Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1969

A Mathematical Problem Solving Language and its Interpreter
Lawrence R. Symes

Report Number:
69-044

Symes, Lawrence R., "A Mathematical Problem Solving Language and its Interpreter" (1969). Department
of Computer Science Technical Reports. Paper 361.
https://docs.lib.purdue.edu/cstech/361

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A MATHEMATICAL PROBLEM SOLVING
LANGUAGE AND ITS INTERPRETER

Lawrence R. Symes
May, 1969
CSD TR 44

) iii

TABLE OF CONTENTS

Page
LIST OF TABLES..c.ececevsssosessnsone veseraccessensnass v
'LIST OF FIGURES::seveeesessrsessnnsossssssasssnensneacse Vi
ABSTRACT e vvvasesossansanaasasonsnasnnsenssnsevesessessViii
HISTORICAL REVIEW. . sssseencresnsvosoccsoessatvostsccces L

Characteristics of Mathematical Problem Solving
SystemsS.ceeeneas tecessaanssnnas teenssessessncannces L
Five SYStemSp.-.-o ----- esesnoes tovberrsrsegenvease s [&
Culler-Fried SysteMeccceacrareossnsesccocsovcoos 5
Klerer_lu[ay SYStem.....l.l. llllll ® 5 0 460 0 09SO0V 6
The MAP Systemllll..'.'l'.".'."'....I00000.0. 8
The Reckoner System....... cecsesrsrasascosceconves 9
The AMTRAN System--.-vv---.o-.-oooooo-co-c-t--- 10
Other Systems.-iI.OO..‘..l..I-...l.......-....’..'. 12

THE NAPSS LANGUAGE.I.II......II"I.IIO.I...I..'.I..'.. 15

Ceneral.cceececsssacccasesosnnssrsessssnevsassssasaa 15
Arithmetic EXPressioN..ccscessscransssccscsscncones 16
Assignment StatementS..cecsssscccccscene sesssansanses 19

Left Arrow Assignment Statement....e.eceeaee-as 19

Equals Assignment Statemente.ccscscevcscecneces 21

Function Assignment StatementsS...cccceccesncasas 22
Equations.---..-.--.--. ------ tresesancscncsrssesesn 23
SOLVE StatemMeNbecesecccocsossearssosssnccscocanaanss 2l
Boolean EXPreSSiOnS..c..eececesessescesesssessscsascss 27
Conditional Statement...... teerecerccssrsnasssesass 28
Tteration StatemMeNt...seeeeseessasssoscasasansnanss 28

Iteration Variables....... s 10
Accuracy Statement.c.ceceeese tesecscsscsccce seenasaa 31
Type Statement..cceececacesssesesseracnvnvecossacses 32
DeclaratiONSeecescsee eevsesssscccsecconnsesasennnsene Sk
ProcedureS.iececsccceccccncesnas P ¥

INTERPRETER STRUCTURE-.“........l....l...llll...l.ll. hl

Over-all Structure of the SysteM.ccseccecconacacaes &1
Real and Vimual MemoryQQ.I.-......I...'...'........ 45

Page

a Name TablenlvolQ-.---oscc!IIi.ﬂcotvvaocoolocl-o-.oc 49
Error MessageS'onla..no.onl.ﬁl.n-ll-oo-...o..-..... 64

ARITHMETIC EXPRESSION EVALUATOR.0:veeescenvsvesasncsass O8

Evaluation of Arithmetic Expressions with

Non-Recursive OperandS...vesesssecsssvnssescasess OB
Evaluation of Arithmetic Expression with

Recursive OperandS.cveesvecsssacrscecsoasonensnses 7k
Evaluation of Arithmetic Expressions

Involving Symbolic FunctioNS.ecsevecessescessseas B8O
Evaluation of Arithmetic Expressions

with Polyalgorithm CallS.cecccessccsnsrasanscsvessas 85

ASSIGNMENT sTA.TEh‘mNTS-....O.!.lI.D..II..'.CI'IDI.O..I. 89

General ProbDlemS..ccssessasesassacsscsarosansaccsss 89
Left Arrow Assignment Statement: A+ (.i..eevaeeaness 91
Array Element Left Arrow Assignment

Statement: A[I,J] 4% eaveoccvrsccssscscvasacaresesa 92
Equals Assignment Statement: A = ,iiicecveancesccs 96
Equals Function Assignment Statement:

F(XI,Xz,o.-,xN) = deuvecssssrsesssssuneNsseses s 98
Left Arrow Function Assignment Statement:

F(XI,XZ,-n-,XN} * essassssanseecsnensssencencnacane 99

— Array of Functions Assignment Statements:
F(x1,X2,..-,XN)[I,J] = eeo s sa200¢unNstessEDePaEBnDDAase lOl

BIBLIOGRAPHY......Q.......-I.....-........I........IO. 102
APPENDIX A: DATA STRUCTURES:¢teccevreceacceascscsanssss 106
APPENDIX B: OPERATION CODES. ® 8 A M6 9O 9O W eaAt g e a3 e e s O 127

LIST OF TABRLES

Table Page
1. Comparison of Features of Six SystemS.¢ceeeceees.. 13

2. flags and Attribute Numbers at Various

Data TypeSQv'!‘,.!.“.lo"."0..-.‘0.!.‘..0.".!. 53
Appendix
Table

Bl. operation Codes......n.oc.-........o....o..-.o'.o 128

vi

LIST OF FIGURES

Figure Page
1. Sample Output from a NAPSS Programececceceeessc. 33
2. User Labele& Output........................:.... 3L
3., Sample ProceduUreS.cicceccccesscssoasacsccscarses 4O
L. Overlay Structure of the NAPSS SysteMiseseaveess 42
5. Real Memory OrganizatiONiseccececcvansacsosceaeces 47
6. The Layout of a Name Control BlocKeceeveeessoees 50

7. The Arrangement and Specification of Attribute
Flags in a Name Control Block Entryececescaseceass 51

8. Sample Program...........................:...... 59
9. Name Table SegMENt..svecscccccscovescavsvsncssss OO0
10, Name Table SegmMeNt...eevecscosscesvecacssassesssa 00
11. Name Table Segment...scesecececsscoccscoscananss OO
12. Name Table Segment..cceesssssssnssccacccssssssas 60
13, Name Table Segmenb.ceseessceccssssossccccansssess 600
14. Name Table Segment....ceeseescaccascssnsccssasss 00
15. Name Table SegmeNb.ecseecveccccacsosscsasnssnases 0O
16. Name Table SegmMeNt..cseeecrscessscacansensesssnes 02
17. NAPSS Memory OrganizatioN,.eeeecescsassscvesaces O3

18. Vectors used for Error Message Construction..... 66

19. Flow of Control in Arithmetic Expression
Evaluator-....‘..ll....l..'-........O...I....... 68

vii

Figure Page

20. Flow of Control in Arithmetic Expression
Evaluator when Operand is an Equals Variable.... 75

21, Symbolic Function Evaluation Flow..secessee.eas. 82
Appendix
Figure
Al. Equals Variable Data Structure...ececececeeae.s. 107
A2, Real Single Precision Scalar Data Structure..... 107
A3. Real Double Precision Scalar Data Structure..... 109
AL4. Complex Single Precision Scalar Data Structure.. 109
A5. Complex Double Precision Scalar Data Structure.. 110
A6. Data Structure for an Array in Array File..e..... 113
A7. Data Structure for an Array in Work Pool, Only.. 113
A8. Data Structure for Imaginary Place Marker....... 115
A9, Data Structure for StringS.ssscsscscasssccasessa 118
A10. Data Structure of Left Arrow Function........... 121
All. Data Structure of Equals FunctiON.sscsecseceeaeass 124

A12. Name Control Block of an Array of
Symbolic FUNCtionS.sesesccecsscocccanccscacnnosass 125

HISTORICAL REVIEW

Characteristics of Mathematical Problem Solving Systcms

During the last several years considerable effort
has been expended designing and implementing systems wnhich
are intended to provide extended capabilities for persons
with mathematical problems to solve. These systems can be
classified as problem solving systems for applied mathe-
matics.

Before the advent of these systems the research
scientist or engineer used a procedural language such as
Fortran or Algol when he employed the computer to 2aid him
in solving a problem. Both of these languages, although
they resemble mathematical notation much more closely than
machine language, are somewhat artificial and contain many
unnecessary, from the user's point of view, rules. The
artificial appearance and the rules must be mastered before
the language can be used. Therefore the scientist or
engineer is diverted from his main purpose into becoming
a programmer. Even after he has learned the language,
its complexity increases the probability of error, and

thus reduces his efficiency.

In addition to thesc difficulties, the user with a
mathematical problem had to use program libraries in
order to obtain routines for solving commonly occurring
problems. These libraries frequently were inadequate
and almost always confusing. The routines often were
poorly documented and performed little or no monitoring
- of the accuracy of the results. Thus the user of such a
library had to know enough numerical analysis to select
the best method for solving his problem and to determine
the accuracy of the results.

The problem solving systems which have been designed
and implemented attempt to remove some or all these
problems and to offer several other desirable features.
They have in a sense endeavored to have man do what he is
best equipped to do and to have the computer do what it
is best equipped to do.

The designers and implementers of these mathematical
problem solving systems have utilized six general tech-
niques to assist the user in stating and solving his
problen.

First, the source language used to present a problem
to the computer is similar to normal "text book™ mathe-
matical notation. This permits one to use the system
without first having to intensively study the input
language. It also reduces the probability of user

programming errors, because the user is familiar with

the notation and it is simpler.

Second, clerical statements used for dimensioning
arrays and declaring variables are removed from the
source language. These are tasks which the computer
can easily perform but which are a constant source of
errors if the user does then.

Third, the special purpose languages permit the
direct manipulation of quantities other than scalars.
These may include numeric arrays, functions, and arrays
of functions. This further allows the source language
to resemble more closely "text book" form., This again
leads to fewer statements and hence fewer opportunities
for errors in a program.

Fourth, solve statements are included in the source
language. These statements permit the user to state a
problem he wishes to solve in a concise, natural form.
The user may include parameters such as initial values,
the accuracy desired, the method he would like used,
and he may omit any or all of the additional parameters.
The solve statements invoke routines from a built-in
library. They attempt to solve the user's problem auto-
matically. They request additicnal information as needed
and monitor the accuracy of the results in order to insure
that it remains within the specified limits. The inclu-
sicn of these solve statements greatly reduces the burden

normally imposed on the user. To solve commonly occurring

L
problems with the aid of the solve statements, the user is
only required to know now to define the equations for tne
problem; he is not required to know the numerical analysis
involved or even the method used. The method is selected
by the system and the accuracy of the results is assured.

Fifth, on-line communication between the system and
- the user is provided. Teletypes, graphical display
devices and specially designed consoles are used. The
use of these devices bring the computer and the user
closer together and consequently improve the user's
efficiency.

Sixth, incremental execution of a program is allowed.
This, combined with the use of on-line terminals, creates
a closed loop befween the user and the system. The user
is able to monitor his program during execution and the
system is able to request information from the user and
poirt out errors when they arise. This eliminates much
of the time that is wasted in preparing and submitting
runs of a program which are unproductive because the
user tried several fruitless cases, has an incorrect

program, or has forgotten to initialize a variable.

Five Systems

Five of the mathematical problem solving systems
which have been designed and implemented are: the

Culler-Fried System (see [1], [20]}, the Klerer-May

System (see (7], {8], [9], {101, [203), the MAP System
(see [6], [20]), the Lincoln Reckoner System (see [5],
(203, [25], {293), and the AMTRAN System (see {207,
153, [3C0)). All of these systems have attempted to
make the computer more accessible to the engineer and
research scientist. But each system is unique in the
. sense that they do not equally employ the six general
techniques mentioned above. EKach of the systems, how-
ever, is general enough so0 as not to be restricted to
accepting problems in a single field. We examine some

of the unique features of each of these five systems.

Culler~Fried System

Work began on the Culler-Fried System in 1961 at
Thompson Ramo Wooldridge and has been continued at the
University of California, Santa Barbara.

The source language for the Culler-Fried System is
a form of prefix polish notation, with the operator
preceding the operands. Thus the source language does
not resemble normal mathematical notation and consequently,
for the novice, thersystem is difficult to use.

Some clerical statements exist in the Culler-[Fried
System. Before a vector is referenced, for example,
storage must be allocated for it by the use of a special
operator.

A level number is associated with each operator. The

level number specifies the type and structure of the

operands. Thus the level number is a type of implicit
declaration.

Functions may be manipulated in the Culler-Fried
System by loading an X Register with the vector for the
independent variable and a Y Register with the vector
for the dependent variable.

The user has several buttons oﬁ the console to which
he can assign routines he has constructed. This provides
a means of adding operators to the system at execution

time.

Klerer-May System

The Xlerer-May System has been developed at Columbia
University's Hudson Laboratory and has been available
since 1963. -

The most striking feature of the Klerer-May System
is its input format. It is the only system of the five
to employ two dimensional input. Initially the System
used a Flexowriter, but work has been done to incorporate
a graphic display device into the system. By using two
dimensional input the source text appears in its standard
mathematical form. This results in self-documenting
programs, but requires the user to learn how to manipulate
a more complicated input device.

Variables are‘one character in length. This permits

implied muitiplication without having to include rules

such as a blank must appear between the variable names.
If a user wishes to employ variavle names of more than
one character Ie must declare them to be special
variables.

All'variables have an initial value of zero. There-
fore the user never can have an undefined variable in his
. program. This feature is of debatable value in an on-
line system. For with an on-line system the user has the
ability to assign values to variables he has forgotten to
initialize at execution time, but if all the variables
are initialized to zero this error cannot be detected.

The Klerer-May System is designed to be self-teaching
One of the ways this is accomplished is to give the user
the system's interpretation of his program in a Fortran-
like intermediate language.

When a program is compiled into internal text, semi-
automatic dimensioning of arrays is performed. The bounds
of arrays are determined from the maximum values assumed
by their indices. When the values of index bounds are
dynamic the user must include a declaration statement
specifying what the largest values of the index bounds
will be.. Therefore the size of arrays is established at
compile time and is'not dfnamic during execution.

The Klerer-May System has received a limited amount
of effort on solve statements and the associated routires

for automatic numerical analysis. Instead, high level

operators such as integration have been included in the

system.

_ The MAP System

MAP (Mathematical Analysis without Programming)
operates within the Massachusetts Institute of Technology
Compatible Time Sharing Sysﬁem. It has been used for
' research and teaching at M.I.T. since mid 1964.

The most distinctive feature of MAP is the dialogue
between the user and the system. After each statement
the system responds with the message "COMMAND PLEASE" to
signify that it is ready to continue. This feature is
reassuring to the novice, but can be annoying to the
experienced user.-

To insure that the user interacts frequently with
the system no logical operators have been included in
the language. This forces the user to interact each time
he wishes to compare the values of two variables.

The linear source language uses the normal infix
notation. Equations and statements resemble normal
mathematical notation except for the fact that equations
must be enclosed in parenthesis.

The system is best suited for the manipulation of
funetions of one variable. Functions are defined by
symbolic formulas, but the values for the functions are
stored in tabular form. When a function is defined the

user is asked to specify the domain of the function and

the interval size for the tabular values. Theisystem
keeps track of the function and the independent variable
automatically.

When a function is defined in terms of another
function, the system determines the domain of the
function being defined from the domain of the function
- appearing in its definition,

Functions which are defined in the system (eg.
sqrtf) use the convention established in Fortran II of

having the name of the function ending in an f.

The Reckoner System

The Lincoln Reckoner System has been developed at
the Lincoln Laboratory and has been used by the labora-
tory staff since early 1966.

The Reckoﬁer System uses a specially constructed
terminal comsisting of the Lincoln Writer and a CRT
display for graphic output. Hard copy graphical output
is available from an on-line Xerox printer.

The system consists of a library of routines and the
language consists simply of a set of subroutine calls.
Each statement is the name of a routine followed by the
names of the operands. Routines are available to permit
the user to define his own routines.

The main emphasis of the routines is in the area of

mathematical computations on arrays of data.

10

The various routines are controlled by a supervisor
called the Mediator. The routines are designed in such a
fashion that the results of one routine are available to
any other routine in the system. As soon as a statement
is éntered into the system, control is turned over to the
appropriate routine. The user is able %o start typing in
"his next statement while the previous statement is being
executed. This overlap results in a decrease in response
time and only causes confusion if an error is detected in
the previous statement.

Functions cannot be manipulated directly in the
Reckoner System., However, they may be manipulated as two
vectors, with thg user responsible for the dependency

between the dependent and independent variables.

The AMTRAN System

AMTRAN (Automatic Mathematical TRANSlation) has
been developed at the NASA Marshall Space Flight Center,
and has been a&éilable there since early 1966.

AMTRAN ha§ employed several types of terminals:
teletypes, typewriters, and some specially constructed
terminals. The current terminal consists of a keyboard,
a typewriter; and two CRT display devices. Statements
are entered by means of the keyboard which consists of
a standard typewriter keyboard, supplemented by a number

of user assignable keys and a set of special function

operator keys with labels such as SIN, d/dx, etc.

11

One scope is used to display the user's program as
he constructs it. When he is satisfied that the line he
has constructed is correct, he releases it to the system.
A&t this time a copy of the statement is put on the type-
writer. Computed results may be put on either the scope
or the typewriter. The second scope is used for graphical
© outpub.

This type of terminal has the advantage of providing
the speed of CRT display devices to communicate with the
usef, while also providing a hard copy of the program
listing.

The user assignable keys on the console are avail-
able for creating new operators. The user can construct
a routine in AMTRAN and then assign it to such a key. 1In
this way the number of Opefators can be expanded. This
feature was derived from a similar feature in the Culler-
Fried System.

The AMTRAN source language employs infix notation
for operators. The several function operator keys
provide a wide variety of high level operators. Implied
multiplication is permitted if a variable name is entered
through a special function key.

The notation used for an elemerit of an array is not
natural, A SUB 1, refers to the first element in the array

A. However, arrays may be manipulated directly as a unit.

12
Functions may be defined by a symbolic formula, but
the independent variable must be a vector. The values
of the function are then computed for the values of the
independent variable, and the function name then denotes
a vector. The user is responsible for keeping track of
the dependency between the dependent and the independent
"variables. To obtain a value of a function the function
name is referenced with a subscript.
AMTRAN has included several solve type statements.
Some of the solve statements in the system deal with
solving systems of simultaneous or differential equations,
determining the zeros of functions and performing inter-

polation.

Other Systems

Several additional systems have been developed in
the area of mathématicél probleﬁ solving. Some of them
are: EASL (seg (21], (22]), POSE (see {211}, [22]),
APL (see [331), VENUS (see [121}, REDUCE (see [4]),
JOSS (see [24]), ICES (see [14]), [15]), and MATHLAB
(see [2]).

13

Table 1. Comparison of Features of Six Systems

| SYSTEM
‘ CULLER KLERER MAP RECKONER AMTRAN NAPSS
FEATURE FRIED NMAY

%‘&Jg{JgIMENSIONAL v ¥ES 1O o o o
SOURGS LANGUAGE. MO YES YES NO YES YES
Eﬁ%{fgfﬂom YES NO YES POOR YES YES
Aromrec A yEs w0 o yES YES ¥ES
I\IEII?E%:][Z%EICATION NO YES KO NO YES YES
E%IE;}I?%TIC TES NO NO NO YES YES
Eg%{-g&agggns NO YES NO NO YES YES
VARIABLES O N0 N N0 NO YES
EXPEESSIoNe Y N0 WO NO WO NO YES
E?gggﬁnﬁgm saT. NO NO NO NO NO YES
ONDioTneD virs. YES NO YES YES YES YES
g@ﬁgmm NO NO NO YES ° YES YES
Iég?lgROL YES YES NO POOR YES YES
PROGEDURES NO NO NO NO NO YES
%gg%%gﬁﬁgs, YES YES YES YES YES YES

FEATURE

LOCAL
VARIABLES

GLOBAL
VARIABLES

ACCESS TO
PROCEDURAL LANG.

14
Table 1 (cont'd.)

SYSTEM
CULLER KLERER MAP RECKONER AMTRAN NAPSS
FRIED MAY

NO NO NO YES NO YES
YES YES YES YES TES YES
NO NO MAD OWN NO NO

15

THE NAPSS LANGUAGE

General

The NAPSS language offers the user a language in
which he can manipulate directly the basic mathematical
entities. These include real and complex numbers,
functions {(which may be symbolic or tabular), vectors
and matrices {whose elements may be numbers or functions),
and equations composed of any of the preceding objects.
The language is designed for a standard conversational
terminal, teletype or graphic console, and has 63
characters. It attempts to resemble "text bock" mathe-
matical notation as closely as possible within the
constraint of a linear notation. It eliminates many of
the artificial rules that are included in other languages,
without imposing on the language's flexibility or power.

NAPSS is intended primarily as a problem statement
language for use in a conversational, incrementally
- executing mode. However, it allows the user to construct
internal and external procedures and thus NAPSS also has

the power of a procedural language.

16

NAPSS incorporates automatic procedures to solve
basic mathematical problems such as systems of linear
equations, boundary-value problems, and zeros of
functions. The user need only supply the system with
2 description of the problem and ask for its solution.
The system then automatically solves the problem by means
of polyalgorithms. During the solution, it monitors the
acéuracy of the results.

A detailed description of the syntax and semantics
of the NAPSS language is given in [28]. Here we examine

some of the unigue features of the language.

Arithmetic Expression

The arithmetic expression in NAPSS allows the direct
manipulation of scalars, vectors, arrays and functions.
The operators (+, ~, /, %, t) have their normal mathe-
matical meanings and operate on the operands without any
regard to type or mode. For example, a real array may be
multiplied by complex scalar and the result is a complex
array. Combinations which are not defined mathematically
are not permitted. It is not permissible to multiply an
n by m array A times a 1 by m vector V because they do not
conform. But the arithmetic expression, A * V', is valid
where ' denotes transposition.

Implied multiplication may be used in arithmetic
expressions in NAPSS where no ambiguity arises.

Ambiguities stem from the fact that variable names may be

17

more than one character in length. Blanks are
significant in NAPSS to allow for implied multiplication.
Example
2A, A2 + C, and A B + C
mean
2 * A, A2 + C, and (A * B) + C respectively
There are a number of operators in addition to the
five basic operators menticned above. Some of them are:
// integer division, || absolute value, ' derivative of
univariate functions, ' transposition of arrays and
vectors, [integration, and DER partial differentiation.
Examples of these operators are:
i) DER{ Xt3 + A Y + G{X)) / (X12, Y)|X=2, Y4)
in NAPSS denotes
6{(_)(3 + ARY + G(K))|x=2
57X 5y T=4

11) JFr1(3.5) [(X12 + G(X)) / X, (X-1 1O 3)|
in NAPSS denotes

2 3
(g_gLXL,X*B 5) (f ZE.%.QLEI dx)
d~X A 1

There are several methods for constructing véctors
and arrays in arithmetic expressions:
i) (1,-3,2,6,-10)
ii) (1,2,...,20)
iii) (1 FOR 20 TIMES)
iv) (2+I%3 FOR I -~ 1 TO N BY 3)

18

v) ([0:5), 1 TO 6)
vi) ([1,1:11], 3.5 TO 4.5 BY .1)
vii) (3.5 TO 4.5 BY .1)°
viii) ([~1:3,4], (1 FOR & TIMES), (-2,~1.75,...,
-1.25), (3 TC 6}, (-10,~20,-30,-40))

The first five examples are vectors, which are

considered to be column vectors in NAPSS. The lower

bounds of the index of the first four vectors is 1 by
default. The index of the fifth vector has a lower
bound of O and an upper bound of 5. Vectors six and
seven are both row vectors and they are identical. The
eighth example is a square array with the first index

ranging from -1 to 3 and the second from 1>to 4, The

array 1is
1 1 1 1
-2 "1-75 "1-50 -1-25
3 4 > 6
~10 ~20 -30 -40

A single element, a row, a column or any arbitrary
contiguous subarray may be extracted from a numerical
array. Thus, if A is a two~-dimensional array with the
first subscript ranging from <3 to 3 and the second from O
to 3, then Ato,*] denotes the 1lst row of A, and A[-1:2,1]
denotes the column vector consisting of the 3rd through 6th
elements of the 2nd column of A.

Arithmetic expressions which yield array results may

be subscripted in the same fashion as variables. For

19

example, (A*B+E){I,J] and (At2){I1:I2,*] are both valid
expressions.

NAPSS also permits arrays of functions to be mani-
pulated an element at a time: 2f'(3.5){1,3] is the

NAPSS equivalent of in 3(3.5).
?

Assignment Statements

The elimination of mandatory variable declarations in
NAPSS means that the asscciation of attributes is performed
when a variable is assigned a value. The attributes
associated with a variable come from the expression

assigned to it.

Left Arrow Assignment Statement

There are two types of assignment statements in
NAPSS. 1In the first, the variable on the left is
separated from the expression on the right by a left
arrow (). Such variables are called left arrow variables
or simply variables. The left arrow indicates that the
arithmetic expression on the right is evaluated and its
value is assigned to the variable on the left, similar to
what FORTRAN's = signifies. The attributes as= ciated
with the variable on the left are obtained from the
attributes of the value of the expression on the right.
This feature means that a variable may denote a real

scalar at one point in a program and a complex array in

another.

20
Example

Ae2,I~(-1)t.5

B - ({3,3], 1,2,...,9)

A —~ A¥*I#*B
After line 3 has been executed, A is a square complex
array.

There are two statements on line 1. The first is
ended with a comma. A statement, except for a few special
cases noted later, need not be termirnated with any special
character if it is not followed by anything on the same
line. If something does follow the statement on the same
line, then a comma is needed to separate statements.

The two statements A[1,*] ~« (1 FOR N TIMES),
A[10,*] ~ 10A{1,%*3 create a square array with 10 rows and
10 columns. The elements in rows 2 through 9 are set to
zero because no values have yet been assigned to them.
When a variable is assigned a matrix or a vector and no
bound information is given for the variable, as is the
case here for the column bounds, the bounds are
contextually defined as are the attributes from the
expression on the left of the arrow. If no bounds are
given, the lower bound is set to 1 for created vectors.

So the first and second indices of A vary between 1 and 1Q

~~

21

Fquals Assignment Statement
In the second type of assignment statement, the
equals assignment, the variable on the left is separated
from the expression on the right by an equals (=). Such
variables are referred to as equals variabies. In this

type of assignment the equals variable is set

‘symbolically equivalent to the right hand expression,

instead of being assigned its current value. Thus the
variable names in the expression on the right do not have
their values substituted for them when the assignment
statement is executed. Values are only substituted for
the variable names in the expression when a numeric value
of the variable on the left is needed; eg. when it appears
in an expression tc¢ the right of an - or in an output
statement.

Example

X- L, ¥Y=2X, Z~ 2X

X=- 5 W= 2, V-~ Y
The result is V=10 and W=8.

When an equal sign is used, the arithmetic expression
on the right must not contain the variable appearing to
the left of the equals sign, nor may any of the variables
appearing in the arithmetic expression be symbolically
equivalent to an arithmetic expression containing the
variable name on the left of the equals sign. Examples

of illegal statements are:

22

i) N=N+1

ii) B=X+A, A =B+
Both would result in an error message.

A series of assignment statements may be written by
using more than one variable name, with accompanying
arrow or equals sign appearing to the left of an arith-
metic expression. For example X —« A = B — 2Xt13 + &

is equivalent to X « 2X13 + 4, A = 2Xt3 + 4, B —2X13 + 4 .

Function Assignment Statements
Functions may be assigned expressions by using either
a left arrow or an equals sign. Functions defined to the
left of an = sign are called equals functions and functions
defined to the left of an « are called left arrow functions.
WVhen the arrow is used, all non-parameter variables in the
expression on the right have the current values
substituted for them, while when the equals sign is used
they do not. Thus the use of the ~ and the = when
defining a function has the same meaning as when defining
a simple variable. Examples are:
i) A -3

F(X)TA+1] « XtA + COS(X), {(-2 < X < 10)

H(V,W) — Vi2W, { -10 < V < 4L ANDW > O)

K56, A ~7

G(Y) ~ F(Y)}(4] + SH(Y,K)
Line 5 defines G(Y) to be the function Y> + COS(Y)} + 30Y?
on the interval (-2,4). Since no explicit domain is

defined for G, it is the intersection of the domains of

Fh and H.

23

g
1
QRN

Y, (X:2+Y12<4 OR L<=X<5 AND -
<l) = X12+Y13+B, (Y>2+X12) -
13+{A+B)Y:3

o i w
A

(The - denotes continuation.)

This statement .is equivalent to the usual mathematical

definition:
A xg v, X2 o+ Y2 <
=) AE XP.Y L <X <S5,AND O <Y <1
LY AR NI S I &
3 + (a + 3)¥?, ELSEWHERE

Tabular functions are defined in NAPSS by means of
the table statement. The various forms of the table
statement allow definitions to be made at equally or
unequally spaced points in one or more variables.
Examples of this statement are:

i) 2 - (7,9,12)
TABLE(F(X,Y), (1,2,3), (4,6,7), 2)

1]

defines F at 3 points: F(4,7) =1, F(6,9) =2, F(7,12) =3
ii) X -~ (1,2), A ~ 3
TABLE(F(X,2}), Xt2 + 2 + A, X BY Z -~ (3,4,5))

7, F(1,4) =8, F(1,5) =9

defines F at 6 points: F(i,3)
} 10, F(27"+) = 11, F(z’ﬁ) = 12

F(2,3)

When evaluation of a table funeticn is requested at
a non-tabulated point, interpolation is used (if possible)

to obtain the value.

Eguations
A NAPSS equation consists of two arithmetic expressions
separated by an equals sign (=). An equation label

consists of a variable name, a period, followed optionally

24

by an integer. A c¢olon is used to separate the label
from the equation. The equation label may be used in
place of the equation. The assignment of an equation

to a label is similar to an equals assignment statement.
The association is done at execution time and an eguation
may be assigned different equations at various times.

The equation label denotes the last equation assigned to

it.

Example
EQL.1: 2SIN(X) = A X - 2X12
EQL.2: AX12+BX+C=0
EQl.1: 2C0S{X) = A X - 2X12

SOLVE Statement

The solve statement is the most powerful statement
in the NAPSS lanpguage. It gives the user a means of
concisely stating the problem he wishes to solve. The
user normally need not concern himself with how the
problem is solved. The system selects the method or
metheds to be used and monitors the errors for him.

The solve statement has the form:

SOLVE EQUATIONS, FOR VARIABLLS, OPTIONS;

_where EQUATIONS represent the equations to be solved,
VARIABLES indicate the variables to be determined, and
OPTIONS represents a list of'optional information.

The solve statement is one of the statements which

always must be terminated with a semi-colon. This allows

25

the solve statement to extend over several lines without

being explicitly continued. A simple example is:

SOLVE Xt2

will set X[1)-2 and X[2]--2.

While the

details of the problem solution may be left

completely to the system, the user may.exercise consider-

able control by providing additional information, QPTIONS,

of the following types:

WITH

ON

L

NUMBER

indicates values to be assigned to variables
in the equations. If absent, the current
values of the variables are used.

indicates the range over which solutions
are desired. If absent, any solution is
accepted.

indicates the maximum number of solutions

. desired. If absent, the system looks for

USING

TYPE

all possible sclutions in the desired
range.

indicates a particular method to be used.

If absent, the system selects a method or
methods for solving the given prablem.

The polyalgorithms uee intermediate results
to decide yhich methods to use in the
current éituation. '
indicates the type of problem or equation
to be solved (eg. linear system, polynomial,

boundary value). If absent, the system

26

determines the type.

ACCURACY indicates the number of digits of accuracy
desired in the solution. If absent, then
either the accuracy specified by an
accuracy statement (if present), or the
standard system accuracy is used.

STEP indicates the initial step size to be used
(when meaningful). If absent, the initial
Estep sizeé 1s determined by the accuracy
desired.
Examples
i) SOLVE TAN{X) = 2X-A, FOR X, WITH A-PI, ON
0 < X < PI;
This finds the unique solution of tan.X - 2 X +nm =0
on the interval (O,m).
~:’Li) EQ.1: X12 + Y12 = 4, EQ.2:. X = (Y-1.5)12
. SOLVE EQ.1, FQ.2, FOR X, Y, ON O < X AND O < ¥,
" TYPE POLYNOMIAL SYSTEM;
This finds-all solutions of the system:
X2 + 12 = 4, X = (¥-1.5)°
which fa;l in the first quadrant. If NUMBER 1 were used,
'only oné solutionxwould be obtained. |
iii) SOLVE‘A.X = LAMBDA X, FOR LAMBDA, X,
WITH A-((3,31,71,0,0,3,2,0,-1,-1,1),
ACCURACY 5 DIGfTSt NUMBER 3;

27

This will obtain all 3 eigenvalues and eigenvectors of

-1 0 0
3 2 0
-1 -1 1

LAMBDA will be set egual to the vector (-1,2,1) and X

will be the 3 by 3 array with eigenvectors as columns:

ky © O]
X = k; k, O
¢} ko k3 where kj # Q, i =1,2,3

Boolean Expressions

There are no boolean or logical variables in NAPSS.
However, a boolean expression may be formeﬁ by connecting
two arithmetic expressions with one of the relational
operators =, 75 <, <&, >, >,

When twe symbols are used to create a single
relational operator, the symbols may appear in either
order. Thus »>= is equivalent to =>,

The operands of the relational operators may be
either arrays or scalars. If the operands are two arrays
they must be of equal size and the operation is performed
element by element.

Boolean expressions may be connected with one of the
binary logical operators AND or OR and neéated with the

logical operator —.

28

Conditional Statement

The NAPSS conditional statement is similar to the
conditional statement in ALGOL, and has the form:
| IF B.E. THEN 81, Sp,-++5, Sy ELSE Ty, Tp,«vs, Tp;
where B.E. is a boolean expression and 51, Sp,.+., Sp
and T,, T2,..., Ty, are NAPSS statements.

In addition to permitting implicit continuation,
the semi-colon at the end of the conditicnal statement
solves the "dangling ELSE" problem. When there is no

ELSE clause the semi-colon is placed after the statement

Sne

Examples
i} IF X =2 THEN IF X = 3 THEN Y ~ 4; ELSE Y ~ 5;
ii} IF X =2 THEN IF X =3 THEN Y « 4 ELSE Y ~ 5;;

In example i) the ELSE clause is associated with the
first IF because the second IF is terminated after its
THEN clause with a semi-colon., In example ii) the ELSE

clause is associated with the second IF.

t
1

Iteration Statement

The iteration statement has the form:
IlSl D¢ Sl’ 82’000, Sn;
where 1.S. represents one of the many forms of an iteration

specification and Sl’ 32’°°°' S, are NAPSS statements.

The extent of the iteration is indicated by the semi=-c¢olon.

29

The various iteration specifications are a generaliza-
tion of those appearing in ALGOL:

i) FOR T-O, 1, 16, -3, 5 (T assumes values O, 1,

16’ —3) 5)
ii} FOR @-.1 TO .9 BY .3 (Q assumes values .1,
' -)+) -7)

TOR @~-2 TO 2 (Q assumes values -2,
'1: 0) 11 2)

FOR @2 TO -2 (Q assumes values 2, 1,
¢, -1, -2}

FOR -3, -1,..., 6. (Q assumes values -3,
-1; l’ 3’ 5)

The last example is equivalent to FOR Q—-3 TO 6 BY (-1-{-3))
iii} Any combination of expressions from above which
follow the « :
FOR C-0, 1, 16, -3, 5, .1 TO .9 BY .3, -2,
TO 2, -3, -1,+.., 6, 2, TO -2

iv) FOR 72.4 TIMES (loop is executed
72 times)

v) WHILE X>0 OR Y<1 {loop is executed while
the boolean expression
is true)

vi) : UNTIL |2-Y!| =1 (loop is executed until
the boolean expression
is true)

vii) Any combination of FOR witn WHILE or UNTIL:
In this case the loop is executed until one of the condi-
tions is satisfied.
FOR Y-0O TO 6X+3 OR WHILE W<.001
FCR Z3-1 TO 10, 15 TO 100 BY 5 OR UNTIL X12<.5¢-6

{Note: the ¢ in NAPSS is equivalent to the E in FORTRAN.)

30

If a loop is controlled by more than one index, each of
which assumes the same values, then the iteration can be
ﬁritten as follows:

FOR J, K~1, 2,..., M DO X[K,J1-1/(K+J);
This is equivalent to

FOR J~-1, 2,..., M DO

FOR K-1, 2,..., M DO

X(K,J1-1/(X+J);;

Iteration Variables

Since many of the iterative methods in numerical
analysis test successive values of a variable for termina-
tion, iteration variables are included in NAPSS. X
represents the current value of X, X!-1 represents the
vrevious value of X, Xi-2 the value before that and so on.
The number of previocus values retained for a variable does
not change dynamically during execution since only negatiwe
integer constants may follow the i. Previocus iterates may
not be assigned values directly. They obtain values as X
is assigned.new values. If the type of X should change,
Tor example from a scalar to an array, all previous
iterates for X are set as undefined.
Example

To find a root of F{X) = 0, using Newton's method
with CUESS as a starting value, we have:

X~GUESS

31

FOR 100 TIMES OR UNTIL |X - Xi-1| < .00005 DO

X=X - F{X)/F'{X);

The iteration terminates when ﬁwo successive iterataes
agree to 4 decimal places, or after 100 iterations.

The appearance of the iteration variable ¥X1-1 in the
UNTIL clause in the above example causes the boolean
expression to be skipped until the loop has been
evaluated once. In general, if an iteration variable,
say Xi1~5, appears in the beolean expression of a WHILE or
UNTIL clause then the loop is executed.5 times before the
boolean expression is evaluated. This allows all iterates

to be properly initialized befeore any testing is performed.

Accuracy Statement

The accuracy statement permits the user to specify
the number of digits he wants retained for all his
variables, exceptAthose whose accuracy is specified in a
declare statement or a solve statement.

The accuracy statement is an executable statemenﬁ, SO
different accuracies can be used in wvarious segments of a
program. If no accuracy statement appears in a program
the system default accuracy is used. The default accuracy
is six digits.

Example

ACCURACY 8 DIGITS

32
This specifies that at least eight significant f{igures
are retained for all variables. The polyalgorithms which
carry out the numerical analysis are supposed to maintain
this accuracy or to give diagnostic messages.

The polyalgorithms use either single precision or
double precision arithmetic to achieve the accuracy
requested for the result. Normal arithmetic expressions
are also evaluated using single or double precision
arithmetic. The assignment statements use the number of
digits of accuracy requested, to decide if the result
should be stored as a single precision or double precision

value. v

Type Statement

The type statement provides a means of printing the
values of selected variables, functions and arithmetic
expressions, If the value of a numeric variable or a
named function is to be printed the system labels the
output with the name of the variable or function. If the
value of an arithmetic expression or an unnamed function
is to be printed the system labels the value with the
system generated statement number of the type statement.

The user can add his own titles and labels if
desired by using strings. When a user defined label is
associated with a quantity, the system labeling for that
variable is omitted. The system supplied labeling is also

omitted when string expressions are printed as titles.

33

The format used to print each value is supplied by
the system. It is a function of the system accuracy in
effect and the magnitude of the number to be printed.

Each item in a type statement starts on a new line.
Figure 1 gives a portion of a NAPSS program and the out-

put it generates:

1.00 A - ([-1:3], 11.2,41.2362,-13,16,15.92)
2.00 F(X) =X12 + 0,1
3.00 B-2 + {(-1)t.5
.00 TYPE A, B, 2 # B, A * A"
A(-1:3]: 11.2000, 41.2362,-13.0000, 16.0000, 1.5.9200
B = 2.00000 + 1.00000 I
ANSWER, LINE 4,00 = £.00000 + 2.0000C I
ARRAY[-1:3,-1:3]:
ROW 1 = 125.44L0, 461.845,-145.600, 179.200, 173.304

ROW 2 = 461.845, 1700.42,-536.071, 655.779, 656.480
ROY 3 =-145.600,-536.071, 169.000,-208.000,-206.960
ROV 4 = 179.200, 659.779,-208.000, 256.000, 254.720
ROW 5 = 178.304, 656.480,-206.960, 254.720, 253.L4k6

?.oo TYPE FUNCTION(F(X),ON (0,1,.5))
.000000)= ,100000

. 500000)= .350000

1-00000)= 1.10000

6.00 TYPE FUNCTION(Xt2-B, IN X, ON(0,1,.5))
FUNC(X):

FUNC(.000000)=-2.00000 - 1.00000 I

FUNC(.500000)}=-1.75000 -~ 1.00000 I

FUNC(1.00000)=-1.00000 - 1.00Q00 I

F
F
¥
F

(X
{
(
(

Figure 1. BSample Output from a NAPSS Program.

The numbers preceding each of the statements in
Figure 1 are statement numbers generated by the System.
These numbers are used if the program needs to be edited

and to label output.

3b

Several items may be grouped inside of pointed
brackets to form a single item. This causes all the
items inside the brackets to be printed on.the same
line. [Pigure 2 gives an example of this and user

labeled output.

1.00 A~ 2, B~ -3.5

3.00 S1 -~ "THIS IS A™, S2 —« " SAMPLE TITLE"™

5.00 TYPE S1|[82, <"A = ",A,"B = " ,B,"A%B12 = "A%DB 2>
THIS IS A SAMPLE TITLE
A = 2.,00000 B = -3.50000 A=B12 = 24.5000

Figure 2. User Labeled Output

Declarations

The declare statement is optional in NAPSS, since
variables can be contextually declared when they are on
the left in an assignment statement. However, some or
all of the attributes of a variable can be explicitly
assigned in a declare statement. The advantage of this
is that the declared attributes must agree with the
attributes of any value assigned to the variable. If
they do not, no assignment is made and an error message
is printed.

The attributes which are not explicitly declared for
a variable are assigned contextually during execution
when the variable is assigned a value.

The attributes which can be associated with a
variable are: REAL, COMPLEX, SINCLE, DOUBLE, SCALAR,
ARRAY, TUNCTION, NUMERIC, STRING, LOCAL, GLOBAL, INITIAL.

35

Two attributés cannot be assigned contextually:
LOCAL, GLOBAL.

The declaration statement in NAPSS is an executable
statement. Thus the attributes explicitly assigned to a
variable can be changed dynamically. VWhen possible the
value of a variable is modified to conform with the new
attributes.

Example

DECLARE A NUMERIC SINGLE ARRAY;

DECLARE A COMPLEX SCALAR;

A has the attributes COMPLEX SCALAR assigned explicitly
to it after the second declare statement has been

executed. Also A is undefined since it changed from an
array to a scalar. |

The attributes SINGLE and DCOUBLE are available to
permit a user to selectively suppress the global
accuracy which is established by éhe accuracy statement
or the system's default 4ccuracy if no accuracy state-
ment is present.

The attribute DOUBLE is not associated with a
variable contextually unless the accuracy specified for
all variables in the system requires it. Thus the
appearance of a double precision variable in an arithmetic
expression does not imply that the doubie precision result

will be assigned to the variable on the left of the

36

assignment statement. The double precision result is
only assigned when the variable on the left explicitly
has been declared to be double precision, or the
accuracy currently in effect requires the use of double
precision.

This scheme permits selected variables to have
double precision values and arithmetic expressions
involving these variables to be performed in double
precision arithmetic while not propagating the attribute
DOUBLE to all variables.

The attribute INITIAL permits the assigning of
initial values to arrays or scalars only. The initial
values are assigned every time the declare statement is
executed, unless a variable name is declared to be
GLOBAL. When this is the case initial values are only
assigned when:

i} the variable name has no values presently
associated with it.

ii} the other attributes, explicitly declared in
addition to GLOBAL, cause the previous values
associated with the variable name to be
destroyed.

Example
DECLARE A REAL INITIAL (5), B{3) SINGLE
INITIAL (1,2,3);

37

A is set equal to 5 and B is set equal to the vector

(1,2,3).

Procedures

External and internal procedures may be written in
NAPSS. This facility is included to give the language
the power of a procedural language; however, its use is
6ptional. Thus the casual user need not be concerned
with the artificial rules that procedures introduce,
for he can employ the system on what is called the console
level.

On console level the user's program does not contain
any procedures, Statements entered at conscle level are
nermally executed as they are received.

A procedure may be defined at any point in a
program, and maycbe referenced in the program as both
a subroutine and a function.

As mentioned above, the attributes LOCAL and GLOBAL
cannot be assigned to a variable contextually. They need
only be used when procedures are employed.

If a variable, XNAME, is declared LOCAL anywhere in
a procedure, APROC, it signifies that XNAME is a new
variable distinct from variables with the same name in
procedures containing APROC. All occurrences of XNAME in
APROC refer to the same variable until XNAME is assigned
either the attribute LOCAL or GLOBAL in a procedure which

.is internal to APROC. A variable may not be assigned both

38

the attributes LOCAL and GLOBAL in procedure APROC,
excluding procedures which are themselves internal to
APROC.

The declaration of a variable to be GLOBAL has the
same effect as declaring it to be LOCAL except that all
cccurrences of the variable in other procedures where it
has been declared GLOBAL refer to the same variable.

The scope of variable names which are not declared
to be LOCAL or GLOBAL and are not parameters is the outer-
most containing procedure.

The attributes LOCAL and GLOBAL are the only two
attriobutes which are assigned at compile time. This
permits the declare statement to appear anywhere in a
procedure and allows the scope to be fixed. The other
attributes are assigned when the declare statement is
executed.

In Figure 3 the variable names Z and K in statement
L2 of procedure EXTERNAL1l and in statement L3 of procedure
INTERNAL]1 refer to the same variables, but the variable
names Z and X declared in procedure INTERNALZ refer to
different variables.

The variable names A and D in INTERNAL1l refer to
different variables than the variables named A and D in
EXTERNALLl, INTERNALZ, and EXTERNAL2. But since the
variables named A and D in INTERNAL2 and EXTERNALZ have

the attribute GLOBAL, they refer to the same variables.

39

A procedure invoked as a subroutine, INTERNALZ,
may be exited by encountering the end statement of the
procedure or by executing a return statement. In this
case an arithmetic expression associated with the return
statement is ignored.

A procedure invoked as a function, INTERNAL2, can
only be exited by executing a return statement wnhich has
an arithmetic expression associated with it. If this is

not the case, the function returns with its value un-

defined.

40

EXTERNAL1: PROCEDURE
| ﬁECLARE (A,D) REAL, E GLOBAL;
L2: A-2-L * K
INTERNAL1: PROCEDURE (B)
INTERNAL2: PROCEDURE (M)

DECLARE (A,E,D,XK) GLOBAL, Z LOCAL;
RETURN AtZ
END
L3: Z-G * X + INTERNAL2 (3}

DECLARE (A,E,D) LOCAL;
CALL INTERNALZ (A)
END

END

EXTERNAL2: PROCEDURE
*DECLARE (A,E,D) GLOBAL;

END

Figure 3. Sample Procedures

41

INTERPRETER STRUCTURE

Over-all Structure of the System

The internal structure of the NAPSS system consists
'of four major modules: the supervisor, the compiler,
the editor, and the interpreter. This is further sub-
divided into twenty-five overlays: one is the super-
visor, three compose the compiler, one is the editor,
and nineteen compose the interpreter. Figure 4 gives a
skeleton of the overlay structure.

The NAPSS system is written almost entirely in
machine independent FORTRAN. The few machine dependent
operations are restricted to "black~box™ modules coded
in assembly language. This i1s done to aid the goal of
machine independence for the system.

Due to the equipment and associated software avail -
able, the current version of NAPSS does not operate in
a time sharing envirbnment. But the implementation
techniques do not preclude such an extension.

The current system is running on the Control Data
6500 at Purdue University.

The supervisor controls the flow intc each of the
three other modules. It distinguishes between NAPSS

source statements, which are processed by the compiler,

and edit statements, which are processed by the editor,

—

SUPERVISOR

1

| I |

2 3 b 5 6

9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25
\]
\f
EDITOR
\
A'4 v
COMPILER INTERPRETER

Figure 4. Overlay Structure of the NAPSS System

A

43

The supervisor is also responsible for invoking the
interpreter when a NAPSS statement is to be executed.

NAPSS source statements are transformed by the
compiler into an internal text which the interpreter
processes. This scheme is adopted for several reasans.
First, the complexity of the elements to be manipulated
and the absence of declarations require execution time
decoding of operands, Second, it easily allows for
extensicns to the system. Third, it gives the user
incremental execution. Fourth, it permits extensive
error diagnostics and permits error corrections without
having to recompile the whole program. Fifth, statements
which are repeatedly executed are only translated into
internal text once.

The internal text for each statement consists of
twenty-bit words. The internal and source text for ceach
statement is stored in secondary storage. When a state-
ment is to be executed, a copy of its internal text is
passed to the interpreter. This reduces considerably the
core storage required for a user's programme. Since the
system is intended for use in an incrementally executing
mode, no reference to secondary storage is normally
required to obtain the internal text of a statement.

The internal text generated for arithmetic expressiors
(Appendix B) is a form of three address code. All 5

operators, pointers, and references to temporary variables

are represented by negavive integers wnhile all references

L
to user-created variables are represented by positive
integers. This is done so that the equals assignment
statements can easily detect references to user
variables,

The system has fwo modes: suppress mode and execute
mode, In the suppress mode, each statenent is compiled
into internal text and the internal and source text is
saved on secondary storage for later execution. Suppress
mode is entered by typing the statement .SUPPRESS. A
block of statements which have been compiled in suppress
mode may be executed at any time by typing the statement
.GO.

The normal mode of execution is execute mode. Here,
each statement is executed immediately after it has been
compiled and a copy of its internal and source text saved
in secondary storage. The system automatically enters
suppress mode when the user starts a compound statement
{a FOR statement) or starts a procedure. This is necessary
because a compound statement cannot be executed until the
whole statement is received and a procedure is only
executed when invoked. The system re-enters execute mode
automatically as soon as the compound statement or
procedure is completed.

In the remazinder of this chapter the various com-

ponents of the interpreter are described.

Real and Virtual Memory

The memory of a‘NAPSS program is made up of a few
pages of real memory which reside in corye and a larger
number of pages of virtual memory which reside in
secondary storage and are brought in and out of real
memory. Two vectors (oic dealing with virtual and the
other with real memory) and several pointers are used
to keep track of real and virtual memory.

Each element in the virtual memory vector is sub-
divided into three twenty-bvit bytes. The first byte
contains a flag indicating whether the page contains
internal text or name control blocks. The second byte
is a switch, used when the page is in real memory to
indicate whether or nct a copy of the page also resides
in secondary storage. The third byte c¢ontains the real
page number the virtual page is in when it is in real
memory.

The elements of the virtual memory vector which
denote available pages are linked together. Initially,
the element for virtual page one points to the element
for virtual page two and the last element contains a
zero. When a page of virtual memory is returned to the
system its element is again linked to the top of the
list of available virtual pages.

The real memory vector elements contain one entry
per real page. This entry is the number of the virtual

page occupying it (zero if it is empty). This pointer

L5

L6

from real memory 1o virtual memory is used when a new
virtual page is placed in a real page. The virtual
page currently in the real page must be copied out into
secondary storage if it is not there already.

The amount of core assigned to real memory is
dynami¢. Pages are removed from the top and bottom of
real memory in order to obtzin contiguous blocks of
storage. Pages are removed from the top of real memory
for two purposes: first, to expand the name table, and
second, to obtain space for the work pool. Pages are
removed from the bottom ¢f real memory to obtain space
for local name control blocks during the evaluation of
left arrow functions. See figure 5.

The work pool is used to hold arrays when performing
array arithmetic. Requests for work pool space are always
made in terms of words. However, the amount of real
memory assigned to the work poel is always an integral
number of pages. When a request is made for work pool
space and the work pool is empty, the space supplied is
zeroed. When space is requested for the work pool and
the work pool is not empty, one of two situations arises.
First, the space requested is less than the current size
of the work pcol. If the difference between the space
requested and the current size of the work pocl amounts
to one or more pages, a corresponding number of pages

is returned to real memory from the bottom of the work

NAME
TABLE

WORK
PCOL

REAL MEMORY PAGE 4

REAL MEMORY PAGE 5

REAL MEMORY PAGE N-4

REAL MEMORY PAGE N-3

LEFT ARROW FUNCTION
NAME CONTROL BLOCKS

Figure 5. Real Memory Organization

REAL
MEMORY

L7

L8

pool, Second, the space requested exceceds the current
size of the work pool. If additional pages are obtained
from the real memorylto satisfy the request, they are
zeroed.

Virtual pages are assigned to real pages
sequentially. Thus a virtual page is not removed from
real memory until all real pages are assigned a virtual
page. This sequential process may ge broken whenever
space is assigned to the work pool or to hold the local
name control blocks for a left arrow funetion, since,
after the space request is satisfied, the next real page
to receive a virtual page may no longer belong to real
memory. When this occurs the pointer to the next real
page to be used is reset to the first page now in real
memory.

The algorithm for bringing virtual pages inte real
memory is further modified when the work pool returns a
page to real memory. Since the page returned is empty,
a virtual page may be placed in it directly, avoiding
the possibility of having to save the virtual page
currently there in secondary storage. Thus the normal
sequential process is interrupted until all the pages
returned to real memory by the work pool are re-used.

The system does not assign all of real memory to
either the work pool or to space for a left arrow
function's local name control blocks. A request for

real memory space is honored as long as two pages remain

/

in real memory after the request is satisfied. If more
space is requested than can be supplied, the request is
modified to correspond to the maximum amount of space
available, This permits the system to continue if this
is adequate.

Two pages are required in real memory to facilitate
the linking of virtual pages. With two pages in real
memory the above algorithm guarantees that the previous
and the current virtual pages referenced remain in resl
memory. Thus they may be linked together if necessary,
without having to save peinters and re-read a virtual

page to fill in link information.

Name Table

Associated with each procedure is a name table
containing entries for each variable, label, constant
and procedure name appearing in that procedure. The
entries are called name control blocks and are created
when the name is introduced.

A name control block is made up of seven sixty-bit
words, or twenty-one twenty-bit words called bytes.

See Figure 6.

L9

ITERATION DATA ATTRIBUTE
POINTER | POINTER FLAGS

NAME

DATA
PORTION

Figure 6. The Layout of a Name Cecntrol Block

Byte one contains the iteration pointer, if the
variable is a member of an iteration chain {X, Xi-1,...).
Byte two contains a pointer to the data for a variable
if it is not a numeric scalar. Byte three contains the
attribute flags. These flags encode the attribute number
for the data type of the variable. See Figure 7.

During compilation only flags F1, FlA, F2, F8 and F9
are set. Flag F2Iassumes only the values zero through
five during compilation. A value of five specifies that
‘the variable is used as a computational entity. Checking
between the various types of computational entities is
performed during execution when the variable is referenced

as an operand.

r F1A F2 F3| FLIFLAITS|P5A[F6|FOAIF7 | FE| FO
1 « Scope = 0 Unspecified

= 1 Parameter

= 2 Local

= 3 (Global

F1A -~ Number of times declared Global

Fz

F3

FLA
F5
F5A
F6
FéA
F7
r8
F9

T T T O O T 1 O 1OV |

- Type

HOFOFOHOHOHOHOROHOHO

FFormal Parameter
Constant
Statement Label
Equation Label
Procedure Name
Numeric
Symbolic Function
String
Complex Place Marker
Booclean True

= 15 Boolean False
2, Contextually Declared
F2, Explicitly Declared
Scalar
Array
F4, Contextually Declared
F4, Explicitly Declared
Single Precision
Double Precision
F5, Contextually Declared
F5, Explicitly Declared
Real
Complex
F&, Contextually Declared
F6, Explicitly Declared
Left Arrow Defined Variable
Equals Defined Variable
Variable Relerenced During Execution
Variable Referenced Onrly By Compiler
Variable Defined
Variable Undefined

V| (O 1 N T

l.J
FaoNoMEWNDR O

Flags in a Name Control Block Entry

Figure 7. The Arrangement and Specification of Attribute

Flags F1A, F3, FLA, F5A, and FO6A are not used to
determine the attribute number of the variable. These
flags may be set only in a declare statement and are
used to check attributes when an assignment is made.

Table 2 gives the various flags for each of the
individual datz typeé and the associated attribute
numbers., Appendix A contains a description of how each
data type is stored.

The next two words in a name control block contain
the name of the variable. This limits the length of a
variable name in NAPSS to twenty characters.

The next four words or twelve bytes contain either
the value associated with the variable if it is a
numeric scalar or information about the values if not.

For temporary variables (variables used to hold
temporary results during the evaluation of an arith-
metic expression) there is a fixed number of name
control blocks pre-initialized in the system. These
temporary name control blocks contain the same fields
as a user-created name control block except for the name
field.

During compilation a name control block is used as
a name table entry. At this time it contains the name of
the variable, some basic attributes describing how the
variable appears in the program, and possibly an iteration

pointer,

/

53

Table 2. Flags and Attribute Numbers of Various Data Types

DATA FLAGS ATTRIRUTE
TYPE F2 Fhi 5 F6 F7 T8 9| NWUBER
SWBOLIC SCALAR = 5 0 - =100 o]
NUMERIC SCALAR — SINGLZE REAL 5 000 0 00 1
NUMERIC SCALAR — DOUBLE REAL 5 01 6 0 0 O 2
_ NUMERIC SCALAR = SINGLE COMPLEX 5 001 00O 3
NUMERIC SCALAR — DOUBLE CQMPLEX # T 0L 100 0 h
NIRIFRIC ARRAY — SINCILZ MTAL 5 1 00 0 0 O 5
NWMERIC ARRAY — DOUBLE REAL S 11 0 0 0 0O 6
NUMERIC ARRAY < SINGLE COMPLEX 5 1 01 0 ¢ O 7
NUMERIC ARRAY — DQUBLE COMPLEX # 5 111 00 0 8
NUMERIC CONSTANT SINGLE REAL 1 -0 -~ =00 1
NUMERTC CONSTANT DOUBLE REAL 1 -2 ~« - 00 2
THMAGINARY PLACE MARKER (V=1) 8§ = =~ - - 0 0 9
STRING SCALAR 7 0 - - 0 0 0 10
STRIKG ARRAY # 7 1 -~ 000 11
BOOLEAN FALSE i = = = = 0 0 12
BOOLEAN TRUR 15 = = =« ~ 00 13
STATEHMENT LABEL 2 - - - = 0 0 U
EQUATION LABEL 3 = = = = 00 15
SWIBOLIC FUNCTION SCALAR -~ 6 0 - = 0 0 0 16
SYWBOLIC TUNCTION SCALAR = 6 0 - - 1 0 © 17
SYMBOLIC FUNCTION ARRAY +— 6 1 - - 0 0 0 18
SYMBOLIC FUNCTION ARRAY = 6 1 - -1 0 0 19
PROCEDURE NAME Ljp = - - -~ ¢ O 20

Not Implemented

ob

During execution the name control block is used to
hold values, pointers to values and a complete set of
attributes for the variable.

This double usage of the name control block entries
poses no problem if compilation and execution are
performed separately. But in NAPSS the normal mode of
operation is to execute each statement as soon as it is
compiled. Thus, thrée situations are possible when a
variable is entered in the name table. First, the
variable may never have been used before in the
program. Second, the variable may have appeared before
in the preogram but no value has been assigned to it.
Thus, it is just as it was when the compiler last saw it.
Here a limited compatability check is made for the two
uses of the variable in the preogram. For example, the
use of the variable as a label and as a variable in an
arithmetic exﬁression is jllegal. Third, the variable
has appeared before in the program and has been assigned
a value and a complete set of attributes. This enables
more checking %o be performed. The name table routine
must not disrupt any of the attribute flags, for if any
of the attribute flags are changed the attribute might no
longer correspond to the value associated with the name
control block.

The name table is constructed‘sequentially. This

method requires a minimum amount of space, and permits

55

the name table to grow dynamically. But it reguires the
name table to be searched sequentially. The search goes
through the name table from botitom to top. This is done
because frequently the greatest percentage of references
to a variable occur in the immediate vicinity of its
definition.

A variable which is declared to be global in N
different procedures has N+1 name c¢ontrol blocks asso-
ciated with it. There 1s a name control block for the
variable in the name table ¢f each of the procedures in
which it appears. Only compile time information and a
pointer to the N+15% copy is contained in these name con-
trol blocks. The N+15° copy is in the global variable
name table and contains a complete set of attributes for
the variable and its value or peointer to its value.

The N+1St copy of a glcbal variable's name control
block is placed in the global name table when the first
procedure is invoked in which the glecbal variable appears,
or when the variable is declared global on the console
level (i.e. the pertion of the program not contained in a
procedure).‘ When a global variable is added to the global
name table and it already appears there, a check is made
on the compatability.of the attributes. An error results
when they conflict, Otherwise a pointer to the N+1 St
copy is placed in the procedure's copy of the variable's

name control block.

56

A count is kept in the global name control block of
the number of procedures referencing the global variable.
Wnen a global variable is no longer referenced from any
procedure or from the console routine, then its name
control block is removed from the global name table and
the storage associated with it is returned to the systen.

A name control block is created for each iteration
variable, eg. X, Xi-1, Xi-2. These name control blocks
are linked together to form a chain. The iteration
pointer field of the name control block of the head, X,
points to the name control block for Xi-1l, and the itera-
tion pointer for the last name control block in the chain
points back to the name control block of the head of the
chain, X. A chain of iteration variables 1is constructed
by placing the name control block of the head in the name
table first, the name control block for X!-1 next, and so
on. This is done even if one of the iterates is
referenced in the program first. Therefore, the name
control blocks for an iteration chain are ordered in the
name table. The name control block for the head of the
chain (X) appears first and the name control block for the
last iterate in the chain appears last. Thus the name
control blocks for the various iterates in a chain are
distinguishable by position.

A procedure is compiled when it is defined and in

order to link it into the program the text generated uses

only relative pointers to name table entries, and all
linking between entries in a procedure's name table is
done with relative pointers. This allows procedure A,
for example, to be compiled as external procedure and

$0 be invoked either directly from the c¢onsole level or
from ancther procedure which itself is inveked from the
consocle level, The name table for procedure A is placed
in the name table after the last entry presently there
and its base address is set up.

Variables which are not declared to be either local
or global in an internal procedure are assumed to be
known in the containing block.l After the procedure is
compiled and a copy of its name table saved, a pass is
made through the procedure's name table. This pass
goes through the name table from top to bottom and
places a copy of the name control block for each variable
not declared to be either local or global in the name

table of the containing block. If the variable has

57

already been used in the containing block, a compatability

check is made on the attributes.
During execution only one name control block 1s used
for the value and attributes of a variable which is not

declared to be local or global. This is the name control

1

A block is either a procedure or the console level routire

58

block entry in the outermost block. The name control
block in the internal procedure is linked to this when
the internal procedure is invoked. The linkage is
constructed so that only one step is required to obtain
the value of the variable regardless of the depth of the
procedure.

Figure 8 is a portion of a NAPSS program written
on console level with two internal procedures, INTERNALL
and INTERNAL2. After the procedure statement (statement
number 3) is executed, the status of the name table is
depicted in Figure 9. (B is the base address for the
console level name table., After the second procedure
statement (statement number 6) is compiled the name table
appears as in Figure 10. I1B is the base address for the
name table of procedure INTERNALl. At the end of
INTERNAL2? (statement number 10) the name table appears
as in Figure 11 (I2B is the base address for the name
table of INTERNAL2)}. This end statement causes the name
table of procedure INTERNALR to be saved along with the
source code and internal text of the procedure. A check
is made to insure that a copy of the name control block
for each non-local and non-global variable in INTERNAL2Z
appears in the name table for INTERNAL1I. The status of
the name table after this is shown in Figure 12. The
name control block for D was added to the name table of

INTERNALL and the variables B and C were checked. The

O 0 ~N O W W N

11
12
13
14
15
16

59

A -4
B~5
INTERNAL1: PROCEDURE
DECLARE © LOCAL;
Cc -A+3B
INTERNAL2: PROCEDURE
DECLARE A LOCAL;
A~C+ 2B
D-A t3B
END
CALL INTERNALZ2
A~D1tC+E
END
E~-A+B
C~E t A
CALL INTERNAL1L

Figure 8. Sample Program

CB—~

WVl [+ e

INTERNALL

—

Figure 9.

CB -

v W |+ |

INTERNALL

I1B—

C

A

B

INTERNALZ2

D

— —

Figure 12.

60

CB—~ A GB— A
L A
B i
p) 5
INTERNALL INTERNALL |
I1B—> C I1B— C
A A
B i
TNTERNAL2 INTERNALZ
) 123 Al
Figure 10. = :
B
D
Figure 11.
CB— A CB— A
L L
B B
5
INTERNALL INTERNALL
I1B—r C D
A A
B c
INTERNALZ L
D .
5 Figure 14.
—
Figure 13.

Name Table Segments

use of variable A was not checked because A is declared
to be local in procedure INTERNAL2. At the end of
procedure INTERNALL the status of the name table is
shown in Figure 13. Here the name table for INTERNAL1
is then saved along with the source and internal text
for the procedure., Then the check made for INTERNALZ is
repeated for INTERNALL and the resulting name table is
shown in Figure 14. This check causes D and E to be

put in the name table of the console level routine.

The execution of statement number 16 invokes internal
procedure INTERNALL. Its name table is loaded
immediately after the name table for the console level
routine and the linkage is set up for the non-local,
non-global variables in INTERNALl, as shown in
Figure 15. The execution of statement 11 invokes
procedure INTERNALZ2. The status of the name table at
this point is given in Figure 16. The name control
blocks for B and D in procedure INTERNALZ are linked
directly to the name contrel blocks for B and D on the
console level.

There are three types of name control blocks in
different memory areas: temporary, local for left arrow
functions, and ordinary. See Figure 17.

A central routine is used to decode variable name
control blocks during execution. This routine determines
the type of the name control block and handles the

linkage between global and non-local, non-global name

A

62

CB A CB—- A
L b

B J

5 p)

INTERNALL INTERNALL

D D

E X

C C

I1B—> C I1B — C
A A

B B

INTERNALZ INTERNALZ2

D D

E E

L//d I2B —~ A
Figure 15. g

D
\/

Figure 16.

Name Table Segments

AEPDA<

INTERPRETER'S
RECURSIVE VARIABLES

INTERNAL
TEXT

REAL
MEMORY)

TEMPORARY NAME CONTROL
BLOCKS

RESULT NAME CONTROL BLOCK

GLOBAL NAME TABLE

NAME
TABLE

REAL MEMORY PAGE 2

REAL MEMORY PAGE 3

REAL MEMORY PAGE N-4

REAL MEMORY PAGE N-3

LEFT ARROW FUNCTION
LOCAL NAME TABLE

LAENCBS

REAL MEMORY VECTOR

VIRTUAL MEMORY VECTOR

Figure 17. NAPSS Memory Organization

63

6l

contrel blocks. Three things are returned when a name
control block is decoded: the attribute number, the

data peointer field and the index in the array AENCBS of
the first word of the data pointer portion of the name

control bleck. See figures 6 and 17.

Error Messages

Internally there are five severity levels for errors.
Level one is a warning type error. Level two is a user-
caused error such as incompatible operands. Level three
is an undefined variable or function. Level four is a
system error which the user can correct, and level five
indicates a fatal system error.

Externally there are three error message levels avail-
able. The level may be changed dynamically by the user.

On level one warning messages are ignored and only the
numbers associated with other error messages are printed.
On level two warning error message numbers are printed
along with the messages and number of more severe errors.
Level three prints the messages and numbers for all errors.

A warning message is printed by the routine which de-
tects the error. When an error with a severity number
greater than one occurs, the routine detecting the error
sets a flag to the severity number of the error and returns
to the routine from which it was called. This routine
returns to the place from which it was called. This

process is repeated until the interpreter supervisor is

reached.

Before each routine returns in this process, it must
restore itself and return to the system any storage it is
using to hold temporary results.

This method is used because the occurrence of an
error, with an associated severity number greater than
one, prevents the interpreter from continuing until the
error has been corrected. This method permits the use
of a common error message routine for all non-warning
messages.

In addition to setting the severity flag, the
routine which detects the error sets the number of the
error and possibly some entries in the vector INSERTS,
Figure 18. The entries from the vector INSERTS are
inserted into the error message to give the user
specific information about what caused the error.

The error message routine uses three vectors te
construct the text for the various error messages. 0ne
vector {DICTIONARY) contains a list of all possible words
and phrases required to construct any error message. The
second vector (MESSAGE CODE) is broken down into fields
of four octal digits. These fields contain the indices
of the words to be used from DICTIONARY for the message
and information on what is to be inserted in the message
from INSERTS. The third vector (MESSAGE POINTER) contains
the index of the start of the various messages in MESSACE

CODE. It is indexed by the error message number, Figure &

66

ERROR _,|

NUMBER T~

MESSAGE POINTER

T

MESSAGE CODE !

DICTIONARY

—
|

INSERTS

Figure 18. Vectors used for Error Message Construction

Zacn field in MESSAGE CODE specifies the next cniry
ol the error message. If digit number one of a field is
non-zero, tnen the entry is a word or phrase {from
DICTICNARY, and digit number one is the number of
consecutive words to be obtained from DICTIONARY and digits
two, three, and four form the index of the first word of

icld

[

thne entry in DICTIONARY. If digit number one of a
is zero and the nextAthree digits are not all zero, the
next entry is an insert. Digits two, three, and four are
used to encode information about the insert. If the

field is all zeros, this indicates the end of the error

message.

68

ARITHMETIC EXPRESSION EVALUATOR

Evaluation of Arithmetic Expressions
with Non-Recursive Operands

The flow of contrel in the arithmetic expression
evaluator for expressions which do not involve recur-

sive variables, function evaluations or calls on poly-

algorithms is given in Figure 19.

L

DETERMINE

END OF STATEMENT
OPERATOR TYPE

OBTAIN ATTRIBUTES
OF OPZRANDS

-

PERFORM OPERATION

[

FREE STORAGCE USED TO
HOLD WHAT WAS PREVIOUSLY
IN RECEIVER NAME CONTROL

BLOCK

!

UPDATE POINTER TO
NEXT OPERATOR

Figure 19. Flow of Control in Arithmetic Expression Evaluator

69

The operators are tested for in a fixed order so
-~ that the ones most freguently occurring are tested first.

The attribute or type of an operand must be
determined at execution time because attributes are not
associated with variables during compilation. They are
associated during execution time and may dynamically
change during the execution of the program.

If NAPSS had required that all attributes be either
always declared or always contextually defined instead of
allowing the user to declare some attributes and have the
rest associated contextually, the attribute field of a
name control block could have contained a simple attri-
bute number. However, because of the mixture permitted
the attribute field contains a sét of flags from which
an attribute number is decoded.

After the attributes of the operands have been
determined the attribute of the result is obtained by a
table look up, using the attributes of the operands and
the operator as indices.

To eliminate the work necessary to obtain the
attribute of an operand, a look ahead scheme is used
where possible., If the result of an operation is an
operand of the next operator, then the attribute of that |
operand is flagged as being known. This scheme, even
though only local, is quite useful for freqguently the !
result of the previous operation is an operand of the

next operator.

#

70

There are three types of numeric scalars in NAPSS:
real single precision, real double precision, and complex
single precision. Integers are stored internally as real
numbers. When an integer is needed, such as for a sub-
script, the system converts the real number to the
nearest integer.

With only three types of numeric scalars the number
of addition routines needed to permit all possible
combinations of operands is 32. If a fourth data type,
double precision complex, were added the number of
routines needed would Dbe 42 or an increase of 77 percent.
For this reason, double precisicon complex numbers are
not now provided in NAPSS.

For scalar arithmetic NAPSS does not use 32 routines
for each of the basic binary operators but rather only 3.
This is achieved by converting one of the operands to
match the attribute of the other. The scalar operands
are placed in a work area before the operations are
performed. The conversion is performed during transfer
to the work area by zeroing a word when necessary.

For array arithmetic the number of routines neeced
to perform the various operations cannot be reduced to the
same extent as for scalar arithmetic. This is because of
the time needed to convert one operand te match the other
and the increase in memory required to hold the operands.

The number of routines needed to perform the binary array

operations is 32 for multiplication and 2x3 for addi-
vion and subtractidn. The number of routines needed t0
perform addition and subtraction is reduced more than
for multiplication by taking into account the similarity
between data types. The routines which perform the
array arithmetic are machine language routines.

- Arrays are stored permanently in & random file and
are brought into memory only when needed. The empty
records in this file are chained together so that when
a record is requested and the file is full, the user
can be asked to free a variable holding an array to
allow his program to continue.

Ac¢tual array arithmetic is verformed in an area
called the work pool. When an array operation is to be
performed enough space is assigned to the work pool to
hold the operands and resulting arrays.

The result of the array operation is not immediately
put out in the random file with the other arrays. Rather,
the work poel remains intact with the oberands and the
result left in it. When the next array operation occurs
the work pool is checked to see if it is empty; if not,
the operands are compared with what is currently in the
work pool. If the result of the previous array operation
is an operand of the present array operation, then the
result array need only be written out into the array file i

if it is an operand of a future operation.

72

The work pcol is completely emptied at the end of
each statement. Therefore, the process of optimizing
the manipulation of arrays is only performed locally.
The reason for this is that the work pool is used to
manipulate other data types in addition to arrays.

When performing array arithmetic the system checks
to see if the operands conform. The values of the index
bounds of the operands do not affect the operations if
the number of elements in the corresponding dimensions
agree., For example, it is illegal to multiply two row
vectors or to add a row vector and a column vector.

The system does not attempt to determine what the user
intended in these situations. Rather, it gives an error
message and asks the user to clarify the meaning of the
statement.

The index bounds of a result array take their values
from the bounds of the operand arrayé. There is one
exception to this: wheﬁ two arrays are added or sub-
tracted and their index bounds are not identical, the
lower bounds of the result array are set to one.

If the result of an array operation is a one element
array it is not t:eated as an array by the sysﬁem, but
is stored as a scalar.

A temporary variable may be assigned several values
during the evaluation of an arithmetic expression. This

would pose no problem if all the results were scalars,

for scalar values are stored in the name control block
for the variable. However, the name control blocks for
other data types only contain pointers to where the
values are stored. This causes the problem of when to
free the storage used to hold temporary results.

Storage can be returned to the system periodically using
a garbage collection scheme, or storage can be returned
immediately at the point it is no longer referenced.

Storage is freed by the NAPSS interpreter immediately
after a new value is assigned to the temporary variable,
thereby permitting an operation tc have the same temporary
variable as an operand and as a result this scheme has
two main advantages: first, the type of storage to be
freed is known at this point; second, the time required
to free storage is uniformly consumed. The latter is of
importance since the system is intended for use in an
on~line incrementally executing mode.

The arithmetic expression evaluator is called from
variocus places in the interpreter and not just to
evaluate arithmetic expressions appearing to the right
of assignment statements. For this reason and to
facilitate recursion the‘fesult cf an evaluation is
associated with a fixed temporary rame control block.
The results of every arithmetic expression evaluation
may be obtained from this temporary name control bdlock
by whatever portion of the interpreter requested the

evaluation.

74 .

The name control block which receives the result of
an arithmetic expression evaluation is only used to pass
the value along to whatever portion of the interpreter
invoked the arithmetic expression evaluator. Thus, the
storage associated with its previous value is not
returned to the system. If the storage associated with
the result temporary name control block, Figure 17, is
ffeed each time a new value is assoclated with it,
storage would be returned which may now be associated
with a user variable or which has already been freed by
some other portion of the interpreter.

Evaluation of Arithmetic Expression
with Recursive Cperands

The occurrence of an equals variable in an arithmetic
expression evaluator to recurse. The recursion needed to
evaluate equals variables is limited to one routine, the
master controller, Figure 20. This routine is responsible
for determining what the next operator is, what the
attributes of the operands are, and what routine is to be
invoked to perform the operation.

The routines which perform the various operations
expect to receive pointers to where the actwal values of
the operands may be obtained. This caises the master
controller.to evaluate the expression associﬁted with

the equals variable before calling the operator routine.

ARE WE
DONE EVALUATING

END OF

75

DETERMINE

THE ORIGINAL
EXPRESSION?

PCP UP RECURSIVE
AREA AND FREE
TEMPORARY NAME
CONTROL BLOCKS

l

Y

PUT RESULT IN
PROPER SPECIAL

-

EXPRESSION

OPERATOR
TYPE

OBTAIN ATTRIBUTES
O OPERANDS

TEMPORARY NAME
CONTROL BLOCK

PERFORM OPERATION

[

FREE STORAGE USED
TO HOLD WHAT WAS
PREVIOUSLY IN
RECEIVER NAME

CONTROL BLOCK

T

UPDATE POINTERS TO

NEXT OPERATOR

|

PUSH DOWN AEPDA
AND READ IN TEXT
FOR VARIABLE

Figure 20. Flow of Control in Arithmetic Expression

Evaluator when Operand is an Equals Variable

When recursion occurs the text for the current
arithmetic expression is written out onto a sequential
Tile along with a group of variables that must be saved
for the interpreter and all the temporary name control
blocks except for the temporary name control block used
to hold the result of arithmetic expression evaluations.
All of these variables are equivalenced to one contiguous
area, AEPDA, so that they may be manipulated as a unis,
Figure 17. A flag ié set in the interpreter's recursive
variable area just before the push down of storage is
performed. This’flag is used to return to the point in
the master controller where recursion occurred after the
symbolic variable's expression has been evaluated.

Because of the manner in whic¢h storage associated
with temporary variables is freed, all temporary
variables are set to undefined after the push down area
has been written out. This allows them to be re-used
during the evaluation of the new expression without the
danger of freeing storage which was ass;ciated with the
temporary variables at the previous level. After the
new expression is read into the area used to hold text
to be evaluated and the necessary pointers are adjusted,
control is transferred to the main entry point of the
master controller to begin execution. This new expres-
sion may also contain symbolic variables; if so, the

process is repeated.

76

77

The compiler does not check for symbolic definitions
which yield non-terminating definitions. This is the
responsibility of the arithmetic expression evaluator
during execution. The statement A = A+B and the state-
ments A = B+C, B = A+D both give this situation. The
interpreter could check for the occurrence of this when
the assignment statements are made or could keep a list-
of what variables have caused recursion and check this
before each recursion to eliminate the possibility of
infinite recursion. 'However, neither of these methods
are used in NAPSS because both require extensive checking
be done for every symbolic assignment or every recursion
and for the vast majority of cases this is unnecessary.
Instead, a limit has been placed on the depth of recursion
If the arithmetic expression evaluator attempts to recurse
past this limit, an error message is given the user
indicating that the depth of recursién is greater than
can be handled by the system. It is also suggested that
the definition of the symbolic variable which caused the
initial recursion is inconsistent.

The result of an expression associated with a
symbolic variable is put in the temporary name control
block that is used to receive the results of all arith- !

metic expression evaluations. This name control block is

fixed in the compiler and the interpreter and is the only
temporary name control block which is not in the push

down area.

78

Before the push down area can be restored and
execution of the original expression resumed, a pass must
be made through the other temporary name control blocks
to free any storage that is associated with them. If
this were not done, this storage would be lost to the
system since garbage Eollection is not used to retrieve
unclaimed storage.

All temporary name control blocks need not be
checked during the freeing process because the compiler
assigns the temporary variables in a linear fashion and
re-uses them as soon as their results are no longer
needed. Thus the interpreter need only scan them until
the first name control block is encountered which is
still marked as undefined.

After all the temporary variables are freed, the
push down area is restored and the name control block
containing the result of the equals ﬁariable expression
is c¢opied into a special temporary name control block
which is used only for the values of symbolic variables.
The special temporary name control block is in the
recursive variable area, AEPDA. This is done to permit
both operands of an operator to be symbolic. The special
name contrel block is used after evaluation in place of
the symbolic¢ variable in the evaluation of the original

arithmetic expression.

79

To avoid needless recursions to evaluate the same
symbolic variable, a local check is made to determine
if any of the other operands of the current operator
are the same varible. If any of them are the special
name control block is substituted in the arithmetic
expression for them also.

There is a problem associated with the use of the
work pocl and recursion. If there are any arrays in the
work pool when a symbolic variable is encountered, the
work pool must be emptied. This saves the temporary
result array which resides only in the work pool in the
random array file. Were this not done and the symbolic
expression to be evaluated involved any array arithmetic,
this result array would become associated with a temporary
name control block on the wrong level., Therefore, just
before récursion takes place the work pool is emptied and
the result array is written outlinto"the array file and
associated with the proper temporary name pontrol block.

| If an error occurs while evaluating the expression
for a symbolic variable, the storage associated with the E
temporary variable name control blocks on the different !
levels must be freed. This is not necessary if the arith-
metic expression evaluator is at level zero when the
error occurs because in this case the normal freeing
mechanism frees the storage associated with temporary

variables the next time the arithmetic expression evalua-

tion is called. However, when an error is detected

at a non-zero level, the storage associated with all
temporary variables is freed a level at a time until
level zero is reached. Information about what caused
the error and at what level it occurred is saved before
the recursion levels are rolled back so that an error
message can be given the user.

Evaluation of Arithmetic Expressions
Involving Symbolic Functions

During compilation of the text of a symbolic func-
tion, references to the first N temporary name control
blocks are substituted for appearances of the N formal
parameters of the function. When a function is to be
evaluated the actual parameters are substituted for the
formal parameters by copying the name control blocks for
the actual parameters into the first N temporary name
control blocks. '

This cannot be done directly for two reasons: firg,
the function evaluation may appear at any point in an
arithmetic¢ expression and therefore some temporary values
may already reside in the first N temporary name control
blocks; second, one or more of the actual parameters may
be arithmetic expressions which have been evaluated and
had their results put in some of the temporary name
control blocks.

These problems cause the arithmetic expression

evaluator to recurse before the actual argument name

80

81

control blocks are copied into the temporary name control
block and force the use of a temporary area to collect
the parameter name control blocks. See Figure 21.

The appearance of an equals variable as an actual
parameter is not handled in the same fashion as other
types of parameters.. Its name control block is not
directly copied onto the corresponding temporary name
control block. If it were, this would cause the arith-
metic expression evaluator to recurse each time this
parameter appears in the text for the function. Since
the value of the equals variable cannot change during
the evaluation of the function, this is avoided by having
the arithmetic expressicn evaluator recurse and evaluate
the equal variable before its name control block is
copied into the corresponding temporary name control
block. Thus, the name control block for the result of
evaluating the equals variable is uséd in place of the
name control block of the equal variable itself.

After all the name control blocks of the arguments
are in the temporary area used to collect them, they are
copied onto the first N temporary name control blocks.

Before evaluation commences the function is checked
to see if it is a left arrow or equals function. If it
is a left arrow function, then all non-parameter variables

appearing in the func¢tion text had their values fixed when

the function assignment was made. To fix the value of

)

PUSH DOWN AGPDA

COLLECT NAME CONTROL
BLOCKS FOR ACTUAL
PARAMETERS IN
COLLECTION AREA

!

COPY ACTUAL
PARAMETER NAME
CONTROL BLOCKS
FROM COLLECTION
AREA TO FIRST N
TEMPORARY NAME
CONTROL BLOCKS

-

IS
FUNCTION A ~

L]

82

FUNCTION OR AN
= FUNCTION?

FUNCTION

FUNCTION

READ IN LOCAL NAME
TABLE FOR THE
FUNCTION AND SET
UP POINTERS TO THIS
NAME TABLE AREA

lFIND DOMATIN

—

EVALUATE FUNCTION

)

FREE NECESSARY
TEMPORARY NAME
CONTROL BLOCKS AND
POP UP AEPDA

l

Figure 21. Symbolic Function Evaluation Flow

these variables a copy of each of their name control
blocks and associated storage was created when the
function assignment was performed. Thus, to evaluate
a left arrow function these local name contrel blocks
are brought into the name table area and pointers are
adjusted so that these variables are referenced wnile
the function is being evaluated.

If the function to be evaluated is an equals func-
tion, all non-parameter variables appearing in the func-
tion text are not fixed when the function assignment is
made, but assume their current value when the function
is evaluated. Thus, no local name control blocks are
associated with equals functions.

' The point at which the function is to be evaluated
is checked to see if the function is defined at this
point. The check i1s performed by evaluating the boolean
expressions associated with the varigus definitions of
the function. The boolean expressions are evaluated in
the order the user has stated them. When no boolean
exﬁression appears with a definition the function is
assumed to have this definition everywhere or everywhere
else depending on whether or not other definitions with
associated boolean expreséions precede it,

After the result of a function evaluation is put in

83

the temporary name control block which receives the result

of all arithmetic ekpression evaluations, the arithmetic

expression evaluator returns to the level at which the

84

function invocation occurred.

The process of returning to the level in the arith-
metic expression evaluator at which the function invoca-
tion occurred is similar to what occurs when returning
from the evaluation of an equals variable. The only
difference is the freeing of the temporary name control
blocks before the recursion area is restored. All of
the temporary name control blocks may not be freed as
they were after the evaluation of an equals variable,
because to evaluate a function the first N temporary name
control blocks were used to heold copies of the parameter
name control blocks.

The copy of the actual name control block for the
parameter is flagged when it is put into the corresponding
temporary name control bleck so that when the temporary
name control blocks are freed the ones used to hold para-
meters will not be freed. There is éne temporary name
control block used to hold a type of parameter which is
not flagged and must have its asscciated storage freed.
This is the temporary name control block used to hold the
value of a parameter which corresponds to an equals
variable. Since the equals variable is evaluated before
the evaluation of the function, the only name control
block pointing to the value of the equals variable is the

temporary name control block used as parameter.

If an error occurs during the evaluation of a func-
tion the arithmetic expression evaluator saves informa-
tion as to what caused the error and at which level it
occurred and returns to level zero as it does when an
error occurs during the evaluation of an equals variable.

Evaluation of Arithmetic Expressions
with Polyalgorithm Calls

A polyalgorithm is formed by grouping several
numerical procedures and a supervisor into a single
procedure for solving a specific problem. The poly-
algorithm combines the various methods along with the
strategy for their selection and use into a single method
which is relatively efficient and very reliable.

The appearance of either an integral or a derivative
in an arithmetic expression causes the arithmetic expres-
sion evaluator to invoke a polyalgorithm to perform the
operation. Although the polyalgorithm contains its own
supervisor, it requires the arithmetic expression
evaluator to evaluate the function involved. Therefore,
the process of evaluating an integral or derivative of a
function is recursive. It is also considerably more
complicated than evaluation of an equals variable or a
function. In the latter two cases only the master
controller of the arithmetic expression evaluator itself
is involved; here the arithmetic expression evaluator

and a polyalgorithm are involved. In addition, since the

85

86

polyalgorithm may require that the value of the function
involved be computed repeatedly, the normal process of
function evaluation which is itself recursive cannot be
used in this case for practical reasons.

When a derivative or integral appears in an arith-
metic expression being evaluated, all the arguments
required by the polyalgorithm, such as number of
derivatives, integral bounds, or point of differentiation,
are evaluated in the arithmetic expression evaluator before
the polyalgorithm is invoked. The values of these para-
meters are passed to the polyalgorithm initially so that
the arithmetic expression need only be re~entered from
the polyalgorithm when necessary.

Before the polyalgorithm is called the arithmetic
expression evaluator Tecurses as it does when evaluating
a function. The text of the function involved in the
operation is placed in the apprapriaée place in the
interpreter for evaluation. All parameters necessary

for evaluation are also set up except for filling in the

temporary name control black which corresponds to the

variable of differentiation or integration. Thus, when
the polyalgorithm needs to evaluate the function all that
remains to be done is supply the value of this point.
When the polyalgorithm is called from the arith-
metic expression evaluator and a value of the function

involved is needed the arithmetic expression evaluator

87

must be returned to, or must be called from, the poly-
algorithm. If the polyalgorithm calls the arithmetic
expression evaluator, the address where-the arithmetic
expression evaluator was initially called from would be
destroyed. If the peolyalgorithm returns to the arith-
metic expression evaluator, this would create problems
in the organization of the polyalgorithm. For if the
point at which the function must be evaluated is several
routines removed from the original call on the poly-
algorithm, all of these calls would have to be retraced
for each evaluvation of the function, or the poly-
algorithm would have to¢ be re-organized.

To avoid both of these problems direct transfers
are used to transfer control between the arithmetic
expression evaluator and the polyalgorithm after the
polyalgorithm is initially entered. This method of
transferring between routines is accémplished by the use
of assigned go to statements in each of the routines.

When the polyalgorithm completes its work it
returns to the arithmetic expréssion evaluator normally.
The arithmetic expression evaluator then restores itself
to the level at which the integral or derivative occurred.
The process of freeing storage associated with temporary
name control dlocks and the popping up of phe recursive
area is similar to what is done after the evaluation of a

function.

——

88

If an error occurs which causes the polyalgorithm
to terminate evaluation, it returns to the arithmetic
expression evaluator as if the evaluation was successful
but with an error flag set. The arithmetic expression
evaluator returns to level zero as is done when an error
occurs during an equals variable or a function. The
actual message is issued by the routine which initially

called the arithmetic expression evaluator.

89

ASSIGNMENT STATEMENTS

General Problems

The variable appearing on the left in an assignment
statement may have none, some, or all of its attributes
explicitly declared. If no attributes are explicitly
declared for a variable, it may appear on the left in any
assignment statement and it assumes all of its attributes
contextually from the type of assignment statement and the
attributes of the expression on the right. If some or all
of its attributes are explicitly declared, then the type
of assignment statement in which it appears and the
attribute of the expression on the right must agree with
the variable's declared attributés. 'If they do not agree,
the assignment is not performed, an error message is
issued, and the variable's value remains unchanged. ‘'hen
a new value is assigned to a variable the storage occupied
by the previous value is normally returned to the system.

The previous value may be pushed down to the next name
contrel block in an iteration chain when a new value is
assigned to the head of the chain. An iteration chain is
pushed down only when the structure of the new value
assigned to the heéd is compatible with that of the

previous value. Thus, if the previous value assigned to

§0
the head of an iteration chain is a real scalar and the
new value is a complex scalar, the chain is pushed down.
However, if the previous value is a real array and the
new value is a real scalar, the iteration chain is freed.
Previous values are saved only for numeric scalars and
arrays.

The pushing down of ar iteration chain is accomplisted
by copying each name control block onto the one following
it, except for the iteration pointer field. If the last
name control block in the chain is defined, the storage
associlated with its previous value is returned to the
system.

When a new value is assigned to the head of an
iteration chain and the previous value is not to be
pushed down, each name control block in the chain is set
as being undefined and the storage associated with them
1s returned to the system. When thi; occurs, the itera-
tion chain is referred to as being freed.

The work pool must be emptied by each assignment
statement that calls the arithmetic expression evaluator.
If the result of the expression on the right is an array,
this stores it out in the array disk file, since it
currently resides only in the work pool.

A description of the storage associated with the

various variable data types is given in Appendix A.

91

Left Arrow Assignment Statement: A

The left arrow assignment statement assigns the value
of the expression on the left to the variable on the right.
The value assigned may be a numeric scalar, a numeric
array, or a scalar string.

When the result of the expression is numeric, it
.cannot be complex if the variable on the left is declared
explicitly to be double precision. However, if the result
is complex and the variable on the left is declared to be
real, single or double precision, conversion is made when
the result is scalar and its imaginary part is zero. No
test is made to determine if the imaginary part is zero
>when the result is a complex array. Other conversions
for both arrays and scalars are made automatically.

When the result is an array and the variable on the
left is the head of an iteration chain, the fact that the
previous value is also an array-doeS'not guarantee that
the iteration chain is pushed down. When arrays are
involved, an iteration chain is pushed down only when the
number of indices and the sizes of the new and the previows
array values match. The actual bounds of each index are
not checked; instead, the number of elements in each
dimension are compared. If either the number of indices
or the number of elements in each dimension are not

identical, the iteration chain is freed.

G2

The variable on the left assumes the bounds of the
result array when it does not have any bounds explicitly
declared. When bounds are explicitly declared for the van-
able the number of dimensions must match on both sides
and the number of elements assigned in each dimension must
not exceed the number declared. If both of the above
conditions are met, the lower bounds of the result array
are set to the declared lower bounds of the variable and

the upper bounds of the result are adjusted accordingly.

Array Element Left Arrow Assignment Statement: A[I,J)

This assignment statement assigns the value of the
arithmetic expression on the right to the element or
elements of the subscripted variable on the left. The
expression on the right can yield either a numeric scalar
or a numeric vector.

The subscripts may be a single arithmetic expression,
two arithmetic expressions, or an arithmetic expression
and a *. Subscript expressions must yleld numeric scalars
If the scalar is not real, a warning message is issued
and only the real portion of the number is used. HReal
subscript values-are converted to¢ an integer by rounding.

When all of the subscripts of the variable on the
left are arithmetic expressions, the expression on the
right must yield a scalar. And, when one of the subscripts
is a *, thé expression on the right must yield either a

row or column vector. Thus, for ecxample, a row vector may

93

be assigned to the column of a matrix.

There are two sets of bounds associated with each
array: the actual bounds and the optional‘declared
bounds. The actual bounds are the current bounds of an
array and they must always remain inside the declared
bounds when such are given.

The number of cases that are handled by this assign-
-ment is large, due to the fact that the user may declare
none, some, or all of the attributes for the variable on
the left. If the variable on the left has not previously
been assigned a value, four possible cases exist.

Case cne: the variable on the left is declared to
be an array and the number of subscripts is fixed. The
bounds for the subscripts may also be declared.

The actual bounds associated with a * subscript are
the actual bounds of the vector result when no bounds
are declared for the index of the variable. But if the
* index has its bounds declared, then the lower bound of
the result vector is adjusted to match the declared lower
bound of the variable and the actual upper bound is
modified accordingly. If after the adjustment is made the
actual upper bound of the vector exceeds the declared
upper bound of the variable, no assignment is made and an
error results.

Case two: the variable on the left is declared to be

an array, but no declaration has been made concerning the

0
£

numiber of suoscripis or their bounda. Thoen the varianic
on the left may appear with cither one or two subscripls,
and it is contextually delincd to have the corresporing
number of dimensions. The actual beunds of the array are
established from the subscript expressions or from the
vector result for a * index.

Case three: the variable on the inftL is not
declared explicitly to be an wrray, but can have an array
as its value. Then the variable is coaloxtualiy declared
to be an array and the assignment proceeds as in cise Lwo.

Casc four: tue variable on the left is declared o
be a scalar. In ibis case, no assigrmment Is made and an
error results.

If the variable on the left has previously been
assigned a value, there are six possible cases.

Case cne: the variable on the lelt presently is5 an
array, the number of subscripts match, and the valuas of
the subscripts lie witnin the present actual bounds, or
in the case of a * subscripL tvhe numaer of elements in
the vector result equals the numver of clements in the *
index. Thus oniy a repiacement of previous vaiues is
necessary.

Conversion is prerformed when possilLile to insure that
the mode and precision of the current and new values agrec
If no conversion can be perfomaed, as is the casc when the

variable on the lelt is deciared to be real and the resuit

95

of the expression on the right is complex, an error is
issued and no assignment is made. If the variable on the
"left is the head of an iteration chain, the chain is
pushed down in this case.

Case two: the variable on the left currently is an
array but the dimensions do not match on the left and
right. If the dimensicn is explicitly declared for the
variable on the left, no assignment is made and an error
results. If the dimension is not declared, the previous
array value is destroyed and a new array is created.

Case_three: the variables on the left and right

have the same number of dimensions, but the one on the
left must be expanded. This occurs when either the value
of a subscript falls ocutside the actuazl bounds of the
current array value {but inside the declared bounds), or
the number of elements in a vector to be assigned exceeds
the number of elements currently in the % dimension.

An array is expanded by adding zero columns and rows
to the previous value. Then the assignment is made to the
expanded array.

When the expansion results from a vector being
assigned to a row or column, the actual upper bound is
ad justed first. If the declared upper stops the expansion
before enough space is obtained, then the actual lower

bound is adjusted to obtain the remaining space needed.

96

When an array is expanded and the variable on the left
is the head of an iteration chain, the chain is [reed.

Case_four: the variable on the left currently is an
array and the number of elements to be assigned to a *
index is less than the number of elements currently in
that dimension. Because it is not known which elements
are to be replaced in this case, no assignment is made
and an error results.

Case five: the variable on the left currently does
not have an array as its value, but it may. The assign-
ment of the new value is made as in case three, when the
variable had no previous value.

Case six: the variable ¢n the left is declared to
be scalar. Because attributes are assigned at execution
time, this error cannot be detected by the compiler but
is detected when the assignment is attempted and an error

results.

Fquals Assignment Statement: A =

This assignment statement assigns the text, not the
value, of the expression on the right of the = to the
variable on the left.

Before the assignment 1is performed, the internal text
for the expression on the right is scanned to check for
scope conflicts between the variables on the fight andg
left. Also during this scan the relative pointers to

user-created variables are replaced by absolute pointers.

G7

This process is simplified by the fact that the pointors
to user variables are represented in the internal text
by positive integers, while all other quantities in the
internal text are represented by negative integers.

If the variable on the left is global all variables
appearing in the expfession on the right must also be
global. If the variable on the left is non-local all the
variables in the expression must be known in the outer-
most procedure in which the variable on the leflt is known.

The pointers generated by the compiler to user
variables are relative to the beginning of the name table
for the procedure being compiled. Thus for the variabvle
on the left to be assigned a value in an internal
procedure and have its value computed in another procedure
or the console level, the relative pointers to user
variables must be replaced by absolute pointers. The
relative pointers to variable name control blocks are
replaced by absclute pointers to the name control blocks
wnich contain the actual values for the variables. The
absolute pointers are into the array AINCBS. See figure
17. This replacement insures that wherever the value of
the variable on the left is computed the correct name
control block entries are used.

For global variables the absolute pointer is to the
name control block_for the variable in the global table,

and for non-local variables the absolute pointer is to

98

the name control block for the variable in the outermost

name table in which the variable is known; see figure 17.

Equals Function Assignment Statement: F(Xj, Xo,---, Xy) =

This assignment statement defines the variablé on the
19ft to be a symbolic function {an equals function). The
variables appearing in the text of the function do not
have their current value fixed when the assignment is
made; rather they assume their current value when the
function is evaluated.

A symbolic function may be defined to have from one
to four formal parameters. The maximum of four formal
parameters for a function is a system parameter and may
be changed at any time.

Before the assignment is made, the scope ol the
variables appearing in the text is checked; and all
relative pointers are replaced with absolute pointers,
as is done in the equals assignment statement: A = .

The formal parameters are not treated in the same
manner as other variables appearing in the text of the
function. References to the N formal parameters are
replaced during compilation with references to the first
N temporary name‘control'blocks._ Therefore, they do not

appear as normal variable references.

99

Left Arrow Function Assignment Statement: F{X3,Xo,...,7:1)~

This assignment statement also defines the variable
on the left to be a symbolic function {a left arrow
function). Thne difference between this assignment and
the previous one is that here all variables on the right
have their values fixed when the assignment is made.
Thus there are no scope conflicts to be checked, but all
variables appearing in the function must be delined.

Values are fixed by creating a local name control
block for each variable on the right and associating a
copy of the current value of the variable with this namec
control block. All references to these variables are
modified to point to these local name control blocks.

A function definition is broken up by domains and
a local name table is created for the variables
cccurring in each domain.

For each left arrow variable appearing in a function
definition a copy of the variables name control block is
created and placed. in the local name table for the
function. If the value of the variable is an array, its:
value is not copied. The name control block points to |
the array and the reference count asscciated with the
array is increased by one.

When an equals variable appears in the text of the
function, the expression associated with the variable is

evaluated and a name control block is created in the

100

local name table with the same name and the value of the
- evaluation is associated with it.

The occurrence of a left arrow function in a
function's definition causes a copy of the function's
name control block to be placed in the local name table
for the function being defined. Instead of making a
copy of the definition of the left arrow, the reference
count associated with the function definition is
inereased by one.

If none of the arguments of a left arrow function
appearing on the right involve any of the formal para-
meters of the function being defined, then the function
may be evaluated. This is done and the resulting value
is associated with a special name control block which is
placed in the local name table of the function being
defined. This results in a time saving whenever the
function being defined is evaluated.

When an equals function appears in the definition of
a left arrow function it, too, is evaluated if none of
its arguments involve any of the formal parameters of
the funetion being defined. When this is not the case,
the equals function is converted to a left arrow function.
This causes the routine which performs the left arrow
function assignment to recurse, and results in two copies
of the function definition to be saved. One definition,
the original, is associated with the equals function name

- control block and the other is associated with a name

|llIIllllllll

101

control block in the local name table of the function
being defined.

The mechanism used to save temporary variables when
this routine recurses is the same as used by the arith-
metic expression evaluator.

If a variable appears in the definition of a left
arrow function which is undefined, non-numeric, or itself
not a function, then the assignment 1s not made and an
error results. When this occurs, because garbage collec-
tion is not used all storage associated with local name
control blocks and the definition of the function up to
the point of the error must be returned to the systemn.

Array of Functions Assignment Statements:
ﬂxji :L')J = e)_}:N)[IJJ]E

These assignment statements define an element in an
array of symbolic functicns. We use all the rules
involved when assigning an element in a numeric array,
or e&efining a scalar left arrow or equals function. 1In
addition, we require that only arithmetic expressions
appear as subscripts. The elements of the array must

either all be left arrow functions or all equals functions

BIBLIOGRAPHY

102

BIBLIOGRAPHY

Culler, G. J. (1968}, "Mathematical Laboratories:
A New Power for the Physical Sciences," Intcer-
active Svstems for Exnerimental Applied Mathe-
matics, {Klerer, M. and Reinfelds, J., eds.),
pp. 355-384.

Engleman, C., "MATLAB - A Program for On-Line
Machine Assistance in Symbolic Computation,"
Proceedings Fall Joint Computer Conference 1965,

pPP. 423-

Falkoff, A. D. and Iversen, K. £. (1968}, "The
APL 360 Terminal System," Interactive Systems for
Experimental Applied Mathematics, (Klierer, M. and
Reinfelds, J., eds.), pp. 22-37.

Hearon, A. C. {1968}, "REDUCE: A User-oriented
Interactive System for Algebraic Simplification,”

‘Interactive Systems for Experimental Applied

Mathematics, (Klerer, M. and Reinfelds, J., eds.),
pp. 79-90.

Hill, P. B. and Stowe, A. N. (1968}, "Implementa-
tion of a Reckoner Facility on the Lincoln Labora-

tory IBM 360/67," Interactive Systems for
Experimental Applied Mathematics, (XKlerer, M. and

Reinfelds, J., eds.}, pp. 385-389.

Kaplow, R., Brackett, J., and Strong, 5. (1966},
"Man-Machine Communications in On-Line Mathematical
Analysis," Proceedings - Fall Joint Computer
Conference, pp. 465-477.

Klerer, M. and May, J. (1964}, "An Experiment in a
User-Oriented Computer System," Communications ACH,
7, No. 5, pp. 290-294.

Klerer, M. and May, J. (1965}, "A User Oriented !
Programming Language," Computer Journal, 8, No. 2, !
pp. 103-109. |

103

9. Klerer, M. and May, J. (1967), "Automatic
Dimensioning," Communications ACM, 10, No. 3,
pp. 165-166.

™

10. Xlerer, M., Orossman, ., and Amann, C. H.
(1968), "Design Fhilosophy for an Interactive
Keyboard Terminal,” Interactive Systems for
Experimental Applied Mathematics, (Klerer, M.
and Reinfelds, J., eds.), pp. 183-191.

11. Lock, K. (1968), "An Object Code for Interactive
Applied Mathematical Programming,™ Interactive
Systems_for Experimental Applied Mathematics,
iglerer, M. and Reinfelds, J., eds.), pp. 222-

224 .

12. Matthews, H. F. (1968), "VENUS: A Small Inter-
active Non-procedural Language," Tnteractive

Systems {or Exverimental Applied Mathematics,
(Klerer, M. and Reinfelds, J., eds.), pp. 97-101.
13. Reinfelds, J. (1968), "An Implementation of
Automatic Array Arithmetic by a Generalized Push-
Down Stack," Interactive Systems for Experimental

Applied Mathematics, (Klerer, M. and Reinfelds, J.,
edS .)) pp] 411_1}22 -

14. Roos, D., "An Integrated Computer System for
Engineering Problem Solving,™" Proceedings Fall
Joint Computer Conference 1964.

15. Roos, D. (1967), ICES System Design, MIT Press.

16. Rice, J. R. and Rosen, S., "NAPSS: A Numerical
Analysis Problem Solving System," Proceedings -
ACM National Meeting 1966, pp. 51-56.

17. Rice, J. R. {1968}, "On the Construction of Poly-
algarithms for Automatic Numerical Analysis,”
Interactive Systems for Experimental Applied
Mathematics, (Klerer, M. and Reinfelds, J., eds.},

pp. 301-313.

18. Rice, J. R. {1969}, "A Polyalgorithm for the Auto-
matic Solution of Non-linear Equations," Purdue
University Technical Report, CSD TR 32.

19. Roman, R. V. and Symes, L. R. (1968), "Implementation
Consideraticons in a Numerical Analysis Problem
Solving System,” Interactive Systems for Experimental
Applied Mathematies, (Klerer, M. and Reinfoldas, J.,
eds.), pp. 400-410.

#

20.

21.

22.

23.

26.

27.

28.

29.

104

Ruyle, A., Brackett, J. ¥W., and Kaplow, R.,
"The Status of Systems for On-Line Mathematical

Assistance," Proceedings - ACM National Meetin
1967, pp. 151-168.

Schlesinger, S. and Sashkxin, L. (1967), "POSE:
A Language for Posing Problems to the Computer,"”
Communications ACM, 10, No. 5.

Schlesinger, S. I., Sashkin, L., Reed, K. C.
{1968), "Two Analyst-Oriented Computer Languages:
EASL, POSE," Interactive Systems for Experimental
Applied Mathematics, (Klerer, M. and Reinfelds, J.,
eds.), pp. 91-96.

Seitz, R. N., Wood, L. H., and Ely, C. A. (1968),
UAMTRAN: Automatic Mathematical Translation,”
Interactive Systems for Experimental Applied
Mathematics, :Klerer,-M. and Reinfelds, J., eds.),
pp. LL-66.

Shaw, J. GC., "JOSS: A Designer's View of an
Experimental On-Line Computing System," Proceedings

Fall Joint Computer Conference 1964, pp. L55-404.

Stowe, A. N., Weisen, R. A., Yntema, 0. B., and
Forgie, J. W., "The Lincoln Reckoner: An Operation-
Oriented On-~Line Facility with Distributed Control,"
Proceedings - Fall Joint Computer Conference 1966,
pp. 433-444.

Symes, L. R. and Roman, R. V. {1967), "NAPSS Primer,"
Purdue University Technical Report, CSD TR 11.

Symes, L. R. and Roman, R. V. (1967), "Syntactic and
Semantic Description of the Numerical Analysis
Programming Language (NAPSS)," Purdue University
Technical Report, CSD TR 11.

Symes, L. R. and Roman, R. V. {1968}, "Structure
of a Language for a Numerical Analysis Problem
Solving System," Interactive Systems for
Experimental Applied Mathematiecs, (Klerer, M. and
Reinfelds, J., eds.), pp. 67-78.

Wiesen, R. A., ¥Yntema, D. B., Forgie, J. W., and
Stowe, A. N. (1968), "Coherent Programming in the
Lincoln Reckoner," Interactive Systems for Experi-
mental Applied Mathematics, (Klerer, M. and
Reinfelds, J., eds.), pp. 167-177.

105

30, Wood, L. H., Reinfelds, J., Seitz, R. N., and
Clem, P, L. (1966), "The AMTRAN System,"
Datamation, 12, No. 10.

" APPENDICES

106

APPENDIX A

DATA STRUCTURES

Bquals Variable

The attribute number for an equals variable is zero.
The data pointer field of thé variable's name control
Elock contains the page number of the first virtual page
used to store the text for the expression. The data
portion of the name control block is unused.

The text is packed in each virtual page, three
twenty-bit integers per word. The first word of each
virtual page is used for linking. The link contains the
virtual page number of the next page used to hold the
text of the expression or zero if the page is the last.

Figure ALl displays the data structure for an equals
variable. Two pages of virtual memory are used to hold

the text for the expressicn.

Left Arrow Variables

Real Single Precision Scalar
The attribute number 1 specifies a variable whose
value is a real single precision scalar. The value is
stored in the first word of the data portion of the name
control block. The remaining three words of the data

portion are unused, see Figure A2.

107

DATAl ATTRIBUTE L* LINK 0
POINTER | FLAGS
e ARITHMETIC ARITHMETIC
o EXPRESSION EXPRESSION
- TEXT TEXT
- PAGE PAGE
1 2

NAME CONTROL BLOCK

VIRTUAL PAGE

VIRTUAL PAGE

Figure Al. Equals Varigble Data Structure

- JATTRIBUTE
FLAGS

VALUE

NAME CONTROL BLOCK

Figure A2. Real Single Precision Scalar

Data Structure

108

Real Double Precision Scalar
The attribute number 2 specifies a variable whose
value is a real double precision scalar. The value is
stored in the first and second words of the data portion
of the variable's name control block. Words three and

four of the data portion are unused. See Figure A3.

Complek Single Precision Scalar
The attribute number 3 specifies a variable whose
value is a complex single precision scalar. The value
is stored in the first and third words of th data por-
tion of the variable's name control block. The real
part isin word one and the imaginary part in word three.
Words two and four of the data portion are unused. See

Figure AL.

Complex Double Precision Scalar
The attribute number L specifies a variable whose
value is a complex double precision scalar. The value
is stored in the four word data portion of the variable's
name control block. The real part is in words one and
two and the imaginary part in words three and four. See

Figure AS.

Numeric Arrays
The attribute numbers 5,6,7 and 8 denote a real
single precision array, a real double precision array,

~a complex single precision array, and a complex double

109

ATTRIBUTE
FLAGS

ALA R,
1 AL

VALUE

VALUE

NAME CONTROL BLOCK

Figure'AB. Real Double Precision Scalar Data Structure

ATTRIBUTE
FLAGS

— AT

INHID

REAL PART

IMAGINARY PART

NAME CONTROL BLOCK

Figure AL. Complex Single Precision Scalar Data Structure

110

ATTRIBUTE
FLAGS

NAME

REAL PART
REAL PART

IMAGINARY PART

IMAGINARY PART

NAME CONTROL BLOCK

Figure A5. Complex Double Precision Scalar Data Structure

111 .

precision array, respectively.

- If the data pointer field of the name control block
for the array variable is non zero, a copy of the array
exists in secondary storage in the array file. The data
pointer is then the number of the record used to store
the arrgy and an index in the vector AEPAR.

~The vector AEPAR contains additional information
about the array. Each entry in AEPAR is broken into
three bytes, each of twenty bits. These bytes are
numbered from left to right, byte three, byte two, and
byte one.

Byte three contains the reference count for the
array. Byte two contains the number of dimensions in
the array. And byte one contains the number of words in
the array. The number of words in an array is equal to
the number of elements in the array times the number of
words in each element.

There is one word per element if the array is real
single precision, two words per element if the array is
either real double precision or complex single precision,
and four words per element if the array is complex double
precision. The elements are stored consecutively by rows.

If the data pointer field of the array's name control
bleck is zero, the only copy of the array exists in the
work pool, and the array is the result of the last array

Ooperation performed.

/

112

The vectors AEAWP1 and AEAWP2 contain information
about the arrays in ﬁhe work pocl. AENAWP is the number
of arrays in the work pool. Each entry.in AEAWPl contains
the index in AENCBS of the first word of the data portion
of the name control block of the array variable. Each
entry in AEAWP2 is subdivided into three bytes. Byte
three contains the index in the work pool of the first
word ¢f the array,; byte two contains the number of
dimensions in the array, and byte one contains the number
of words in the array.

When the data pointer field of an array variable's
name cantrol block is zero, the information about where
the array is in the work pool and the number of words in
the array is contained in AEAWP2 (AENAWP).

The bound information for an array's indices is
contained in the name ceontrol block. The three bytes
of the first word of the data portion of the name control
block contain the declared lower bound for index one
(DLB1), the actual lower bound for index one {ALBl}, and
the declared upper bound for index one (DUBl). Word two
contains the actual upper bound for index one (AUBl), the
declared lower bound for index two (DLB2), and the actual
lower bound for index two (ALB2). Word three contains the
declared upper bound for index two {DUB2), the actual
upper bound for index two (AUB2), and the number of
dimensions for the array. Word four of the data portion

is unused.

113

DATA ATTRIBUTE
POINTER FLAGS
e - - <>'
REFER. NUMBER | NUMBEZR
DLBL ALBL DUS1 | ™]cOUNT | DIM. | 4ORDS
AUB1 DLB2 ALBZ2
NUMBER
DUB2 AUBZ
DIMENSION AEPAR
NAME CONTROL BLCCK
Figure A6. Data Structure for an Array in Array File
FWA OFI NUMBER | NUMBER
ARRAY OP| DINM. woaNS
FWA OF | NUMBER | NUNMBER
ARRAY RT[DIM. WORDS
0 ATTRIBUTE
FLAGS
DLB1 ALB1 DUD1 AFAWP2
AUB1 DLB2 ALB2 POINTER TO OPERAND NCB
NUMBER 0 oNe
DUBZ2 AUB2 DIMENSTON POINTER TO RESULT NCB

NAME CONTROL BLOCK

ALAWPL

Figure A7. Data Structure for an Array in Work Pool, Only

114

Declared bound information is optional for an array.
The user may declare the number of dimensicons, plus
(optionally} some of the bounds for the indices. If a
'bound is declared for an index, the corresponding {ield
contains the value of the declared bound. Tf n dimension
is declared but no bound is declared [or wne index, uhe
declared bound fields for the dimension centain 1777776g.
If a variable is declared to have only one dimension,
the declared bound fields for the second index contain
3777777g. 1f no dimension.information is declared for an
array variable, all the declared bound fields contain
1777777g.

Figure A6 displays the name control block for an
array variable when a copy of the array resides in the
array file.

Figure A7 displays the temporary name control block
of an array result which resides only in the work pool.
In Figure A7 only two arrays exist in the work pool: an

operand array and the result array. Thus AENAWP = 2.

Imaginary Place Marker

The attribute number of a varible declared to have
the value of V-1 is 9. The first word of the data portion
of the variable's name control block contains zero and the
third word contains one. The second and fourth words of
the data portion are unused. Figure A8 describes this

data structure.

115

_ |ATTRIBUTE
FLAGS
NAME
0.0
1.0

NAME CONTROL BLOCK

Figure A8. Data Structure for Imaginary Place Marker

Scalar String

. The attribute number 10 specifies‘a variable whose
value is a scalar string. The data pointer field of the
variable's name control block contains the string number.
The data portion of the name control block is unused.

The string number is the index of an entry in the
string relocation table, AERLTB. Each entry in AERLTB
contains additional information about a string. An entry
is subdivided into three bytes. Byte three contains the
index of the start of the actual string description in
the string picture table. Byte two contains the reference

count for the string. The reference count designates the

116

number of times the string is referenced from the string
picture table plus one for the original reference from
the string variable's name control block. Byte three
contains the index in AENCBS of the first word of the
data portion of the name control block for the string
variable.

The string picture table contains a description of
each string. Several entries are used to characterize
a string. Each entry denotes either a literal string,
a reference to a string variable, or the end of a string
picture.

An entry in the string picture table, AESTRP, is
subdivided into three bytes. |

If byte one is not zero or 1313, then the entry
describes a literal. Byte one is the number of characters
in the literal, byte three is the virtual page number of
the page on which the literal is stored, and byte two is
the displacement on that page to where the literal begins.

Each word in a virtual memory page used to hold
string literals is subdivided into three bytes. A literal
is divided into segments of three characters. [Each seg-
ment is stored in a byte. If a string literal will not
fit in the number of bytes remaining in the current string
page, the literal is broken. As many segments of the
literal as possible are placed in the current string page

and the remainder are placed in a new su:r.ng page. When

117

this occurs two entries are put in the string picture
o table, The maximum length of a string literal is 576
characters.

If byte one is 1313, then the entry denotes the
null string. It has no length and does not require any
storage, sO byte two and three are zero.

If byte one is zero and byte three is not 501, the
entry denotes a réference to a string variable. Byte
three contains the index of the entry for the string
variable in the string relocation table.

If byte one is zero and byte three is 501, the entry
denotes the end of a string picture.

Space in the string relocation table and the string
picture table is returned to the system when the string
they describe is no longer referenced. The use of
pointers in the string picture table to the string re-
location table saves space, because only one copy of a
given string picture needs to appear in the string
picture table.

Figure AG describes the data structure for the strings
created by the assignment statements B ~ "Yav,

A ~ MABCDEF™||B||"".

String Arrayvy

The attribute number 11 denotes a variable whose
value 1s an array of strings. The data portion of the

variable'!s name control block contains the same bound

#

1] ATT.

NAME CONTROL BLOCK
for B

2 | ATT.

NAME CONTROL BLOCK
for A

Figure A9. Data Structure for Strings

1 2 |PT. B

B 1(PT. A
AERLTB .

1 1 2

501, 0 Y

1 2 6

1 O G

0 01 31313

501 0 0
AESTRP

YZ ABC DEF

3
L

VIRTUAL PAGE 1

8TY

1i%

information as is contained in the name control block of
a variable which denotes a numeric array. The data
pointer field of the name control block contains the
array number.

The array is treated as a single precision real
array. The elements of the array contain the indices of
the entries in the string relocation table for the string
descriptions. If an element is undefined, its value is

zero.

Boolean Values

The attribute numbers 12 and 13 denote logical
variables whose values are true and false respectively.
A user-created variable may not be assigned a logical
value; however, temporary name control blocks are assigned
boolean values when a relational or boolean expression is
evaluated. The data portion and the data pointer field of
a temporary name control block assigned a boolean value

are not used.

Scalar Symbolic lLeft Afrow Funetion

The attribute number 16 denotes a variable whose
value is a scalar symbolic left arrow function. The data
pointer field of the variable's name control block con-
tains the page number of the first virtual page used to
storeAthe arithmetic expression text for the first domain.

The number of arguments of the function is contained in

byte three of the fourth word of the data portion of
the name control block. The remainder of the data
portion is unused.

The first four words of the first page used to
store the arithmetic expression text for each domain
contains a set of pointers. The first word is used to
Jlink together the pages required to store the text for
the arithmetic expression of the domain. It contains
the virtual page number of the next virtual page used.
A zero link denctes the last page. Byte three of the
. second word contains the number of werds of internal
text in the boolean expression for the domain (WORDS
B.E.). Byte two of the second word contains the
reference count for the function definition. This byte
is only used in the first domain of the function. Byte

one of the secomd word contains the virtual page number

120

of the first virtual page used to hold the boolean expres-

sion text for the domain (V.P.B.E.). This byte is zero

if there is no boolean expression. . Byte three of the

third word contains the number of virtual pages that are

required to hold the local name table for the domain
(N.P.L.N.T). Byte two of the third word is unused, and
byte cne contains the page number of the first virtual

page used to hold the local name table (V.P.L.N.T.).

Byte three of the fourth word contains the number of worcs

of internal text in the arithmetic expression for the

121

mi
ATIRIBULE
POTNIER TRASE | 0
0 - 0
AT
CP-L-‘L‘I- Tn hand V.P.L.I‘I. T-
B - 0
ART TIMETIC EXPRESSION TEXT 7
NUMBER
FUNCTION NAME CONTROL BLOCK FIRST PAGE OF TEXT DOMAIN 2
; LTNK 0 |
W REFCHENCE
Qs coumT . |V-P-B.E. IT]
N.P.L.N.T. ~ (VoP.L.N.T. (3| % LOCAL NAME CONTROL LBLOCKS
HORRS - [V.P.N.D. [
10CAL NAME TABLE DOMAIR 2
ARITHMETIC EXPRESSION TEXT
| . 0|
FIRST PAGE OF TEXT DOMATN 1 l
< BOOLEAN EXPRESSION TEXT <
> 0
- - - FIRST PAGE OF 1EXT DOMAIN 1
- , sl N} 5

il

ARYTHMETTC EXPRESSION TEXT

-

LOCAL NAME CONTROL BLOCKS

SECOND PAGE OF TEXT DOMATN 1

LOCAL NAME TABLE DOMAIN 1

Figurs AlO., Data Structure of Left Arrow Function

122

domain (WORDS A.E.)}. Byte two of the fourth word is
unused and byte one contains the virtual page number of
the first page of arithmetic expression text for the
next domain (V.P.N.D.). If this byte is zero, there is
not another domain defined for the function.

The virtual pages used to store the text for a
boolean expression or the local name table are linked
together by the first word of each page. A zeroc link
specifies the last page.

Figure A10 describes the data structure for a leit
arrow scalar function with two domains., Two virtuail
pages are required to hold the arithmetic expression text
of the first domain, one page is required for the local
name table of each domain, the boolean expression text
for the first domain and the arithmetic expression text
for the second domain. There is no becolean expression

associated with the second domain.

Scalar Symbolic Eguals Function

The attribute number 17 denotes a- variable whose
value is a scalar syﬁbolic equals function. The name
control block for the variable contains the same informa-
tion as the name control block of a scalar symbolic left
arrow function.

The first four words of the first virtual page used
to store the arithmetic expression text for each domain

contains a set of pointers. Word one contains a link to

123

additional pages used to sfore the text of the arithmetic
expression for a domain. Word two contains the number of
words 6f text in the boolean-expression and the virtual
page number of the first virtual page used to store the
boolean expression text for the domain (V.P.B.E.). This
word is zero if there is no boclean expression. Word
three is unused since there is no local name table. Word
four contains the number of words of arithmetic text and
the virtual page number of the first page used to store
the arithmetic expression text for the next domain
(V.P.N.D.). Byte 3 is zero if there is not another domain
defined.

Figure All displays the name control block of z
scalar symbolic equals function and a portion of the
first virtual page used to store the arithmetic expression

text for the first domain.

Array Symbolic Left Arrow Function

The attribute number 18 denotes a variable whose
value is an array of symbolic left arrow functions. The
name control block of the variable contains the same
bound information in the first three words of the data
portion as a numneric array. The array number is in the
data pointer field of the name control block and byte
three of the fourth word of the data portion contains the
number of arguments in each of the functiorms

The array is treated as if it is an array of real

124

DATA [ATTRIBUTE
POINTER FLAGS

td

K

ML AR
13 F2Y

i

NUMBER
ARCUEMENT

NAME CONTROL BLOCK

™ LINX

WORDS
e - | v.P.B.E.
WORDS -lv.p.u.0.
A.E. N.D

< ARITHEMETIC EXPRESSION TEXT =

FIRST PAGE OF TEXT DOMAIN 1

Figure All. Data Structure of Equals Function

125

single precision numbers. ILach element contains the
virtual page number of the first virtual page used to
store the arithmetic expression text for the first
domain of the element's definition. If an element is
not defined, its value is zero.

The text for the definition of each element is
linked together in the same manner as a scalar symbolic
left arrow function. See Figure A10.

Figure Al2 displays the-structure of the name control

block for an array of symbolic left arrow functions.

ARRAY [ATTRIBUTE
NUMBER FLAGS

T

DLB1 ALB1 DUB1
AUBL DLB2 ALB2
URBR2 NUMBER
Dus2 A DIMENSTION
NUMBER
ARGUEMENT)

NAME CONTROL BLOCK

Figure A12. Name Control Block of an Array of Symbolic
Funections

126

Array Symbolic Equals Function

The attribute number 19 denotes a variable whose
value is an array of symbolic equals functions. The
name control block of the variable contains the same
information as the name control block for an array of
symbolic left arrow functions. See Figure Al2.

The array is treated as if it is an array of real
single precision numbers. Each element contains the
virtual page number of the first virtuzl page used to
store the arithmetic expression text for the first domain
of the element's definition., If an element is not defined,
its value is zero.

The text for the definition of each-element is
linked together in the same manner as a scalar symbolic

equals function. See Figure All.

APPENDIX B

]

QPERATION CO2ES

The source code and the three address internal text
generated by the compiler for each operator is given in
Table Bl.

The negative irnteger preceding each segment of
internal text is the .operavor number. The text foliowing
the operator number consists of pointers to the nanme
contrel blocks for the operands and the result. R ang 7
denote references tc temporary variables.

In the text for some of the operators (eg. F''(A),
AfC1,...,Cn]) negative integers appear in addition to the
pointers to the operand and the result name control block
These negative integers are used to specify the numober of
derivatives, the number of arguments, or the number of

subscripts involved.

S.

Table Bl.

SOURCE CODE
A~B
- A

A
A
A // B
A/ B
A =B
A ' B

F"""(A)

N
A[Cl,oao,CN]
A[Cllzclz,...,Clecwz]
A[CII:*,...,*:CNZJ

!
A [01,02]
Al| B

F(xl,...,xN)[cl,...,cM]
F(xl,...,xN)'[cl,02]

: F”""(X

x.)ic ,...,C.)
M N°""1 M

1)-°-s

fTreet 1
F\-—.T(Xl'loi,xN) [Cl'czj

[A |
F(Xl, xz,..., xN)-
{ A, B)

Operation

128

Codes

INTERNAL TEXT

A

R

B R
B R
B R
B R
B R
BR

[]
i
I T - e

-N AR
-10 A =N Cl Cl"'CN CN

R
10 A =N C C,. +..C C R
Q

11 12 N1 N2
—N Cll O.ooo CN2 Py

-2 02 02 Cl Cl R

-10 A
-10 A
<11 ABR

-12 F
Cy Cyr R

M "M
-12 F -N X

C, C, R

171
—13 F ‘L “N chonx
R

-N xl-o-XN"M Cl Clacn

l...XN-Z C2 02

N"'M Cl claoo

“u Cn
13 F -L

Cl Cl R

-14 A R

-N X

l...XN—2 C, C

2 2

-15 F =N Xl X ...XN R

2
-16 ABR

-ll

Table Bl (cont'd.)

SOURCE CODE
([Cll:clz,.'.,CNl:szj’ A)
(A TOBBY C)

(A’ B,Oro’ C)

{ A FOR B TIMES)
Al

_17

=N C

INTERNAL TEXT

11
-18 ABCR

-3 BAT,

i
-18 A T, ¢R

-20 A B R

A

A
A
A
A
A
A
A
A
A
A
A
A
A

R

B
B
B
B
B
B
B
B
B
B
R
B
B

(2 B <0 U T W ™ oW oW o

=)

AR

	A Mathematical Problem Solving Language and its Interpreter
	Report Number:
	

	tmp.1307986960.pdf.HD6Rk

