
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1969 

A Mathematical Problem Solving Language and its Interpreter A Mathematical Problem Solving Language and its Interpreter 

Lawrence R. Symes 

Report Number: 
69-044 

Symes, Lawrence R., "A Mathematical Problem Solving Language and its Interpreter" (1969). Department 
of Computer Science Technical Reports. Paper 361. 
https://docs.lib.purdue.edu/cstech/361 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


A MATHEMATICAL PROBLEM SOLVING 

LANGUAGE AND ITS INTERPRETER 

Lawrence R .  Symes 

May ,  1969 

CSD TR 44 



i i i 

TABLE OF CONTENTS 

Page 

LIST OF TABLES '  v 

LIST OF FIGURES vi 

ABSTRACT vi i i 

HISTORICAL REVIEW 1 

Characterist ics of Mathemat ical Problem Solving 
Systems 1 

Five Systems 4 
Cul ler-Fried System 5 
Klerer-May System 6 
The MAP System S 
The Reckoner System 9 
The AMTRAN System 10 

O ther Systems 12 

THE NAPSS LANGUAGE 15 

General 
Ari thmet ic Expression 16 
Assignment Statements 19 

Left Arrow Assignment Statement 19 
Equals Assignment Statement . . .  21 
Funct ion Assignment Statements 22 

Equat ions 23 
SOLVE Statement 24 
Boolean Expressions 27 
Condi t ional Statement 28 
Iterat ion Statement 28 

Iterat ion Variables 30 
Accuracy Statement 31 
Type Statement 32 
Declarat ions 34 
Procedures 37 

INTERPRETER STRUCTURE 41 

Over-al l Structure of the System 41 
Real and V irtual Memory 45 



i v 

Recursive Operands 74 

General Prob lems 89 
Left Arrow Assignmen t S ta temen t : A •*- 91 

F ( X
1
, X

2 >
. . .

>
X

N
) - 99 



V 

LIST OF TABLES 

Table Page 

1 .  Comparison of Features of Six Systems 13 

 Flags and A t tribu te Numbers at Various 
Data Types 53 

Append ix 
Table 

B l .  Operat ion Codes 128 



vi 



v i i 

F igure Page 

21 ,  Symbol ic Funct ion Eva lua t ion F l ow .  82 

Append ix 
F igure 

A5 .  Comp lex Doub l e Precision Scalar Data S t ruc ture . .  110 

A10 .  Data S tructure of Left Arrow Funct ion 121 

A12 .  Name Con t ro l B lock of an Array of 



1 



2 



3 

the notat ion and i t is s imp ler .  

Second ,  clerical statements used for dimensioning 

arrays and declaring variables are removed from the 

.source l anguage .  These are tasks which the computer 

can easi ly perform bu t which are a constant source of 

errors if the user does them .  

Th i rd ,  the special purpose languages permi t the 

direct man ipu lat ion of quant i t ies other than scalars .  

These may include numeric arrays ,  funct ions ,  and arrays 

of funct ions .  Th is further al lows the source language 

to resemble more closely "text book" form .  Th is again 

leads to fewer statements and hence fewer opportun i t ies 

for errors in a program .  

Fourth ,  solve statements are included in the source 

l anguage .  These statements permi t the user to state a 

problem he w ishes to solve in a concise ,  natural form .  

The user may include parameters such as in i t ial values ,  

the accuracy des ired ,  the method he would l ike used ,  

and he may omi t any or al l of the addi t ional parameters .  

The solve statements invoke rout ines from a bui l t-in 

l ibrary .  They at tempt to solve the user ' s problem auto-

ma t i ca l ly .  They request addi t ional informat ion as needed 

and mon i tor the accuracy of the resul ts in order to insure 

that it remains w i th in the specified l im i ts .  The inclu-

sion of these solve statements great ly reduces the burden 

normal ly imposed on the user .  To solve commonly occurring 



problems w i th the aid of the solve statements ,  the user i 

on ly required to know how to define the equat ions for the 

problem; he is not required to know the numerica l analysi 

involved or even the method used .  The method is selected 

by the system and the accuracy of the resul ts is assured .  

F i f th ,  on-l ine communicat ion between the system ana 

the user is prov ided .  Tele types ,  graphical d isp lay 

dev ices and special ly designed consoles are used .  The 

use of these dev ices bring the computer and the user 

closer together and consequent ly improve the user ' s 

efficiency .  

Sixth ,  incremental execut ion of a program is al lowed 

Th i s ,  combined w i th the use of on-l ine t erm ina ls ,  creates 

a closed loop between the user and the system .  The user 

is able to mon i tor h is program during execut ion and the 

system is able to request informat ion from the user and 

poirt out errors when they ar i se .  Th is el iminates much 

of the t ime that is wasted in preparing and submi t t ing 

runs of a program which are unproduct ive because the 

user tried several frui t less cases ,  has an incorrect 

program ,  or has forgot ten to ini t ial ize a var iab l e .  

Five Systems 

Five of the mathemat ical problem solving systems 

wh i ch have been designed and implemented are: the 

Cul ler-Fried System (see [1] ,  [20]) ,  the K lerer-May 



5 

System (see [7] ,  [8] ,  [9] ,  [10] ,  [20]) ,  the MAP System 

(see [6] ,  [20]) ,  the Lincoln Reckoner System (see [5] ,  

[20] ,  [25] ,  [291) ,  and the AMTRAN System (see [20] ,  

[151> [30]) .  Al l of these systems have at tempted to 

make the computer more accessible to the engineer and 

research scien t ist .  But each system is un ique in the 

sense that they do not equal ly employ the six general 

techn iques ment ioned above .  Each of the systems ,  how-

ever ,  is general enough so as not to be restricted to 

accept ing prob lems in a single f i e ld .  We examine some 

of the un ique features of each of these five systems .  

Cul ler-Fri ed System 

Work began on the Cul ler-Fried System in 1961 at 

Thompson Ramo Wooldridge and has been cont inued at the 

Un iversi ty of Cal iforn ia ,  Santa Barbara .  

The source language for the Cul ler-Fried System is 

a form of prefix pol ish no ta t ion ,  w i th the operator 

preceding the operands .  Thus the source language does 

not resemble normal mathemat ical notat ion and consequent ly ,  

for the nov i ce ,  the system is difficul t to use .  

Some clerical statements exist in the Cul ler-Fried 

Sys ten .  Before a vector is referenced ,  for examp le ,  

storage must be al located for it by the use of a special 

operator .  

A level number is associated w i th each operator .  The 

level number specifies the type and structure of the 



6 

operands .  Thus the level number is a type of impl ici t 

dec lara t ion .  

Funct ions may be manipulated in the Cul ler-Fried 

System by loading an X Register wi th the vector for the 

independent variable and a Y Register w i th the vector 

for the dependent var i ab l e .  

The user has several but tons on the console to which 

he can assign rout ines he has constructed .  Th is provides 

a means of adding operators to the system at execut ion 

t i me .  

Klerer-May System 

The K lerer-May System has been developed at Columbia 

Un iversi ty ' s Hudson Laboratory and has been avai lable 

since 1963- " 

The most striking feature of the Klerer-May System 

is i ts input forma t .  It is the only system of the five 

to employ two d imensional inpu t .  Ini t ial ly the System 

used a F lexowri ter ,  but work has been done to incorporate 

a graphic display device into the system .  By using two 

d imensional input the source tex t appears in i ts standard 

mathemat ical form .  This resul ts in self-document ing 

programs ,  but requires the user to learn how to manipulate 

a more compl icated input dev i ce .  

Variables are one character in l eng th .  Th is permi ts 

impl ied mu l t ip l icat ion wi thout hav ing to include rules 



7 

such as a blank must appear between the variable names .  

If a user wishes to employ variable names of more than 

one character He must declare them to be special 

var iab l es .  

A l l variables have an ini t ial value of zero .  There-

fore the user never can have an undefined variable in h is 

program .  This feature is of debatab le value in an on-

l ine system .  For w i th an on-l ine system the user has the 

ab i l i ty to assign values to variab les he has forgo t ten to 

ini t ial ize at execut ion t ime ,  but if al l the variab les 

are ini t ial ized to zero this error cannot be de tec ted .  

The Klerer-May System is designed to be self-teach ing 

One of the ways th is is accompl ished is to g ive the user 

the system ' s interpretat ion of h is program in a Fortran-

l ike intermediate language .  

When a program is compi led into internal t ex t ,  semi-

automat ic dimensioning of arrays is performed .  The bounds 

of arrays are determined from the maximum values assumed 

by their ind ices .  When the values of index bounds are 

dynam ic the user must include a declarat ion statement 

specifying what the largest values of the index bounds 

w i l l be .  .  Therefore the size of arrays is establ ished at 

comp i le t ime and is not dynamic during execu t ion .  

The Klerer-May System has received a l imi ted amount 

of effort on solve statements and the associated rout ines 

for automat ic numerical ana lys is .  Instead ,  h igh level 



8 

operators such as integrat ion have been included in the 

system .  

> 

The MAP System 

MAP (Mathemat ical 4
n a

l y
s

i
s

 wi thout Programming) 

operates wi thin the Massachuset ts Inst i tute of Technology 

Compat ible T ime Sharing System .  It has been used for 

research and teaching at M . I . T .  since m id 1964 .  

The most ,  d ist inct ive feature of MAP is the dialogue 

between the user and the system .  After each statement 

the system responds wi th the message "COMMAND PLEASE" to 

signify that it is ready to con t inue .  Th is feature is 

reassuring to the nov ice ,  but can be . annoying to the 

experienced user.-

To insure that the user interacts frequent ly wi th 

the system no logical operators have been included in 

the l anguage .  Th is forces the user to interact each t ime 

he w ishes to compare the values of two variab les .  

The l inear source language uses the normal infix 

no tat ion .  Equat ions and statements resemble normal 

mathemat ical notat ion except for the fact that equat ions 

must be enclosed in paren thesis .  

The system is best sui ted for the manipulat ion of 

funct ions of one variab le .  Funct ions are defined by 

symbol ic formu las ,  bu t the values for the funct ions are 

stored in tabular form .  When a funct ion is defined the 

user is asked to specify the domain of the funct ion and 



9 

I 

the interval size for the tabular values .  The ' .system 

keeps track of the funct ion and the independent variable 

au t omat i cal ly .  

When a funct ion is defined in terms of ano ther 

func t ion ,  the system determines the domain of the 

func t ion being defined from the domain of the funct ion 

appearing in i ts def in i t ion .  

Funct ions wh ich are defined in the system (eg .  

sqrtf) use the convent ion establ ished in Fortran II of 

hav ing the name of the funct ion ending in an f .  

The Reckoner System 

The Lincoln Reckoner System has.  been developed at 

the Lincoln Laboratory and has been used by the labora-

tory staff since early 1966 .  

t 

The Reckoner System uses a special ly constructed 

t erm ina l consist ing of the Lincoln Wri ter and a CRT 

d isp lay for graphic ou tpu t .  Hard copy graphical output 

is avai lable from an on-l ine Xerox pr in t er .  

The system consists of a l ibrary of rou t ines and the 

language consists simply of a set of subrout ine cal ls .  

Each statement is the name of a rout ine fol lowed by the 

names of the operands .  Rout ines are avai lable to permi t 

the user to define his own rou t ines .  

The main emphasis of the rout ines is in the area of 

mathemat ical computat ions on arrays of da t a .  



10 

The various rout ines are control led by a supervisor 

cal led the Med i a tor .  The rou t ines are designed in such a 

fash ion that the resul ts of one rout ine are avai lable to 

any o ther rou t ine in the system .  As soon as a statement 

is entered into the system ,  control is turned over to the 

appropriate rou t ine .  The user is able to start typing in 

h i s next statement whi le the previous statement is being 

execu ted .  Th is overlap resul ts in a decrease in response 

t ime and only causes confusion if an error is detected in 

the previous statemen t .  

Funct ions cannot be manipulated direct ly in the 

Reckoner System ,  However ,  they may be man ipu lated as two 

vec tors ,  wi th the user responsible for the dependency 

between the dependen t and independent var iab l es .  

The AMTRAN System 

AMTRAN (Automat ic Mathemat ical TRANS lat ion) has 

been developed at the NASA Marshal l Space F l igh t Cen ter ,  
l 

and has been avai lable there since early 1966 .  

AMTRAN has employed several types of term inals: 

te le types ,  typewri ters ,  and some special ly constructed 

t erm ina ls .  The current term inal consists of a keyboard ,  

a typewri ter ,  and two CRT d isp lay dev i ces .  Statements 

are entered by means of the keyboard which consists of 

a standard typewri ter keyboard ,  supplemented by a number 

of user assignab le keys and a set of special funct ion 

operator keys w i th labels such as SIN ,  d /dx ,  e tc .  



n 

One scope is used to d isp lay the user ' s program as 

he constructs i t .  When he is sat isfied that the l ine he 

has constructed is correct ,  he releases i t to the system .  

At th is t ime a copy of the statement is put on the type-

wr i t er .  Computed resul ts may be put on ei ther the scope 

or the typewri ter .  The second scope is used for graphical 

ou tpu t .  

Th is type of terminal has the advantage of providing 

the speed of CRT d isp lay dev ices to communicate wi th the 

user ,  wh i le also providing a hard copy of the program 

l i s t ing .  

The user assignable keys on the console are avai l-

able for creat ing new opera tors .  The user can construct 

a rout ine in AMTRAN and then assign it to such a key .  In 

th is way the number of operators can be expanded .  This 

feature was derived from a simi lar feature in the Cul ler-

Fried Sys tem .  

The AMTRAN source language employs infix notat ion 

for operators .  The several funct ion operator keys 

prov ide a w ide variety of h igh level opera tors .  Impl ied 

mu l t ip l icat ion is permi t ted if a variable name is entered 

through a special funct ion key .  

The notat ion used for an element of an array is not 

natural ,  A SUB 1 ,  refers to the first element in the array 

A .  However ,  arrays may be manipulated direct ly as a un i t .  



12 

Funct ions may be defined by a symbol ic formu l a ,  but 

the independent variable must be a vector .  The values 

of the funct ion are then computed for the values of the 

independent variab le ,  and the funct ion name then deno tes 

a vec tor .  The user is responsible for keeping track of 

the dependency between the dependen t and the independent 

variab les .  To obtain a value of a funct ion the funct ion 

name is referenced w i th a subscrip t .  

AMTRAN has included several solve type statemen ts .  

Some of the solve statements in the system dea l wi th 

solving systems of simul taneous or d ifferen t ial equat ions ,  

determ in ing the zeros of funct ions and performing inter-

po l a t ion .  

Other Systems 

Several add i t ional systems have been developed in 

the area of mathemat ical problem so lv ing .  Some of them 

are: EASL (see [21] ,  [22]} ,  POSE (see [21] ,  [22]) ,  

APL (see [33]) ,  VENUS (see [12]) ,  REDUCE ' (see [4]) ,  

JOSS (see [24]) ,  ICES (see [14] ,  [15]) ,  and MATHLAB 

(see [2]) .  



13 

Table 1 .  Comparison of Features of Six Systems 

SYSTEM 
'  CULLER KLERER MAP RECKONER AMTRAN NAPSS 

INTERNAL 
PROCEDURES ,  

FEATURE FRIED MAY 

NO YES NO NO NO NO 

NO YES YES NO YES YES 

YES NO YES POOR YES YES 

YES NO NO YES YES YES 

NO YES NO NO YES YES 

YES NO NO NO YES YES 

NO YES NO NO YES YES 

NO NO NO NO NO YES 

NO NO NO NO NO YES 

NO NO NO NO NO YES 

YES NO YES YES YES YES 

NO NO NO YES " YES YES 

YES YES NO POOR YES YES 

NO NO NO NO NO YES 

YES YES YES YES YES YES 

TWO-DIMENSIONAL 
INPUT 

SELF-EXPLANITORY 
SOURCE LANGUAGE 

FUNCTION 
MANIPULATION 

AUTOMATIC ARRAY 
ARITHMETIC 

IMPLIED 
MULTIPLICATION 

COMPLEX 
ARITHMETIC 

BUILT-IN HIGH 
LEVEL OPERATORS 

ITERATION 
VARIABLES 

EXTENDED ARRAY 
EXPRESSIONS 

SYMBOLIC 
ASSIGNMENT STAT .  

DETECTION OF 
UNDEFINED VARS .  

SOLVE 
STATEMENTS 

LOOP 
CONTROL 

EXTERNAL 
PROCEDURES 



Table 1 (cont ' d .) 

14 

FEATURE 

LOCAL 
VARIABLES 

GLOBAL 
VARIABLES 

ACCESS TO 
PROCEDURAL LANG .  

CULLER KLERER MAP 
FRIED MAY 

NO NO NO 

YES YES YES 

NO NO MAD 

RECKONER AMTRAN NAPSS 

YES NO YES 

YES YES YES 

OWN NO NO 



15 

THE NAPSS LANGUAGE 

General 

The NAPSS language offers the user a language in 

wh ich he can manipulate di rect ly the basic mathemat ical 

en t i t ies .  These include real and complex numbers ,  

funct ions (which may be symbol ic or tabu lar) ,  vectors 

and matr ices (whose elements may be numbers or funct ions) ,  

and equat ions composed of any of the preceding ob j ec t s .  

The language is designed for a standard conversat ional 

t erm ina l ,  teletype or graphic conso le ,  and has 63 

characters .  It at temp ts to resemble "text book" mathe-

mat ical notat ion as closely as possible w i th in the 

constraint of a l inear no ta t ion .  It el iminates many of 

the art ificial rules that are included in o ther languages ,  

w i thou t imposing on the language ' s flex ib i l i ty or power .  

NAPSS is intended primari ly as a problem statement 

language for use in a conversat ional ,  incremental ly 

execut ing mode .  However ,  it al lows the user to construct 

in ternal and external procedures and thus NAPSS also has 

the power of a procedural language .  



16 

NAPSS incorporates automat ic procedures to solve 

basic mathemat ical prob lems such as systems of l inear 

equat ions ,  boundary-value prob lems ,  and zeros of 

func t ions .  The user need only supply the system w i th 

a descript ion of the problem and ask for i ts so lu t ion .  

The system then automat ical ly solves the problem by means 

of po lyalgori thms .  During the so lu t ion ,  i t mon i tors the 

accuracy of the resu l ts .  

A detai led descript ion of the syntax and semant ics 

of the NAPSS language is given in [28] .  Here we examine 

some of the unique features of the l anguage .  

Ari thmet ic Expression 

The ari thmet ic expression in NAPSS al lows the direct 

man ipu lat ion of scalars ,  vectors ,  arrays and func t ions .  

The operators (+ ,  / ,  0 have their normal mathe-

mat ical mean ings and operate on the operands wi thout any 

regard to type or mode .  For examp le ,  a real array may be 

mul t ipl ied by complex scalar and the resul t is a complex 

array .  Combinat ions which are not defined mathemat ical ly 

are not perm i t t ed .  It is not permissible to mu l t ip ly an 

n by m array A t imes a 1 by m vector V because they do no t 

conform .  Bu t the ari thmet ic expression ,  A * V
1

,  is val id 

where '  deno tes transposi t ion .  

Impl ied mul t ipl icat ion may be used in ari thmet ic 

expressions in NAPSS where no ambigui ty ar ises .  

Ambigui t ies stem from the fact that variable names may be 



17 

more than one character in l eng th .  Blanks are 

significant in NAPSS to al low for impl ied mu l t ip l icat ion ,  

Examp le 

2A ,  A2 + C ,  and A B + C 

mean 

2 * A ,  A2 + C ,  and (A * B) + C respect ively 

There are a number of operators in addi t ion to the 

five basic operators ment ioned above .  Some of them are: 

/ / integer d iv i s ion ,  | |  absolute value ,  '  derivat ive of 

un ivariate funct ions ,  '  transposi t ion of arrays and 

vec tors ,  J in tegrat ion ,  and DER part ial d ifferen t ia t ion .  

Examp les of these operators are: 

i) DER( XT3 + A Y + G(X)} / (XT2 ,  Y) | X-2 ,  Y-4 ) 

in NAPSS denotes 

6
3

( X
3

 T A*Y + G(X)) 
2V 

6 XfiY 
X=2 

i i ) | F * ' ( 3 • 5 ) J ( X t 2 + G ( X ) ) / X, (X-L TO 3 ) | 

in NAPSS deno tes 

(d
2

F(X? 
d

2

X 

There are several me thods for construct ing vectors 

and arrays in ari thmet ic expressions: 

i) (1 , -3 ,2 ,6 , -10) 

i i) (1 ,2 , . . . ,20) 

i i i) (1 FOR 20 TIMES) 

iv) (2+It3 FOR I - 1 TO N BY 3) 



id 

v) ([0:5] ,  1 TO 6) 

v i) ([1 ,1:11] ,  3 .5 TO 4 .5 BY .1) 

vi i) (3-5 TO 4 .5 BY .1) '  

vi i i) ([-1:3 ,4] ,  (1 FOR 4 TIMES) ,  (-2 , -1 . 75 , . . . ,  

-1 . 25) ,  (3 TO 6) ,  (-10 , -20 , -30 , -40)) 

The first five examples are vectors ,  wh ich are 

•considered to be column vectors in NAPSS .  The lower 

bounds of the index of the first four vectors is 1 by-

defau l t .  The index of the fifth vector has a lower 

bound of 0 and an upper bound of 5 .  Vectors six and 

seven are both row vectors and they are iden t ical .  The 

eighth example is a square array wi th the .first index 

ranging from -1 to 3 and the second from 1 to 4 .  The 

array is 

1 1 1 1 
-2 -1 .75 -1 .50 -1 .25 
3 4 5 6 

-10 -20 -30 -40 

A single e lemen t ,  a row ,  a column or any arbi trary 

cont iguous subarray may be extracted from a numerical 

array .  Thus ,  if A is a two-dimensional array ,  w i th the 

first subscript ranging from -3 to 3 and the second from 0 

to 3 ,  then A[0 , *] deno tes the 1st row of A ,  and A[-l :2 , l] 

deno tes the column vector consist ing of the 3rd through 6th 

elemen ts of the 2nd column of A .  

Ari thmet ic expressions which yield array resul ts may 

be subscripted in the same fashion as variab les .  For 



19 

examp le ,  ( A * B + E ) [ I , J ] and (AT 2 ) [ I I : I 2 , * ] are both val id 

expressions .  

NAPSS also permi ts arrays of funct ions to be mani-

pulated an element at a t ime: 2f '  (3 • 5)[1 ,3] is the 

NAPSS equivalent of 2f '  , ,(3.5).  
-L ? 3 

Assignment Statements 

The el iminat ion of mandatory variable declarat ions in 

NAPSS means that the associat ion of at tributes is performed 

when a variable is assigned a va lue .  The at tributes 

associated wi th a variable come from the expression 

assigned to i t .  

Left Arrow Assignment Statement 

There are two types of assignment statements in 

NAPSS .  In the f irs t ,  the variable on the left is 

separated from the expression on the right by a left 

arrow (.-).  Such variables are cal led left arrow variables 

or simply variab les .  The left arrow indicates that the 

ari thmet ic expression on the right is evaluated and i ts 

value is assigned to the variable on the l ef t ,  simi lar to 

wha t FORTRAN 'S = sign ifies .  The at tributes assDciatea 

w i th the variable on the left are obtained from the 

at tr ibu tes of the value of the expression on the r igh t .  

Th is feature means that a variable may denote a real 

scalar at one point in a program and a complex array in 

ano ther .  



20 

Example 

A _ 2 ,  I - (-1)t .5 

B ~ ([3 ,3] ,  1 ,2 9) 

A ~ A*I*B 

After l ine 3 has been execu ted ,  A is a square complex 

array .  

There are two statements on l ine 1 .  The first is 

ended wi th a comma .  A s tatemen t ,  except for a few special 

cases noted l a t er ,  need not be terminated wi th any special 

character if i t is not fol lowed by anything on the same 

l ine .  If something does fo l low the statement on the same 

l ine ,  then a comma is needed to separate statemen ts .  

The two statements A[ l , *] - ( 1 FOR N TIMES ),  

A[10 , *] 10A[1 , £] create a square array wi th 10 rows and 

10 co lumns .  The elements in rows 2 through 9 are set to 

zero because no values have yet been assigned to them .  

When a variable is assigned a matrix or a vector and no 

bound informat ion is given for the variab le ,  as is the 

case here for the column bounds ,  the bounds are 

contextual ly defined as are the at tributes from the 

expression on the left of the arrow .  If no bounds are 

g iven ,  the lower bound is set to 1 for created vectors .  

So the first and second indices of A vary between 1 and 10.  



21 

Equals Assignment Statement 

In the second type of assignment statemen t ,  the 

equals assignmen t ,  the variable on the left is separated 

from the expression on the right by an equals (=).  Such 

variab les are referred to as equals var iab l es .  In this 

type of assignment the equals variable is set 

•symbol ical ly equivalent to the right hand expression ,  

instead of being assigned i ts current va lue .  Thus the 

variable names in the expression on the right do not have 

their values subst i tuted for them when the assignment 

statement is execu ted .  Values are only subst i tuted for 

the variable names in the expression when a numeric value 

of the variable on the left is needed; eg .  when i t appears 

in an expression to the right of an - or in an output 

s ta temen t .  

Example 

X — 4 ,  Y - 2X ,  Z - 2X 

X - 5 ,  W - Z ,  V - Y 

The resul t is V=10 and W=S .  

When an equal sign is used ,  the ari thmet ic expression 

on the right must not contain the variable appearing to 

the left of the equals s ign ,  nor may any of the variables 

appearing in the ari thmet ic expression be symbol ical ly 

equivalent to an ari thmet ic expression containing the 

variable name on the left of the equals s ign .  Examples 

of i l legal statements are: 



22 

i) N = N + 1 

i i) B = X + A , A = B + C 

Bo th wou ld resul t in an error message .  

A series of assignmen t s ta temen ts may be wr i t t en by 

us ing more than one variab le name ,  w i th accompany ing 

arrow or equals sign appearing to the left of an ari th-

me t i c express ion .  For example X - A = B - 2Xt3
 +

 k 

is equ ivalen t to X - 2Xr3 + 4 ,  A = 2Xr3 + 4 ,  B -2Xt3 + 4 .  

Funct ion Assignmen t S tatemen ts 

Funct ions may be assigned expressions by us ing ei ther 

a left arrow or an equals s ign .  Funct ions defined to the 

left of an = sign are cal led equals funct ions and funct ions 

def ined to the l ef t of an - are cal led left arrow func t ions .  

When the arrow is used ,  al l non-parame ter variab les in the 

expression on the right have the curren t values 

subst i tu ted for t hem ,  wh i le when the equals sign is used 

they do no t .  Thus the use of the - and the = when 

def in ing a funct ion has the same mean ing as when defin ing 

a simple var i ab l e .  Examp les are : 

i ) A - 3 
F(X)[A+ l ] - X?A + COS(X) ,  ( -2 < X < 10 ) 
H(V , W) - V r2W ,  { -10 < V < 4 AND W > 0 ) 
K - 6 ,  A - 7 
G{Y) - F{Y)[41 + 5H(Y ,K } 

L ine 5 defines G(Y) to be the func t ion Y
3

 + COS(Y) + 30Y
2 

on the in terval (-2 , 4)• Since no expl ici t domain is 

def ined for G ,  i t is the in tersect ion of the doma ins of 

F^ and H .  



23 

i i) A - 2 ,  B - 6.5 
F(X ,Y) = A*X?2Y ,  (X:2+Yt2<4 OR 4<=X<5 AND -

0<Y<1} = X i 2+Yr3
+

B ,  (Y>2+Xt2) -
= Xi3-{A+B)Yt3 

(The - deno tes cont inuat ion . ) 

Th is statement .is equivalent to the usual mathemat ical 

defin i t ion : 
2 7 2 

f A * Y ,  X* -5- Y < 4 
Ffv y) = A ,* X % Y ,  4 < X < 5

9
AND 0 < Y < 1 

X ,  + Y - 3 ,  Y > 2 X 

X^ + (A + 3)Y ,  ELSEWHERE 

Tabu lar funct ions are defined in NAPSS by means of 

the tab le statemen t .  The various forms of the table 

statement al low defin i t ions to be made a t equal ly or 

unequal ly spaced points in one or more variab les .  

Examples of th is statement are: 
i) Z ~ (7 ,9 ,12) 

TABLE( F(X , Y) ,  (1 ,2 ,3) ,  (4 ,6 ,7) ,  Z ) 

defines F at 3 points: F(4 ,7) = 1 ,  F(6 ,9) = 2 ,  F(7 , 12} = 3 

i i) X - (1 ,2),  A - 3 TABLE( F(X , Z) ,  X t2 + Z + A ,  X BY Z - (3 ,4 ,5) ) '  
defines F at 6 points: F(l ,3) = 7 ,  F(l , 4) = 6 ,  F(l ,5) = 9 

F(2 ,3) = 10 ,  F(2 ,4) = 11 ,  F(2 , 5) = 12 

When evaluat ion of a table funct ion is requested at 

a non-tabulated po in t ,  interpolat ion is used (if possib le) 
to ob tain the va lue .  

Equat ions 

A NAPSS equat ion consists of two ari thmet ic expressions 

separated by an equals sign (=) .  An equat ion label 

consists of a variable name ,  a per iod ,  fol lowed opt ional ly 



24 

by an in teger .  A colon is used to separate the label 

from the equat ion .  The equat ion label may be used in 

p lace of the equat ion .  The assignment of an equat ion 

to a label is simi lar to an equals assignment s ta temen t .  

The associat ion is done at execut ion t ime and an equat ion 

may be assigned d ifferen t equat ions at various t imes .  

The equat ion label deno tes the last equat ion assigned to 

i t .  

Examp le 

EQ1 . 1 : '  2SIN(X) = A X - 2XT2 
EQ1 . 2 : A X T 2 + B X + C = 0 

EQ1 .1 : 2C0S(X) = A X . -"2Xt2 

SOLVE Statement 

The solve statement is the most powerful statement 

in the NAPSS l anguage .  It gives the user a means of 

concisely stat ing the problem he w ishes to so lve .  The 

user normal ly need not concern h imself w i th how the 

problem is so lved .  The system selects the method or 

me thods to be used and mon i tors the errors for h i m .  

The solve statement has the form : 

SOLVE EQUATIONS .  FOR VARIA3LES ,  OPTIONS; 

where EQUATIONS represent the equat ions to be so lved ,  

VARIABLES indicate the variables to be determ ined ,  and 

OPTIONS represents a l ist of opt ional informat ion .  

The solve statement is one of the statements which 

a lways must be terminated w i th a sem i-co lon .  Th is al lows 



the solve statement to extend over several l ines w i thou t 

being expl ici t ly con t inued .  A simple example is: 

SOLVE XT 2 - 4 = 0 ,  FOR X; 

w i l l set X[ 1 ]-2 and X[2>--2 .  

Whi le the detai ls of the problem solut ion may be left 

completely to the system ,  the user may . exercise consider-

ab le control by providing addi t ional informat ion ,  OPTIONS ,  

of the fo l low ing types: 

WITH indicates values to .be assigned to variables 

in the equat ions .  If absen t ,  the current 

values of the variab les are used .  

ON ind icates the range over wh ich solut ions 

are des ired .  If absen t ,  any solut ion is 

accep t ed .  

NUMBER ind icates the max imum number of solut ions 

.  des i red .  If absen t ,  the system looks for 

al l possible solut ions in the desired 

range .  

USING indicates a part icu lar method to be used .  

If absen t ,  the system selects a method or 

methods for solving the given prob l em .  

The polyalgori thms uee intermediate resul ts 

to decide which methods to use in the 

current s i tuat ion .  '  

TYPE indicates the type of problem or equat ion 

to be solved (eg .  l inear system ,  po lynom ia l ,  

boundary va lue) .  If absen t ,  the system 



26 

determ ines the type .  

ACCURACY indicates the number of d ig i ts of accuracy 

desired in the so lu t ion .  If absen t ,  then 

ei ther the accuracy specified by an 

accuracy statement (if presen t) ,  or the 

standard system accuracy is used .  

STEP ind icates the ini t ial step size to be used 

(when mean ingfu l ) .  If absen t ,  the in i t ial 

• step size is determined by the accuracy 

des i red .  

Examp les 

i) SOLVE TAN(X) = 2X-A ,  FOR X ,  WITH A-PI ,  ON 

0 < X < PI; 

Th is f inds the un ique solut ion of t an . X - 2 X + r r = 0 

.on the in terval (0 ,TT). 

i i) EQ . l : XT2 + YT2 = 4 ,  EQ.2: ,  X = (Y-1 .5)
 f

2 

SOLVE EQ . l ,  EQ . 2 ,  FOR X ,  Y , O N 0 < X AND 0 < Y ,  

TYPE POLYNOMIAL SYSTEM; 

Th is finds ' ,all solut ions of the system: 

X
2

 + Y
2

 = 4 ,  X = (Y-1 . 5)
2 

which fa l l in the first quadran t .  If NUMBER 1 were used ,  

on ly one solut ion-would be ob tained .  

i i i) SOLVE A X = LAMBDA X ,  FOR LAMBDA ,  X ,  

WITH [3 ,3] ,VI ,0 ,0 ,3 ,2 ,0 , -1 , -1 ,1) ,  

ACCURACY 5 DIGITS ,  NUMBER 3; 



27 

Th is wi l l obtain al l 3 eigenvalues and eigenvectors of 

- 1 0 0 

3 2 0 

-1 -1 1 

LAMBDA w i l l be set equal to the vector (-1 ,2 ,1) and X 

w i l l be the 3 by 3 array w i th eigenvectors as columns: 

0 0 

X = -
k

l 
k

2 0 

0 k
2 

k

3 where kj_ ^ 0 ,  i = 1,2,3 

Boolean Expressions 

There are no boolean or logical variables in NAPSS .  

However ,  a boolean expression may be formed by connect ing 

two ari thmet ic expressions wi th one of the relat ional 

operators = ,  "">=,  < ,  <= ,  >
r :

,  > .  

When two symbols are used to create a single 

relat ional operator ,  the symbols may appear in ei ther 

order .  Thus >= is equivalent to => .  

The operands of the relat ional operators may be 

ei ther arrays or scalars .  If the operands are two arrays 

they must be of equal size and the operat ion is performed 

element by e lemen t .  

Boolean expressions may be connected w i th one of the 
A 

b inary logical operators AND or OR and negated w i th the 

log ical operator-i .  



28 

Condi t ional Statement 

The NAPSS condi t ional statement is simi lar to the 

condi t ional statement in ALGOL ,  and has the form: 

IF BJ3 .  THEN S
1
,  S

2
, . . . ,  S

n
 ELSE T-j_,  Tg ,  .  . .  ,  T

m
; 

where B ..E.  is a boolean expression and S]_,  S
2
, . . . ,  S

n 

and T
l f
 T

2
 , . . . ,  T

m
 are NAPSS s tatemen ts .  

In addi t ion to permi t t ing impl ici t con t inuat ion ,  

the semi-colon at the end of the condi t ional statement 

solves the "dangl ing ELSE" prob l em .  When there is no 

ELSE clause the semi-colon is placed after the statement 

S
n
.  

Examples 

i) IF X = 2 THEN IF X = 3 THEN Y - 4; ELSE Y - 5; 

i i) IF X = 2 THEN IF X = 3 THEN Y - 4 ELSE Y «- 5; ; 

In example i) the ELSE clause is associated wi th the 

f irst IF because the second IF is terminated after i ts 

THEN clause w i th a sem i-co lon .  In example i i) the ELSE 

clause is associated wi th the second IF .  

Iterat ion Statement 

The i terat ion statement has the form : 

I . S .  D0 S i ,  S
2
, . . . ,  S

n
; 

where I . S .  represents one of the many forms of an i terat ion 

specificat ion and S^ ,  S2 , . . . ,  S
n
 are NAPSS s tatemen ts .  

The extent of the i terat ion is indicated by the sem i-co lon .  



The various i terat ion specificat ions are a general iza-

t ion of those appearing in ALGOL : 

i) FOR T-0 ,  1 ,  16 ,  -3 ,  5 (T assumes values 0 ,  1 ,  
16 ,  -3 ,  5) 

i i} FOR Q~ .1 TO .9 BY .3 (Q assumes values .1 ,  
• 4 ,  -7) 

FOR Qr-2 TO 2 (Q assumes values -2 ,  
-1 ,  0 ,  1 ,  2} 

FOR Q-2 TO -2 (Q assumes values 2,  1,  
0 ,  -1 ,  -2) 

FOR Q--3 ,  -1 , .  . . ,  6 • (Q assumes values -3 ,  

-1 ,  1 ,  3 ,  5} 

The last example is equivalent to FOR Q--3 TO 6 BY (- l-(-3)) 

i i i} Any combinat ion of expressions from above which 

fol low the — : 

FOR C-0 ,  1 ,  16 ,  -3 ,  5 ,  -1 TO .9 BY .3 ,  -2 ,  

TO 2 ,  -3 ,  -1 , .- - ,  6 ,  2,  TO -2 

iv) FOR 72 .4 TIMES {loop is executed 72 t imes) 

v) WHILE X>0 OR Y<1 (loop is executed wh i le 
the boolean expression 
is t rue) 

v i)
 1

 UNTIL |Z-Y |  => 1 (loop is executed un t i l 
the boo lean expression 
is true) 

vi i) Any combinat ion of FOR wi th WHILE or UNTIL: 

In th is case the loop is executed un t i l one of the condi-

t ions is sat isfied .  

FOR Y-0 TO 6X+3 OR WHILE W<-001 

FOR Z3-1 TO 10 ,  15 TO 100 BY 5 OR UNTIL Xf2< .5^-6 

(Note: the i in NAPSS is equivalent to the E in FORTRAN . ) 



30 

If a loop is control led by more than one index ,  each of 

which assumes the same values ,  then the i terat ion can be 

wri t ten as fol lows: 

FOR J ,  K~1 ,  2 , . . . ,  M DO X[K , J]-l /(K+J} ; 

Th is is equivalent to 

FOR J- i ,  2 M DO 

FOR K- l ,  2 ,  .  .  , ,  K DO 

X[K , J]-l /(K+J); ; 
i 

Iterat ion Variables 

Since many of the i terat ive methods in numerical 

analysis test successive values of a variable for termina-

t ion ,  i terat ion variables are included in NAPSS .  X 

represen ts the current value of X ,  X i-1 represents the 

previous value of X ,  X,i-2 the value before that and so on .  

The number of previous values retained for a variable does 

not change dynamical ly during execut ion since only negative 

integer constants may fo l low the J.  Previous i terates may 

not be assigned values d i rec t ly .  They obtain values as X 

is assigned new va lues .  If the type of X should change ,  

for example from a scalar to an array ,  al l previous 

i terates for X are set as undef ined .  

Example 

To find a root of F{X) = 0 ,  using Newton ' s method 

w i th GUESS as a start ing value ,  we have: 

X-GUESS 



31 

FOR 100 TIKES OR UNTIL ]X - Xi-l |  < .00005 DO 

X-X - F{X)/F ' (X); 

The i terat ion term inates when two successive i terates 

agree to 1+ decimal p l aces ,  or after 100 i terat ions .  

The appearance of the i terat ion variab le X i-1 in the 

UNTIL clause in the above example causes the boolean 

expression to be skipped unt i l the loop has been 

evaluated once .  In genera l ,  if an i terat ion variab le ,  

say X ; -5 ,  appears in the boolean expression of a WHILE or 

UNTIL clause then the loop is executed .5 t imes before the 

boo lean expression is evaluated .  This al lows al l i terates 

to be properly ini t ial ized before any test ing is performed .  

Accuracy Statement 

The accuracy statement permi ts the user to specify 

the number of d ig i ts he wants retained for al l h is 

variab les ,  except those whose accuracy is specified in a 

declare statement or a solve statemen t .  

The accuracy statement is an executable s ta temen t ,  so 

d ifferen t accuracies can be used in various segments of a 

program .  If no accuracy statement appears in a program 

the system defaul t accuracy is used .  The defaul t accuracy 

is six d ig i t s .  

Examp l e 

ACCURACY & DIGITS 



32 

This specifies that at least eight significant figures 

are retained for al l variab les .  The polyalgori thms which 

carry out the numerical analysis are supposed to maintain 

th is accuracy or to give diagnost ic messages .  

The polyalgori thms use ei ther single precision or 

doub le precision ari thmet ic to ach ieve the accuracy 

.requested for the resu l t .  Normal ari thmet ic expressions 

are also evaluated using single or doub le precision 

ar i thme t ic .  The assignment statements use the number of 

d ig i ts of accuracy requested ,  to decide if the resul t 

should be stored as a single precision or double precision 

va lue .  „ 

Type Statement 

The type statement provides a means of print ing the 

values of selected variab les ,  funct ions and ari thmet ic 

expressions .  If the value of a numeric variable or a 

named funct ion is to be printed the system labels the 

output wi th the name of the variable or func t ion .  If the 

value of an ari thmet ic expression or an unnamed funct ion 

is to be printed the system labels the value w i th the 

system generated statement number of the type statemen t .  

The user can add his own t i t les and labels if 

desired by using s trings .  When a user defined label is 

associated w i th a quan t i ty ,  the system label ing for that 

variable is om i t t ed .  The system suppl ied label ing is also 

omi t ted when string expressions are printed as t i t les .  



33 

The format used to print each value is suppl ied by 

the system .  It is a funct ion of the system accuracy in 

effect and the magni tude of the number to be prin ted .  

Each i tem in a type statement starts on a new l ine .  

Figure 1 g ives a port ion of a NAPSS program and the out-

put it generates: 

1 .00 A - ([-1:3] ,  11-2 ,41 .2362 , -13 ,16 ,15 .92} 
2 .00 F(X) = X T2 + 0 . 1 
3-00 B-2 + (-1)t . 5 
4 .00 TYPE A B 2 * B A * A

1 

A[-1 :3]: 11 .2000i 41-2362 , -13-0000 ,  16 . 0000 ,  15-9200 
B = 2 .00000 + 1 .00000 I 
ANSWER ,  LINE 4-00 = 4 .00000 + 2 .00000 I 
ARRAY[-l :3 , -l :3]: 
ROW 1 = 125-440 ,  461 .845 , -145 .600 ,  179-200 ,  178 .304 
ROW  = 461 . 845 ,  1700 .42 , -536 .071 ,  659-779 ,
ROW 3 =-145 . 600 , -536 . 071 ,  169-000 , -208 .000 , -206 .960 
ROW  659  256.000,  254-720 
ROW 5 = 178 . 304 ,  656 .480 , -206 .960 ,  254-720 ,  253-446 

5 .00 TYPE FUNCTION(F(X) ,ON (0 ,1 , .5)) 
F(X): 
F( .000000)= .100000 
F( .500000)= .350000 
F( 1 .00000)= 1 .10000 

6 .00 TYPE FUNCTION(XT2-B ,  IN X ,  0N(0 , 1 , . 5)) 
FUNC(X): 
FUNC( .000000)=-2 .00000 - 1 .00000 I 
FUNC( .500000)=-1 .75000 - 1 .00000 I 
FUNC( 1 .00000)=-! .00000 - 1 .00000 I 

F igure 1 .  Sample Output from a NAPSS Program .  

The numbers preceding each of the statements in 

Figure 1 are statement numbers generated by the system .  

These numbers are used if the program needs to be edi ted 

and to label ou tpu t .  



34 

Severa l i t ems may be grouped i ns i de of po i n t ed 

bracke t s t o form a s i ng l e i t em .  Th i s causes a l l the 

i t ems i ns i de the bracke t s to be pr i n t ed on . t he same 

l i ne .  F i gure 2 g i ves an examp l e of t h i s and user 

l abe l ed ou t pu t .  

1 . 00 A - 2 ,  B - -3-5 
3-00 SI - "THIS IS A " ,  S2 - " SAMPLE TITLE" 
5 . 00 TYPE SI | | S2 ,  <"A = " , A , "B = " , B , "A*BT2 = "A*B ' 2> 

THIS IS A SAMPLE TITLE 

A = 2-.00000 B - -3-50000 A*BT2 = 24-5000 

F i gure 2 .  User Labe l ed Ou t pu t 

Dec l ara t i ons 

The dec l are s t a t emen t i s op t i ona l in NAPSS ,  s i nce 

var i ab l es can be con t ex t ua l l y dec l ared when t hey are on 

t he l ef t in an ass i gnmen t s t a t emen t .  However ,  some or 

a l l of t he a t t r i bu t es of a var i ab l e can be exp l i c i t l y 

ass i gned in a dec l are s t a t emen t .  The advan t age of t h i s 

i s t ha t t he dec l ared a t t r i bu t es mus t agree w i t h t he 

a t t r i bu t es of any va l ue ass i gned t o t he var i ab l e .  If 

t hey do n o t ,  no ass i gnmen t i s made and an error message 

i s p r i n t ed .  

The a t t r i bu t es wh i ch are no t exp l i c i t l y dec l ared for 

a var i ab l e are ass i gned con t ex t ua l l y dur i ng execu t i on 

when t he var i ab l e i s ass i gned a va l ue .  

The a t t r i bu t es wh i ch can be assoc i a t ed w i t h a 

var i ab l e are : R E A L ,  COMPLEX ,  SINGLE ,  DOUBLE ,  SCALAR ,  

ARrtAY ,  FUNCTION ,  NUMERIC ,  STRING ,  LOCAL ,  GLOBAL ,  INITIAL .  



35 

Two at tributes cannot be assigned contextual ly: 

LOCAL ,  GLOBAL .  

The declarat ion statement in NAPSS is an executable 

s ta temen t .  Thus the at tributes expl ici t ly assigned to a 

variable can be changed dynam ica l ly .  When possible the 

value of a variable is modified to conform wi th the new 

a t tr ibu tes .  

Examp le 

DECLARE A NUMERIC SINGLE ARRAY; 
• * • 

DECLARE A COMPLEX SCALAR; 

A has the at tributes COMPLEX SCALAR assigned expl ici t ly 

to it after the second declare statement has been 

execu t ed .  Also A is undefined since i t changed from an 

array to a scalar .  

The at tributes SINGLE and DOUBLE are avai lable to 

permi t a user to select ively suppress the g lobal 

accuracy which is establ ished by the accuracy statement 

or the system ' s defau l t accuracy if no accuracy state-

men t is presen t .  

The at tribute DOUBLE is not associated w i th a 

variable contextual ly unless the accuracy specified for 

al l variab les in the system requires i t .  Thus the 

appearance of a doub le precision variable in an ari thmet ic 

expression does not imply that the double precision resul t 

w i l l be assigned to the variable on the left of the 



assignment s tatemen t .  The double precision resul t is 

only assigned when the variable on the left expl ici t ly 

has been declared to be double precision ,  or the 

accuracy current ly in effect requires the use of double 

precision .  

Th is scheme permi ts selected variables to have 

doub le precision values and ari thmet ic expressions 

involving these variables to be performed in doub le 

precision ari thmet ic wh i le not propagat ing the at tribute 

DOUBLE to al l var iab l es .  

The at tribute INITIAL permi ts the assigning of 

ini t ial values to arrays or scalars on ly .  The ini t ial 

values are assigned every t ime the declare statement is 

execu ted ,  un less a variable name is declared to be 

GLOBAL .  When th is is the case ini t ial values are only 

assigned when: 

i) the variable name has no values present ly 

associated w i th i t .  

i i) the other at tribu tes ,  expl ici t ly declared in 

addi t ion to GLOBAL ,  cause the previous values 

• associated w i th the variable name to be 

destroyed .  

Examp le 

DECLARE A REAL INITIAL (5),  B(3) SINGLE 

INITIAL (1 ,2 ,3); 



37 

A is set equal to 5 and S is set equal to the vector 

(1 ,2 ,3) .  

Procedures 

External and internal procedures may be wri t ten in 

NAPSS .  This faci l i ty is included to give the language 

the power of a procedural language; however ,  i ts use is 

op t iona l .  Thus the casual user need not be concerned 

w i th the art ificial rules that procedures in troduce ,  

for he can employ the system on what is cal led the console 

l eve l .  

On console level the user ' s program does no t contain 

any procedures .  Statements entered at console level are 

normal ly executed as they are rece ived .  

A procedure may be defined at any point in a 

program ,  and may be referenced in the program as bo th 

a subrout ine and a func t ion .  

As ment ioned above ,  the at tributes LOCAL and GLOBAL 

canno t be assigned to a variable con tex tual ly .  They need 

only be used when procedures are emp loyed .  

If a variab le ,  XNAME ,  is declared LOCAL anywhere in 

a procedure ,  APROC ,  it signifies that XNAME is a new 

variable dist inct from variables w i th the same name in 

procedures containing APROC .  Al l occurrences of XNAME in 

APROC refer to the same variable un t i l XNAME is assigned 

e i ther the at tribute LOCAL or GLOBAL in a procedure which 

is internal to APROC .  A variable may not be assigned both 



the at tributes LOCAL and GLOBAL in procedure APROC ,  

excluding procedures which are themselves internal to 

APROC .  

The declarat ion of a variable to be GLOBAL has the 

same effect as declaring it to be LOCAL except that al l 

occurrences of the variable in other procedures where i t 

has b een declared GLOBAL refer to the same var iab l e .  

The scope of variable names which are not declared 

to be LOCAL or GLOBAL and are not parameters is the outer 

most containing procedure .  

The at tributes LOCAL and GLOBAL are the only two 

a t tribu tes which are assigned at compi le t ime .  This 

perm i ts the declare statement to appear anywhere in a 

procedure and a l lows the scope to be f ixed .  The other 

at tribu tes are assigned when the declare statement is 

execu ted .  

In Figure 3 the variable names Z and K in statement 

L2 of procedure EXTERNAL l and in statement L3 of procedur 

INTERNAL1 refer to the same variab les ,  but the variable 

names Z and K declared in procedure INTERNAL2 refer to 

d ifferen t variab les .  

The variable names A and D in INTERNALl refer to 

d ifferen t variables than the variab les named A and D in 

EXTERNAL l ,  INTERNAL2 ,  and EXTERNAL2 .  But since the 

variab les named A and D in INTERNAL2 and EXTERNAL2 have 

the at tribute GLOBAL ,  they refer to the same variab les .  



39 

A procedure invoked as a subrout ine ,  INTERNAL2 ,  

may be exi ted by encountering the end statement of the 

procedure or by execut ing a return s ta temen t .  In this 

case an ari thmet ic expression associated wi th the return 

statement is ignored .  

A procedure invoked as a funct ion ,  INTSRNAL2 ,  can 

only be exi ted by execut ing a return statement which has 

an ari thmet ic expression associated w i th i t .  If th is is 

no t the case ,  the funct ion returns wi th i ts value un-

defined .  



40 

EXTERNALl : PROCEDURE 

DECLARE (A ,D) REAL ,  E GLOBAL; 

L2; A-Z~4 * K 

INTERNALl : PROCEDURE (B) 

INTERNAL2: PROCEDURE (M) 

DECLARE (A , E , D
3
K) GLOBAL ,  Z LOCAL; 

• • • 

RETURN AtZ 

END 

L3 : Z-G * K + INTERNAL2 (3) 
• * • 

DECLARE (A ,E ,D) LOCAL; 

CALL INTERNAL2 (A) 

END 

END 

EXTERNAL2: PROCEDURE 

' .DECLARE (A ,E,D) GLOBAL; 
• • • 

END 

Figure 3- Sample Procedures 



41 

INTERPRETER STRUCTURE 

Over-al l Structure of the System 

The in ternal structure of the NAPSS system consists 

of four major modules: the superv isor ,  the comp i ler ,  

the ed i tor ,  and the in terpreter .  Th is is further sub-

divided into twenty-five overlays: one is the super-

v isor ,  three compose the comp i ler ,  one is the ed i tor ,  

and nineteen compose the in terpreter .  F igure 4 gives a 

skeleton of the overlay s tructure .  

The NAPSS system is wri t ten almost ent irely in 

machine independent FORTRAN .  The few mach ine dependent 

operat ions are restricted to "black-box" modu les coded 

in assemb ly language .  This is done to aid the goal of 

machine independence for the system .  

Due to the equipment and associated software avai l-

ab l e ,  the current version of NAPSS does not operate in 

a t ime sharing env ironmen t .  But the implementat ion 

techniques do not preclude such an ex tension .  

The current system is running on the Control Data 

6500 at Purdue Un ivers i ty .  

The supervisor controls the flow into each of the 

three o ther modu les .  It dist inguishes between NAPSS 

source statements ,  which are processed by the comp i ler ,  

and edi t statements ,  which are processed by the ed i tor .  



\J 
EDITOR 

COMPILER INTERPRETER 

Figure 4 .  Overlay Structure of the NAPSS System 

•p-M 



43 

The supervisor is also responsible for invoking the 

interpreter when a NAPSS statement is to be execu ted .  

NAPSS source statements are transformed by the 

compi ler into an internal text which the interpreter 

processes .  Th is scheme is adopted for several reasons .  

F i rs t ,  the complexi ty of the elements to be manipulated 

and the absence of declarat ions require execut ion t ime 

decod ing of operands .  Second ,  i t easi ly al lows for 

extensions to the system .  Th ird ,  it g iyes the user 

incremental execu t ion .  Fourth ,  i t perm i ts extensive 

error d iagnost ics and permi ts error correct ions w i thou t 

having to recompi le the who le program .  F ifth ,  statements 

wh ich are repeatedly executed are only translated into 

internal text once .  

The internal text for each statement consists of 

twenty-bi t words .  The internal and source text for each 

statement is stored in secondary s torage .  When a state-

men t is to be execu ted ,  a copy of i ts internal text is 

passed to the in terpreter .  This reduces considerably the 

core storage required for a user ' s programme .  Since the 

system is intended for use in an incremental ly execut ing 

mode ,  no reference to secondary storage is normal ly 

required to obtain the internal text of a statemen t .  

The internal text generated for ari thmet ic expressions 

(Appendix B) is a form of three address code .  Al l 

operators ,  po in ters ,  and references to temporary variables 

are represented by negat ive integers whi le al l references 



44 

to user-created variables are represented by posi t ive 

in tegers .  This is done so that the equals assignment 

statements can easi ly detect references to user 

var iab l es .  

The system has two modes: suppress mode and execute 

mode .  In the- suppress mode ,  each statement is compi led 

into internal text and the internal and source text is 

saved on secondary storage for later execu t ion .  Suppress 

mode is entered by typing the statement .SUPPRESS .  A 

block of statements wh ich have been compi led in suppress 

mode may be executed at any t ime by typing the statement 

.GO .  

The normal mode of execut ion is execute mode .  Here ,  

each statement is executed immediately after i t has been 

compi led and a copy of i ts internal and source text saved 

in secondary s torage .  The system au tomat ical ly enters 

suppress mode when the user starts a compound statement 

(a FOR statement) or starts a procedure .  Th is is necessary 

because a compound statement cannot be executed un t i l the 

who le statement is received and a procedure is only 

executed when invoked .  The system re-en ters execute mode 

au tomat ical ly as soon as the compound statement or 

procedure is comp leted .  

In the remainder of this chapter the various com-

ponen ts of the interpreter are descr ibed .  



45 

Real and Virtual ?4emory 

The memory of a NAPSS program i s made up of a few 

pages of real memory which reside in co^e and a larger 

number of pages of virtual memory which reside in 

secondary storage and are brought in and out of real 

memory .  Two vectors ( j;.c deal ing wi th v irtual and the 

o ther w i th real memory} and several po in ters are used 

to keep track of real and virtual memory .  

Each element in the virtual memory vector is sub-

divided into three twenty-bi t by t es .  The first byte 

con tains a flag indicat ing whether the page con ta ins 

internal tex t or name control b locks .  The second byte 

is a sw i tch ,  used when the page is in real memory to 

indicate whether or not a copy of the page also resides 

in secondary s torage .  The third byte con tains the real 

page number the virtual page is in when it is in real 

memory .  

The elements of the v irtual memory vector which 

deno te avai lable pages are l inked toge ther .  In i t ial ly ,  

the element for virtual page one points to the element 

for v irtual page two and the last element contains a 

zero .  When a page of v irtual memory is returned to the 

system i ts element is again l inked to the top of the 

l ist of avai lable v irtual pages .  

The real memory vector elements contain one entry 

per real page .  Th is entry is the number of the virtual 

page occupying it (zero if it is emp ty) .  Th is pointer 



46 

from real memory to v irtual memory is used when a new 

virtual page is placed in a real page .  The virtual 

page current ly in the real page must be copied out into 

secondary storage if i t is not there a l ready .  

The amount of core assigned to real memory is 

dynam i c .  Pages are removed from the top and bot tom of 

real memory in order to obtain cont iguous blocks of 

s torage .  Pages are removed from the top of real memory 

for two purposes: f i rs t ,  to expand the name tab le ,  and 

second ,  to obtain space for the work poo l .  Pages are 

removed from the bot tom of real memory to obtain space 

for local name control blocks during the evaluat ion of 

left arrow func t ions .  See figure 5-

The work pool is used to hold arrays when performing 

array ar i thme t i c .  Requests for work poo l space are always 

made in terms of words .  However ,  the amount of real 

memory assigned to the work pool is always an integral 

number of pages .  When a request is made for work pool 

space and the work poo l is emp ty ,  the space suppl ied is 

zeroed .  When space is requested for the work pool and 

the work poo l is not emp ty ,  one of two si tuat ions ar ises .  

F i rs t ,  the space requested is less than the current size 

of the work poo l .  If the difference between the space 

requested and the current size of the work pool amounts 

to one or more pages ,  a corresponding number of pages 

is returned to real memory from the bot tom of the work 



47 

NAME 
TABLE 

WORK 
POOL 

REAL MEMORY PAGE 4 

REAL MEMORY PAGE 5 

REAL MEMORY PAGE N-4 

REAL MEMORY PAGE N-3 

,  REAL 
MEMORY 

LEFT ARROW FUNCTION 
NAME CONTROL BLOCKS 

Figure 5» Real Memory Organizat ion 



i+8 

poo l .  Second ,  the space requested exceeds the current 

size of the work poo l .  If add i t ional pages are ob tained 

from the real memory to sat isfy the reques t ,  they are 

zeroed .  

V ir tual pages are assigned to real pages 

sequen t i a l ly .  Thus a virtual page is not removed from 

rea l memory un t i l al l real pages are assigned a v irtual 

page .  Th is sequen t ia l process may be broken whenever 

space is assigned to the work poo l or to hold the local 

name con tro l b locks for a left arrow func t ion ,  s ince ,  

af t er the space request is sa t isf ied ,  the nex t real page 

to receive a v ir tual page may no longer belong to real 

memory .  When th i s occurs the po in t er to the nex t real 

page to be used i s reset to the first page now in real 

memory .  

The algori thm for bring ing v irtual pages into real 

memory is further mod ified when the work poo l returns a 

page to rea l memory .  Since the page returned i s emp ty ,  

a v ir tual page may be placed in i t d i rec t ly ,  avo id ing 

t he possib i l i ty of hav ing to save the v irtual page 

curren t ly there in secondary s torage .  Thus the normal 

sequen t ia l process is interrupted un t i l al l the pages 

returned to rea l memory by the work pool are re-used .  

The system does no t assign al l of real memory to 

e i ther the work poo l or to space for a left arrow 

func t ion ' s local name control b locks .  A request for 

rea l memory space is honored as long as two pages remain 



49 

in real memory after the request is sat isfied .  If more 

space is requested than can be supp l ied ,  the request is 

mod ified to correspond to the maximum amount of space 

ava i l ab l e .  Th is perm i ts the system to cont inue if this 

is adequate .  

Two pages are required in real memory to faci l i tate 

the l inking of v irtual pages .  W i th two pages in real 

memory the above algori thm guaran tees that the previous 

and the current v irtual pages referenced remain in real 

memory .  Thus they may be l inked together if necessary ,  

w i thou t having to save pointers and re-read a virtual 

page to fi l l in l ink informat ion .  

Name Table 

Associated w i th each procedure is a name table 

containing entries for each var iab l e ,  l abel ,  constant 

and procedure name appearing in that procedure .  The 

en tries are cal led name control b locks and are created 

when the name is in troduced .  

A name control block is made up of seven sixty-bi t 

words ,  or twen ty-one twenty-bi t words cal led by t es .  

See Figure 6 .  



50 

ITERATION 
POINTER 

DATA 
POINTER 

ATTRIBUTE 
FLAGS 

NAME 

DATA 
PORTION 

F igure 6 .  The Layout of a Name Control Block 

Byte one contains the i terat ion po in t er ,  if the 

variable is a member of an i terat ion chain (X ,  X i-1 , . . . ) .  

By te two contains a pointer to the data for a variable 

if i t is not a numeric scalar .  Byte three contains the 

at tribu te f l ags .  These f lags encode the at tribute number 

for the data type of the variab le .  See Figure 7 .  

During compi lat ion only flags F l ,  F1A ,  F2 ,  F8 and F9 

are set .  Flag F2 assumes on ly the values zero through 

f ive during comp i lat ion .  A value of five specifies that 

t he variable is used as a computat ional en t i ty .  Checking 

between the various types of computat ional ent i t ies is 

performed during execut ion when the variable is referenced 

as an operand .  



51 

FI F1A F2 F3 F 4 F4A F5 F5A F6 F6A F7 FS F9 

FI - Scope = 0 Unspecified 
= 1 Parameter 
= 2 Local 
= 3 G lobal 

F1A - Number of t imes declared G lobal 
F2 - Type = 0 Formal Parameter 

= 1 Constant 
= 2 Statement Label 
= 3 Equat ion Label 
= 4 Procedure Name 
= 5 Numeric 
= 6 Symbol ic Funct ion 
= 7 String 
= 8 Complex Place Marker 
= I t Boo lean True 
= 15 Boo lean False 

F3 = 0 F2 ,  Contextual ly Declared 
— 1 F2 ,  Expl ici t ly Declared 

F4 = 0 Scalar 
= 1 Array 

F4A 0 F4> Contextual ly Declared 
1 F4 ,  Expl ici t ly Declared 

F5 0 Single Precision 
= 1 Double Precision 

F5A = 0 F5 ,  Contextual ly Declared 
= 1 F5 ,  Expl ici t ly Declared 

F6 = 0 Real 
7= 1 Complex 

F6A = 0 F6 ,  Contextual ly Declared 
= 1 F6 ,  Expl ici t ly Declared 

F7 = 0 Left Arroitf Defined Variable 
= 1 Equals Defined Variable 

F8 = 0 Variable Referenced During Execu t ion 
1 Variable Referenced Only By Compi ler 

F9 = 0 Variable Define 'd 
1 Variable Undefined 

Figure 7 .  The Arrangement and Specificat ion of At tribute 
Flags in a Name Control Block Entry 



52 

F lags F1A ,  F3 ,  F4A ,  F5A ,  and F6A are not used to 

determ ine the at tribute number of the var iab l e .  These 

f lags may be set only in a declare statement and are 

used to check at tributes when an assignment is made .  

Table 2 gives the various f lags for each of the 

ind iv idual data types and the associated at tribute 

numbers .  Appendix A contains a descrip t ion of how each 

data type is stored .  

The next two words in a name control block contain 

the name of the variab le .  This l imi ts the length of a 

variable name in NAPSS to twenty characters .  

The next four words or twelve by tes contain ei ther 

the value associated w i th the variable if i t is a 

numeric scalar or informat ion about the values if no t .  

For temporary variab les (variables used to hold 

temporary resu l ts during the evaluat ion of an ari th-

met ic expression) there is a fixed number of name 

control b locks pre-ini t ial izea in the system .  These 

temporary name control b locks contain the same fields 

as a user-created name control block except for the name 

f i e l d .  

During compi lat ion a name control b lock is used as 

a name tab le en try .  At th i s t ime it contains the name of 

the variab le ,  some basic at tributes describing how the 

variable appears in the program ,  and possib ly an i terat ion 

po in t er .  



53 

Table 2 .  F lags and At tribute Numbers of Various Data Types 

DATA.  FLAGS ATTRIBUTE 
TYPE F2 Fli FO F7 F8 F9 NUMBER 

SYMBOLIC SCALAR = 5 0 _ _ 1 0 0 0 
NUMERIC SCALAR - SINGLE REAL 0 0 0 0 0 0 1 
NUMERIC SCALAR - DOUBLE REAL 5 0 1 0 0 0 0 2 
NUMERIC SCALAR - SINGLE COMPLEX S 0 0 1 0 0 0 3 
NUMERIC SCALAR - DOUBLE COMPLEX « ? 0 1 1 0 0 0 ll 
NUMERIC ARRAY - SINGLE REAL ? 1 0 0 0 0 0 
NUMERIC ARRAY - DOUBLE REAL 1 1 0 0 0 0 6 
NUMERIC ARRAY - SINGLE COMPLEX $ 1 0 1 0 0 0 7 
NUMERIC ARRAY - DOUBLE COMPLEX 1 1 1 0 0 0 0 
NUMERIC CONSTANT SINGLE REAL l - 0 - - 0 0 1 
NUMERIC CONSTANT DOUBLE HEAL l - 1 - - 0 0 2 
IMAGINARY PLACE MARKER (vAl) 8 - - - - 0 0 9 
STRING SCALAR 7 0 - - 0 0 0 10 
stftttig- array * 7 1 - - 0 0 0 H 
BOOLSAN FALSE Ik - - - - 0 0 12 
BOOLEAN TRUE - - - - 0 0 13 
STATEMENT LABEL 2 - - - - 0 0 ll.t 
equation label 3 - - - - 0 0 15 
symbolic function scalar - 6 0 - - 0 0 0 16 
symbolic func h o n scalar = 6 0 - - 1 0 0 17 
symbolic func h o n array - 6 1 - - 0 0 0 18 
symbolic func h o n array = 6 1 - - 1 0 0 19 
procedure name h - - - - c 0 20 

•«• Not Implemented 



During execut ion the name control block is used to 

hold va lues ,  pointers to values and a complete set of 

at tributes for the var iab l e .  

Th is doub le usage of the name control block entries 

poses no problem if compi lat ion and execut ion are 

performed separately .  But in NAPSS the normal mode of 

operat ion is to execute each statement as soon as i t is 

comp i led .  Thus ,  three si tuat ions are possible when a 

variable is entered in the name tab l e .  F i rs t ,  the 

variable may never have been used before in the 

program .  Second ,  the variable may have appeared before 

in the program but no value has been assigned to i t .  

Thus ,  it is just as i t was when the compi ler last saw i t .  

Here a l imi ted compatabi l i ty check is made for the two 

uses of the variable in the program .  For examp le ,  the 

use of the variable as a label and as a variable in an 

ari thmet ic expression is i l legal .  Th i rd ,  the variable 

has appeared before in the program and has been assigned 

a value and a complete set of at tr ibu tes .  This enables 

more checking to be performed .  The name table rout ine 

must not disrupt any of the at tribute f l ags ,  for if any 

of the at tribute flags are changed the at tribute might no 

longer correspond to the value associated w i th the name 

control b lock .  

The name table is constructed sequen t ial ly .  This 

method requ ires a minimum amount of space ,  and permi ts 



the name table to grow dynam ical ly .  But it requires the.  

name table to be searched sequen t ial ly .  The search goes 

through the name table from bot tom to top .  Th is is done 

because frequen t ly the greatest percentage of references 

to a variable occur in the immediate vicini ty of i ts 

defin i t ion .  

A variable which is declared to be g lobal in N 

different procedures has N+l name control blocks asso-

ciated wi th i t .  There is a name control block for the 

variable in the name table of each of the procedures in 

wh ich it appears .  Only compi le t ime informat ion and a 

po in ter to the N + l
s t

 copy is contained in these name con-
st

-

tro l b locks .  The N+l copy is in the g lobal variable 

name table and contains a complete set of at tributes for 

the variable and i ts value or pointer to i ts value .  

The N + l
s t

 copy of a g lobal variable ' s name control 

block is placed in the global name table when the first 

procedure is invoked in which the global variable appears ,  

or when the variable is declared global on the console 

level (i . e .  the port ion of the program not contained in a 

procedure) .  When a g lobal variable is added to the g lobal 

name table and i t already appears there ,  a check is made 

on the compatabi l i ty .of the a t tr ibu tes .  An error resul ts 

when they confl ict .  Otherwise a pointer to the N+l 

copy is placed in the procedure ' s copy of the variable ' s 

name control b lock .  



56 

A count is kept in the global name control block of 

the number of procedures referencing the g lobal variab le .  

When a g lobal variable is no longer referenced from any 

procedure or from the console rou t ine ,  then i ts name 

control block is removed from the g lobal name table and 

the storage associated w i th i t is returned to the system .  

A name control b lock is created for each i terat ion 

var iab l e ,  eg .  X ,  X i -1 ,  X i -2 .  These name control blocks 

are l inked together to form a chain .  The i terat ion 

pointer field of the name control block of the head ,  X ,  

points to the name control block for X l -1 ,  and the i tera-

t ion pointer for the last name control b lock in the chain 

points back to the name control block of the head of the 

chain ,  X .  A chain of i terat ion variables is constructed 

by placing the name control block of the head in the name 

table f i rs t ,  the name control block for X*- l nex t ,  and so 

on .  Th is is done even if one of the i terates is 

referenced in the program f i rs t .  Therefore ,  the name 

control b locks for an i terat ion chain are ordered in the 

name t ab l e .  The name control block for the head of the 

chain (X) appears first and the name control block for the 

last i terate in the chain appears last .  Thus the name 

control b locks for the various i terates in a chain are 

dist inguishable by posi t ion .  

A procedure is compi led when i t is defined and in 

order to l ink it into the program the text generated uses 



only relat ive pointers to name table en tr ies ,  and al l 

l inking between entries in a procedure ' s name table is 

done wi th relat ive po in ters .  Th is al lows procedure A ,  

for example ,  to be compi led as external procedure and 

to be invoked ei ther direct ly from the console level or 

from ano ther procedure which i tself is invoked from the 

console l eve l .  The name table for procedure A is placed 

in the name table after the last entry presen t ly there 

and i ts base address is set up .  

Variab les which are not declared to be ei ther local 

or g lobal in an internal procedure are assumed to be 

known in the containing block." '" After the procedure is 

compi led and a copy of i ts name table saved ,  a pass is 

made through the procedure ' s name t ab l e .  Th is pass 

goes through the name table from top to bot tom and 

places a copy of the name control block for each variable 

not declared to be ei ther local or global in the name 

tab le of the containing b lock .  If the variable has 

already been used in the containing b lock ,  a compatabi l i ty 

check is made on the a t tr ibu tes .  

During execut ion on ly one name control block is used 

for the value and at tributes of a variable wh ich is not 

declared to be local or g loba l .  This is the name control 

1 
A block is ei ther a procedure or the console level routire.  



block entry in the outermost b lock .  The name control 

block in the in ternal procedure is l inked to th is when 

the internal procedure is invoked .  The l inkage is 

constructed so that only one step is required to obtain 

the value of the variable regardless of the depth of the 

procedure .  

Figure 8 is a port ion of a NAPSS program wri t ten 

on console level wi th two internal procedures ,  INTERNALl 

and INTERNAL2 .  After the procedure statement (statement 

number 3) is execu ted ,  the status of the name table is 

depicted in F igure 9 .  CB is the base address for the 

console level name tab l e .  After the second procedure 

statement (statement number 6) is compi led the name table 

appears as in Figure 10 .  I1B is the base address for the 

name table of procedure INTERNAL l .  At the end of 

INTERNAL2 (statement number 10) the name table appears 

as in Figure 11 (I2B is the base address for the name 

table of INTERNAL2) .  This end statement causes the name 

tab le of procedure INTERNAL2 to be saved along wi th the 

source code and internal text of the procedure .  A check 

is made to insure that a copy of the name control block 

for each non-local and non-g lobal variable in INTERNAL2 

appears in the name tab le for INTERNALl .  The status of 

the name table after this is shown in Figure 12 .  The 

name control block for D was added to the name table of 

INTERNALl and the variables B and C were checked .  The 



1 A - 4 

2 B - 5 

3 INTERNALl : PROCEDURE 

4 DECLARE C LOCAL; 

•5 C - A + B 

6 INTERNAL2: PROCEDURE 

7 DECLARE A LOCAL; 

 A - C + B 

9 D - A t B 

10 END 

11 CALL INTERNAL2 

12 A - D T C + E 

13 END 

14 E - A + B 

15 C - E t A 

16 CALL INTERNALl 

Figure 8 .  Sample Program 



INTERNAL l 

F igure 9-

CB-

I1B-

5_ 
INTERNALl 

INTERNAL2 

Figure 10 .  

CB-

I1B-

I2B-

_4_ 
B 

INTERNAL l 

A 

INTERNAL2 
A ! 

D 

A 

B 

INTERNAL l 

B 

INTERNAL2 
D 

F igure 12 .  

CB-

I1B-

A 

B 

INTERNALl 

A 

B 

INTERNAL2 
D 

Figure 13.  

F i gure 11 .  

CB- A 
L 

INTERNAL] 

Figure 14 .  

Name Table Segments 



use of variable A was not checked because A is declared 

to be local in procedure INTERNAL2 .  At the end of 

procedure INTERNALl the status of the name table is 

shown in Figure 13 .  Here the name table for INTERNALl 

is then saved along wi th the source and in ternal text 

for the procedure .  Then the check made for INTERNAL2 is 

repeated for INTERNALl and the resul t ing name table is 

shown in F igure 14 .  This check causes D and E to be 

put in the name table of the console level rou t ine .  

The execut ion of statement number 16 invokes internal 

procedure INTERNAL l .  Its name table is loaded 

immediately after the name table for the console level 

rout ine and the l inkage is set up for the non-local ,  

non-g lobal variables in INTERNAL l ,  as shown in 

Figure 15 .  The execut ion of statement 11 invokes 

procedure INTERNAL2 .  The status of the name table at 

th is point is g iven in Figure 16 .  The name control 

b locks for B and D in procedure INTERNAL2 are l inked 

d irect ly to the name control b locks for B and D on the 

console l eve l .  

There are three types of name control b locks in 

d ifferen t memory areas: temporary ,  local for left arrow 

func t ions ,  and ord inary .  See F igure 17 .  

A central rout ine is used to decode variable name 

control blocks during execu t ion .  This rout ine determines 

the type of the name control block and hand les the 

l inkage between g lobal and non-local ,  non-g lobal name 



B 

INTERNALl 
D 

F igure 15 .  

A 

B 
INTERNAL2 

D 

CB—* 

I1B 

I2B 

B 

INTERNALl 

D 

A 

B 
INTERNAL2 

D_ 

E 

D 

F igure 16 .  

Name Tab le Segments 



AEPDA<J 

REAL ,  
MEMORY 

INTERPRETER ' S 
RECURSIVE VARIABLES 

INTERNAL 
TEXT 

TEMPORARY NAME CONTROL 
BLOCKS 

RESULT NAME CONTROL BLOCK 

GLOBAL NAME TABLE 

NAME 
TABLE 

REAL MEMORY PAGE 2 

REAL MEMORY PAGE 3 

REAL MEMORY PAGE N-4 

REAL MEMORY PAGE N-3 

LEFT ARROW FUNCTION 
LOCAL NAME TABLE 

REAL MEMORY VECTOR 

VIRTUAL MEMORY VECTOR 

r> AENCBS 

Figure 17 .  NAPSS Memory Organizat ion 



control b locks .  Three th ings are returned when a name 

control b lock is decoded: the at tribute number ,  the 

data pointer field and the index in the array AENCBS of 

the first word of the data pointer port ion of the name 

con tro l b lock .  See figures 6 and 17 .  

Error Messages 

Internal ly there are five severi ty levels for errors .  

Level one is a warn ing type error .  Level two is a user-

caused error such as incompat ible operands .  Level three 

is an undefined variable or func t ion .  Level four is a 

system error wh ich the user can correct ,  and level five 

ind icates a fatal system error .  

External ly there are three error message levels avai l-

ab l e .  The level may be changed dynamical ly by the user .  

On level one warning messages are ignored and only the 

numbers associated wi th o ther error messages are prin ted .  

On level two warning error message numbers are printed 

along w i th the messages and number of more severe errors .  

Level three prints the messages and numbers for al l errors .  

A warning message is printed by the rout ine which de-

tects the error .  When an error w i th a severi ty number 

greater than one occurs ,  the rout ine detect ing the error 

sets a flag to the severi ty number of the error and returns 

to the rou t ine from which it was cal led .  Th is rout ine 

returns to the place from which it was cal led .  This 

process is repeated un t i l the interpreter supervisor is 



reached .  

Before each rout ine returns in th is process ,  it must 

restore i tself and return to the system any storage it is 

using to hold temporary resu l ts .  

Th is method is used "because the occurrence of an 

error ,  w i th an associated severi ty number greater than 

one ,  prevents the interpreter from cont inuing un t i l the 

error has been corrected .  This method permi ts the use 

of a common error message rout ine for al l non-warning 

messages .  

In addi t ion to set t ing the severi ty f l ag ,  the 

rou t ine which detects the error sets the number of the 

error and possib ly some entries in the vector INSERTS ,  

F igure 18 .  The entries from the vector INSERTS are 

inserted into the error message to give the user 

specific informat ion about what caused the error .  

The error message rout ine uses three vectors to 

construct the text for the various error messages .  One 

vector (DICTIONARY) contains a l ist of al l possible words 

and phrases required to construct any error message .  The 

second vector (MESSAGE CODE) is broken down into fields 

of four octal d ig i t s .  These fields contain the indices 

of the words to be used from DICTIONARY for the message 

and informat ion on what is to be inserted in the message 

from INSERTS .  The third vector (MESSAGE POINTER) contains 

the index of the start of the various messages in MESSAGE 

CODE .  It is indexed by the error message number ,  Figure 



INSERTS 

F igure 18 .  Vectors used for Error Message Construct ion 



Each field in MESSAGE CODE specifies the ncx« entry 

of the error message .  If digi t number one of a field is 

non-zero ,  then the entry is a word or phrase from 

DICTIONARY ,  and digi t number one is the number of 

consecut ive words to be obtained from DICTIONARY and dibits 

t wo ,  three ,  and four form the index of the first word of 

the entry in DICTIONARY .  If digi t number one of a field 

is zero and the nex t three d ig i ts are not al l zero ,  the 

nex t entry is an insert .  D ig i ts two ,  three ,  and four are 

used to encode informat ion about the insert .  If the 

field is al l zeros ,  th is ind icates the end of the error 

message .  



6S 

ARITHMETIC EXPRESSION EVALUATOR 

Evaluat ion of Ari thmet ic Expressions 
w i th Non-Recursive Operands 

The f low of control in the ari thmet ic expression 

evaluator for expressions which do not involve recur-

sive variab les ,  funct ion evaluat ions or cal ls on poly-

algori thms is g iven in Figure 19 .  

F igure 19- Flow of Control in Ari thmet ic Expression Evaluator 



' 

The operators are tested for in a fixed order so 

that the ones most frequent ly occurring are tested f i rs t .  

The at tribute or type of an operand must be 

determined at execut ion t ime because at tributes are not 

associated w i th variables during comp i lat ion .  They are 

associated during execut ion t ime and may dynam ical ly 

.change during the execut ion of the program .  

If NAPSS had required that al l attributes be ei ther 

always declared or always contextual ly defined instead of 

al low ing the user to declare some at tributes and have the 

rest associated con tex tual ly ,  the at tribute field of a 

name control block could have contained a simple at tri-

bu te number .  However ,  because of the m ix ture permi t ted 

the at tribute field contains a set of flags from wh ich 

an at tribute number i-s decoded .  

After the at tributes of the operands have been 

determined the at tribute of the resul t is obtained by a 

tab le look up ,  using the at tributes of the operands and 

the operator as ind ices .  

To el iminate the work necessary to obtain the 

at tribu te of an operand ,  a look ahead scheme is used 

where possib le .  If the resul t of an operat ion is an 

operand of the next operator ,  then the at tribute of that 

operand is flagged as being known .  This scheme ,  even 

though on ly local ,  is qui te usefu l for frequen t ly the 

resul t of the prev ious operat ion is an operand of the 

nex t operator .  



' 

There are three types of numeric scalars in NAPSS: 

real single precision ,  real double precision ,  and complex 

single precision .  Integers are stored internal ly as real 

numbers .  When an integer is needed ,  such as for a sub-

scrip t ,  the system converts the real number to the 

nearest in teger .  

Wi th on ly three types of numeric scalars the number 

of addi t ion rout ines needed to permi t al l possible 

combinat ions of operands is 3 .  If a fourth data type ,  

double precision complex ,  were added the number of 

rout ines needed would be 4 or an increase of 77 percen t .  

For this reason ,  double precision complex numbers are 

not now provided in NAPSS .  o 

For scalar ari thmet ic NAPSS does not use 3 rout ines 

for each of the basic b inary operators but rather only 3 .  

Th is is achieved by convert ing one of the operands to 

match the at tribute of the o ther .  The scalar operands 

are placed i n a work area before the operat ions are 

performed .  The conversion is performed during transfer 

to the work area by zeroing a word when necessary .  

For array ari thmet ic the number of rout ines needed 

to perform the various operat ions cannot be reduced to the 

same extent as for scalar ari thmet ic .  Th is is because of 

the t ime needed to convert one operand to match the o ther 

and the increase in memory required to hold the operands .  

The number of rout ines needed to perform the binary array 



685' 
operat ions is 3 for mul t ipl icat ion and 2x3 for addi-

t ion and sub tract ion .  The number of rout ines needed to 

perform addi t ion and subtract ion is reduced more than 

for mu l t ip l icat ion by taking into account the simi lari ty 

between data types .  The rout ines wh ich perform the 

array ari thmet ic are machine language rou t ines .  

Arrays are stored permanent ly in a random fi le and 

are brought into memory only when needed .  The empty 

records in th is fi le are chained together so that when 

a record is requested and the fi le is fu l l ,  the user 

can be asked to free a variable holding an array to 

a l low h is program to con t inue .  

Actual array ari thmet ic is performed in an area 

cal led the work poo l .  When an array operat ion is to be 

performed enough space is assigned to the work pool to 

ho ld the operands and resul t ing arrays .  

The resul t of the array operat ion is not immediately 

pu t out in the random fi le w i th the other arrays .  Rather ,  

the work pool remains intact w i th the operands and the 

resul t left in i t .  When the next array operat ion occurs 

the work pool is checked to see if it is empty; if no t ,  

the operands are compared w i th what is current ly in the 

work poo l .  If the resul t of the previous array operat ion 

is an operand of the present array operat ion ,  then the 

resul t array need only be wri t ten out into the array fi le 

if it is an operand of a future operat ion .  



' 

The work poo l is completely empt ied at the end of 

each s tatemen t .  Therefore ,  the process of opt imizing 

the manipulat ion of arrays is only performed local ly .  

The reason for this is that the work pool is used to 

man ipu late o ther data types in addi t ion to arrays .  

V/hen perform ing array ari thmet ic the system checks 

•to see if the - operands conform .  The values of the index 

bounds of the operands do not affect the operat ions if 

the number of elements in the corresponding dimensions 

agree .  For examp le ,  it is i l legal to mu l t ip ly two row 

vectors or to add a row vector and a column vector .  

The system does not at tempt to determine what the user 

intended in these si tuat ions .  Rather ,  it g ives an error 

message and asks the user to clarify the mean ing of the 

statemen t .  

The index bounds of a resul t array take their values 

from the bounds of the operand arrays .  There is one 

except ion to this: when two arrays are added or sub-

tracted and their index bounds are not iden t ical ,  the 

lower bounds of the resul t array are set to one .  

If the resul t of an array operat ion is a one element 

array i t is not treated as an array by the system ,  but 

is stored as a scalar .  

A temporary variable may be assigned several values 

during the evaluat ion of an ari thmet ic expression .  Th is 

would pose no problem if al l the resu l t s were scalars ,  



' 

for scalar values are stored in the name control block 

for the variab le .  However ,  the name con tro l blocks for 

other data types on ly contain pointers to where the 

values are stored .  Th is causes the problem of when to 

free the storage used to hold temporary resu l t s .  

Storage can be returned to the system period ical ly using 

a garbage col lect ion scheme ,  or storage can be returned 

immediately at the point i t is no longer referenced .  

Storage is freed by the NAPSS interpreter immediately 

after a new value is assigned to the temporary variab le ,  

thereby permi t t ing an operat ion to have the same temporary 

variable as an operand and as a resul t th is scheme has 

two main advantages: f i rs t ,  the type of storage to be 

freed is known at th is point ; second ,  the t ime required 

to free storage is un iform ly consumed .  The lat ter is of 

importance since the system i s intended for use in an 

on-l ine incremental ly execut ing mode .  

The ari thmet ic expression evaluator is cal led from 

various p laces in the interpreter and not just to 

evaluate ari thmet ic expressions appearing to the right 

of assignment statemen ts .  For th is reason and to 

faci l i tate recursion the '  resul t of an evaluat ion is 

associated w i th a fixed temporary name control b lock .  

The resul ts of every ari thmet ic expression evaluat ion 

may be obtained from this temporary name control block 

by whatever port ion of the interpreter requested the 

evaluat ion .  



The name control block wh ich receives the resul t of 

an ari thmet ic expression evaluat ion is only used to pass 

the value along to whatever port ion of the interpreter 

invoked the ari thmet ic expression evaluator .  Thus ,  the 

storage associated wi th i ts previous value is not 

returned to the system .  If the storage associated wi th 

•the resul t temporary name control b lock ,  Figure 17 ,  is 

freed each t ime a new value is associated w i th i t ,  

storage would be returned wh ich may now be associated 

wi th a user variable or wh ich has already been freed by 

some other port ion of the in terpreter .  

Evaluat ion of Ari thmet ic Expression 
w i th Recursive Operands 

The occurrence of an equals variable in an ari thmet i 

expression evaluator to recurse .  The recursion needed to 

evaluate equals variables is l imi ted . to one rou t ine ,  the 

master con tro l ler ,  Figure 20 .  Th is rout ine is responsibl 

for determining what the next operator i s ,  what the 

at tr ibu tes of the operands are ,  and what rout ine is to be 

invoked to perform the operat ion .  

The rout ines wh ich perform the various operat ions 

expect to receive pointers to where the actual values of 

the operands may be ob tained .  Th is cai ses the master 

control ler . to evaluate the expression associated w i th 

the equals variable before cal l ing the operator rou t ine .  



' 

Figure 20 .  Flow of Control in Ari thmet ic Expression 
Evaluator when Operand is an Equals Variable 



' 

When recursion occurs the tex t for the current 

ari thmet ic expression is wri t ten out onto a sequent ial 

f i l e along wi th a group of variables that must be saved 

for the interpreter and al l the temporary name control 

b locks except for the temporary name control block used 

to hold the resul t of ari thmet ic expression evaluat ions .  

A l l of these variables are equivalenced to one cont iguous 

area ,  AEPDA ,  so that they may be manipulated as a un i t ,  

F igure 17 .  A flag is set in the interpreter ' s recursive 

variab le area just before the push down of storage is 

performed .  Th is flag is used to return to the point in 

the master control ler where recursion occurred after the 

symbol ic variab le ' s expression has been evaluated .  

Because of the manner in which storage associated 

w i th temporary variab les is freed ,  al l temporary 

variab les are set to undefined after the push ,  down area 

has been wri t ten ou t .  Th is al lows them to be re-used 

during the evaluat ion of the new expression w i thou t the 

danger of freeing storage which was associated w i th the 

temporary variables at the previous leve l .  After the 

new expression is read into the area used to hold text 

to be evaluated and the necessary pointers are ad justed ,  

control is transferred to the main entry po in t of the 

master con tro l ler to begin execu t ion .  Th is new expres-

sion may also contain symbol ic variables; if so ,  the 

process is repeated .  



' 

The compi ler does not check for symbol ic defini t ions 

which yield non-terminat ing defin i t ions .  Th is is the 

responsibi l i ty of the ari thmet ic expression evaluator 

during execu t ion .  The statement A = A+B and the state-

men t s A = B+C ,  B = A+D both g ive this si tuat ion .  The 

interpreter could check for the occurrence of this when 

the assignment statements are made or could keep a l ist 

of what variab les have caused recursion and check this 

before each recursion to el iminate the possib i l i ty of 

infini te recursion .  " However ,  nei ther of these methods 

are used in NAPSS because bo th require extensive checking 

be done for every symbol ic assignment or every recursion 

and for the vast majori ty of cases th is is unnecessary .  

Instead ,  a l imi t has been placed on the depth of recurs ion 

If the ari thmet ic expression evaluator at temp ts to recurse 

past th is l im i t ,  an error message is given the user 

indicat ing that the depth of recursion is greater than 

can be handled by the system .  It is also suggested that 

the defini t ion of .the symbol ic variable which caused the 

ini t ial recursion is inconsisten t .  

The resul t of an expression associated wi th a 

symbol ic variable is put in the temporary name control 

block that is used to receive the resul ts of al l ari th-

met ic expression evaluat ions .  This name control block is 

fixed in the compi ler and the interpreter and is the only 

temporary name control block which is not in the push 

down area .  



78' 

Before the push down area can be restored and 

execut ion of the original expression resumed ,  a pass must 

be made through the o ther temporary name control b locks 

to free any storage that is associated w i th t hem .  If 

th is were not done ,  th is storage would be lost to the 

system since garbage col lect ion is not used to retrieve 

unclaimed s torage .  

Al l temporary name control b locks need not be 

checked during the freeing process because the compi ler 

assigns the temporary variables in a l inear fash ion and 

re-uses them as soon as their resul ts are no longer 

needed .  Thus the interpreter need only scan them unt i l 

the first name control block is encountered wh ich is 

st i l l marked as undef ined .  

After al l the temporary variab les are freed ,  the 

push down area is restored and the name control block 

containing the resul t of the equals variable expression 

is copied into a special temporary name control block 

wh i ch is used on ly for the values of symbol ic variab les .  

The special temporary name control block is in the 

recursive variable area ,  AEPDA .  This is done to permi t 

bo th operands of an operator to be symbol ic .  The special 

name control block is used after evaluat ion in p lace of 

the symbol ic variable in the evaluat ion of the original 

ari thmet ic expression .  



' 

To avoid need less recursions to evaluate the sane 

symbol ic variab le ,  a local check is made to determ ine 

if any of the o ther operands of the current operator 

are the same variasle.  If any of them are* the special 

name control block is subst i tuted in the ari thmet ic 

expression for them a l so .  

There is a problem associated wi th the use of the 

work poo l and recurs ion .  If there are any arrays in the 

work pool when a symbol ic variable is encoun tered ,  the 

work pool must be emp t ied .  Th is saves the temporary 

resu l t array wh ich resides only in the work poo l in the 

random array f i l e .  Were this not done and the symbol ic 

expression to be evaluated involved any array ari thmet ic ,  

th is resul t array would become associated w i th a temporary 

name control b lock on the wrong l eve l .  Therefore ,  just 

before recursion takes place the work pool is empt ied and 

the resul t array is wri t ten out into ' the array fi le and 

associated w i th the proper temporary name control b lock .  

If.  an error occurs whi le evaluat ing the expression 

for a symbol ic variab le ,  the storage associated wi th the 

temporary variable name control blocks on the d ifferen t 

levels must be freed .  This is not necessary if the ari th-

met ic expression evaluator is at level zero when the 

error occurs because in th is case the normal freeing 

mechan ism frees the storage associated wi th temporary 

variab les the next t ime the ari thmet ic expression evalua-



' 

t ion is ca l l ed .  However ,  when an error is detected 

at a non-zero l eve l ,  the storage associated w i th al l 

temporary variab les is freed a level at a t ime un t i l 

l eve l zero i s reached .  Informat ion abou t what caused 

the error and at what level i t occurred is saved before 

the recursion l eve ls are ro l led back so that an error 

message can be g iven the user .  

Eva lua t ion of Ari thmet ic Expressions 
Invo lv ing Symbol ic Funct ions 

During comp i lat ion of the text of a symbo l ic func-

t i on ,  references to the first N t emporary name control 

b locks are subst i tu ted for appearances of the N formal 

parameters of the func t ion .  When a funct ion is to be 

evaluated the actual parame ters are subst i tu ted for the 

forma l parame ters by copying the name con tro l b locks for 

the actual parame ters into the first N t emporary name 

con tro l b l ocks .  

Th i s canno t be done d i rec t ly for two reasons: firdt,  

the func t ion evaluat ion may appear at any po in t in an 

ar i thmet ic expression and therefore some t emporary va lues 

may a l ready reside in the f irs t N t emporary name control 

b locks; second ,  one or more of the actual parameters may 

be ar i thme t ic expressions wh i ch have been evaluated and 

had the ir resu l ts put in some of the temporary name 

con tro l b l ocks .  

These prob lems cause the ari thmet ic expression 

 recurse before the actual argumen t name 



' 

control blocks are copied into the temporary name control 

block and force the use of a temporary area to col lect 

the parameter name control b locks .  See Figure 21 .  

The appearance of an equals variable as an actual 

parameter is not handled in the same fashion as o ther 

types of parameters .  Its name control block is not 

•directly copied onto the corresponding temporary name 

control b lock .  If i t were ,  th is would cause the ari th-

met ic expression evaluator to recurse each t ime th is 

parameter appears in the text for the func t ion .  Since 

the value of the equals variable cannot change during 

the evaluat ion of the func t ion ,  th is is avoided by having 

the ari thmet ic expression evaluator recurse and evaluate 

the equal variable before i ts name control b lock is 

copied into the corresponding temporary name control 

b lock .  Thus ,  the name control block for the resul t of 

evaluat ing the equals variable is used in place of the 

name control block of the equal variable i tse lf .  

After al l the name control blocks of the arguments 

are in the temporary area used to col lect them ,  they are 

copied onto the first N temporary name control b locks .  

Before evaluat ion commences the funct ion is checked 

to see if i t is a left arrow or equals funct ion .  If i t 

is a left arrow funct ion ,  then al l non-parameter variables 

appearing in the funct ion text had their values fixed when 

the funct ion assignment was made .  To fix the value of 



' 

Figure 2 l .  Symbol ic Funct ion Evaluat ion F low 



' 

these variables a copy of each of their name con tro l 

b locks and associated storage was created when the 

funct ion assignment was performed .  Thus ,  to evaluate 

a left arrow funct ion these local name control blocks 

are brought into the name table area and po in ters are 

ad justed so that these variables are referenced whi le 

the funct ion is being evaluated .  

If the funct ion to be evaluated is an equals func-

t i on ,  al l non-parameter variables appearing in the func-

t ion text are not fixed when the funct ion assignment is 

made ,  but assume their current value when the funct ion 

is evaluated .  Thus ,  no local name control b locks are 

associated w i th equals func t ions .  

The point at which the funct ion is to be evaluated 

i s checked to see if the funct ion is defined at th is 

po i n t .  The check is performed by evaluat ing the boolean 

expressions associated w i th the various defin i t ions of 

the funct ion .  The boolean expressions are evaluated in 

the order the user has stated them .  When no boo lean 

expression appears w i th a defin i t ion the funct ion is 

assumed to have th is defini t ion everywhere or everywhere 

else depending on whether or not other defin i t ions wi th 

associated boo lean expressions precede i t .  

After the resul t of a funct ion evaluat ion is put in 

the temporary name control block which receives the resul t 

of al l ari thmet ic expression evaluat ions ,  the ari thmet ic 

expression evaluator returns to the level at wh ich the 



' 

funct ion invocat ion occurred .  

The process of returning to the level in the ari th-

met ic expression evaluator at which the funct ion invoca-

t ion occurred is simi lar to what occurs when returning 

from the evaluat ion of an equals var iab l e .  The only-

difference is the freeing of the temporary name control 

blocks before the recursion area is res tored .  A l l of 

the temporary name con tro l b locks may not be freed as 

they were after the evaluat ion of an equals variab le ,  

because to evaluate a funct ion the first N temporary name 

control b locks were used to hold cop ies of the parameter 

name control b locks .  

The copy of the actual name con tro l block for the 

parameter is flagged when it is put into the corresponding 

temporary name control b lock so that when the temporary 

name control b locks are freed the ones used to hold para-

meters w i l l not be freed .  There is one temporary name 

control block used to hold a type of parameter which is 

not flagged and must have i ts associated storage freed .  

Th is is the temporary name control block used to hold the 

value of a parameter wh ich corresponds to an equals 

var iab l e .  Since the equals variable is evaluated before 

the evaluat ion of the func t ion ,  the on ly name control 

b lock point ing to the value of the equals variab le is the 

temporary name control block used as parameter .  



' 

If an error occurs during the evaluat ion of a func-

t i on the ari thmet ic expression evaluator saves informa-

t ion as to what caused the error and at which level it 

occurred and returns to level zero as i t does when an 

error occurs during the evaluat ion of an equals variab le .  

Evaluat ion of Ari thmet ic Expressions 
w i th Polyalgori thm Cal ls 

A polyalgori thm is formed by grouping several 

numerical procedures and a supervisor into a single 

procedure for solving a specific prob lem .  The poly-

algori thm combines the various methods along wi th the 

strategy for their select ion and use into a single method 

wh ich is relat ively efficient and very re l i ab l e .  

The appearance of ei ther an integral or a derivat ive 

in an ari thmet ic expression causes the ari thmet ic expres-

sion evaluator to invoke a polyalgori thm to perform the 

opera t ion .  A l though the polyalgori thm con tains i ts own 

superv isor ,  i t requires the ari thmet ic expression 

evaluator to evaluate the funct ion invo lved .  Therefore ,  

the process of evaluat ing an integral or derivat ive of a 

funct ion is recursive. .  It is also considerably more 

compl icated than evaluat ion of an equals variable or a 

func t ion .  In the lat ter two case on ly the master 

control ler of the ari thmet ic expression evaluator i tself 

is involved; here the ari thmet ic expression evaluator 

and a po lyalgori thm are invo lved .  In add i t ion ,  since the 



polyalgori thm may require that the value of the funct ion 

involved be computed repeated ly ,  the normal process of 

funct ion evaluat ion which is i tself recursive cannot be 

used in this case for pract ical reasons .  

When a'  derivat ive or integral appears in an ari th-

me t ic expression being evaluated ,  al l the argumen ts 

required by the po lyalgori thm ,  such as number of 

derivat ives ,  in tegral bounds ,  or point of different iat ion 

are evaluated in the ari thmet ic expression evaluator befo 

the polyalgori thm i s invoked .  The values of these para-

meters are passed to the polyalgori thm in i t ial ly so that 

the ari thmet ic expression need only be re-entered from 

the polyalgori thm when necessary .  

Before the polyalgori thm is cal led the ari thmet ic 

expression evaluator recurses as i t does when evaluat ing 

a func t ion .  The tex t of the funct ion involved in the 

operat ion is placed in the appropriate place in the 

interpreter for evaluat ion .  A l l parameters necessary 

for evaluat ion are also set up except for fi l l ing in the 

temporary name control block wh ich corresponds to the 

variable of different iat ion or in tegrat ion .  Thus ,  when 

the polyalgori thm needs to evaluate the funct ion al l that 

remains to be done is supply the value of th is po in t .  

When the polyalgori thm is cal led from the ari th-

met ic expression evaluator and a value of the funct ion 

involved is needed the ari thmet ic expression evaluator 



' 

must be returned t o ,  or must be cal led from ,  the poly-

a lgor i thm .  If the polyalgori thm cal ls the ari thmet ic 

expression evaluator ,  the address where-the ari thmet ic 

expression evaluator was ini t ial ly cal led from would be 

des t royed .  If the polyalgori thm returns to the ari th-

met ic expression evaluator ,  this would create prob lems 

in the organizat ion of the po lyalgori thm .  For if the 

po in t at which the funct ion must be evaluated is several 

rou t ines removed from the original cal l on the poly-

algori thm ,  al l of these cal ls would have to be retraced 

for each evaluat ion of the func t ion ,  or the poly-

algori thm would have to be re-organ ized .  

To avoid both of these problems direct transfers 

are used to transfer control between the ari thmet ic 

expression evaluator and the polyalgori thm after the 

polyalgori thm is ini t ial ly en t ered .  This method of 

transferring between rout ines is accompl ished by the use 

of assigned go to statements in each of the rou t ines .  

When the polyalgori thm completes i ts work i t 

returns to the ari thmet ic expression evaluator normal ly .  

The ari thmet ic expression evaluator then restores i tself 

to the level at which the integral or derivat ive occurred .  

The process of freeing storage associated w i th temporary 

name control b locks and the popping up of the recursive 

area is simi lar to what is done after the evaluat ion of a 

func t ion .  



88' 

If an error occurs which causes the polyalgori thm 

to terminate evaluat ion ,  i t returns to the ari thmet ic 

expression evaluator as if the evaluat ion was successful 

but wi th an error flag set .  The ari thmet ic expression 

evaluator returns to level zero as is done when an error 

occurs during an equals variable or a func t ion .  The 

actual message is issued by the rout ine which ini t ial ly 

cal led the ari thmet ic expression evaluator .  

S 



' 

ASSIGNMENT STATEMENTS 

General Problems 

The variable appearing on the left in an assignment 

statement may have none ,  some ,  or al l of i ts at tributes 

expl ici t ly dec l ared .  If no at tributes are expl ici t ly 

declared for a variab le ,  i t may appear on the left in any 

assignment statement and i t assumes al l of i ts at tributes 

contextual ly from the type of assignment statement and the 

at tributes of the expression on the righ t .  If some or al l 

of i ts at tributes are expl ici t ly dec lared ,  then the type 

of assignment statement in wh ich it appears and the 

at tribu te of the expression on the right must agree wi th 

the variable ' s declared a t t r ibu t es .  If they do not agree ,  

the assignment is not performed ,  an error message is 

issued ,  and the variable ' s value remains unchanged .  When 

a new value is assigned to a variable the storage occupied 

by the previous value is normal ly returned to the system .  

The previous value may be pushed down to the next narre 

control block in an i terat ion chain when a new value is 

assigned to the head of the cha in .  An i terat ion chain is 

pushed down on ly when the structure of the new value 

assigned to the head is compat ible wi th that of the 

previous va lue .  Thus ,  if the previous value assigned to 



90' 

the head of an i terat ion chain is a real scalar and the 

new value is a complex scalar ,  the chain is pushed down .  

However ,  if the previous value is a real array and the 

new value is a real scalar ,  the i terat ion chain is freed .  

Previous values are saved on ly for numeric scalars and 

arrays .  

The pushing down of an i terat ion chain is accompl ished 

by copying each name control block onto the one fol lowing 

i t ,  except for the i terat ion pointer f i e ld .  If the last 

name control b lock in the chain is def ined ,  the storage 

associated w i th i ts previous value is returned to the 

system .  

When a new value is assigned to the head of an 

i terat ion chain and the prev ious value is not to be 

pushed down ,  each name control block in the chain is set 

as being undefined and the storage associated w i th them 

is returned to the system .  When th is occurs ,  the i tera-

t ion chain is referred to as being freed .  

The work pool must be empt ied by each assignment 

statement that cal ls the ari thmet ic expression evaluator .  

If the resul t of the expression on the right is an array ,  

th is stores i t out in the array disk f i l e ,  since i t 

current ly resides on ly in the work poo l .  

A descrip t ion of the storage associated w i th the 

various variable data types is given in Append ix A .  



91' 

Left Arrow Assignmen t Statement : .  A-

The left arrow assignment statement assigns the value 

of the expression on the left to the variable on the right .  

The value assigned may be a numeric scalar ,  a numeric 

array ,  or a scalar string .  

When the resul t of the expression is numeric ,  it 

•cannot be complex if the variable on the left is declared 

expl ici t ly to be double prec is ion .  However ,  if the resul t 

is complex and the variable on the left is declared to be 

rea l ,  single or double precision ,  conversion is made when 

the resul t is scalar and i ts imaginary part is zero .  No 

test is made to determine if the imaginary part is zero 

when the resul t is a complex array .  O ther conversions 

for both arrays and scalars are made au tomat ical ly .  

When the resul t is an array and the variable on the 

left is the head of an i terat ion chain ,  the fact that the 

previous value is also an array does not guaran tee that 

the i terat ion chain is pushed down .  When arrays are 

invo lved ,  an i terat ion chain is pushed down on ly when the 

number of indices and the sizes of the new and the previois 

array values ma t ch .  The ac tua l bounds of each index are 

not checked; instead ,  the number of elements in each 

d imension are compared .  If ei ther the number of ind ices 

or the number of elements in each d imension are no t 

iden t ica l ,  the i terat ion chain is freed .  



' 

The variable on the left assumes the bounds of the 

resul t array when it does not have any bounds expl ici t ly 

dec l ared .  When bounds are expl ici t ly declared for the vari-

able the number of d imensions must match on both sides 

and the number of elements assigned in each d imension must 

not exceed the number dec lared .  If bo th of the above 

condi t ions are me t ,  the lower bounds of the resul t array 

are set to the declared lower bounds of the variable and 

the upper bounds of the resul t are adjusted accord ing ly .  

Array Element Left Arrow Assignment Statement : A f I , J V 

Th is assignment statement assigns the value of the 

ari thmet ic expression on the right to the element or 

elements of the subscripted variab le on the l ef t .  The 

expression on the right can yield ei ther a numeric scalar 

or a numeric vec tor .  

The subscripts may be a single ari thmet ic expression ,  

two ari thmet ic expressions ,  or an ari thmet ic expression 

and a Subscript expressions must yield numeric scalars 

If the scalar is not rea l ,  a warn ing message is issued 

and only the real port ion of the number is used .  Real 

subscript values ' are converted to an integer by round ing .  

When al l of the subscripts of the variable on the 

left are ari thmet ic expressions ,  the expression on the 

right must yield a scalar .  And ,  when one of the subscripts 

is a the expression on the right must yield ei ther a 

row or column vec tor .  Thus ,  for example ,  a row vector may 



93' 

be assigned to the column of a ma t r i x .  

There are two sets of bounds associated w i th each 

array : the actual bounds and the opt ional declared 

bounds .  The actual bounds are the current bounds of an 

array and they must always remain inside the declared 

bounds when such are g iven .  

The number of cases that are handled by th is assign-

men t is large ,  due to the fact that the user may declare 

none ,  some ,  or a l l of the at tribu tes for the variable on 

the l ef t .  If the variable on the left has not previously 

been assigned a value ,  four possib le cases ex i s t .  

Case one: the variable on the left is declared to 

be an array and the number of subscripts is f ixed .  The 

bounds for the subscripts may also be declared .  

The actual bounds associated wi th a * subscript are 

the ac tua l bounds of the vector resul t when no bounds 

are declared for the index of the variab le .  But if the 

* index has i ts bounds dec lared ,  then the lower bound of 

the resul t vector is adjusted to match the declared lower 

bound of the variable and the actual upper bound is 

mod ified accord ing ly .  If after the adjustment is made the 

actual upper bound of the vector exceeds the declared 

upper bound of the variab le ,  no assignment is made and an 

error resu l t s .  

Case two: the variable on the left is declared to be 

an array ,  but no declarat ion has been made concerning the 



' 

number of subscripts or their bour.de>.  Then the variable 

on the left may appear vii th ci ther one or two subscript.;:-.,  

and i t is contextual ly defined to have the corresponding 

number of d imens ions .  The actual bounds of the array are 

establ ished from the subscript expressions or from the 

vector resul t for a * index .  

Case three: the variable on the left ir; nut 

dcclarcd expl ici t ly to be an array ,  but can have an array 

as i ts va lue .  Then the vnrj.abje is contextual . ; y dec"! ?jred 

to be an array and the assignment proceeds as in ease two .  

Case four: the variable on the left is declared to 

be a scalar .  In this cape ,  no assignment Is made arid an 

error resu l t s .  

If the variable on the left has previously been 

assigned a value ,  there are six possible cases .  

Case one: the variable on the left present ly is an 

array ,  the number of subscripts ma tch ,  and the values of 

the subscripts l ie wi thin the present actual bounds ,  or 

in the case of a * subscript the number of elements i r; 

the vector resul t equals the number of elements :i n the * 

index .  Thus only a replacement of previous values is 

necessary .  

Conversion is performed when possible to injure that 

the mode and precision of the current and new values agree.  

If no conversion can be performed ,  as is the case when the 

variable on the left is declared to be real and the resul t 



' 

of the expression on the right is comp lex ,  an error is 

issued and no assignment is made .  If the variable on the 

left is the head of an i terat ion cha in ,  the chain is 

pushed down in th is case .  

Case two : the variable on the left curren t ly is an 

array but the dimensions do not match on the left and 

r igh t .  If the dimension is expl ici t ly declared for the 

variable on the l ef t ,  no assignment is made and an error 

resu l t s .  If the dimension is not declared ,  the previous 

array value is destroyed and a new array is created .  

Case three: the variables on the left and right 

have the same number of d imens ions ,  but the one on the 

left must be expanded .  Th is occurs when ei ther the value 

of a subscript fal ls outside the actual bounds of the 

current array value (but inside the declared bounds) ,  or 

the number of elements in a vector to be assigned exceeds 

the number of elements curren t ly in the * d imens ion .  

An array is expanded by adding zero columns and rows 

to the prev ious value .  Then the assignment is made to the 

expanded array .  

When the expansion resul ts from a vector being 

assigned to a row or co lumn ,  the actual upper bound is 

adjusted f i rs t .  If the declared upper stops the expansion 

before enough space is ob ta ined ,  then the actual lower 

bound is adjusted to obtain the remaining space needed .  



' 

When an array is expanded and the variable on the lelt 

is the head of an i terat ion chain ,  the chain is freed .  

Case four: the variable on the left current ly is an 

array and the number of elements to be assigned to a * 

index is less than the number of elements current ly in 

that d imens ion .  Because i t is not known wh ich elements 

are to be replaced in this case ,  no assignment is made 

and an error resu l t s .  

Case five: the variable on the left current ly does 

not have an array as i ts value ,  but i t may .  The assign-

men t of the new value is made as in case three ,  when the 

variable had no previous va lue .  

Case six: the variable on the left is declared to 

be scalar .  Because at tributes are assigned at execut ion 

t ime ,  th is error cannot be detected by the compi ler but 

is detected when the assignment is at tempted and an error 

resu l t s .  

Equals Assignment Statement : A = 

Th is assignment statement assigns the t ex t ,  not the 

value ,  of the expression on the right of the = to the 

variable on the lef t .  

Before the assignment is performed ,  the internal text 

for the expression on the right is scanned to check for 

scope confl icts between the variables on the right and 

l ef t .  Also during this scan the relat ive po in ters to 

user-created variables are replaced by absolute po in ters .  



' 

This process is simpl ified by the fact that the pointers 

to user variables are represented in the internal text 

by posi t ive in tegers ,  wh i le al l other quan t i t ies in the 

in ternal text are represented by negat ive in t egers .  

If the variable on the left is g lobal al l variables 

appearing in the expression on the right must also be 

g l oba l .  If the variable on the left is non-local al l the 

variables in the expression must be known in the outer-

most procedure in which the variable on the left is known .  

The po in ters generated by the compi ler to user 

variables are relat ive to the beginning of the name table 

for the procedure being comp i l ed .  Thus for the variable 

on the left to be assigned a value in an internal 

procedure and have i ts value computed in ano ther procedure 

or the console level ,  the relat ive po in ters to user 

variables must be replaced by absolute po in t ers .  The 

relat ive pointers to variable name control blocks are 

replaced by absolute po in ters to the name control blocks 

wh ich contain the actual values for the variab les .  The 

absolute po in ters are into the array AENC3S .  See figure 

17- Th is replacement insures that wherever the value of 

the variab le on the left is computed the correct name 

control block entries are used .  

For g lobal variables the absolute po in ter is to the 

name control block for the variable in the global t ab l e ,  

and for non-local variables the absolute pointer is to 



712' 

the name control block for the variable in the outermost 

name table in which the variable is known; see figure 17 .  

Equals Funct ion Assignment Statement : F(X j ,  Xg ,  ,  X^) = 

Th is assignment statement defines the variable on the 

left to be a symbol ic funct ion (an equals func t ion) .  The 

variables appearing in the text of the funct ion do not 

have their current value fixed when the assignment is 

made; rather they assume their current value when the 

funct ion is evaluated .  

A symbol ic funct ion may be defined to have from one 

to four formal parameters .  The maximum of four formal 

parameters for a funct ion is a system parameter and may 

be changed at any t ime .  

Before the assignment is made ,  the scope of the 

variab les appearing in the text is checked ,  and al l 

relat ive po in ters are replaced w i th absolute po in ters ,  

as is done in the equals assignment statement : A = .  

The formal parameters are not treated in the same 

manner as o ther variables appearing in the tex t of the 

func t ion .  References to the N formal parameters are 

replaced during compi lat ion w i th references to the first 

N temporary name control b locks .  Therefore ,  they do not 

appear as normal variable references .  



' 

Left Arrow Funct ion Assignment Statement : F(X-j ,X? , . . . ) -

This assignment statement also defines the variable 

on the left to be a symbol ic funct ion (a left arrow 

func t ion) .  The difference between this assignment and 

the previous one is that here a l l variables on the right 

have their values fixed when the assignment is made .  

Thus there are no scope confl icts to be checked ,  but al l 

variab les appearing in the funct ion must be def ined .  

Values are fixed by creat ing a local name control 

block for each variable on the right and associat ing a 

copy of the current value of the variable w i th this name 

control b l ock .  Al l references to these variables are 

modified to point to these local name control b locks .  

A funct ion defini t ion is broken up by domains ana 

a local name tab le is created for the variab les 

occurring in each doma in .  

For each left arrow variable appearing in a funct ion 

defini t ion a copy of the variab les name control block is 

created and placed ,  in the local name table for the 

func t ion .  If the value of the variable is an array ,  i ts 

value is not cop i ed .  The name control block po in ts to 

the array and the reference count associated w i th the 

array is increased by one .  

When an equals variable appears in tho text of the 

func t ion ,  the expression associated wi th the variable is 

evaluated and a name control block is created in the 



' 

local name table wi th the same name and.  the value of the 

evaluat ion is associated wi th i t .  

The occurrence of a left arrow funct ion in a 

funct ion ' s defini t ion causes a copy of the funct ion ' s 

name control b lock to be placed in the local name table 

for the funct ion being def ined .  Instead of mak ing a 

copy of the defini t ion of the left arrow ,  the reference 

count associated w i th the funct ion defini t ion is 

increased by one .  

If none of the argumen ts of a left arrow funct ion 

appearing on the right involve any of the formal para-

meters of the funct ion being defined ,  then the funct ion 

may be eva lua ted .  This is done and the resul t ing value 

is associated w i th a special name control block which is 

placed in the local name tab le of the funct ion being 

def ined .  Th is resul ts in a t ime saving whenever the 

funct ion being defined is evaluated .  

When an equals funct ion appears in the defini t ion of 

a left arrow funct ion i t ,  too ,  is evaluated if none of 

i ts argumen ts involve any of the formal parameters of 

the funct ion being def ined .  When this is not the case ,  

the equals funct ion is converted to a left arrow func t ion .  

Th is causes the rout ine which performs the left arrow 

funct ion assignment to recurse ,  and resul ts in two copies 

of the funct ion defini t ion to be saved .  One defin i t ion ,  

the orig inal ,  is associated w i th the equals funct ion name 

control block and the other is associated wi th a name 



101' 

control block in the local name table of the funct ion 

being def ined .  

The mechanism used to save temporary variables when 

th is rout ine recurses is the same as used by the ari th-

met ic expression evaluator .  

If a variable appears in the defini t ion of a left 

arrow funct ion which is undefined ,  non-numeric ,  or i tself 

not a funct ion ,  then the assignment is no t made and an 

error resu l t s .  When th is occurs ,  because garbage col lec-

t ion is not used al l storage associated w i th local name 

control b locks and the defin i t ion of the funct ion up to 

the point of the error must be returned to the system .  

Array of Funct ions Assignment Statements: 
F(X

1
 .  x?i . . : ; x

M
)r i . j i = 

These assignment statements define an element in an 

array of symbol ic funct ions .  We use a l l the rules 

involved when assigning an element in a numeric array ,  

or dsfining a scalar left arrow or equals func t ion .  In 

add i t ion ,  we require that only ari thmet ic expressions 

appear as subscrip ts .  The elements of the array must 

ei ther al l be left arrow funct ions or al l equals func t ions 





BIBLIOGRAPHY 





BIBLIOGRAPHY 

Cu l l e r ,  G .  J .  {1968} ,  "Ma t hema t i ca l Labora t or i es : 
A New Power for t he Phys i ca l Sc i ences , " In t er-
ac t i ve Sys t ems for Exper i men t a l App l i ed Ma t he-
m a t i c s ,  (K l erer ,  M .  and Re i nfe l ds ,  J . ,  eds . ) ,  
pp .  355-384 .  

Eng l eman ,  C .
f
 "MATLAB - A Program for On-Line 

Mach ine Assistance in Symbol ic Computat ion ," 
Proceed ings Fal l Joint Computer Conference 1965 ,  
pp .  423-

Fa lkoff ,  A .  D .  and Iverson ,  K .  E- (1968) ,  "The 
APL 360 Terminal System ," Interact ive Systems for 
Experimen tal Appl ied Mathemat ics^ (Klerer ,  M .  and 
Reinfelds ,  J . ,  eds . ) ,  pp .  22-37 .  

Hearon ,  A .  C .  (1968) ,  "REDUCE: A User-oriented 
Interact ive System for Algebraic Simpl ificat ion ," 
Interact ive Systems for Experimental Appl ied 
Mathemat ics .  (Klerer .  M .  and Reinfelds .  J . ,  eds . ) ,  
pp .  79-90 .  

H i l l ,  P .  B .  and S towe ,  A .  N .  (1968) ,  "Implementa-
t ion of a Reckoner Faci l i ty on the Lincoln Labora-
tory IBM 360/67 ," Interact ive_Systems for 
Experimen tal Appl ied Mathemat ics ,  (Klerer ,  M .  and 
Reinfelds ,  J . ,  eds . } ,  pp .  385-389-

Kap low ,  R . ,  Bracket t ,  J . ,  and S trong ,  S .  (1966 ) ,  
"Man-Machine Communicat ions in On-L ine Mathemat ical 
Analysis , " Proceedings - Fal l Joint Computer 
Conference ,  pp .  465-477 .  

K l erer ,  M .  and May ,  J .  (1964) ,  "An Experiment in a 
User-Orien ted Computer System ," Commun icat ions ACM ,  
7 ,  No .  5 , PP. 290-294-

K l erer ,  M .  and May ,  J .  (1965) ,  "A User Oriented 
Programming Language ," Computer Journa l ,  8 ,  No .  2 ,  
pp .  103-109 .  



103' 

9 .  K lerer ,  M .  and Kay ,  J .  (1967) ,  "Automat ic 
D i mens i on i ng , " Commun i ca t i ons A C M ,  10 ,  N o .  3 ,  
pp .  165-166 .  

10 .  K l erer ,  M . ,  Grossman ,  F . ,  and Amann ,  C .  K .  
(1968) ,  "Design Phi losophy for an Interact ive 
Keyboard Terminal ," Interact ive Systems for 
Experimen tal Appl ied Mathemat ics ,  (Klerer ,  M .  
and Reinfelds ,  J . ,  eds . ) ,  pp .  183-191 .  

1 1 .  Lock ,  K .  (1968) ,  "An Ob j ec t Code for In t erac t i ve 
App l i ed M a t hema t i c a l Programm i ng , " In t erac t i ve 
Sys t ems for Exper i men t a l App l i ed Ma t hema t i cs ,  
{K l erer ,  M .  and Re i nfe l ds ,  J . ,  eds.)" ,  p p .  222-
224.  

12 .  M a t t hews ,  H .  F .  (1968) ,  "VENUS : A Sma l l In t er-
ac t i ve Non-procedura l Language , " Tn t erac t i vo 
Sys t ems for Exper i men t a l App l i ed M a t hema t i c s ,  
(K l erer ,  M .  ana Re i nfe l ds ,  J . ,  eds . ) ,  pp .  97-101 .  

13 .  Reinfelds ,  J- (1968) ,  "An Implementat ion of 
Au tomat ic Array Ari thmet ic by a General ized Push-
Down Stack ," Interact ive Systems for Experimental 
Appl ied Mathemat ics ,  (Klerer ,  M .  and Reinfelds ,  J . ,  
eds . ) ,  pp .  411-422 .  

14 .  Roos ,  D . ,  "An Integrated Computer System for 
Eng ineering Problem Solving ," Proceedings Fal l 
Joint Computer Conference 1964-

15 .  Roos ,  D .  (1967) ,  ICES System Design ,  MIT Press .  

16 .  R i ce ,  J .  R .  and Rosen ,  S . ,  "NAPSS: A Numerical 
Analysis Problem Solving System ," Proceedings -
ACM Nat ional Meet ing 1966 ,  pp .  51-56 .  

17 .  R i ce ,  J .  R .  (1968) ,  "On the Construct ion of Poly-
algori thms for Automat ic Numerical Analysis ," 
Interact ive Systems for Experimental Appl ied 
Ma thema t i cs .  (Klerer ,  M .  and Reinfelds ,  J . ,  eds .  ),  
pp .  301-313 .  

18 .  R i ce ,  J .  R .  (1969) ,  "A Polyalgori thm for the Auto-
mat ic Solut ion of Non-l inear Equat ions ," Purdue 
Un iversi ty Technical Report ,  CSD TR 32 .  

19* Roman ,  R .  V .  and Symes ,  L .  R .  (1968) ,  "Implementat ion 
Considerat ions in a Numerical Analysis Problem 
Solving System ," Interact ive Systems for Experimental 
Appl ied Mathemat ics ,  (Klorar ' ,  M .  and Ro inralda ,  J .  ,  
eds . ) ,  pp .  400-410 .  



' 

20 .  Ruy le ,  A . ,  Bracket t ,  J .  W . ,  and Kap low ,  R . ,  
"The Status of Systems for On-Line Mathemat ical 
Assistance ,

, T

 Proceedings - ACM Nat ional Meet ing 
1967 ,  pp .  m

1

! ^ 

21 .  Sch lesinger ,  S .  and Sashk in ,  L .  (1967) ,  "POSE: 
A Language for Pos i ng Prob l ems to t he Compu t er , " 
Commun i ca t i ons A C M ,  10 ,  No .  5« 

22 .  Sch lesinger ,  S .  I . ,  Sashk in ,  L . ,  Reed ,  K .  C .  
(1968) ,  "Two Analyst-Oriented Computer Languages: 
EASL ,  POSE ," Interact ive Systems for Experimental 
Appl ied Mathemat ics ,  (Klerer ,  M .  and Reinfelds ,  J . ,  
eds . ) ,  pp .  91-96 .  

23 .  Sei tz ,  R .  N . ,  Wood ,  L .  H . ,  and E ly ,  C .  A .  (1968) ,  
"AMTRAN: Automat ic Mathemat ical Translat ion ," 
Interact ive Systems for Experimental Appl ied 
Ma thema t ics ,  (Klerer ,  M .  and Reinfelds ,  J . ,  eds . ) ,  
pp .  44-66 .  

24 .  Shaw ,  J .  C . ,  "JOSS: A Designer ' s View of an 
Experimen tal On-Line Comput ing System ," Proceedings 
Fal l Joint Computer Conference 1964 ,  pp .  455-464-

25 .  S towe ,  A .  N . ,  We isen ,  R .  A . ,  Yn tema ,  D .  B . ,  and 
- • "> Forg ie ,  J .  W . ,  "The Lincoln Reckoner: An Operat ion-

Oriented On-Line Faci l i ty w i th Distributed Control ," 
Proceedings - Fal l Joint Computer Conference 1966 ,  
pp .  433-444 .  

26 .  Symes ,  L .  R .  and Roman ,  R .  V .  (1967) ,  "NAPSS Primer ," 
Purdue Un iversi ty Techn ical Report ,  CSD TR 11 .  

27 .  Symes ,  L .  R .  and Roman ,  R .  V .  (1967),  "Syntact ic and 
Semant ic Descript ion of the Numeri.cal Analysis 
Programming Language (NAPSS)," Purdue Un iversi ty 
Technical Repor t ,  CSD TR 11 .  

28 .  Symes ,  L .  R .  and Roman ,  R .  V .  (1968) ,  "Structure 
of a Language for a Numerical Analysis Problem 
Solving System ," Interact ive Systems for 
Experimental Appl ied Ma thema t ics ,  (Klerer ,  M .  and 
Reinfelds ,  J . ,  eds . ) ,  pp .  67-78 .  

29 .  W i esen ,  R .  A . ,  Yn t ema ,  D .  B . ,  Forg ie ,  J .  W . ,  and 
S towe ,  A .  N .  (1968) ,  "Coherent Programming in the 
Lincoln Reckoner ," Interact ive Systems for Experi-
men tal Appl ied Mathemat ics ,  (Klerer,  M .  and 
Reinfelds ,  J . ,  eds . ) ,  pp .  167-177 .  



Wood ,  L .  H . ,  Reinfelds ,  J . ,  Sei tz ,  R .  
C l em ,  P .  L .  (1966) ,  "The AMTRAN System 
Datamat ion ,  12 ,  No .  10 .  



'  APPENDICES 





APPENDIX A 

DATA STRUCTURES 

Equals Var iab l e 

The a t t r ibu t e number for an equals var iab l e is zero .  

The data po in t er field of the variab le ' s name con tro l 

b lock con ta ins the page number of the first v irtual page 

used to store the tex t for the express ion .  The data 

port ion of the name con tro l b lock is unused .  

The tex t i s packed in each v i r tual page ,  three 

twen ty-b i t in tegers per word .  The first word of each 

v i r tua l page is used for l i nk i ng .  The l ink con ta ins the 

v i r tua l page number of the nex t page used to ho ld the 

t ex t of the expression or zero if the page is the l as t .  

F igure AI d i sp l ays the data structure for an equals 

var i ab l e .  Two pages of v ir tual memory are used to hold 

the tex t for t he express ion .  

Left Arrow Var iab l es 

Rea l S ing le Precision Scalar 

The a t tr ibu t e number 1 specif ies a variab le whose 

va lue is a real single precis ion sca l ar .  The value is 

stored in the f i rs t word of the data port ion of the name 

con t ro l b l ock .  The remain ing three words of the data 

por t i on are unused ,  see F igure A2 .  



107' 

VIRTUAL PAGE VIRTUAL PAGE 

F igure AI .  Equals Variable Data Structure 

ATTRIBUTE 
FLAGS 

NAME 

VALUE 

NAME CONTROL BLOCK 

Figure A2 .  Real Single Precision Scalar Data Structure 



727' 

Real Double Precision Scalar 

The at tribute number 2 specifies a variable whose 

value is a real doub le precision scalar .  The value is 

stored in the first and second words of the data port ion 

of the variable ' s name control b l ock .  Words three and 

four of the data port ion are unused .  See F igure A3 .  

Complex Single Precision Scalar 

The at tribute number 3 specifies a variable whose 

value is a complex single precision scalar .  The value 

is stored in the first and third words of tte data por-

t ion of the variable ' s name control b lock .  The real 

part is in word one and the imag inary part in word three .  

Words two and four of the data port ion are unused .  See 

F igure A4 .  

Complex Double Precision Scalar 

The at tribute number 4 specifies a variable whose 

value is a complex double precision scalar .  The value 

is stored in the four word data port ion of the variable ' s 

name control b l ock .  The real part is in words one and 

two and the imaginary ,  part in words three and four .  See 

F igure A5 .  

Numeric Arrays 

The at tribute numbers 5 ,6 ,7 and & denote a real 

single precision array ,  a real double precision array ,  

a complex single precision array ,  and a complex double 



' 

ATTRIBUTE 
FLAGS 

-NAMS 

VALUE 

VALUE 

NAME CONTROL BLOCK 

Figure A3 .  Real Double Precision Scalar Data Structure 

[at tribu te
-

" FLAGS 

WftHE
 : 

r e a l par t 

IMAGINARY PART 

NAME CONTROL BLOCK 

F igure A4 .  Complex Single Precision Scalar Data Structure 



ATTRIBUTE 
FLAGS 

NAttE 

REAL PART 

REAL PART 

IMAGINARY PART 

IMAGINARY PART 

NAME CONTROL BLOCK 

Figure A5- Complex Doub le Precision Scalar Data Structure 



Il l 

precision array ,  respect ively .  

If the data po in ter field of the name con tro l block 

for the array variable is non zero ,  a copy of the array 

ex ists in secondary storage in the array f i l e .  The data 

po in t er is then the number of the record used to store 

the array and an index in the vector AEPAR .  

The vector AEPAR contains addi t ional informat ion 

about the array .  Each entry in AEPAR is broken into 

three by t es ,  each of twen ty b i t s .  These by tes are 

numbered from left to r igh t ,  byte three ,  byte two ,  and 

by te one .  

By te three contains the reference count for the 

array .  Byte two contains the number of dimensions in 

the array .  And byte one contains the number of words in 

the array .  The number of words in an array is equal to 

the number of elements in the array t imes the number of 

words in each e lemen t .  

There is one word per element if the array is real 

single precision ,  two words per element if the array is 

ei ther real double precision or complex single precision ,  

and four words per element if the array is complex double 

prec is ion .  The elements are stored consecut ively by vows.  

If t he data po in ter field of the array ' s name control 

b lock is zero ,  the on ly copy of the array exists in the 

work poo l ,  and the array is the resul t of the last array 

operat ion performed .  



' 

The vectors AEAWP l and AEAWP2 contain informat ion 

about the arrays in the work poo l .  AENAWP is the number 

of arrays in the work poo l .  Each entry , in AEAWP l contains 

the index in AENCBS of the first word of the data port ion 

of the name control block of the array variab le .  Each 

en try in AEAWP2 is subdivided into three by t es .  Byte 

three contains the index in the work pool of the first 

word of the array; byte two contains the number of 

d imensions in the array ,  and by te one contains the number 

of words in the array .  

When the data po in ter field of an array variab le ' s 

name control block is zero ,  the informat ion about where 

the array is in the work poo l and the number of words in 

the array i s contained in AEAWP2 (AENAWP) .  

The bound informat ion for an array ' s indices is 

contained in the name control b lock .  The three bytes 

of the first word of the data port ion of the name control 

block contain the declared lower bound for index one 

(DLB1) ,  the actual lower bound for index one (ALBl) ,  and 

the declared upper bound for index one (DUBl) .  Word two 

contains the actual upper bound for index one (AUBl) ,  the 

declared lower bound for index two (DLB2) ,  and the actual 

lower bound for index two (ALB2) .  Word three contains the 

declared upper bound for index two (DUB2) ,  the actual 

upper bound for index two (AUB2) ,  and the number of 

dimensions for the array .  Word four of the data port ion 

is unused .  



113' 

DATA 
POINTER 

ATTRIBUTE 
FLAGS 

DLB1 ALB1 DU31 

AUB1 DLB2 ALB2 

DUB2 AUB2 NUMBER 
DIMENSION 

NAME CONTROL BLOCK 

Figure A6 .  Data Structure 

0 ATTRIBUTE 
FLAGS 

DLB1 ALB l DUB1 

AUB1 DLB2 ALB2 

DUB2 AUB2 NUMBER 
DIMENSION 

REFER ,  
COUNT 

NUMBER 
DIM .  

NUMBER 
WORDS 

AEPAR 

FWA OF 
ARRAY OR 

NUMBER 
DIM .  

NUMBER 
WORDS 

FWA OF 
ARRAY RT.  

NUMBER 
DIM .  

.  NUMBER 
WORDS 

AEAWP2 

POINTER TO OPERAND NCB 

POINTER TO RESULT NCB 

NAME CONTROL BLOCK AEAWP1 

Figure A7 .  Data Structure for an Array in Work Poo l ,  Only 



' 

Declared bound informat ion is opt ional for an array .  

The user may declare the number of d imensions ,  plus 

(opt ional ly) some of the bounds for the ind i ces .  If a 

bound is declared for an index ,  the corresponding field 

contains the value of the declared bound .  If n dimension 

is declared but no bound is declared for zhe index ,  ihe 

declared bound f ields for the dimension contain 1777776g .  

If a variable is declared to have only one d imension ,  

the declared bound f ields for the second index contain 

3777777g .  If no d imension informat ion is declared for an 

array variab le ,  al l the declared bound f ields contain 

1777777g .  

F igure A6 d isp lays the name control block for an 

array variable when a copy of the array resides in the 

array f i l e .  

F igure A7 displays the temporary name control block 

of an array resul t wh ich resides only in the work poo l .  

In F igure A7 only two arrays exist in the work pool : an 

operand array and the resul t array .  Thus AENAWP = 2 .  

Imaginary Place Marker 

The at tribute number of a variable declared to have 

the value of \/-l is 9 .  The first word of the data port ion 

of the variable ' s name control block contains zero and the 

third word contains one .  The second and fourth words of 

the data port ion are unused .  Figure AS describes th is 

data s tructure .  



115' 

ATTRIBUTE 
FLAGS 

m^Sr 

1 . 0 

NAME CONTROL BLOCK 

F igure A8 .  Data Structure for Imag inary Place Marker 

Scalar String 

The at tribute number 10 specifies a variable whose 

value is a scalar string .  The data po in ter field of the 

variable ' s name control block contains the string number .  

The data port ion of the name control block is unused .  

The string number is the index of an entry in the 

string relocat ion t ab le ,  AERLTB .  Each entry in AERLTB 

contains addi t ional informat ion about a string .  An entry 

is subdivided into three by t es .  Byte three contains the 

index of the start of the actual string descript ion in 

the string picture t ab l e .  Byte two contains the reference 

count for the string .  The reference count designates the 



116' 

number of t imes the string is referenced from the string 

p icture table plus one for the original reference from 

the string variable ' s name control b lock .  Byte three 

con tains the index in AENCBS of the first word of the 

data port ion of the name control block for the string 

var iab l e .  

The string picture table contains a descript ion of 

each s tring .  Several entries are used to characterize 

a s tr ing .  Each entry denotes ei ther a l i teral s tr ing ,  

a reference to a string variab le ,  or the end of a string 

p i c ture .  

An entry in the string picture tab le ,  AESTRP ,  is 

subdivided into three by t es .  

If byte one is not zero or 1313 ,  then the entry 

describes a l i teral .  Byte one is the number of characters 

in the l i teral ,  by te three is the virtual page number of 

the page on which the l i teral is stored ,  and byte two is 

the displacement on that page to where the l i teral beg ins .  

Each word in a virtual memory page used to hold 

string l i terals is subdivided into three by t es .  A l i teral 

is divided into segments of three characters .  Each seg-

men t is stored in a by t e .  If a string l i teral wi l l not 

f i t in the number of bytes remaining in the current string 

page ,  the l i teral is broken .  As many segments of the 

l i teral as possible are placed in the current string page 

and the remainder are placed in a new str^^g page .  When 



' 

this occurs two entries are put in the string picture 

t ab l e .  The maximum length of a string l i teral is 576 

characters .  

If by te one is 1313 ,  then the entry deno tes the 

nul l s tr ing .  It has no length and does not require any 

s torage ,  so byte two and three are zero .  

If by te one is zero and byte three is not 501 ,  the 

entry deno tes a reference to a string variab le .  Byte 

three contains the index of the entry for the string 

variable in the string relocat ion t ab l e .  

If byte one is zero and byte three is 501 ,  the entry 

deno tes the end of a string p ic ture .  

Space in the string relocat ion tab le and the string 

picture table is returned to the system when the string 

they describe is no longer referenced .  The use of 

pointers in the string picture table to the string re-

locat ion table saves space ,  because on ly one copy of a 

given string picture needs to appear in the string 

picture t ab l e .  

Figure A9 describes the data structure for the s t r i ng 

created by the assignment statements B "YZ" ,  

A - "ABCDEF"! [B] [
, , , f

.  

String Array 

The at tribute number 11 deno tes a variable whose 

value is an array of strings .  The data port ion of the 

variable ' s name control block contains the same bound 



ATT 
B 

NAME CONTROL BLOCK 
for B 

2 ATT 

1 2 PT .  B 

3 1 PT .  A 

AERLTB .  

1 1 2 
501 0 0 

1 2 6 

1 0 0 
0 0 1313 

501 0 0 

AESTRP 

YZ ABC DEF 

VIRTUAL PAGE 1 

NAME CONTROL BLOCK 
for A 

Figure A9- Data Structure for Strings 



119 '  

informat ion as is contained in the name con tro l block of 

a variable wh ich denotes a numeric array .  The data 

po in ter field of the name control block contains the 

array number .  

The array is treated as a single precision real 

array .  The elements of the array contain the indices of 

the entries in the string relocat ion table for the string 

descr ip t ions .  If an element is undef ined ,  i ts value is 

zero .  

Boolean Values 

The at tribute numbers 12 and 13 denote logical 

variab les whose values are true and false respect ively .  

A user-created variable may not be assigned a log ical 

value; however ,  temporary name con tro l blocks are assigned 

boo l ean values when a relat ional or boolean expression is 

eva lua ted .  The data port ion and the data po in ter field of 

a temporary name control b lock assigned a boo lean value 

are not used .  

Scalar Symbol ic Left Arrow Funct ion 

The at tribute number 16 deno tes a variable whose 

value is a "scalar symbol ic left arrow funct ion .  The data 

po in ter field of the variable ' s name control b lock con-

tains the page number of the first virtual page used to 

store the ari thmet ic expression text for the first doma in .  

The number of arguments of the funct ion is contained in 



' 

byte three of the fourth word of the data port ion of 

the name control b lock .  The remainder of the data 

port ion is unused .  

The first four words of the first page used to 

store the ari thmet ic expression text for each domain 

contains a set of po in ters .  The first word is used to 

-link together the pages required to store the text for 

the ari thmet ic expression of the doma in .  It contains 

the virtual page number of the next virtual page used .  

A zero l ink deno tes the last page .  Byte three of the 

second word contains the number of words of internal 

text in the boolean expression for the domain (WORDS 

B . E . ) .  By te two of the second word contains the 

reference count for the funct ion defin i t ion .  Th is byte 

is on ly used in the first domain of the funct ion .  Byte 

one of the secord word contains the virtual page number 

of the first virtual page used to hold the boolean expres-

sion tex t for the domain (V .P .B .E . ) .  Th is byte is zero 

if there is no boolean expression .  .  Byte three of the 

th ird word contains the number of v irtual pages that are 

required to hold the local name table for the domain 

(N .P .L .N .T) .  Byte two of the third word is unused ,  and 

by te one contains the page number of the first virtual 

page used to hold the local name table (V .P .L .N .T . ) .  

Byte three of the fourth word contains the number of words 

of internal text in the ari thmet ic expression for the 



' 

DATA 
POINTER 

ATTOJ^JTE 

M i IE 

NUMBER 
ARGUEttSNTS 

FUNCTION NAME CONTROL BLOCK 

LINK 

UK? REFERENCE 
COUNT V.P.B.E.  

N.P.L.N.T.  V.P.L.N.T.  
V.P.N.D.  

ARITHMETIC EXPRESSION TEXT 

0 

0 0 
N.P.L.N.T.  V.P.L.K.T.  

WORDS 0 

ARITHMETIC EXPRESSION TEXT 

FIRST PAGE OF TEXT DOMAIN 2 

FIRST PAGE OF TEXT DOMAIN 1 

0 

ARITHMETIC EXPRESSION TEXT 

LOCAL NAME CONTOOL CLOCKS 

LOCAL NAME TABLE DOMAIN 2 

BOOLEAN EXPRESSION TEXT > 

FIRST PAGE OF TEXT DOMAIN 1 

LOCAL NAME CONTROL BLOCKS 

SECOND PAGE OF TEXT DOMAIN 1 LOCAL NAME TABLE DOMAIN 1 

Figure AlO.  Data Structure of Left Arrow Function 



' 

domain  A . E . ) .  Byte two of the fourth word is 

unused and by te one con tains the virtual page number of 

the first page of ari thmet ic expression t ex t for the 

nex t domain (V . P . N . D . ) .  If th is by te is zero ,  there is 

no t ano ther doma in defined for the func t ion .  

The v ir tual pages used to store the tex t for a 

boo lean expression or the local name table are l inked 

together by the first word of each page .  A zero l ink 

specifies the last '  page .  

Figure A10 describes the data structure for a left 

arrow scalar func t ion wi th two doma ins .  Two v ir tual 

pages are requ ired to- hold the ari thmet ic expression text 

of the f irst doma in ,  one page is required for the local 

name table of each doma in ,  the boo lean expression tex t 

for the first domain and the ari thmet ic expression tex t 

for the second doma i n .  There is no boo lean expression 

associated w i th the second doma i n .  

Scalar Symbol ic Equals Funct ion 

The at tribu te number 17 deno t es a-variab le whose 

va lue is a scalar symbol ic equals func t ion .  The name 

con tro l b lock for the variable con tains the same informa-

t ion as the name control b lock of a scalar symbol ic left 

arrow funct ion .  

The first four words of the first v irtual page used 

to store the ari thmet ic expression text for each domain 

con tains a set of po in ters .  Word one con tains a l ink to 



123' 

addi t ional pages used to store the text of the ari thmet ic 

expression for a doma in .  Word two contains the number of 

words of text in the boolean•expression and the virtual 

page number of the first virtual page used to store the 

boo lean expression tex t for the domain (V .P .B .E . ) .  This 

word is zero if there is no boo lean expression .  Word 

three is unused since there is no local name tab l e .  Word 

four contains the number of words of ari thmet ic text and 

the v irtual page number of the f irst page used to store 

the ari thmet ic expression text for the next domain 

(V . P . N . D . ) .  Byte 3 is zero if there is not ano ther domain 

def ined .  

F igure A l l d isp lays the name control block of a 

scalar symbol ic equals funct ion and a port ion of the 

f irst virtual page used to store the ari thmet ic expression 

tex t for the first doma in .  

Array Symbol ic Left Arrow Funct ion 

The at tribute number 18 denotes a variable whose 

value is an array of symbol ic left arrow funct ions .  The 

name control block of the variable contains the same 

bound informat ion in the first three words of the data 

port ion as a numeric array .  The array number is in the 

data pointer field of the name control block and byte 

three of the fourth word of the data port ion contains the 

number of arguments in each of the functions.  

The array is treated as if it is an array of real 



' 

DATA 
POINTER 

ATTRIBUTE 
FLAGS 

NAME 

NUMBER 
ARC-UEMENT 

NAME CONTROL BLOCK 

> ARITHMETIC EXPRESSION TEXT < 

FIRST PAGE OF TEXT DOMAIN 1 

Figure A l l .  Data Structure of Equals Funct ion 



' 

single precision numbers .  Each element contains the 

v ir tual page number of the first v irtual page used to 

store the ari thmet ic expression tex t for the first 

domain of the elemen t ' s defin i t ion .  If an element is 

not defined ,  i ts value is zero .  

The text for the defini t ion of each element is 

l inked together in the same manner as a scalar symbol ic 

left arrow func t ion .  See Figure A l O .  

F igure A12 d isp lays the•structure of the name control 

b lock for an array of symbol ic left arrow func t ions .  

ARRAY 
NUMBER 

ATTRIBUTE 
FLAGS 

T1.T A TTTO in ill -JJ 

DLB1 AL31 DUB1 

AUB1 DLB2 ALB2 

DUB2 AUB2 NUMBER 
DIMENSION 

NUMBER 
ARGUEMENT 

NAME CONTROL BLOCK 

F igure A12 .  Name Con tro l Block of an Array of Symbol ic 
Funct ions 



126' 

Array Symbol ic Equals Funct ion 

The at tribute number 19 deno tes a variable whose 

value is an array of symbol ic equals func t ions .  The 

name control block of the variable contains the same 

informat ion as the name control block for an array of 

symbol ic left arrow func t ions .  See Figure A12 .  

The array is treated as if i t is an array of real 

single precision numbers .  Each element contains the 

v ir tual page number of the first v irtual page used to 

store the ari thmet ic expression text for the first domain 

of the element ' s defin i t ion .  If an element is not defined ,  

i ts value is zero .  

The text for the defini t ion of each element is 

l inked together in the same manner as a scalar symbol ic 

equals func t ion .  See Figure A l l .  



12 

OPERATION CODES 

The source code ana the three address internal text 

generated by the compi ler for each operator is given in 

Table B l .  

The negat ive integer preceding each segment of 

internal text is the .operator number .  The text fol io win/; 

the operator number consists of pointers to the name 

control blocks for the operands and the resu l t .  R ana Tj_ 

deno te references to temporary variab les .  

In the text for some of the operators (eg .  F ' ^ A ) ,  

A[C]_,  . . .  ,0^]) negat ive integers appear in addi t ion to the 

po in ters to the operand and the resul t name control b locks 

These negat ive integers are used to specify the number of 

derivat ives ,  the number of argumen ts ,  or the number of 

subscripts invo lved .  



' 

T a b l e B l .  O p e r a t i o n C o d e s 

SOURCE CODE INTERNAL TEXT 

A — B -1 B A 

- A -2 A R 

A - B -3 A B R 

A + B -4 A B R 

A / / B -5 A B R 

A / B -6 A B R 

A * B -7 A B R 

A r B -8 A B R 

FI ' ' ," ! (A) -9 F -N A R 

ACC .^ . . . , C
N
] -10 A -N C

1
 C

1
. . . C

N
 C

K
 R 

A [ C

1 1
: C

1 2 ' - - "
C

N 1
: C

N 2
]

 -
1 0 A

 "
N C

1 1
 C

1 2 " -
C

N 1 °N2
 R 

A[C
i : l

: * , . . . , * : C
N 2
] -10 A -N C ^ 0 . . .0 C

N 2
 R 

A
,

[ C
1
, C

2
] -10 A -2 C

2
 C

2
 C

1
 C

±
 R 

A |  |  B -11 A B R 

F(X
1
, . . . , X

N
)[C

1
, . . . , C

M
] -12 F -N X

x
. . . X

n
-M C

1
 C

1
- . .  

 Jf R M M 
F ( X

1
, . . . , X

n
)

,

[ C
1 >

C
2
] -12 F -N X-L...XJJ-2 C

2
 C

2 

, X
N
)[C

1
, . . .  , C

M
] -13 F -L -N X ^ . - X ^ M C C . . .  

F jJ_-;_LS(X
1
, . . .

>
X

N
)

f

CC
1
, C

2
3 -13 F -L -N .  .X^-2 C

£
 C

2 

 R 

1 A |  -14 A R 

F(X ,  X , . . . ,  X ) • -15 F -N X .  X . .  .X.,  R 

( A ,  B ) -16 A B R 



' 

Table B l (cont ' d .) 

SOURCE CODE 

^ C
u
: C

1 2
, . . .

>
C

n 1
: C

W 2
3 ,  A) 

( A TO B BY C ) 

( A ,  B , . . . ,  C ) 
« 

"( A FOR B TIMES ) 

A '  

A = B 

A < B 

A > B 

A B 

A <> B 

A =~>B 

A >= B 

A => B 

A <= B 

A =< B 

-i A 

A AND B 

A OR B 

INTERNAL TEXT 

-17 -H
 C l l

 G
1 2

. . . 0
N 1

 C
N 2 

-18 A B C R 

-3 B A T .  
-18 A T

±
 C R 

-20 A B R 

-27 A R 

-41 A B R 

-42 A B R 

-43 A B R 

-44 A B R 

-44 A B R 

-44 A B R 

-45 A B R 

-45 A B R 

-46 A B R 

-46 A B R 

-51 A R 

-52 A B R 

-53 A B R 

A! R 


	A Mathematical Problem Solving Language and its Interpreter
	Report Number:
	

	tmp.1307986960.pdf.HD6Rk

