primitive for

many operations, the overall system performance may improve substanw

tiaHy (e.g. query embedding in Chapter 6). The program loading is no longer

necessary for every single operation. Data movement can be reduced

because data may stay longer for more processing.

3.3 POP-SORT, in General

Batcher's bitonic merge sort has been shown easily adaptable to

become POP-SORT. The s2-way merge sort performs even better than

bitonic sort on a mesh-connected computer when the number of data items

is large lThom77]. According to Theorem 3-2, we already have Lhe flrst

33

order generalization that any merge-oriented sorting algorithm can employ

the compare-a.nd-mark 2 operation to become POP-SORT. or course 5 2-way

merge sort can be another base sorting algorithm. for POP-SORT. However.

can we also adapt other sorting methods to become POP-SORT?

In this section, we shall show a general scheme to employ any sorting

algorithm. as a POP-SORT. The general scheme again involves extending

some marking capability to a base sorting algorithm. In its most general

sense, POP-SORT thus presents an idea to adapt any sorting algorithm to

become an efficient primitive for many database operations.

The computation power of the basic operation compare-and-ma:rk 2. in

addition to the simple comparison function. comes from enforcing the ord-

ering rules of quasi-stability, marking-minus, and marking-plus. For a sort-

ing algorithm that is not merge-oriented. it might not be able to incorporate

all the ordering rules into the comparison function. Nevertheless, given a

sorted sequence of data items, a "shift-copy and compare" scheme. shown in

Figure 3-2, is able to detect and mark all the duplicates. If the linear inter-

connection is available then the marking process requires only D(l) time.

9

marking-minus mark i ng-p I us

Figure 3-2. A "shift-copy and compare" scheme for
detecting duplicates in a sorted sequence.

34

Suppose that newSORT is a new and faster-than-ever parallel sorting

algorithm. Whether newSORT is merge-oriented or not, it can be adapted to

become POP-SORT according to the general scheme described in Algorithm

3-2. The general scheme is composed of four phases: initialization, sorting,

marking, and completion. A general POP-SORT is exactly the same as a

merge-oriented POP-SORT in the initialization and completion phases. For a

merge-oriented POP-SORT, the second and the third phases of a general

POP-SORT is combined together due to the reinforced computation power of

compare-and""'mark2·

Algorithm 3-2: A general POP-SORT.

INTPUT: Data items from one or two multisets A and B.

OUTPUT: All the unmarked data items.

A, Initialization phase

1. Data items are arbitrarily labeled as A-elements for sorting,
duplicate-removal, and union.

2. For intersection and difference, A-elements and B-elements
are labeled ditIerently in order to distinguish them
throughout the whole processing.

B. Sorting phase

1. Sort the data items, labeled as A-elements or B-elements,
according to the quasi-stability rule using newSORT.

C. Marking phase

1. If not performing sorting then continue.

2. Mark duplicates according to the rules of marking-minus and
marking-plus using the "shift-copy and compare" scheme.

D. Completion phase

1. If not performing duplicate-removal then continue.

2. Intersection and difference will invoke constant-time but
different processing as in Algorithm 3-1.

35

The theoretical lower bound of the time complexity of newSORT is

O(log n). The marking phase requires only 0(1) time if linear interconnec-

tion is provided. The first and the last phases also requires only constant

processing time. Therefore the POP-SORT using newSORT as its base also

shares the same time complexity as newSORT. This even generalizes

Theorem 3-2 -- Any sorting algorithm can be adapted to a four-phased POP-

SORT without introducing any significant overhead.

Similar to a merge-oriented POP-SORT. an efficient implementation for

a general POP-SORT needs two mark bits. One of the mark bits is used for

distinguishing two multisets. and the other is for marking duplicates. In a

general POP-SORT the quasi-stability, marking-minus. and marking-plus

rules are still enforced using the two mark bits. The bit manipulation capa-

bility needed in a general POP-SORT is thus no less than that in a merge-

orienled one.

3.4 Application to Join Operations

The number of result tuples after joining two relations A and B denotes

the minimum totality of computing work needed .for join. Assuming each

relation of size n for simplicity, the figure may rarely become as large as

O(n 2
). Using O(n) processing elements, Kung's [Kung80] and Song's [SoogB!]

linear time algorithms are optimal in the sense of handling the worst case.

For most situations, the result relation has many fewer tuples. An A -tuple

may have to join with only some B-tuples. By applying POP-SORT to precon-

dition the relations. a join system shown in this section can perform the

natural join and equi-join operations in sublinear time.

r---'
c.!

36

Any sorting algorithm can bring together all the elements of the same

value. The groups of elements of the same values are called aggregates. We

first sort the relations over the joining attributes using POP-SORT. The prirn-

itive operation is quasi-stable. It produces aggregates as well as insists that

all the A-tuples precede B-tuples in each aggregate. We then can perform

natural join and equi-join simply by shifting all the B-tuples in one direction

to join with A -tuples. This process is called "easy-catch".

controller

-l. J, -l. J- -l-
,.. .. -l-

output result tuples

Figure &-3. Logical structure of the easy-eatch
system for performing join operations.

Define d as the longest distance that a B-tuple needs to shift in order

to catch all the joinable A-tuples. For easy-catch d is the largest size of the

aggregates. To reach the goal of having sublinear time performance the

catching process is better terminated after d shift steps. Unfortunately d is

usually not known beforehand.. In Figure 3-3 we show a solution to halting the

catching process by superimposing a tree interconnection on top of the pro-

cessing elements. A halting controller located at the root of the tree inter-

connection supervises all the processing elements. The tree interconnection

provides the communication paths between the controller and the process-

ing elements. Each processing element is responsible for rcporLing iLs

37

activlty by sending a "busy" or "idle" message up to the controller. The con-

troller will broadcast the "halt" message when it decides all the processing

elements are idle. If a halting· message is received., the processing elements

stop.

The programming of the join system is extremely simple. All the pro-

ceasing elements execute the same program and the program is nothing but

a looping over after some initialization. Suppose there are two registers. a

and b, capable of holding A and B tuples t in each processing element. The

processing elements execute the looping. program as follows:

for all i do
C'" initialization "')

eli I bi (- nil;
if A -tuple then load fl.j, else load bi ;

('" easy-catch: shift and join .)
repeat forever

receive(msg);
if msg = "halt" then stop;
shift; C· bi (- bi+l .)
if U-t match bj, then Iperform join; sendC"busy")J

else send("idle");

The controller detects that aU the processing elements are idle after a

logn time delay. Another logn time delay is necessary for broadcasting the

"halt" message to all the processing elements. The time for performing. the

natural join and equHoin is thus the total time for POP-SORT. easy-catch,

and the halting delay.

T = T(POP-SORT) + O(d) + O(log n) where d:;; n.

1" The tuple mey only consist of tuple-id and the values for the joi..niDg llttributes.

.(..:,;.' , :,'.

38

Since POP-SORT needs only sublinear time. the join operations can be done

in sublinear time as long as d is less than O(n), If d = O(v'n) then the join

operations can be done in O(vn) time using the bitonic POP-SORT.

The CHiP computers are good candidates for implementing the join sys-

tern. Suppose that data items from both A and B are sorted by POP~SORT in

a quasi-stable fashion into snake-like row-major order (see Chapter 5.) Two

co-existing configurations shown in Figure 3-4 are feasible if there is a

cross-over capability on switches. We assume that fan-in on switches

behaves like a logic "AND", and sWitches also have fan-out capability to per-

form broadcasting. The linear and tree interconnections for the join system

hence are provided by the two configurations.

o 0 0 0 0 0 000

o 0 0 0 0 0 0 0 0

0 o 0 0 0 0 0 0 0

0

0 o 0 0 0 000

o 0 0 0 o 0 0 0

0 o 0 o 0 000

0

0 o 0 o 0 o 0 o 0

o
o
o
o
o
o
o
o
o

0 00 r-0 0 0

000 000

0 0

0 0

0

0

0 0 0

o
o
o
o
o
o
o
o
o

Figure 3-4. Two conflgurations on a CHiP computer
for implementing the easy-catch system.

For the purpose of area-economy, the join system is implemented as

above in a square CHiP region. Unfortunately, only perimeter processing ele-

ments have liD ports to the peripheral storage devices. There would be a

problem of non-uniform distribution of result tuples since they would accu-

mulate at some PEs. We call this the hot spots PToblem.

39

If there is enough memory space in processing elements, the hot spots

problem does not do any harm as long as the result relation is to be dumped

out of the CHiP processor. For some cases, the result relation is to be pro-

cessed further (see query embedding in Chapter 6.) Then the hot spots prob-

lem can be solved by the Sprinkle Algorithm as shown in Appendix B. The

Sprinkle Algorithm employs the same communication scheme as a single

stage of the bitonic merge. Let k be the maximum. number of result tuples

at hot spots. The Sprinkle Algorithm requires o(~ • vn) time using mesh

interconnection. The algorithm works especially well when k has small

values.

This join system can perform other: join operations too. The Ie-join and

ge~join can be implemented exactly in the same way as natural join and

equi-join, except that d is no longer the largest size of the aggregates. To

perform ne-join, we need "two-way-catch", shifting B tuples in both direc-

lions to join with A tuples. The join system is especially suitable for natural

join and equi-join because the value of d is more likely small for the two

types of join operations.

In summary, the join system in Figure 3-4 provides adaptive perfor-

mance for join operations. "Easy" joins that requires B-tuples join with only

limited numbers of A-tuples. are suitable for easy-catch implementation.

They can be done with much better performance by avoiding executing

them as "difficult" joins.

40

CHAPTER 4

OPTIM.AIJTY OF THE PRIMITIVE OPERATION

The order of data items often has a profolUld influence on the speed and

simplicity of algorithms which manipulate them [Knut73]. As a conse·

quence, sorting has been found to be very useful as a pre-processing step for

a wide variety of applications. It is well known that a considerable portion of

the computer funning time was and still is spent on sorting.

Although sorting is useful. in some cases it is overused. For example,

selection of the median of n data items requires only 8(n) comparisons,

although the more expensive sorting is a common way to solve it. Moreover,

sorting is completely useless in some other cases. Researchers found that

the benefit of data ordering yields its ground to the computing power of

parallel hardware on the searching problems (insertion, deletion, and

update) [Bent79]. Despite these observations, the usefulness of sorting

might be underestimated in the context of parallel computation.

While the usefulness of sorting might be over-emphasized in the sequen­

tial case, the feasibility of applying sorting in the parallel case needs more

careful exploration. POP-SORT presents a mechanism to extend sorting to

performing many other database operations. A methodology for applying

parallel sorting to the solution of other problems is thus demonstrated. In

41

order that POP-SORT be an optimal primitive, parallel sorting must be an

optimal way to implement those database operations. However, is parallel

sorting an optimal way of performing those database operations?

In this chapter we shall investigate the optimality of the primitive

operation POP-SORT. We show how the reducibility of sorting to duplicate­

removal plays a crucial role in determining the optimality. We then concen­

trate on studying the reducibility of sorting to duplicate-removal. Two com­

parison functions are conSidered: the strong comparison «, ==, » and the

weak comparison (=, :;t). We prove the reducibility for all the computations

based on the weak: comparison function. We also prove the reducibility for a

subclass of computations based on the strong comparison function.

Section 4.1 establishes a time-complexity hierarchy representing the

reducibility relationships among POP-SORT and the other five database

operations. These relationships show that the hierarchy would collapse if

sorting is reducible to duplicate-removal. A collapsed hierarchy implies the

optimality of POP-SORT. The important relationship between sorting and

duplicate-removal is then studied. A special model of parallel computation.

suitable for our study and two types of comparison functions are discussed

In Section 4.2.]n Section 4.3 and 4.4. we investigate the reducibility of sort­

ing to duplicate-removal on the computation model-with the two comparison

functions respectively.

4.1 Collapsing the Complexity Hierarchy

By enforcing some extra ordering rules. any sorting algorithm can be

extended to become POP-SORT without any significant overhead. POP-SORT

42

serves as a primitive operation for sorting, duplicate-removal, union. inter­

section. and difference. The bitonic POP-SORT. an instance of the primitive

operation, improves the upper bound for duplicate-removal over the algo­

rithms in [KungBO] and [SongSl]. Also, the fastest algorithms known for

union, intersection, and dillereneB apply sorting as a pre-processing step

[SchwaD]. Therefore POP-SORT does not sacrifice any efficiency for unifying

these operations.

However, is POP-SORT an optimal primitive for performing these five

database operations? To evaluate the optimality of the primitive operation,

we investigate the complexity relationships between it and the five opera­

tions. The relationships are measured in terms of reducibility. Let PI and

P2 be two problems, and 1/JI be any algorithm for solving the problem Pl'

The problem P 2 is said to be reducible to PI iff there is an algorithm 1/'2

which applies 1/J1 to solve P2' We are most interested in the case when both

algorithms have time complexities of the same order. Le.

O(T('f!,)) = O(T('f!,)).

Some important reducibility relationships are summarized in the fol­

lowing:

• All the five operations are reducible to POP-SORT. Chapter 3 presents

POP-SORT as a primitive operation which can perform sorting,

duplicate-removal. union intersection, and ditIerence.

• POP-SORT is reducible to sort. A "shift-copy and compare" scheme is

sh01'/ll in Chapter 3 to perform the marking-minus and marking-plus

functions. A general mechanism based on the scheme is presented to

43

adapt any sorting algorithm to POP-SORT. The "shift-copy and com-

pare" scheme takes only constant time. The adaptation overhead is

thus negligible.

• DuplicrzteJT"e.moval is -reducible to union, intersection, and difference.

The operations union, intersection. and difference are allowed to take

multisets as operands. Duplicate-removal thus can be implemented as:

rmdup(A) =uninn(A,~) = inter (A,A) = differ(A,~), where ~ is the

empty set.

remove- --}
dupl i cates

uni on
intersection
di fference

Figure 4-1. Collapsing the time complexity hierarchy
implying the optimality of POP-SORT,

The above reducibility relationships are also depicted as a time com-

plexity hierarchy in Figure 4-1. The arrow "_>" in the figure denotes the

relationship "is reducible to", To collapse the complexity hierarchy would

imply the optimality of POP-SORT. The relationship represented by the dot-

ted arrow ".....:;>" therefore plays an important role in collapsing the com-

plexity hierarchy. For POP-SOPT to be an optimal primitive, sorting must be

an optimal way to perform duplicate-removal. The key to Unifying the five

operations by POP-SORT is the extension of sorting to mark off duplicate

items. Hence there is no surprise that the optimality of POP-SORT relies on

44

the optimality of sorting to perform duplicate-removal.

Muller and Preparata [MuU75] showed a constructive switching network

of O(logn) depth which performs sorting. The switching network is an imple­

mentation of the enumeration comparison method, in which each data item

is compared with any other one. This is an evidence that the the benefit of

parallel hardware supercedes that of data ordering. The switching network

can be used to implement POP-SORT achieving the theoretical lower time

bound O(logn). This is actually an immediate proof that POP-SORT based on

Muller and Preparata's network is optimal. It is also a proof that sorting is

reducible to duplicate-removaL However the switching network requires

O(n2) comparators and switches. In the following sections we investigate

further the reducibility of sorting to duplicate-removal in the context of

fewer processing components.

4.2 Comparison Functions and Computation Models

This section discusses comparison-based computation on parallel

machines. We point out that there are two types of comparison functions

that must be considered. We also present a universal model of parallel

machines to facilitate our study on the reducibility of sorting to duplicate­

removal.

Comparison between two elements is a primitive instruction for both

sorting and duplicate~removal. According to the law of trichotomy, exactly

one of the possibilities x <y, x =y. x >y is true. However circuit level

implementations of the pairwise comparison can provide this information in

one of the following four ways: (1) <. =. >; (2) "'. >; (3) <, "; and (4) =. ;<. They

45

all involve different switching logic functions. The first three are the strong

comparison functions which can be shown equivalently powerful. t The last

one, called the weak comparison function, is not adequate for sorting though

it is for duplicale·removal.

A sorting algorithm should use one of the strong comparison functions

in order to come out with a tolal ordering. For a duplicate-removal algo-

rithm, it is not necessary to assess any ordering information. It may use the

data ordering to some extent. or it may completely ignore the data order­

ing. That is. duplicate-removal algorithms may use the weak comparison

alone. the strong cOl:!J.parison alone, or the mixture of both comparison func-

lions.

A variety of models of parallel computation have been proposed. They

may be grouped into two classes: shared memory machines and fixed con­

nection networks [Prep81, Bor082]. The former class assmnes a large ran­

dom access memory shared by all the processing elements or an equivalent

system (see examples in [Fort7B, Gold7B, LevBl].) The latter assumes a fixed

interconnection among processing elements, or between processing ele-

ments and memory modules (see examples in [BrowBD. SchwBD. PrepBl].)

In terms of the restrictions on accessing memory modules. shared

memory machines may be classified into three categories: concurrent read

or write, concurrent read but exclusive write, exclusive read or write. Exe-

cution time on shared memory machines is usually measured as the nmnber

of operation steps performed. assuming that the memory access time is

free. This type of computation model overlooks technological feasibility.

t Two (.::::;, » or «,~) comparisons are equivalent to one «. =. » comparison.

46

While shared memory machines are suitable for deriving lower time bounds,

they are not appropriate for studying data movement realistically.

For current hardware technologies. fixed connection networks are more

reasonable. However a single interconnection cannot provide optimal hosts

for all the important algorithms. Furthermore, many problems require only

infrequent and irregular processor communication. Fixed connection net-

works are too restricted to study the reducibility relationships between

sorting and duplicate-removaL

PEo Mo
PEl U,
PE2

loler- a JJ?

PE, 0-
connec-

Ustion

Net-

PEn _
2

work
Mn - 2

PEn-I Mn - 1

Figure 4-2. PIM machine as a model of
parallel computation.

In order to study sorting and duplicate-removal on a general base, we

need a universal model of parallel machines. The universal model must be

able to represent each specific machine model and is suitable for studying

data ordering and data movement. For these purposes, we present a com-

putation model called the F1M machine shown in Figure 4-2.

The F1M machine has three components: a group of processing ele-

ments, an interconnection network, and a collection of memory modules

(which may be as small as single memory words.) Separate memory modules

47

enables us to "observe" data items being processed. We assume that. the

interconnection network has all the fiexibility and power which enables the

PIM machine to emulate any parallel machine.

The interconnection network provides communication paths between

the processing elements and the memory modules.. At one extreme, we may

assume that the interconnection network is so powerful that the PJM

machine behaves like a shared memory machine. At or near the other

extreme, we may assume that the interconnection network provides fixed

communication paths as simple as those for the linear array connection.

For emulating reconfigurable computers. the interconnection network has

the reconfigurability to provide different. interconnection patterns.

Communication overhead is important on parallel machines, especially

when the interconnection network becomes less powerful. On the PIM

machine, the time complexity is measured by taking both comparison count

and data movement steps into account. Data communication time may be

absorbed by providing feasible interconnections between processing ele­

ments and memory modules. Transmission time is assumed independent of

the lengths ot communication paths; the propagation delay problem is not

an issue here. For example, sorting needs O(vn) data routing steps and

O(10g2n) comparison steps using the mesh interconnection [Thom77,

Nass?9], or O(log2n) routing and comparison steps using the shuffle­

exchange interconnection (Ston71].

48

4.3 On Enumeration Comparison

Based on the weak comparison function. duplicate-removal requires

*11.(11.-1) comparisons since every pair of data items must be compared

directly. Taking advantage of- data ordering, or using the strong comparison

functions. the total comparison count may be reduced. However, the tolal

processing time is not necessarily decreased because the time complexity is

measured as the sum of parallel comparison steps and parallel data move­

ment steps. The absolute requirement of the *11.(11.-1) weak: comparisons

therefore does not exclude the possibility of a fast parallel algorithm for

duplicate-removal.

In this section. we shall prove that sorting is reducible to any

duplicate-removal algorithm that is based on the weak comparison function.

This is not unreasonable because enumeration comparison methods have

been proposed for sorting [Knu73, Mull75, Prep7B] in which each data item is

compared With everyone of the others. Naturally, sorting requires the

application of one of the strong comparison functions.

Let 1/11 be a duplicate-removal algorithm using the weak comparison

function. The execution of the algorithm may be functionally partitioned

into two stages: (l) performing enumeration comparisons, and (2) determin­

ing mark bits (assuming there is a mark bit corresponding to each data

item.) The algorithm thus may be visualized as making the weak comparis­

ons to fill up a triangular table (upper triangular bit matriX) and figure out

the mark bits as shown in Figure 4-3.

49

Notice that the mark bits are obtained by "DRing" all the bits on each

row. The following program segment describes the abstract function of the

algorithm'lfJl' It is not required that 1fJl be actually executed this way.

(* i, j : indices: M: matrix *)

('" perform enumeration comparisons "')
foralli<jdo

if xi. =xJ' thenM[i,j]:= 1 elseM[i,j] :=0;

('" determine mark bits *)
for all i

m; := OR.ll;>,(M[i,j]);

"0 000 DO 0 0-····->0 mo
"1 000000-··-->0 m,

", 0 0 0 0 0·····->0 m,
", 0 0 0 0·····->0 m,

". 0 0 0·····->0 m.
", 0 0······->0 m,

", 0······->0 m,
X'l .•.••_)[Q] m7

Figure 4-3. The function of enumeration comparison
methods: table filling and row computation.

Now, perform the following procedure to modify the algorithm "'1:

1. Substitute the weak comparison function With the strong com­
parison function (:s:, ».

2. Fill up the whole matrix rather than just the upper triangular
half by entering two entries to the matrix for each comparison
performed.

3. Substitute the "OR" operation with a "SUM" operation.

-'

50

The abstract function of the new algorithm, say 'l/J2. may be described as the

following program. segment:

('" perform enumeration comparisons .)
foralli<jdo

if x, > x; then {M[i,j]:; 1: M[j,i]:; a}
else IM[i,j] :; 0; M[j ,i] :; 11;

('" determine unique ranks .)
for all i

nT, :; ~ M[i,j]:
;=1

The two algorithms, 1/11 and'lfl2' are not necessarily implemented in two

clearly separated stages as described in the program segments. The pro-

gram segments, however. manifest the required computation that must be

done by the algorithms. No matter how the two functional stages of 1f.!1 are

actually executed on PIM machines, 1/12 is executed in the same way. The

algorithm. 1/12 would- compute unique ranks for all the data items in spite of

duplicates. Both algorithms share exactly the same time complexity.

asswning all the operations take unit time. We have thus proved the follow-

ing Lemma.

Lemma 4-1. From any duplicate-removal algorithm: based on the weak com-

parison function. we can find an algorithm to compute unique ranks for all

the data items in the same time.

Let xO,x1 •...• X n _ 1 be a sequence of data items, Xi E; [0, m-l] and

m »n. The sequence can be transformed into a sequence of unique ranks

XO.Xl' ""Xn-l (where Xi. is the unique rank of Xi) by the algorithm 'l/J2' Sort-

ing the sequence of unique ranks is much easier than sorting the sequence

51

of original data items. Thus, a two-phased sorting scheme is indicated. It

first determines unique ranks and then. redistributes data items according

to their unique ranks.

Data redistribution given the unique ranks can be done in O(logn) time

with the switching network in [MuH75]. With the assumption of a shared

memory. it takes only constant time [Prep7B]. For a problem that has one

of its outputs determined by all the n inputs. the theoretical lower time

bound is O(logn). Remove-duplicates or determining unique ranks there­

fore requires no less time than redistributing data items. Hence we have

proved the following theorem.

Theorem 4-1. Sorting is reducible to any duplicate-removal algorithm. that

is based on the weak comparison function.

4.4 On Establishing Total Orderings

In this section we investigate if sorting is redUCible to duplicate­

removal based on the strong comparison function «. =. ». Although the

weak comparison function is adequate, duplicate-removal algorithms using

the strong comparison function take advantage of data ordering. To show

the reducibility, we need to prove that the information of data ordering col­

lected by duplicate-removal algorithms can be easily transformed to an

explicit total ordering as produced by sorting.

We first define semi-digraph to represent the minimum set of com­

parisons required for duplicate-removal. By shOWing that the semi-digraph

must contain a total ordering, we prove that the comparisons reqUired for

.;""~--+"-"'j"",,-. -, .

52

duplicate-removal are also adequate for sorting. While this is enough to

show the sequential reducibility of sorting to duplicate-removal, it is not

sufiicient for the parallel reducibility. We therefore pursue the matter

further and show that the parallel reducibility is true at least for a useful

type of homogeneous computation.

Let X::: { xo, Xl, ... ,xn_d be a multiset consisting of n elements from a

totally ordered set. Define em as the minimum set of comparisons required

for the elimination of duplicates. A semi-digraph which contains both

directed and 1ll1directed edges can represent the set em:

The semi-digraph is composed of n vertices and no more than *n(n-l)

edges. For a path between a pair of vertices Xi and xi' the path is 1ll1directed

if it contains only undirected edges, or the path is directed if it contains at

least one directed edge. In the semi-digraph, directed paths denote the ord-

ering relationship "is greater than" or "is less than", and undirected paths

denote the relationship "is equal to".

To guarantee that all the duplicates are f01ll1d, there must exist a path

between any pair of vertices Xi and Xi' i ¥ j. Otherwise the ordering rela­

tionship between them is not known, The path is either undirected or one-

way directed. The graph is conflict free because of the uniqueness of the

ordering relationship between any vertex pair. In other words, exactly one

of the possibilities Xi <Xi' Xi =Xi' Xi >xi is represented in the graph for each

pair of vertices. The semi-digraph should contain a subgraph equivalent to

that shown in Figure 4-4, Lemma 4-2 is thus proved,

53

Lemma 4-2. The semi-digraph, representing the minimum. set of the com-

parisons needed for duplicate-removal, contains a total ordering.

Figure 4-4. The total ordering contained
in the semi-digraph.

By Lemma 4-2 elimination of duplicates always needs those comparis-

ens which are sufficient to come out with a total ordering. Elimination of

duplicates must then have done the comparisons required for sorting. This

is enough to show the sequential reducibility of sorting to duplicate-removal.

since the sequential time complexity can be reflected by the comparison

count alone.

On PIM machines. data communication time is important. Although

duplicate-removal requires at least the same comparison work as that for

sorting, it does not require that data items be arranged in any particular

order. To arrange data items in order may entail more data movement tim.e

than the total processing time for duplicate-removal. Without further study,

it is not possible to say that sorting is reducible to duplicate-removal.

Nevertheless the existence of the total ordering is guaranteed after per-

forming any duplicate-removal algorithm.

We shall prove the parallel reducibility for a special type of parallel

computation that insists on a "homogeneous sequence of execution"

[Knu73, p.220). Whenever we compare Xi with xJ the subsequent execution

54

for the case x-t<Xj is exactly the same as for the case %,>Xj, except with

the data values interchanged. This type of computation is widely applied in

practical parallel computation since the complexity of the decision struc­

ture is extremely simple. In the following, we first define general com­

parison networks to simulate the execution of duplicate-removal algorithms

on PIM machines. We then derive versatile comparison networks with fixed

connections which are able to sort and identify duplicates.

Comparison Network Model

Execution of algorithms on PIM machines can be traced by recording

activities at processing elements and value changes at memory locations.

For comparison-based computation. processing elements primarily perform

comparison and data movement. To study data ordering, we focus on

obserVing the memory part and further -impose time-variant ordering rela­

tionships (<, =, » among ditIerent memory locations. Concurrent writes to a

memory location are prohibited lest the ordering information should be dis­

rupted. A comparison network is thus presented to simulate one execution

of a comparison-based algorithm on PIM machines.

The execution of a comparison-based algorithm on an input permuta­

tion can be recorded as a sequence of comparison steps and data movement

steps. One can visualize the execution as applying processing elements to

memory locations as many times as the number of operation steps. A com­

parison network has four important parameters:

n - problem size or the number of data items,

m - storage capacity or the maximum number of

55

data copies at any instant,

t - depth of network or the number of parallel

comparison/routing steps,

k - degree of parallelism or the largest number

of comparisons that can be performed at a

parallel comparison step.

M
0 0
0 0 n

output
n 0 0 loci

out of : 0 0
0 0 mm 0

lociare
input 0 0 0
loci 0 _____0 0 0

: :~
0

0

0 0 o ... 0

Figure 4-5. A general comparison network.

As shown in Figure 4-5, a comparison network consists of two types of

components: loci (in circles) and comparators (in squares). A "locus" is a

memory location capable of holding one data copy. There are totally t

instances of the m loci in the network. The data value at a locus may (1)

retain its previous value, (2) copy from another locus, or (3) receive a value

from a comparator. Thus. a data value may fan out to have multiple copies

(concurrent reads), but fan-in of many data values is undefined (exclusive

write). A comparator reads two data values from its source loci, compares

them, and ViTLtes them out to its object loci. We assume, for generality, the

order of the two outputs (inputs) of a comparator is not important. A

>.

56

comparator may route the two data in arbitrary order to its object loci.

The]/0 of the comparison network is where-oblivious [Lipt81]. The first

n loci are arbitrarily defined as output loci. In the very beginning, n (input

loci) out of the m loci have the n data items. After t comparison and data

routing steps, the n data items are in the output loci with all the duplicates

marked off.

General comparison networks allow broadcasting and multiple copies of

data items. A special example of the comparison networks is called 'TW­

conflict-free network. Rw-confiict-free networks do not allow fan out of

data values, therefore do not have any memory conflicts, neither read

conflicts nor write conflicts. The sorting network in [Knu73, pp. 220], or

network of comparator modules, is a restricted form of the rw-conflict­

free network. Sorting networks have exactly n data copies (Le. n = m) and

strictly route data items in a pre-defined way. To each comparator the

source loci and object loci are the same in sorting networks.

Versatile Network Ns

A duplicate-removal algorithm. does not have to arrange data items in

any particular order. However, our approach is. for any duplicate-removal

algorithm '1#, to derive a "compatible" algorithm 1/18 that is able to sort as

well as to remove duplicates. The derived algorithm does not increase the

time complexity, whereas it would move data items in such a manner as to

come out with an explicit total ordering. This approach originates from the

the potential existence of a total ordering described in Lemma 4-2.

57

Suppose that the execution of 1/J of a given input permutation is

recorded as a comparison network N. A restricted form of the comparison

network NT can be derived from N such that NT emulates N in the same

comparison and data routing steps. In the network NT the comparators are

restricted in the sense that the larger inputs are always routed to the upper

object loci. (Notice that NT shares the four parameters with N, but enforces

data routing differently.)

Define Oi as the ordering relationship among the m loci at the i-th

stage in the network NT' The initial relationship 00 contains no information.

The restricted network NT haa rigid interconnection and rigid data routing.

By induction, the ordering relationships 0o.Or Ot are all known. The ord-

ering relationship 0t must contain a total ordering according to Lemma 4-2,

We can then rearrange the first n loci in NT according to the ranks deter-

mined by the total ordering q and come out with a new network N9 • Hence

data items are sorted in descending order in Ns . Based on this observation,

we prove the following theorem.

Theorem 4-2. Given any algorithm1/! for duplicate-removal which' performs a

homogeneous sequence of execution on exclusive-write PIM machines, there

exists a compatible algorithm'1/!9 which runs as fast and is able to sort.

[Proof] Input permutations are not relevant to the execution

sequence because of the homogeneity of execution. Therefore there

is a single comparison network N which simulates the execution of 1/!

on any input permutation. Following the procedures mentioned

before, the network N can be transformed into NT then into Ns

....... :
:.'.1
'.

56

without changing the network depths. The algorithm ?/Is correspond­

ing to the network Ns can then perform duplicate-removal and sort­

ing in the same time as 1/J can perform duplicate-removal. -

Without assuming the homogeneous sequence of computation we may

have ditIerent comparison networks with different depths for the input per­

mutations. Although they all complete the comparison work represented in

the semi-digraph, the final relationship Ot may not be fixed. Whether

Theorem 4-2 is true for non-homogeneous execution needs further investiga­

tion. As a conclusion. if there exists a single comparison network to model

the execution of a duplicate-removal algorithm for all the input permutaw

tions then we can derive a compatible network to perform sorting. However,

the reducibility of sorting to duplicate-removal does not imply the existence

of the single comparison network.

Applying the proof technique for Theorem 4-2 to an exclusive-write,

exclusive-read network. we have Corollary 4-1.

Corollary 4-1. Given any rw-conflict-free network for duplicate-removal,

there exists a rw-contlict-free network which has the same depth and is able

to sort.

Some well known parallel machines can be modeled by PIM machines

with fixed interconnection patterns between n processing elements and n

memory modules. Examples are the ILLIAC IV computer [Barn6B], tree

machines, and the ultracomputer. The execution of duplicate-removal algo­

rithms on a particular machine can then be modeled by a especially regular

sorting network. If we rearrange the horizontal data lines then the new

59

sorting network may not preserve the original pattern of connections. That

is, the interconnection pattern is changed.

Corollary 4-2. Given any algorithm. for duplicate-removal on a exclusive­

write PIM machine with interconnection pattern I, there exists an intercon­

nection pattern Is which enables the algorithm to perform sorting.

It is not necessary that the interconnection patterns 1 and Is in Corol­

lary 4-2 be different. On the. machine with a tree interconnection or a d­

dimensional mesh interconnection. we can prove that both sorting and

duplicate-removal can be solved using basically the same algorithms. On

the tree machine, implementation of the heap sort requires O(n) time

[Mea81]. When the ordered sequence is removed from the root node, all. the

duplicates can be found. On the mesh-connected machine, Batcher's sorting

scheme can be implemented in G(n 1la) time, where d is the degree of the

dimension [Thorn??]. The bitonic POP-SORT which is based on Batcher's

sorting scheme and a new comparison function performs duplicate-removal

in the saIne time.

Due to the]/0 bottleneck at the root node, linear time is the best per­

formance obtainable from the. tree machine. Based on the argument on the

longest distance that data may need to move on the mesh-connected com­

puter, G(n 1ld) is the optimal time [Thorn??]. These two examples show that

duplicate-removal can be best solved by optimal sorting algorithms on the

particular parallel machines.

60

CHAPTER 5

BITONIC SORT ON THE CHiP COMPUTERS

Batcher's bitonic sort has been conjectured to be the best network

sorting method t [Prep78]. It has been intensively studied and several

adapted algorithms for machines of different processor interconnections are

available [Stan71, Thorn??, Nass79. PrepS!]. The bitonic sort can be done in

O(vn) time on mesh-connected computers [Thorn??, Nass79]. It requires

only O(log2n) time with the shufIle-exchange interconnection [Ston?!] or

the cube-connected-cycles (CCC) [PrepBl],

The bitonic POP-SORT. based on Batcher's bitornc merge sort, is an

important example of POP-SORT. It can simplify the processing of whole

queries on the CHiP processors significantly (see Chapter 6). Implementaw

lion of the bitonic PDP-SORT directly refers to the implementation of the

bitonic sort. On a CHiP computer, it is feasible to embed all those intercon­

nections on the switch lattice and perform the adapted algorithms.

C. D. Thompson proved that any layout of the shuffle-exchange graph

requires at least O(n2/log 2n) area [ThornBD]. There are layout algorithms

whlch achieve O(n2/ logCln) area, 0: = 1/2, 1, 3/2. or 2 [ThomBD. HoeyBD.

KleiSl]. However, the layouts are complicated and unavoidably require

t OOOp;2n) depth and O(nlop;2n) processing componenls.

61

large areas. The eee improves the shuffle-exchange layouts on regularity,

but still requires large embedding areas [PrepSl]. On the CHiP computers,

embedding the shuffle-exchange layouts lends to require even larger areas,

because the CHiP processors are not simple grids.

A lacing technique can be used to exploit the cross-over capability of

switches for embedding layouts on the CHiP processors (see Appendix B).

The lacing technique is very useful in embedding complicated inlerconnec-

lions. Nevertheless. embedding powerful interconnections like shuffle-

exchange and eee would leave a large portion of processing elements

unused. Furthermore. there are long connection paths in any layout of the

shuffle-exchange graph or the eee. Long data paths are vulnerable to the

propagation delay problem [BUaSl]. In this chapter we therefore emphasize

the bitonic sort with the mesh and mesh-like interconnections.

We shall report some interesting aspects about performing the bitonic

sort on the CHiP computers with the mesh interconnection or its variations.

Embedding the mesh interconnection is straightforward. The performance

of O(..Jn) matches the 110 time required for a square CHiP region aJlyway.

Taking advantage of the switch corridors and the cross-over capability of

switches. one can further improve the communication power over the simple

mesh interconnection.

In Section 5.1, an efficient Rearrangement Algorithm is presented to

reorder sorted data items from one indeXing scheme to another. A tech-

nique. called sorting with shadow regions. is shown in Section 5.2. With this

technique, aUocation of exactly n processing elements is sufficient for sort-

ing n data items with the bitonic sort (n is any integer, not necessarily a

62

power of 2). In Section 5.3, we discuss methods to improve the data routing

over the mesh interconnection with the switch lattices. We then address the

problem of sorting more data items than the number of processing elements

used in Section 5.4.

5.1 Reordering Between Indenng Schemes

For sorting with the mesh interconnection, there are three important

schemes of indexing the processing elements:

(1) Shufiled row-major indexing. shown in Figure 5-1(a).

(2) Row-major indexing. shown in Figure 5-1(b).

(3) Snake-like row-major indexing, shown in Figure 5-1(0).

Data items are sorted into particular orders defined by the indexing

schemes. The choice of a particular indeXing scheme depends on how the

sorted items are to be used.

6 1 4 5
2 3 6 7
8 9 12 13

16 11 14 15

(aJ

6 1 2 3
4 5 6 7
8 9 16 11

12 13 14 15

{oj

6 1 2 3
7 6 5 I,

8 916 11
15 14 13 12

leJ

Figure 5-1. (a) Shufiled row-major indexing. (b) Row-major
indexing. (0) Snake-like row-major indexing.

The shuffled row-major indexing comes from an optimal. adaptation of

the bitonic sort to the mesh-connected computers [Thom?7]. With this

indexing scheme, the more often the processing elements are required to

communicate with each other, the closer they are physically located. 1f the

sorted sequence is the final result, or when the sorted items are to be stored

63

in secondary memories. the row-major indexing is perhaps preferred. For

the snake-like row-major indexing, it would simplify the embedding of the

linear array connection lor any after-sorting processing.

Thompson and Kung [Thorn??] designed the optimal adaptation of the

bitonic sort with the shuffled row-major indexing scheme. Their algorithm

lakes (14 vn) tR + (21og 2n) tc time! They also proved that data items can

be rearranged to obey other indexing schemes with a relatively insignificant

extra cost of (4 vn) tR time, provided that each processing element can

store vn data items. On the other hand, Nassmi and Sabni (Nass79] pro-

posed dHlerent adapted algorithms of the bitonic sort to sort data items

into the row-major order and the snake-like row-major order. Their algo­

rithms require (14 vn) tR + (2Iog2n)(tc + tf) time, where tf is the time to

interchange the contents of two registers;

The three indexing schemes all have their own advantages. It is not

illlusual for more than one indexing scheme to be needed. One may then

employ different algorithms for different indexing schemes. For query

embedding on the CHiP computers. the shuffled row-major indexing is

chosen for the bitonic POP-SORT for a simple and efficient realization (see

Chapter 6). To perform join operations using the bitonic POP-SORI'. we pro-

posed a join system using a linear array connection (see Chapter 3). Thus,

rearranging data items into the snake-like row-major order is needed.

We shall present an "easier" Rearrangement Algorithm which

transforms the shuffled row-major order into the row-major order in less

than (2 vn) tR time. The algorithm requires only two registers at each

i The lower order terms UTe ll"lUlcated.

,.

64

processing element. To translate between the row-major order and snake-

like row-major order, (vn + 1) tR time is sufficient. Since the rearrange-

meot algorithm is reversible, transformation between any two indexing

schemes can be done in (3 vn) t R time without the requirement of extra

memory space.

Suppose there are two square regions. left and right regions, each of i 2

data items. Data items are already sorted in row-major order in both

regions. All the data items in the right region are larger than those in the

left one. Let 7"1,0.1'1.1' ...• 1"1.\-1 denote the rows in the left region and

7"2,0, T:U •...• 7"2._1 in the right region. Algorithm. 5-1 describes a rearrange-

ment procedure which merges the two regions into a 1:2 rectangular region

with the row-major indexing again. The rearrangement procedure. com-

posed of simply swapping rows and unshufiling columns, constitutes a basic

step for the Rearrangement Algorithm. In Figure 5-2, an example of merg-

ing two 4x4 regions is shown. The triangular interchange scheme shown in

Figure 5-3 can be used to unshutIle columns concurrently.

Algorithm 5-1: A basic rearrangement step.

1. Swap odd rows in the left region with even rows in the right

region; TI,ii~'-+1 ,"""-)T2.2,-, for j = 0,1. ... (~ -1). Time: (i+1) tR •

2. Unshutl1e each column. Time: 2(~ -1) tR .

Total time: (2i-1) tR.

--- __.__.._- __., r-----····· .------- ,
3123! J.l16171FTI1i

I 4 5 6 71,r-T2321 2223!
8 9 13 11: '24 25 26 27 :

12 13 14 15 ! 28 29 3B 31 :________...__._.j J '..........................-'

·· ..ij....l·· ..;;···3..;·..;;·..5··;;····'7:
161/1819 :23212223 :
8 9 10 11 '12 13 14 15 :

2425 2G 27 '28233331 ,
: :--_.,._--_..__ .- _-- .._--------- .._-----_ -:

1. swap

2. unshuffle

65

Figure 5-2. Rearrangement merge of two 4x4 regions.

rn [TIHQ] WHW WHJ:I] ITJ
rn Q] [TIHW WHJ:I] W ITJ
rn Q] W [TIHJ:I] W W ITJ
rn 'Tl 0 CD [}] f5J W [7J

Figure 5-3. A triangular interchange scheme
to perform unshuffie.

For a square region of 1t data items with the shuffled row·major index-

ing, the Rearrangement Algorithm simply applies the rearrangement merge

step for logvn - 2 times. The Rearrangement Algorithm. starts by merging

2x2 regions, 4x4 regions..... and at last v;- x v;- regions. The total rear-

rangement time of (2vn) tIt is calculated as follows:

(2. vn -1) + (2. vn -1) + ... + (2.2-1)
2 4

.~ vn= (vn + -2-+ ... + 4) - (logvn - 2)

< 2vn -logvn.
,

I
\-l!..')1

I
I

66

In the case of query embedding, rearranging data items is a require-

menlo Sorting of a large number of data items can also have benefit from

the efficiency of the Rearrangement Algorithm. The 5
2-way merge algorithm

of [Thorn??] is faster than the bitomc sort algorithms of [Thorn??] and

[Nass79] when n > 512. The 5 2-way merge algorithm sorts data items ihto

snake-like row-major order. It requires +

(n + O(nus» tc time. If t c === 2 tR then (Bn) tR is sufficient time for sorting.

Sorting with the S2-way merge algorithm and then rearranging data items

into shuffled row-major order' takes less than (l1n) tR total time. For large

sorting problems. it is therefore faster' to perform the 5
2-way merge sort

first and then some rearrangement algorithm to translate to the right

indexing scheme.

5.2 SDrting with Shadow RegiDns

The bitonic sorting algorithms of [Thom77] and [Nass79] assume a

square array of mesh-connected processors. Performing the sorting algo-

I ""IrithIns on the CHiP computers thus needs a square region of Z
2

1
log

n pro-

cessing elements for sorting n data items. Without any extra effort, the

sorting algorithms can also be executed on a 1: 2 rectangular region. The

required CHiP region is thus reduced to have zrlogn I area. However, there

are still z'logn I - n more processing elements used than the number of data

items to be sorted, where 0::::; z'logn I - n S n-1.

On a rigidly mesh-connected computer, allocation of a larger processor

array to sorting a smaller number of data items is inevitable. The sorting

algorithms must also assume a dummy data item (_!XI or +lXI) at each

67

additional processing element. On the CHiP computers, the processor inter­

connection is flexible and configurable. We therefore propose to take advan-

tage of the programmable switch lattice to resolve the superfluous alloca~

lion problem and handle the dummy value requirement.

Suppose the bitonic sorting algorithm. of [Thom?7] is chosen to sort

data items into the shuffled row-major order. We present a technique, called

sorting with shadow regions, that requires the allocation of exactly n pro-

cessing elements. In Figure 5-4, an example of sorting 176 data items With

two shadow regions is shown. The shadow regions can be allocated to

smaller sorting jobs or solving other smaller problems. Hence the benefit of

sorting with shadow regions is to improve the utilization of the processing

elements.

_ _ -
,,.

~'D""ll'~""~'lDr" ,, ! ~ '
.......... , :.: j

1. Each square repesents
a 4x4 mesh-connected
region.

2. 176 + 4x4 + 8x8 = 258.

Figure 5-4. Sorting 176 data items with
4x4 and BxB shadow regions.

Given n data items, a sorting region 'of n processing elements is allo-

cated according to the shuffied row-major indices from 0 to 71.-1, The region

consisting of the other z'logn I - n processing elements is the shadow region.

If the data items are to be sorted in ascending order, the dummy value of

+co is chosen, The communication between the sorting region and the
_'f)!
.))1. ,,'.

68

shadow region is therefore nothing but sending and receiving the dummy

value. Using the shadow region merely for the trivial communication is

totally wasteful.

The trivial communication can be simulated at those processing ele-

meuts on the boundary with the shadow region. When those processing ele-

ments are requested to read a value from the shadow region. they are given

the dummy value; when they are requested to write to the shadow region,

they just ignore the request. An incomplete mesh interconnection that coo-

neets only the processing elements of indices from 0 to n -1 is thus

sufficient. There are no connections between the sorting region and the sha-

dow region, The shadow region is free for other use'.

The technique of sorting with shadow regions can be applied to allocate

CHiP regions for sorting jobs in a more compact fashion. Let nl and n2 be

the numbers of the data items of two sorting jobs. Together for the two

[IOE{nl+n al 1
sorting jobs. a CHiP region of n = 2 is allocated. The region of (0 '"

nl- 1) is dedicated to the first job. and the region of (n-n2 '" n-l) is dedi-

cated to the second. They both assume- the regions not allocated to them-

selves as shadow regions. They may both choose the dummy value of +1XI.

Hence the first sequence is sorted in ascending order and the second is

sorted in descending order. Interestingly the whole data sequence in the

region of n area becomes a bitonic sequence. The benefit of applying the

technique of sorting with shadow regions will be demonstrated further in

Chapter 6.

69

5.3 Improvements on the Data Routing

The bitonic sort with the mesh interconnection requires O(log2n) com-

parison time and O{....tn) data routing time. The comparison time is optimal

with respect to the bitonic sorting method. The data routing time, however,

is due to the restricted communication power of the mesh interconnection.

With the mesh interconnection. data communication between two dis-

tant processing elements is achieved by passing data over. To send a data

item from a processing element to the other one i locations apart thus

requires i routing steps. With the corridor width w and the cross-over capa-

bility c. the CHiP computer may provide up to w.c data paths crossing the

corridors. The availability of the w.c data paths can be used by the pro-

cessing elements to commtmicate with each other at a distance.

Consider a row of 2i processing elements and a horizontal corridor

dedicated to the data commtmication among the processing elements. The

bitonic sort requires that the i data items at the processing elements in the

left half be sent to those in the right half. This needs at least if w*c time

tmits since the communication bandwidth through the corridor is w*c.

Hence any improvement in the data routing on the CHiP computers over the

mesh interconnection is botmded by the speed-up factor w ..c.

In additional to performing the passing-over type of communication.

the CHiP computers can improve the communication power over the mesh

interconnection in the following ways:

70

1. Communication with direct connections. It is feasible to provide

direct connections for all the communication requirements of the

bitonic sort. A possible cost is O(log2n) reconfiguration steps and

O(logn) switch settings. Moreover. data transmission through paths

of significantly. different lengths needs careful synchronization.

However, cautious application of direct connections. e.g. for short

distance communication, can avoid the complication or

reconfiguration and synchronization.

2. Communication with z-location-jumps. Direct connections for short

distance communication also provide short cuts for long distance

communication. Direct connections between processing elements z

locations apart can be used to communicate processing elements

i"z locations apart in i steps of z -location-jump.

On different switch lattices, or ditl'erent values of w and c, we expect

some variations in reaching the optimal improvement on the data routing.

We are most interested in the practical values of wand c which are 1:S::w:S::8

and 1:::!:: c:S:: 4 (the degree of incident data paths to switches d:::: 8). An exam­

ple of w ;;;; C ;;;; 2 and d;;;; B which achieves the speed-up factor W$"C shall be

demonstrated. For other values of wand c in which we are interested, the

improvement on the data routing can be done in a similar way.

With the switch lattice of w ;;;; C ;;;; 2 and d ;;;; 8. we design three intercon­

nection patterns: 11,'2,14h., and 14\1. Figure 5-5 shows three sub-patterns

which are superimposed to form the pattern 11,'2' The interconnection 11.2

prOVides direct connections required between PEs one or two locations

71

apart, both horizontally and vertically. In other words. J1,2 maps the neces-

sary connections for the bitonic stages 1.....4 onto the CHiP sWitch lattice.

The interconnection 14h. provides direct connections for PEs four horizontal

locations apart, and 14v for PEs four vertical locations apart. They can be

layout using the lacing technique as in Appendix B. The three interconnec-

tien patterns together map the necessary connections for the bitonic stages

from 1 to 6. For bitonic merge stages 7, B, and so 00, the interconnection

patterns 14h and 14v can be used to speed up the data routing with the 4-

location-jumps.

• • • • • • • •• • • • • • • • • • • • • • •• • • • • • • • • • • • •• • • • • • • • • •• • • • • • • • o. o. •• • • • • • • • • • • •• • • • • • • • •• • • • • • • • • • • • •• •
(a) (b) (e)

Figure 5-5. The interconnection pattern 11.2 composed
of three sub-patterns: (a) I" (b) I"" and (e) I..,.

To perform the bitonic sort with the three interconnection patterns,

the comparison steps remain the same. The routing steps and the

reconfiguration steps are analyzed as foUows (w = c = 2).

routing steps ~ '~nt [2"12'-1 "o[vn]
j=li=1 W ..C W ..C

I~,n
reconfiguring steps = LJ i -3 = O(log2n)

i=4

;,
~', I
. "'1

!

When n is large the asymptotic speed-up factor is WfrC.]f we employ only

the interconnection pattern I Ul then the reconfiguration steps are reduced

to one but the speed-up factor becomes w.c /2.

5.4 K-fold Sorting

External sorting is expensive. The problem of sorting more data items

than the number of processing elements is thus important. Knuth

addressed that problem in [Knut73. p.241~242]. He pointed out that a sort­

ing network of n data items can be generalized to sort k.n data items if the

comparison operation is replaced by a k-way merge operation. This general­

ization idea was applied to several sorting algorithms by G. Baudet and D.

Stevenson in [Baud7B].

To sort k.,n data items on n processing elements, the data items are

initially distributed evenly to:each processing element. The data sequence

at each processing element. is then sorted locally. Now. the sequence

Q = Ql; Q2; ... ; Qn is partially ordered. where Q.: is the sorted sequence of k

elements at PEi.. For any sorting algorithm using only the comparison­

interchange operation, Baudet and Stevenson proposed that it can be gen­

eralized to sort the partially ordered sequence Q by substituting the

comparison-interchange operation With a merge-splitting operation. Per­

forming the merge-splitting operation on two sequences Qi and Q; is to

merge the two sequences and split into halves to produce the new

occurrences of Qi. and Q;.

Assume that m is the local memory size of processing elements on a

CHiP computer, that is, each processing element can hold m data items.

73

The internal memory capacity is computed as m"n I provided that a CHiP

region of n processing elements is allocated for the sorting. Only when the

data items to be sorted exceed the internal memory capacity should we

resort to external sorting. However. Baudet and Stevenson's generalization

method does not work when r; < k ::=; m since the merge-splitting operation

needs at least 2k working space t at each processing element. We therefore

consider two indexing schemes for the bitonic sort to sort as many as m..n

data items on n processing elements. The comparison-interchange opera-

lion does not have to be replaced by a merge-splitting operation; we simply

perform k comparison-interchange steps.

The two indexing schemes are extensions to the shuti'led row-major one.

The processing elements are still indexed in the shu.tIled row-major order.

Since there are k data items at each processing element, we need to index

[urther those data items at the same processing element. Data items may

be indexed in the following ways:

(1). Aggregation scheme - Index those data items at PEi as i.k,

iol"k+1, iol"k+(k-1).

(2) Projection scheme -Jndex those data items at PEi as i, n+i .

.... (k-l).n+i.

Baudet and Stevenson used 3k working space at each processing element.

u:

--','

74

a 4
1 5
2 6
3 7

B 12
B 13

10 "11 10

[aJ

o 1
4 ~)

B 9
12 13

2 3
a 7
10 II
1'~ 1~

Figure 5-6. Indexing 16 data items on 4 processing elements:
(a) Aggregation scheme, and (b) Projection scheme,

Assume that both k and n are powers of 2, k = 2P and n- = 20'. To sort

the k.n data items using the bitonic sort, p +q stages of the bitonic merge

are required. With the aggregation scheme, the first p stages are to sort

locally each sequence Q1. of k elements at FE'/,. Then, q more stages are per-

formed to sort the partially ordered sequence Q = Qr; Q2: ... ; Qn. At the

(P +l)-th, .. , and (P+q)-th stages, they all perform a local execution of the

first p bitonic stages (see Figure A-1).

The bitonic sort with the aggregation scheme may be modified in two

ways, Each execution of the first p bitonic merge stages can be replaced by

a faster local sort. To perform k comparison-interchange steps between two

processing elements may be improved by some overlapping of read/write

and comparison instructions. Let Co be the local sorting time of k data items

at each processing element, and C r be the time saved by integrating the k

comparison-interchange steps. If the bitonic sort is directly applied without

any modification then Co = ~log2k +logk) and Cr = o.

': ..)
)

75

Define T(Zi ,k) to denote the time reqUired to merge the k ... 2' data

items in the processing elements from 0 to 2'-1, and S(22i ,k) the time to

sort the k" 22j items in the processing elements from 0 to 22j -1. Nolice

that T{l,k) = 0 and S(1.k) = co"tc . We analyze the time complexity of the

bitonic sort with the aggregation scheme in the following:

[
S,(l,k) = co.te ,

S,(2'j,k) = S,(2'(;-I),k) +T(2'j-l,k) + T(2'j,k).

Solve the recurrences B.la for the merge time function.

[
[k(S,,2(i+1l/2_4)-il'"CdtR +i"k tc.ifiisodd

T(2\ ,k) = [4k (2i/2-1) -i"c I] tR + i"k t e , if i is even.

Substitute the above equation into equation 5.1b,

(5.1a)

(5.1b)

(5.2)

?: ,.'

[
Sl(l,k) = co ...t c ,

S,(2'j,k) = S,(2'j-',k) + [7k.2 j -Bk -(4j-1)c,] tn + (4j-1)k te.

Solve the recurrences for the sorting time function;

C1 (Bk+Cl)
S,(n,k) = [14k(vn -1) - zlog'n - 2 logn] tn +

k (co+k) (5.3)
[zlog'n + 2 logn] te·

Wtth the projection scheme, the first q stages are equivalent to per-

forming k runs of the bitonic sort of n data items on n processing elements.

}i'rom another point of view. the first q stages with the projection scheme

are the same as with the aggregation scheme except with Co = 0, The next p

'.

'.

76

stages are to merge the sequence Q;;; Ql; Q2; ... ; Qe, where Qi. is a sorted

sequence of n data items over the n processing elements. Asswne that

both p and q are even numbers (k = 2P and n = zq). The required merge

time at the (q+l)-th stage is ~ tc + T(n,k), and k tc + T(n,k) at the

(q +2)-th stage. Let VS be the time for thep merge stages.

VS(n,k) = (1+ 2 + ... + ~(~ k tc + 2 T(n,k»

C,
= (log'k + 210gk)[k (Vii" -1) - slogn] tR +

Sk k
(log'k +21ogk)[16+ il1ogn] tc

The total time for the bitonic sort with the projection scheme is thus

S,(n,k) = S,(n,k) 1,,=0 + VS(n,k). (5.4)

, _I·

•

Comparing the equations 5.3 and 5.4. one finds that the comparison

time might be reduced with the projection scheme, but the data routing

time is definitely increased. Data routing time is the dominating factor in

the lime complexity of the bitonic sort with the mesh interconnection.

Notice that when k = 1, Co = C1 = VS(n,k) = O. In summary,

S,(k.n,1) = S,(km,1) = O(vkm) tR + o(log'k +log'n) t c

S,(n ,k) = O(k Vii") tR + O(k log'n + cologn) t c

S,(n,k) = O(k log'k Vii") tR + O(k log'n + k log'k logn) tc

We conclude that the k-fold bitomc sort with the aggregation scheme out­

performs the projection scheme assuming co~ O(k log2k). The saving fac-

tor c 1 does not have any significant effect on the time complexities. The

aggregation scheme emphasizes data locality while the projection scheme

77

emphasizes parallelism. The former attempts to reduce the routing steps

and the latter attempts to reduce the comparison steps. Only when

Co -) O(k 2) and k is large may the projection scheme be better than the

aggregation scheme. In that situation, the sequential sorting time Co cannot

be compensated by improving data locality.

~.

>••

78

CHAPTER 6

QUERY EMBEDDING

Partitioning a large problem into several small. and more tractable sub-

problems. or divide-and-conquer, is a common approach in computing

theory and practice. Subproblems are often referred to as basic operations.

Existing algorithms for the basic operations are then applicable to solVing

many large problems. When each subproblem is very efficiently solved by

highly parallel hardware, one interesting question is: What is the relative

overhead of data movement among the basic operations?

One benefit of the CHiP computer is to imitate the performance

efficiency of algorithmically specialized processors on the same devices.

OWing to its configurable switch lattice. the CHiP computer is capable of

embedding suitable interconnections for performing different algorithms

efficiently. To solve a large and computationally intensive problem, several

algorithms are usually involved. The configurability of the CHiP computer

also provides a potential for composing those algorithms without producing

any bottleneck of data movement (Snyd82].

Composing algorithms includes the embedding of interconnections on

the SWitch lattices for indiVidual algorithms and the embedding for harmoni-

OllS interaction among the algorithms. In [Snyd82J, an example of solVing a

79

system of linear equations is demonstrated. To solve the problem, one

might need an algoriLhm for the LV-decomposition of the coefficient matrix

and a linear recurrence solver to perform the backward substitution.

Snyder showed the interconnection embeddings on a switch lattice which

put together Kung and Leiserson's LV-decomposition algorithm and a sys-

talic method for the backward substitution [MeadBl. Ch,B.3].

To evaluate a database query, several database operations are usually

invoked. Many efficient algorithms exist for implementing those database

operations. Lil{e solving a system of linear equations. techniques of compos-

tng algorithms might also be able to solve query evaluation effectively. How-

ever, 110 and data flow in query evaluation are much more complex. It is a

multiphased problem that takes multiple relations as operands (possibly at

different time) and produces a single relation as result. The problem struc-

ture as well as the problem size, moreover. varies for difIerent database

queries.

Query embedding is the idea of embedding suitable interconnections in

order to process whole queries on the CHiP computer. It involves allocating

a CHiP region and providing appropriate interconnections for efficiently

inputting relations, solving the multiphased problem, and outputting the

result. If query embedding is done in such a way as to embed individual

operations separately and then to compose them together. the interconnec-

tions for routing results from one operation to the next operation may be

far from being realistically embeddable. Fortunately the primitive opera-

tiOn POP-SORT which unifies many database operations gives a hope to avoid

this dilIiculty. Composing algorithms would simply become putting different

80

runs of the same algorithm together. The bilonic POP-SORT is especially

suitable for query embedding since it works in a particularly regular

manner. Actually. query embedding can be simplified significantly if data­

base operations are implemented by the bitonic POP-SORT.

In this chapter we shall explore techniques of query embedding for pro­

cessing whole queries in a highly parallel fashion on the CHiP computer. In

Section 6.1 we parse algebraic queries into operation trees and discuss a

general scheme of embedding the operation trees. Taking advantage of the

unification provided by the primitive operation POP~SORT, we then demon­

strate how simple query embedding can be done for a restricted type of

operation trees in Section 6.2. Section 6.3 summarizes some general stra­

tegies for improving query embedding. We also extend the embedding tech­

niques to evaluate all the algebraic operation trees in Section 6.4.

6.1 Embedding of Operation Trees

Query languages for the relational data model are based on two types of

abstract languages: relational. algebra and reLational calcuLus [UUmBO. Ch.4].

Both abstract languages are equivalent in expressive power; calculus expres­

sions can always be translated into algebraic expressions. It is trivial that an

algebraic expression can be parsed into a tree of algebraic operations (Fig­

ure 6-1).]n the operation trees, internal nodes represent algebraic opera­

tions and externaL nodes represent input relations. At the root node a final

operation is performed and the result is produced.

Existing query Languages are not necessarily the exact impLementations

of the abstract ones. They may have certain extensions to the abstracL

81

OP,

R

Figure 6-1. An operation tree from parsing a query.

languages, e.g. tramitive closure. fixed point, and looping. In the most gen­

eral case, queries are arbitrary functions on relations. Given any query. one

can still represent it as an operation tree, but the operations are no longer

restricted to algebraic ones. Nevertheless the abstract languages serve as a

benchmark for evaluating existing query languages. Efficient evaluation of

algebraic operation trees is thus very important in achieving fast query pro­

cessing.

Since queries are represented and processed as operation trees, query

embedding on the CHiP computer is reduced to the embedding of operation

trees. To evaluate whole queries by embedding operation trees, a wide spec­

trum of parallelism is possible. We may have inter-operation and intra­

operation parallelism in evaluating an operation tree. We may also have

inter-query parallelism if the CHiP computer is big enough to host several

queries. Furthermore. the I/O overhead can be minimized when whole

queries are evaluated on the CHiP computer. Intermediate results tend to

be kept in the CHiP processor. and therefore the data swapping between the

CHiP processor and its external storage may be eliminated. The ideal case

occurs when no I/O request is issued besides loading input relations onto the

82

CHiP processor and outputting the result relation.

r-· o. ------- .•••••••••_- ----,

~; dQ1'";':[:]1"2, "
~ II

R
_-I.- J,

::I -T--------' II

R 4 =!n I .u. L result
R:!J =t~ ==> OF" ri> relation

'---j
Figure 6-2. A general scheme of composing algorithms

(operations) for query embedding.

To embed and execute an operation tree, a contiguous CHiP region is

allocated. Within the region, interconnections are to be provided to perform.

the whole operation tree efficiently. A general scheme of doing this is as fol-

lows (Figure 6-2)_

• First, allocate regions for embedding algorithmicaHy specialized inter-

connections to perform individual operations.

• Secondly, tailor those regions as compactly as possible according to the

110 requirements and the communication requirements among the

operations.

The CHiP region allocated for the whole operation tree, called the query

region, is thus pa'rtitioned into three type of regiOns: operation regwns. con-

nection regicns, and I/O regwns. Operation regions are those allocated to

embedding sUitable interconnections for running efficient algorithms of the

operations. Connection regions are those allocated to proViding data paths

from operations to operations. 1/0 regions connect some of the operation

83

regions to the CHiP perimeter where the CHiP processor is connected to its

external storage devices.

Two obvious optimization objectives for query embedding are to reduce

the query region and to minimize the total time for evaluating the whole

operation trees. To minimize. the query region, operation regions should be

kept as small as possible and. they should be packed in such a way that the

needed 1/0 regions and connection regions are also small. To minimize the

total time. we want the query_region to be large enough to provide intercon-

nections for performing efficient algorithms and putting them together. The

two objectives may not be achievable together. As space-time tradeoff is a

common phenomenon in computing world, we may also find the trade-off

between the two objectives.

The general scheme of embedding operation trees. as shown in Figure

6-2. provides a basic strategy of query embedding. Only when there is no

better way would we resort to the general embedding scheme, since the gen-

eral scheme is exposed to the following problems:

• The size of the result relation after preforming an operation depends on

the operation itself and the distribution of data values. The amount of

significant data items shrinks and swells during the query processing.

It is nontrivial to allocate CHiP regions for the later operations.

• Large 110 regions are sometimes necessary. For example, a wide

bandwidth is needed in order that OF2 can read in Rs fast, and the data

paths may be long if OP2 is buried far away from the CHiP perimeter.

'-TI
\,.- "(,

(~.:.:

84

• Optimal algorithms to pack operation regions are extremely difficult to

find. Heuristics may result in requesting large connection and 1/0

regions.

6.2 Buddy System Allocation

Due to the dynamic characler of query processing in which the amoWlt

of significant data items varies. the anocation of operation regions is subject

to dynamic strategies. Unlike memory allocation, dynamic allocation of

CHiP regions entails dynamic control of processing elements and dynamic

provision of interconnections .. Moreover. problems like deadlock prevention,

communication blockade between parent and child regions must be solved.

To avoid the dynamic complication we therefore present area-effective

static allocation policies in this section.

The bitonic POP-SORT which is an efficient primitive tor many database

operations also yields a nice solution to query embedding. In this section we

demonstrate how well the bitonic POP-SORT can simplify query embedding

on the CHiP computer. A restricted type of operation tree is considered. In

Section 6.4, the embedding techniques' are then extended to evaluate aU

algebraic operation trees.

Operation trees considered here may contain some or all of the foUoww

ing algebraic operations: restriction. projection. duplicate-removal. union,

intersection. difference, and join. Cartesian product and quotient are two

useful algebraic operations being left out. These two operations are

extremely difficult in nature. They are not in the scope directly implement­

able by the primitive operation POP-SORT. Fortunately. quoLients are not

85

often executed in query processing and Cartesian products can ·often be

replaced by joins [Wong76]. Hence the restricted type of operation trees

still covers quite a portion of database queries.

Any POP-SORT has the following two important features:

• It employs marking functions to mark off all the unwanted data item.s.

• It works well even with some marked and unwanted data items in the

input.

Suppose that there are parent and child operations which are all imple­

mented by POP-SORT. The child operations can send the whole chunk of

data possibly consisting of unwanted and marked items to the parent. The

parent operation can then carryon without worrying about the marked-off

items. These operations thus,-can be allocated CHiP regions by some static

strategies.

Based on the two features of POP-SORT, another two valuable observa-

tions are:

Observation 1. Restrictions would just produce more marked items.

and projections would reduce the tuple length. They can be com­

bined with other operations that precede or follow them.

Observation 2. Remove-duplicates are already combined with union.

intersection. and difference due to the versatility of POP-SORT. Thus

the duplicate-removal before or after these three operations is

redundant.

By merging the internal nodes according to the above observations. opera­

tion trees are shrunk to have only external nodes' and those internal ones
-.

66

for operations excluding restriction and projection (and maybe duplicate­

removal.) The allocation of operation regions now becomes the allocation for

a smaller number of internal nodes.

The bitonic POP-SORT, in particular. works in a very regular manner. As

for query embedding, mesh interconnection is chosen for the primitive

operation in order to keep the operation regions small. Data items are

asswned to be sorted into shuffled row-major order. For joins. data items

are then rearranged into snake-like row-major order with a relatively

insignificant overhead (Chapter 5.1). In addition to the two features men­

tioned before, the bitonic POP-SORT has another very important one:

• Assuming mesh interconnection and shuffled, row-major indexing. the

bitonic POP-SORT works well on a square region or a 1:2 rectangular

region.

It is this feature that makes algorithms composition very simple. More

observations implied by this feature are as follows:

Observation 3. The CHiP region for the parent operation can be over­

laid with its child operation regions. No connection regions are

necessary because data items are always in positions ready for next

operation.

Observation 4. The parent operation may only need to execute a

stage of the bitonic merge instead of the whole sorting procedure

since the child operations would have sorted the data items in their

regions.

87

As an analogy to the buddy system for dynamic storage allocation

[Knut7S, I, Chapter 2.5]. we present a buddy system for static allocation of

operation regions. Each operation node is allocated a CHiP region of size a

power of 2. The two child operation regions are buddies. We do not insist

that buddies be equal in size, but buddies must be located together. Merging

two buddies becomes a larger region and the larger region is for the parent

operation.

.Algorithm 6-1: Buddy system allocation.

['Og("''''')1A.i. Compute area for each internal leaf node; 77..t. +nj -lo 2 .
where ~ and nj are sizes of input relations.

A.2. Compute areas for remaining input relations: '1t.t -+ 2flog(~) I.
A.3. Compute areas for parent nodes from areas of child nodes

(buddies): 2\ + 2; -) zm=(i,i)+l, where 2\ and 21 are areas of
buddies.

B.1. Allocate a query region for the root node.

B.2, Allocate one half of the parent region to each of its child
regions.

, .
,,,,,
"~1, .- _.,

,,,,
~ , -, ,

" I \,'. ..ns/ '!7-4, .-

--.
"

" ,,,
•,

n~:

.. ~ .

,
......••.....••..i......••••......••

Figure 6-3. An example of buddy system allocation.

Algorithm 6·1 for buddy system allocation is composed of two phases. First,

compute the areas of operation regions from the operation tree's bottom

BB

up. Secondly, allocate operation regions from the top down. In Figure 6-3 we

show an example of buddy system allocation.

010 Xl CD...........+......... ~-'...... ~

OiO (!)

1. POP-SORT 2. post-sorting 3. bitonic merge
(OP,) processing (OP"OP,)

~ >< ~ ~
...........__..._----_._--._---_.._--------- .

><
4. post-sorting 5. bitonic merge 6. post-sorting

processing (OP.) processing

lQ] perform POP-SORT in the region

rnl perform bitonic merge to merge two regions

o idle

~ perform post-sorting processing in constant time

Figure 6-4. An example of processing a class of
queries using the bitonic POP-SORT.

Processing the whole example query is partitioned into six phases in

figure 6-4. Phases 1 and 2 would complete the execution of OP I • phases 3

and 4 would complete OP2 and OPs concurrently, and so on. In phase 1, the

bitonic POP-SORT is performed in each "circled" region. In phase 2, the

.,

89

post-sorting processing is executed in the "crossed" region, and the rest

region does nothing but wait. In phase 3. one stage of the bitonic merge is

sufficient since the data items in the circled regions are already ordered as

bitonic sequences.

It is surprising that the multiphased query processing can be viewed as

a big sorting job interleaved with other processes. The post-sorting process-

ing for union. intersection, or difference requires,only constant time (see

Chapter 3.1). For queries involving only these operations and restriction,

projection. and duplicate-removal. the multiphased query processing thus

works exactly like a big sorting job, except with some constant time pro­

cessing. It guarantees a total processing time of o(v'QI171l11)' where QlI78G is

the area of the query region.

Notice that the bitonic POP-SORT is also very helpful for some of the

equi-joln or natural operations. The post-sorting processing for those joins

would involve (1) reordering from shuffled row-major index to snake-like

row-major index, (2) performing easy-catch process, (3) running the sprin-

kle algorithm to resolve the hot spots problem, and (4) restoring the order

of data items by running the bitonic POP-SORT again. For quite a few practi-

cal cases of joins, the post-sorting processing can be done in O(vn) time,

where n is the area of the region on which the join operation is performed.

Thus the total processing time is still O(vQrrroa)' However, not all join

operations work well this way. We shall address this problem in Section 6.4.

The allocation algorithm 6-1 does not attempt to pack input relations in

a compact fashion. It packs better when buddies are about of the same size.

However there is a worst case anomaly:
.1. ,

" ,. ',1
I

I

90

;:;:> Total input size is lutz :;: 2,1;; + 4.

Query region has area QlII"OI1 :;: 2.1:+3 (h ;: 3).

==> Nearly ~ of the query region is wasted!

In general, the area of a query region allocated by ,Algorithm 6-1 is within a

range as follows:

To resolve the anomaly, we propose two approaches. One is to parse queries

into "good" trees which would lead to more compact allocations. This is dis-

cussed in Section 6.3 - query amelioration. The other approach is to modify

the buddy system allocation to pack input relations. A modified version of

the buddy system allocation is shown in the following as Algorithm 6-2. This

improved algorithm represents a packing technique based on the feature

that the bitonic POP-SORT works well with shadow regions (see Chapter 5.2)

Algorithm 6-2: Modified buddy system allocation.

A.!.

B.!.

B.2.

B.3.

Transform the binary operation tree into a quaternary tree as
shown in Figure 6-5.

Compute area for each internal leaf node;
llog (nll+n'Z+n,.I+n,.~I

nn +nl2 + ~l + 'nr2 -) 2 , where nLl' nl2 are
sizes of left input relations, and 1lrl' 'nr2 are sizes of right input
relations.

f'og{f\) I
Compute areas for remaining input relations; '71.t -) 2 .

Let 2n , 2t2 , 2T1 , 2T2 be areas for child nodes (buddies). Compute
areas for parent nodes from areas of child nodes;
2tl + Zt2 + 2T I + 2T2 -) 21 , where 2i is the smallest area that is
large enough for all the four buddies.

91

C.l. Allocate a query region for the root node.

C.2. Let 0..... 2'£-1 be a parent region. Allocate the regions ~1, ~:2 sub­
sequently from 0 to 21-1, if II ;=: l2. Allocate the regions zr1 , 2r2

subsequently from 2t -l to 0, if r 1 ~ r2 .

,,
,,,
,,,,

~- - -

,,,
'.,

.... -----

- - -

,
,
,,

Figure 6-5. Transforming an operation tree into a
quaternary tree for more compact allocation.

The modi.:fi.ed allocation algorithm tries to pack input relations by

grouping four buddies instead of just two. The success of the packing tech-

roque again relies on the relative sizes of buddies. However. the upper

bound of Q~Tl1a: is already improved significantly. In general.

since the height of a quaternary tree is reduces to hi 2. Two child opera-

tions might be allocated regions of different areas by the packing attempt.

The synchronization between two child operations therefore cannot count on

the allocation of regions of the same area any more. The operation in a

smaller region would need to wait for the other to finish.

'i'heorelic0.11y ~peaking. sorting with shadow regiolis can be exploited Lo

a very complicated extent. It is then possible to compact input relations

further. Nevertheless. the more compactly input relations are packed. the

92

more complicated the required synchronization tends to be. II might not be

worthwhile to pursue more compact packing since the operation trees con-

sidered are more likely smalL Le. the value of h is small. Moreover. we may

turn to query amelioration for more compac t allocations.

6.3 Query Amelioration

The total CHiP region and the total processing time are the two objects

to be minimized for query embedding on the CHiP computer. Although

"query optimization" is commonly used, query evaluation is not necessarily

optimized over all the possible inputs. The term "query amelioration" would

be more appropriate [UllmBO]. especially when there are two inLeracting

"optimization" objectives. Our query amelioration philosophy is to reduce

the total time while still keeping the query region small. In this section. we

shaH summarize some general strategies for query amelioration. These stra-

tegies are from two sources: some by re-phrasing the algebraic expressions,

the others based on other implementation considerations.

Queries may take a long time to execute. and the conventional execu-

lion time could be reduced greatly if the queries are rephrased according to

some optimization criteria [UHmBO. Ch.6]. As a rule of thumb, the genernl

strategies for optimization in [UllmBO. Ch.6] are also valuable on the CHiP

computer. In particular, we summarize four rules for rephrasing algebraic

expressions in order to reduce the CHiP region or the total processing time.

1. Perform restrictions as early as possible. Restrictions tend La rl1.ake

significant data items sparse so that more join operations cun be pec-

formed by using POP-SORT. (See also Strategy 5.)

.. ·'1

!
!

93

2. Perform projections as early as possible. Projections tend to reduce

the tuple length, therefore reduce the amount of data flow in CHiP pro-

cesser. (See also Strategy 5.)

3. Cascade restrictions and projections. A sequence of these operations

can be performed all at a once.

4. Combine certain restrictions with their priar Cartesian products into

joins. This helps controlling the size of intermediate results. Hopefully

some allocation of large CHiP regions can be avoided.

Among the equivalent expressions there are some which usually take

longer time than the others. The goal of rephrasing an expression is to avoid

those more time-consuming ones. The first two strategies are feasible by

commuting restriction with other operations, or by commuting projection

with a Cartesian product. join, union, or intersection (but not difference.)

Strategy 4 is in a sense a special example of Strategy 1.

The way in which a particular expression is evaluated also atiects the

query processing time. We summarize more strategies based on the imple-

mentation considerations in the follOWing.

5. Perform restrictions and projectw'IlS on the input relations on the mass

storage level. To reduce the input size and the amount of data flow in

the CHiP processor, the restriction and projection on an input relation

is better performed on the mass storage level using the approaches as

in the conventional database machines.

-"I'"
(\j

.~

94

6. Combine restrictWns and 'P'"aiections with other opera.tilrns that joUow

or precede them. It can be done by loading the restriction predicates

and projection attributes on the processing elements. This simplify the

allocation of CHiP regions.

7. Delete redundant dupLicate-Temoval. Multiset operands are allowed to

union, intersection, and difference. Remove-duplicates before these

operations is thus redundant.

B. Combine a sequence of unions, A single run of POP-SORT on all the

operand relations would complete a sequence of unions.

9. Parse queries into operation trees in a weight-balanced fashion (or pro-

cess small relations first.) The buddy system allocation algorithms

work especially well when buddies are about of the same sizes.

10. Load input relations as an ensemble. Input relations are loaded

together onto CHiP processor according to the allocation pattern. I/O

time of O(V Qarua) is thus guaranteed.

Figure 6-6. Weight-balanced trees.

95

Commutative laws and associative laws for unions, intersections. joins.

or Cartesian products are the- weapons that we may use to parse queries in a

weight-balanced fashion. Strategy B presents an even better amelioration

method on performing a sequence of unions. It is feasible because of the ver-

satility of POP-SORT to perform union on multisets. For a sequence of inter-

sections or a sequence of joins (Cartesian products), Strategy 9 can be

applied to parse the operation sequence into a weight-balanced tree. Exam-

pIes are shown in Figure 6-6. For a sequence of differences. Strategy 9 is

also useful be.:ause of the equivalent law: For any i,l === i < k I

R 1 AR2 !J. ••• !J.Rk ;;;: RIA' •
!J. Ri Ii (U Hi)' where A denotes the multiset

j=\+l

•operation dillerence with left-ta-right precedence and U Hi denotes the
j=\+1

union of multisets. Assume. that the examples in Figure 6-6 show the

weight~balaD.cedparsing of a sequence of differences. It is interesting to

note that the operation nodes on the path from the external node nita the

root all perform ditIerences and the rest all perform unions.

6.4 Extensions

Although the operation trees considered in Section 6.2 may contain join

operations, not all the join operations work well using POP-SORT with mesh

interconnection on the CHiP computer. Equi-join and natural join are more

likely to work than other join operations. However, even for equi-join or

natural join, performance may degrade due to the hot spots problem.

In this section we shall present a method of performing Cartesian pro-

duct that generates the result relation in a square CHiP region. Join

"

96

operations can be implemented, at worst, as Cartesian products. Quotient

can also be implemented by Cartesian product. difference, and projection.

Adding Cartesian product to the restricted type of operation trees, we

therefore extend the query embedding techniques presented in section 2 to

evaluate all algebraic operation trees. Similarly, we may extend further to

include operations other than algebraic ones.

-1:- ..
-1 \'" •

result

n, -----)1!<

.
".... ' _ ; .

/ relation ..-
-) ..,/ //
-1':""•..J

Ii
R2

array

systolic

Figure 6-7. Systolic method of Cartesian product.

The systolic method of Cartesian product in [Kung80] produces a result

relation in a -- -shaped region (see Figure 6-7). In order to simplify the com-

position of Cartesian product with other operations implemented by POP-

SORT, the result relation needs to be in a square region (or a 1:2 rectangu-

lar region.) A simple modification of the systolic method can shape the

result relations in square regions. However, the 110 bandwidth of a CHiP

processor is assumed proportional to its perimeter. We shall seek a faster

algorithm which takes advantage of the I/O ports on the perimeter process-

ing elements.

C>DC>~C>
c> r;H i -;

-) Dc> c> result

relation !

I_ •••••• • __ • • 1

97

F1g1~ 6-8. Cartesian product in a square region.

Let HI and R 2 be the two relations, [RIf: 7tl.IR2[= 'n.2' and7tl~n2' The

square region to hold the result relation requires a size of ~2. where

~ = rvnl "n2l Notice that nl~~:5::n2' Assume that '1tr =k"'n. 1 for simpli­

city. First. allocate a query region of area ('1tr+2)~. The first two columns.

called the processing columns, are used to produce result tuples. The rest

of the region performs only left-la-right shift and is used to store the result

relation. The following algorithm would generate the Cartesian product of

R I and R2 in a square region (see Figure 6-8) in O(n,.) time.

Algorithm 6-3: Cartesian product.

1. Load k copies of R I on the second processing column.

2. If no more R 2 tuples then stop. Otherwise, load another column of R 2
tuples on the first processing column.

3. Rotate nl steps each copy of R 1 and produce nl columns of result
tuples. Go to step 2.

Given any algebraic expression, .we may proceed to do the following to

evaluate the expression. First. rephrase it according to the query ameliora-

tion Strategies 1.....4 summarized in Section 6.3. The rephrased expression is

98

then parsed into an operation tree possibily contajning some harder-than­

sorting operations like Cartesian products. differences. and some joins.

Those operations. not belonging to the restricted type, would partition the

operation tree into single operation nodes and subtrees. Each subtree is

then of the restricted type. The query amelioration strategies in Section 6.3

and the query embedding techniques in Section 6.2 are thus applicable to

each subtree. Single operation nodes can be implemented by the method of

producing a Cartesian product in a square region. For example, join opera­

tions that are not suitable tor the easy-catch implementation can be imple­

mented this way. Significant data items can then be "cornered" to a smaller

square region by performing the bitonic POP-SORT.

To process any algebraic query. the composition of algorithms is no

longer automatically done by the buddy system allocation. Composing algo­

ritluns. in a most general sense, thus becomes a three level approach.

Ranked in the order of preference. they are: (1) buddy·system allocation, (2)

the general scheme shown in Section 6.1. and (3) off-CHiP processing. the

last resort.

99

CHAPTER 7

SUMMARY AND CONCLUSIONS

This thesis applies highly parallel database machines to.improve rela­

tional database processing. The database machines are dedicated comput-

ers enhanced with highly parallel processing capability. Regularity and uni-

farmity are mandatory for achieving high-performance and cost­

effectiveness, This work first deals With unifying several relational opera-

lions on a regular sorting algorithm.

Given a highly parallel processor, we have shown that any sorting algo­

rithm designed to execute on the processor can be easily modified. to

become a primitive operation POP-SORT. The primitive operation can

efficiently perform sorting, duplicate-removal, union. intersection, and

difference. It can also be used to perform join operations requiring no more

than linear post-sorting processing time.

This thesis then applies an instance of POP-SORT, the bitonic POP-SORT,

on the CHiP processors to. process whole queries. Query embedding

presents a methodology which embeds appropriate interconnections for

processing whole queries on the CHiP processors. Due to some interesting

characteristics of the bitonic POP-SORT, query embedding is simplified

significantly.

' ..J

100

In Section 7.1 we summarize the main contributions of this thesis. To

apply the results of this work_ successfully to a complete design of back-end

system. several important issues need to be investigated further. Section

7.2 discusses briefly those important issues.

7.1 Main Contributions

The main contributions of this thesis are summarized in the following.

1. The methodology of applying sorting to solve other database operations

is presented for highly parallel situations. Two techniques are shown to

adapt. with negligible overhead, merge-oriented and other sorting

methods to solve several database operations (POP-SORT).

2. The efficiency of POP-SORT is studied. POP-SORT based on an optimal

sorting method is proved to be also optimal for performing duplicate­

removal, union, intersection, and difference for a reasonable class of

homogeneous comparison computation.

3. The join system which employs a halting mechanism can terminate join

operations in sublinear time after the argument relations are pre­

conditioned by POP-SORT.

4. The algorithm Sprinkle can efficiently redistribute data items such that

they are almost evenly distributed over the processing elements.

5. The bitonic POP-SORT which generalizes Batcher's bitonic sort to

become a powerful primitive defines the (new) upper time bound for per­

forming each of the five database operations - sorting, duplicate­

removal, union. intersection, and ditlerence.

101

6. The bitonic sort on the mesh-connected computers in [Thom77, Nass79]

can be improved by a s~eed-up factor up to w ..c with mesh-like inter·

connections on, the CHiP computers,

7. Etl'icient algorithms for J·eordering data items among three major index-

iog schemes and sorting krn data items on n PEs are" proposed and

analyzed.

B. Query embedding is to t~xploit all the possible parallelism in processing

whole queries. With the use of the bitonic POP-SORT, query embedding

for a restricted type of 'lueries is simple and straightforward. The algo-

rithm to produce Carte:;ian products in square regions further extends

the restricted query emhedding to processing all the queries,

9 The lacing technique is shown to exploit the maximum number of data

paths provided by the sVritch corridors on the CHiP computers.

7.2 Future Research

]n this thesis we have c,mcentrated'on exploring parallelism in process-

ing relational queries with Ihe use of higWy parallel processors. There are

other issues needed to be Lnvestigated to complete a reliable design of a

highly parallel database mac:hine.

The 1/0 bandWidth bet ween the mass storage and the highly parallel

processor is required to be arge to prevent the processor from data starva-

lion. The mass storage sho:.lld be content addressable such that searching

and update can be perform1ld on the storage level efficiently. The design of

hardware organizations tc implement the requirements of large 110

"'o!" "
:",,:)'il:f:

!
-'~,
~.!,.

~...

102

bandwidth and content addressability is thus important. More pressing, a

storage model and an 110 model for near future technologies are necessary

to measure 110 complexities and design problem decomposition algorithms.

Given a highly parallel processor with n PEs, we addressed the problem

of partitioning the processor to perform several smail jobs. We also

presented algorithms to allow the total size of argument relations to be k_n

if PEs have local memory space k. However. problems with sizes larger than

k.n must be decomposed into several small ones. Fortunately the decom-

position problem is reduced to an external sorting problem for a .family of

queries.

The back~end is dedicated to perform database management functions.

With new hardware technologies and architectures the traditional designs of

database management need to be reconsidered. Programming the highly

parallel processor is another important issue. With the unification proposed

in this research work the programming diffiCUlty should be reduced.

•

UST OF REFERENCES

Astr76

Babb79

Bane7B

Bane79

Barn6B

Batc6B

BatcBO

Baud7B

103

IJST OF REFERENCES

M. M. Astrahan et aI., "System R: Relational Approach to Data­
base Management;" ACM Trans. on Database Systems, 1:2, June
1976, 97-137.

E. Babb, "Implementing a Relational Database by Means of Spe­
cialized Hardware," ACM Trans. on Database Systems, 4:1, March
1979,1-29.

J. Banerjee, and D. K. Hsiao, "Concepts and Capabilities of a Data­
base Computer," ACM Trans. on Database Systems, 3:4,
December 197B.

J. Banerjee, D. K. Hsiao, and K. Kannan, "DBC - A database com­
puter for very large databases" IEEE 1'rU7IS. on Computers, C­
28:6, June 1979.

G.H. Barnes, R.M. Brown, M. Kato, D.J. Kuck, D.L. Slotnick, and
R.A. Stokes, "The lLLJAC N computer," IEEE 1'ra7lS. on Comput­
ers, C-17:B. August 1968, 746-757.

K. E. Batcher, "Sorting networks and their applications," Pror:.
1968 National Computer Conference, AFIPS. 307-313.

K. E. Batcher, "Design of a Massive Parallel Processor," IEEE
Trans. on Computers, C-29:9. September 19BO, 836-840.

G. Baudet and D.. Stevenson, "Optimal Sorting Algorithms for
Parallel Computers," IEEE Trans. on Computers, C-27:1, January
1976, 84-87.

.~ .
'.1."'

Bent79

Berr79

Sila81

Bora82

Boro82

Brow80

Cana74

Codd70

Codd82

DeWi79

DeWi82

Fort78

104

J. L. Bentley and H. T. Kung, "A Tree Machine for Searching Prob­
lems," IEEE Intl. Conf. on Parallel Processing, August 1979.

P. B. Berra and E. Oliver, "The Role of Associative Array Proces­
sors in Data Base Machine Architecture," iEEE Computer, March
1979.

G. Bilarde, M. Pracchi, and F. P. Preparata, "A Critique and an
Appraisal of VLSl Models of Computation," Carnegi2-Mellon ConI.
on VLSI Systems and Computations, October 1981.

H. Boral and D. J. DeWitt, "Applying Data Flow Techniques to Data
Base Machines," IEEE Computer, 15:6, August 1982, 57-63.

A. Borodin and J. E. Hopcroft, "Routing, Merging and Sorting on
Parallel Models of Computation," ACM 14th Annual Sym. on
Theory 0/ Computing, 1982,338-344.

S. A. Browning, "The Tree Machine: A Highly Concurrent Comput­
ing Environment," Ph.d. thesis, California Institute of Technology,
Computer Science Dept., January 1980.

R. H. Canaday et al.. "A back-end computer for database
management," Comm. ACM, 17:10, October 1974. 575-582.

E.F. Codd, "A relatioal model of data for large shared data
banks," Comm. ACM, June 1970, 377-387.

E.F. Codd, "Relational Database: A Practical Foundation for Pro­
ductivity," Comm. ACM, February 1982, 109-117.

David J. DeWitt, "DIRECT - A Multiprocessor Organization for Sup­
porting Relational Database Management Systems," IEEE Trans.
on Computers, C-28:6, June 1979, 395-406.

David J. DeWitt, "Applying Data Flow Techniques to Data Base
Machines," IEEE Computer, 15:8, August 1982, 57-64.

S. Fortune and J. Wyllie, "Parallelism in Random Access
Machines," Pro. 10th Annu. ACM Sym. on Theory 0/ Computing.
1978, 114-118.

105

FastBD M. J. Foster and H. T. Kung, "The Design of Special-purpose VLSI
Chips," [E'E'E Computer, 13:1, Jan, 1980,26-40.

Gold78 L. Goldschlager, "A Unified Approach to Models of Synchronous
Parallel Machines,'" Pro. 10th Ann'll. ACM Sym. on Theory of Com­
puting, 1978, 89-94.

HaynB2 Leonard S. Haynes. "Highly Parallel Computing: Guest Editor's
Introduction," IEEE Com.puter. 15:1. (A special issue on Highly
Parallel Computing.) January 1982.

Hirs78 D.S. Hirschberg, "Fast Parallel Sorting Algorithms," Comm. ACM.
21:8, August 1978, 657-661.

HsiCBl Ching C. Hsiao and Lawrence Snyder, "VLSI Algorithms for Rela­
tional Database Operations," Technical Report CSIrTR-375,
Departments of Computer Sciences, Purdue University, October
1981.

HsiD79 David Hsiao and M. J. Menon. "The Post Processing Functions of a
Database Computer," Technical Report TR-79-6, Computer and
Information Science Research Center, The Ohio State University,
July 1979.

Hoey80 D, Hoey and C. E. Leiserson, "A Layout for the Shufile-Exchange
Network," Pro, 1980 Intern. Conf, on Parallel Processing.

Klei81 D. K. Kleitman, T. Leighton, M. Lepley and G. Miller, "New Layouts
for the Shutne-Exchange Graph," Pro. of 13th Annu. ACM Sym,
on Theory of Computing, May 1981, 278-292.

"

Knut73

Kllilg79

Kung80

Donald E. Knuth, The art of computer programming, Addison
Wesley, Vol. 1 & 3.

H. T. Kung, "Let's Design Algorithms for VLSI Systems," Froc.
Canf. VISI: Architecture, Design, Fabrication, California Institute
of Technology, Jan. 1979,65-90.

H. T. Kung and Philip L. Lehman, "Systolic (VLSI) Arrays for Rela­
tional Database Operations," ACM SIGMOD International confer­
ence 19BO.

.',' ,

Kung82

Lang78

Lebm81

Leve!

Lin76

Lint81

Lipt81

Mead80

Mul175

Nass79

Ozka75

106

H. T. Kung, "Why Systolic Architecture," IEEE Computer, 15:1,
January 1982. 37-46.

G. G. Langdon Jr., "A Note on Associative Processors for Data
Management," ACM Trans. on Database Systems, 3:2. June 1978,
148-156.

P. L. Lehman, "A Systolic (VLSI) Array for Processing Simple
Relational Queries," 1981 eMU Conference on VLSI Systems and
Computations. 285-295.

G. LeV', N. Pipenger, and L. G. Valiant. "A Fast Parallel Algorithm
for Routing in Permutation Networks," IEEE Trans. on Comput­
eTS, 1981.

c.s. Lin. D,C.P. Smith, and J.M. Smith. "The Design of a Rotating
Associative Memory for Relational Database Applications," ACM
Trans. on Database Systems, 1:1, March 1976. 53-65.

Bernard Lint and Tilak Agerwala. "Communication Issues in the
Design and Analysis of Parallel Algorithms," IEEE Trans. on
Sojtware Engineering, March 19B1, 174-1BB.

Richard J. Lipton and Robert Sedgewick, "Lower Bounds for
VLSI," Proc. oj 13th Annu. ACM Sym. on Theory oj Computing,
May 1961,300-307.

Carver Mead and Lynn Conway, Introduction to VLSJ systems,
Addison-Wesley, 1980

David E. Muller and Franco. P. Preparata, "Bounds to Complexi­
ties of Networks for Sorting and for Switching," J. ACM, 22:2,
April 1975, 195-201.

David Nassimi and Sartaj Sahni, "Bitonic Sort on a Mesh­
Connected Parallel Computer," IEEE Trans. on Computers, C­
27:1, January 1979.

E,A, Ozkarahan, S.A. Schuster, and K.C. Smith, "RAP - An associa­
tive processor for data base management," Proc. 1975 National
Computer Conference, AFIPS, 379-387.

•

Pate81

Prep78

PrepS!

Schw80

Schu79

Slot70

Snyd81

Snyd82

SongBD

SongB!

Ston?!

StoB76

107

M. S. Paterson. W. L. Ruzzo. and L. Snyder, "Bounds on Minimax
Edge Length for Complete Binary Trees," Pro. of 13th Annu. ACM
Sym. on Theory of Compuf.inq. May 1981, 293-399.

Franco. P. Preparata, "New Parallel-Sorting Schemes," IEEE
Trans. on CO'Tnputers, C-27:7. July 1978. 669-673.

Franco p, Preparata and Jean Vuillemin, "The Cube-Connected
Cycles: A Versatile Network for Parallel Computation," Comm,
ACM, 24:5, May 1981, 300-309.

J. T. Schwartz. "Ultracomputer," ACM Tra.ns. on Programming
Languages, 2:4. October 1980, 484-521.

S. A. Schuster, H. B. Nguyen. E. A. Ozkarahan, and K. C. Smith,
"RAP.2 - An Associative Processor for Databases and its Applica­
tions," IEEE Trans. on Computers, C-2B:6, June 1979, 446-457.

D. L. Slotnick, "Logic per track divices," Advances in Computers,
10, J. Tou, Ed., Academic Press, 1970, 291-296.

Lawrence Snyder, "Programming Processor Interconnection
Structures," Technical Report CS~TR-381, Dep. of Computer
Sciences, Purdue University, October 1961.

Lawrence Snyder, "Introduction to the Configurable, Highly
Parallel Computers," IEEE Computer, 15:1. 47-56.

S. W. Song, "A Highly Concurrent Tree Machine for Database
Applications" IEEE Intl. Can!. on Parallel Processing, 1980.

S. W. Song, "On a High-Performance VLSI Solution to Database
Problems," Ph. D. Thesis, Computer Science Dept., Carnegie­
Mellon Univ., August 19B1.

Harold S. Stone, "Parallel Processing with the Perfect Shutl1e,"
IEEE 'JIrans. on Computers, C-eO:2, 1971.

M. R. Stonebraker et al., "The design and implementation of
INGRES," ACM Trans. on Database Systems, 1:3, September 1976,
169-222.

L0:
l i~;i

I
I

I

••

108

Su75 S.Y.W. Su, and G.J..Lipovski,. "CASSM: A cellular system for very
large databases," ?roc. ACM Intl. Con!. on Very Large Databases,
1975.458-472.

Su79 S.Y.W. Su, L.B.Nguyen. A. Eman, and G.J. Lipovski, "The Architec­
tural Features and Implementation Techniques of the MulticeH
CASSM," IEEE 'flra7l.S. on Computers, C-2B:6. June 1979. 430-445.

Thorn?? C. D, Thompson and H. T. Kung, "Sorting on a- Mesh-connected
Parallel Computer," Comm. ACM. 20:4. 1977.

ThornBD C. D. Thompson. A Complexity Theory for VLSf, Ph.D. Thesis.
Carnegie-Mellon University. Computer Science Dept., August
1980.

"
,
i·

Ullm80

Vali75

Wong76

J, D. Ullman, Pri:nciple of Database Systems, Computer Science
Press. 1980. Chapters 4 & 6,

Leslie G. valiant, "Parallelism in Comparison Problems," SIAM
Journal of Computing, 4:3, Setember 1975, 348-355.

E. Wong and K. Youssefi, "Decomposition - a strategy for query
processing," ACM Trans. an Database Systems, 1:3, September
1976.223-241.

•

APPENDICES

1'--.--
~_:

'i

109

APPENDIX A

HATCHER'S HITONIC SORT·

A.1 The Bitonic Merge

Hatcher's bilonic sort [Batc6B] is based on his·bitonic merge algorithm

which sorts bitonic sequences. A sequence Xo. %1' ...• %n-l is said to be

bilonic if either

(1) there is an index i, O::S::i::sn-l. such that z O ::sz l :S··
.. :S:J; ::: Xi.+l::: .. ::: Xn-l or

(2) the sequence can be shifted cyclically so that condition 1 is satisfied
[Ston?!],

The bitonic merge algorithm applies logn parallel comparison steps. Each

step partitions a bitonic ·sequence into low and high bitonic sequences such

that every item in the low sequence is no larger than anyone in the high

sequence. The correctness of the bitonic merge algorithm. was proved in

[Batc6B] and described as the; following theorem in [Slon71].

Batcher's Theorem Let the sequence xo. Xl' .,., Xn_1 be bitonic and

The two

sequences ao, al • . ,_, Un/2-1 and boo b I' bn/2_1 are both bitonic. and

a;, s b j for all i and j.

-..

,.

Btage 1 et_ 2 Bt_ 3 Bt_ 4

110

o
1
2
3
4
5
6
7
8
S

10
11
12
)~
'~4

)5

I I 1

I 1 ,
T .1

I· II
l'

I

T

I

T

Figure A-l. Sorting network for Hatcher's bitonic sort.

Hatcher's bitoDic sort applies his bitonic merge algorithm. for logn

times. It can be described as a sorting network shown in Figure A-l [Knul73,

p.237]. There are logn bitonic merge stages and logi comparison steps at

the i-th stage. Several adapted versions of the bitonic sort with different

processor interconnections are available.

• The bitonic sort can be done in time (log2n)tR + ~ (log2n + logn)tc
t

with the perfect shuffle interconnection [Ston?!].

• On a mesh-connected computer, the bitonic sort can be done in time

(14(..Jn -1)-41ogn)tR + ~log2n +logn)tc if the sequence is to be

sorted into the shuffled row-major order [Thorn??].

t The actu{I\ time required for one routing step or one comparison step depends on d.i1Ierent
int.erconnections or machines.

111

• On mesh-connected computers. the bilonic sort can be done in time

(14(v'n -1)-41ogn) tR + '~log'n + logn) te + (~ log'n + : logn) t,t if

the sequence is to be sorted into the rowwmajor or the snake-like row-

major order [Nass79].

• With the eee (or the k-Cube) interconnection the bitonic sort can be

done in time O(log'n)(tR + te) (PrepS1].

A 2 E1Ieets of Propagation Delay

In practice, sending data from a location to another location always

takes time. The speed of data propagation in the. chip is many orders of

magnitude slower than the velocity of light [MeadBO]. For circuit perfor-

mance, the propagation delay in long wires is especially important. How-

ever, it is stilt controversial how the propagation delay affects the VLSI com-

putation time. Depending on assumptions, the propagation delay function

p (x) varies Widely: O(log x) ::; p (x) === 0(.:z:2), where :;c is the wire length

[PateSl].

Three interesting propagation delay models discussed in [PateBl,

BilaBl] are described as follows. It is plausible that R-C circuits define a

quadratic propagation delay function. Since resistance and capacitance

both grow linearly with the wire length, the time constant of the transistor

load is thus a quadratic function of the .wire length. However, the propaga-

tion delay is about defined by a tineal" function, provided repeaters are

added to the long wires. If special drivers are used to speed capacitance

*tI denotes the time required to interchange the contents of two registers:.

..-!

I,

I
I,

112

charging then the minimum delay, p(z) = logx, is achievable [MeadBO].

According to [EliaSl], both current and projected silicon technologies

'fall within the realm of the logarithmic propagation:delay function. However.

the special drivers cannot be unlimitedly appUed~ to arbitrarily long wires

due to the limitations on the current density. Thus the most realistic esti-

mate is perhaps P(z) = vx [PateSI]'

In analyzing the asymptotic time complexities. one should be particu-

larly careful about the effect of propagation delay, since the maximum. wire

length may grow with the problem size. Taking the propagation delay into

account, we recompute here the complexities for the bitonic sort with

ditIerent processor interconnections. We consider only the communication

time because the computation time is not so susceptible to the propagation

delay as the former. The fonowing table summarizes the results of our

recomputation.

Table A-l, Effects of propagation delay on the bitonic
sort with different interconnections.

p (z) I c1logx c 2 -..IX

shuffle log"n c llogSn C2vn logn

mesh vn vn vn
CHiP I S!.-vn S!.-vn-vns s s

The average length of the edges in a planar embedding of the shufile-

exchange graph is O(n/log2.n) [ThomBO]. If p (x) = c llogx then the compu-

tation time is c 1Iog(n/ log2n) log2n which is approXimately c llog3n . 1f

p(x) = c 2 -..IX then the computation time is c2"'n/log2n .. log2n which is

113

C2~ logn. Other. powerful interconnections like the eee and the k-Cube

should be as susceptible to the propagation delay as the shuffle-exchange.

On the CHiP computers, the technique of z-location jumps can. be used

to improve the data routing. on the mesh-connected computers (Section

5.3). The improvement asymptotically achieves a speed-up factor up to z,

z S W"C, where w is the corridor width and c the cross-over capability of

the switches. Let s denote the speed-up factor, and thus s ::S z ::S w ..c. In

the table, we introduce another factor a which denotes the propagation

delay required by the z -location jumps. Due to the practical consideration

of high utilization of components. .w..c is bounded by a small constant" say

32. The propagation delay of the z -location jumps is thus relatively con-

stant. Assuming that 1-location jumps take unit time, the factor a should be

small, a -+ 1. Hence we do not distinguish two a's for the two non-constant

propagation delay fWlctions, The CHiP computers may also embed the

shuffle~exchange interconnection, but the effect of propagation delay will be

more severe than that on the shuffle-exchange as shown in the table.

..\.

'- '

114

APPENDIX B

SPRINKLE ALGORlTIIM

Given n processing elements PEo, PEl• PEn.-l and a sequence of

data items distributed over the processing elements. The quantity of data

items is not evenly distributed: there are Xi items at PEt for all i in [0. n -1].

The Sprinkle Algorithm is designed to redistribute the data items so that the

sequence is approximately equally distributed over the processing elements.

[
In-I J [I

n
-
1 IThat is, -L; Xi ~ Xi =::;: -~ Xi , where ~

n i=O n i=O

PEi after the redistribution.

step 1 step 2

o
1
2
3
4
5
6
7

is the number of data items at

step 3

Figure B-1. The communication scheme of logn steps
applied in the Sprinkle Algorithm for n = B.

The redistribution problem is more difficult than the problem of finding

the average of the number sequence [xii which can be best done in O(logn)

steps. However, a communication scheme of O{logn) steps as shown in

115

Figure B-1 is still sufficient for the redistribution problem. In Figure B-1,

each arrow denotes an operation that redistributes the data items at the

two PEs. After the operation, the two PEs both have the same number of

data items. or the one pointed by the arrow head has one more data item.

In tae following example we show how important the directions of the arrows

are.

Example. To redistribute data items among four PEs. the following
figures shows (a) the communication scheme leading to the correct
result. and (b) ::l communication scheme possibly leading to wrong
results.

~t
12~
1

(aJ

5
5
5
5

(0)

4
5
5
6

The Sprinkle Algorithm repeatedly compares the numbers of data items

between pairs of PEs and then ships data items to redistribute them approx-

imately evenly between the pairs of PEs. It involves logn computation steps

to determine the redistribution strategies. In addition, the data shipment

requires more communication time which depends on the original distribu-

lion lXi I and the available processor interconnections. Assume that

0:£ Xi :;::; k, where k is a: small constant. The Sprinkle Algorithm needs at

most (~ +l)<l"logn tR communication time if the appropriate interconnec-
"

tion is provided. With the mesh interconnection. the communication time

required is no morc than (~ +1).,.4V7t tR -

i)"-'j
'~i

'!

\

,,

116

The communication scheme in Figure B-1 is similar to and is actually a

portion of that needed in the bitonic sort (Appendix A). Programming the

CHiP computers to perform the Sprinkle Algorithm thus does not demand

much additional effort.

117

APPENDIX C

THE LACING TECHNIQUE

On the CHiP computers. the maximum number of data paths allowed to

cross the corridors is bounded by w.,.c, with the corridor width wand

cross-over capability c of the switches. If d > 2c, where d is the degree of

incident data paths to the switches. then the maximum bandwidth w.,c is

feasible with an embedding technique called lacing. The technique is to

embed straight data paths as well as zig-zag ones that exploit the maximum

bandwidth. Here we show the lacing technique by an example of embedding

the perfect shuffle interconnection on a switch lattice.

Figure C-1. The schematic perfect shuffie of n data items
between two rows of n/ 2 processors. n ::;: 16.

Figure C-l shows the n perfect shuffle connections between two rows of

n/2 processing elements for n ::::; 16. Notice that there are n/ 2 connections

passing through the dotted bisection line. To embed the interconnection on

the CHiP computers, n/2 horizontal corridors are needed.]f n = 32 then
woo

118

0 0 0 0 0

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0 0

0 0 0

0 0
~

0 0 0-0 0 w
is

0 0 0 ~

"'0 0 0 w
~

0 0 " ~
~ 0

0 0 -.-~~
w~

0 ,,~

0 0 w"'
",0

0 0 0
~~-'-0 0 o ~
""0..

0 0 ~ii:
0 '<10

w '"0 0 So
0 0 w o.

a 0 O&j
0 0 ~ II

0 ')'~
0

0 0 w

0 0 3
""0 ;;:

0

0

0 0

0 0 0

0 0

0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 0

0 0 0 o a a 0 0 0

0 0

0 a a 0 0 0 0 0 0 0 0

0 o· a

119

two corridors are needed to host the interconnection on the switch lattice of

w = 4. c = 2, and d = B. Figure Cw 2 shows the embedding of the perfect

shutTle interconnection for n = 32. Figure C-3 depicts some basic com-

panents which construct the embedding tn Figure C-2.

0 000 000 Zo o 0 0 0 0 0 o 0

0 I 000 0 0 0 0 0,

:.~
000 0 0

O~¥O
0

0; ~;O O.~
0

0.2,. 0 0 0 0 O.z. 0 0 0

00, 0 0 0 0 0 o 0, 0 0 0 0

000 0 0 0 0 0 0 o 0 0 0 0 0 0

Figure C-3. Some basic components constructing the
ernbe dding in Figure C-2.

The four little pieces shown in Figure C-3(b) exploit the n/2 possible

data paths passing through the bisection line in n / 2 horizontal corridors.
w<c

This lacing teclmique can be generalized to embed the perfect shuffle for

larger values of n and on other switch lattices. The two data per processing

element structure excludes the necessity of exchange edges as in the

3huffie-exchange graph. The embedding in Figure C-2 can be extended to

build multistage bitonic sorters as in [Batc68] or unistage bitonic sorters as

in [Ston71] on the CHiP computers .

•

co;

0:

VITA

•

120

VITA

Ching-Chili Hsiao was born in Taiwan, the Republic of China on May 30,

1953. He graduated with honors from the National Chiao-Tung University in

Taiwan with a Bachelor of Science in Computer and Control Engineering in

1975. During the subsequent two years he completed the obligatory military

service in the Chinese Axmy Signal Corps as a second lieutenant in command

of a signal platoon. In the fall of 1978. Mr. Hsiao enrolled as a graduate stu­

dent at Purdue University. The University awarded him a Master of Science

in Co.mputer Science in 19BO and a Doctor of Philosophy in 1982. While at

Purdue he served as a half-time programmer at CINDAS, a teaching assis­

tant, and a research assistant in the Computer Science Department. Mr.

Hsiao is a member of ACM and IEEE Computer Society.

He married Nien-Tsu Shen on June 8. 1980 and has a daughter Elaine

Cathleen (Lan-Yin).

,

	Highly Parallel Processing of Relational Databases (Thesis)
	Report Number:
	

	tmp.1307986960.pdf.1i2kM

