View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1982

Poker (1.0) Programmers Guide
Lawrence Snyder

Report Number:
83-434

Snyder, Lawrence, "Poker (1.0) Programmers Guide" (1982). Department of Computer Science Technical
Reports. Paper 355.
https://docs.lib.purdue.edu/cstech/355

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4951508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

The Poker (1.0) Programmers Guide
Lowrence Snyder
ABSTRACT

The Poker Parallel Programming Environment is a graphies-
based interactive sysltem for writing and running CHiP pro-

rams. The programs can be emulated or run on the Pringle
% hen completed) Poker runs on the VAX 11/780 under
UNIX using two displays (see Figure 1). Poker permits the
programmer lo encode a parallel algorithm in a convenient,
“high level" interactive environment, but because our
approach is somewhal nonstandard, we begin with a discus-
sion of our view of the parallel programming activity. The
seclions of this documenl are:

I. CHIiP programming is something else
II. Poker Programmer's Reference Guide

Commenls on Lhis decument or Lhe programs to which it
refers are eagerly solicited.

CSD-TR-434
20 December 1982

This work is part of the Blue CHiP Project. Il is supported in part by the Office of
Naval Research Contracts NO0O014-80-K-0816 and NO0014-81-K-0380. The latler is
Task SR0O-100.

-2-

Acknowledgements

The Poker System is Lhe producl of the ideas and effort of many peo-
ple. Janice k. Cuny and Dennis B. Gannon, in addition to contributing to
the definition of the XX programming language, were a continual source
n[ideas, judgement and constructive criticism. Chrislopher A. Kent con-
tribuled cxtensively to the overall design us well as the programming.
Version 1.0 ol Poker was written during the summer of 1882 by a delight-
ful and commilted group of gentlemen, the "poker players'": Steven S.
Alberl, Carl W. Amporl, lirian G. Beuning, Alan J. Chester, John P,
Guaragno, Christopher A. Kent, John Thomas Love, Eugene J. Shelita, and
Carlelon A, Smilh. Concurrenlly, the coordination phasze of Poker was
sirillen under the direclion of Janice I8, Cuny by Karen 1. Pickering and
wlHen I, Sconlon. J. Timothy Field and Alejandro A. Kapauan cheerfully
chdained Lhe deoleils of Lhie Pringle archileclure. Julie K. Hanover
arpertly prevared the Polker documents under Llighl tinme conslrainls.
Jo Tivrobhy Rovb aud Roboerl L. Brown pgrove helplul puidunce on Lthe 1jil-
Geapstr, and Dol wrole e indeylacing sollware. Vance Waddle suggoeslornd
Lice nume, alter Poker's "poecking and polking' frace lacililies. The conlri-
bulions of all of Lhese people are deeply apprecialed.

VAX 11/780

POKER
PROGRAMMING
ENVIRONMENT

UNIX

PRINGLE

[conTROLLER |

-

SWITCH

PE M H

64

Figure 1. The Structure of the Poker Programming Environment.

..11__

I. CHiP Programming is Something Else

The programming =znvironmenl provided by Poker is somewhat
unconvenlional due parlly lo novel properlics of Lhe CHil? Compuler and
partly Lo novel properiics of Lhe system ilsell. 'l'o increase the aceessibil-
ily of subsequent sections, we discuss here Lhe activily of CIHiP program-
ming and the role Poker plays.

Piogramrming, of course, is Lhe conversion of an (abstrael) algerithm
Lial iy "machine independend” inleo a [orm suitable [or execculion on a
purlicular compuler. Thus, Lo begin programming a CIHIP machine, we
nevd o have oo parallel aigorillnn i miud. The algerillnn is presumed Lo
have Lhe Torm ol a praph whose verlices are proeesses and whose edpes
speceily e corumunicalion paths among Lhe processes.

IFor example, Iigure 2 gives an ulgorithin that uses a binary tree as
tire commmunicalion graph. The algorithm finds the maximurn of a sct of
nwnbers (slored one per process in a local variable called "val™) and then
mulliplies each number by e maximum. The maximum is [ound by
oaling” Lhe largesl value in cach sublree Lo Lhie rool ol thal sublree.
Then the plobal maximum is broudeasl bacle Lhirougth Lhe Lree where cach
procesy wdlliplies il Lines ils local "val.” Nolice thal allhough Lhcre are
[illeen processes in Lhe tree, there are only three iypes of processes
used.

The conversion of this algorithm to run on a CHiP computer, i.c., the
wrosriaoaningeg, B3 sbeaighl Iorward, = IL involves
.-."-::.;‘_I:I-I'jll-l'.'?:_i-i;l-;“iiu‘ily willh Lhe Tilil? Compuler. Complele inflormalisn can be

aand w "Inbeadnetion (o the Cenfiperable, ighly Parallel Computer,” Lawrence
Snyder, tomputer, 15(1): 47-66, January 1982,

leaf process: gncestor process: root process:

write val to parent; read z from left child: read Z from left child;

read max from parent; read ¥ from right child; read i Irom right child;

val « val ' max; write max (T .y, vol) Lo parent; max + max (.Y, val);
read max from parent; write max Lo left child;
write max to left child; write max to right child;
write max Lo right child; val « val - max:

val « val - max;

Figure 2. An algorithm; each leal is an instance of the leaf process, the
root is an instance of the root process and all olher nodes are
instances of the ancestor process.

(a) embedding the communication graph into the switch lattice,

(b) programming the process types in a sequential programming
language,

(c) assigning one of the process types to each processor,

(d) naming the dale path ports, and

(e) compiling, assembling, coordinating, and loading the program.

We consider each of these activities in turn.

-6 -

! Imbedding the communication graph inlo the switch lattice requires

that we program Lhe swilches of the lattice so Lhal Lhe processors have o

Lopology Lhal malches (or is o super scl of) Lhe Lopology of Lhe communi-

calioir graph, This cmbedding operalion is done graplically (rather Lhan
syutbalicully iu the Poker dystem using Lthe Swileli Sellings mode. Mipe-
W Uodlusteales a particutor ernbedding of Lhe fifteen node binary lree
dibo ihe laliice. Processor (1,2) w Lhe rool of Lhe processor Lree, proces-

sor (L) s aleal, and processor (1,30) 1s unused,

O OO0O0OO0OO0OO0
H

H
O
H

OO0OO0OO0OO0ODO0DOOO

O0O00000C0

Figure 3: An embedding of the 15 node binary tree.

Next we program Lhe three process Lypes in the scquential language
XX. Fuaech process is viewed as a procedure wilh (oplional) paramecters
aivl local variables. In addiiion Lo the usual declaralions we musl speeily
are riocd emes, symbolic names used by a process to refer Lo other
vrocesoes wWikle whicho il connmunicales. Figure 4 shows the XX code for
Lt i ce procese iypes, o the proprams Lhe symbol '<-* is used Jor
i outpal; aszsigning Lo o porl name, e.g., PARENT <- val, causes out-

Pl dend assiguing from a port name, e.g., mox <- PARENT, causcs mpul.

code leaf (val);
ports PARENT,;
begin

inl mex, PARENT;
PARENT <- val;
max <- PARENT;
val:=val * max;
end

. code ancestor (val);
ports PARENT,LCRILD,RCHILD;

begin
int x,y, max, val,
PARENT, LCHILD, RCHILD;
x <- LCHILD;
y <- RCHILD;
if x>y then max:=x
else max:=y;
if val > max then max:-=val;
PARENT <- max;
max <- PARENT;
LCHILD <- max;
RCHILD <- max;
val:=val * max;
end.

code root (val);

porta LCHILD, RCHILD;

hegin

int x,y, max, val,
LCHILD, RCHILD;

x <- LCHILD;

y <- RCHILI;

if x>y then max:=x
else max:=y;

if val > max then max:=val;

LCHILD <- max;

RCHILD <- max;

val:=val * max;

end.

Figure 4. Code for the three process types.

The construction of the processor tree in the switch lattice to match

the communications graph gives an implicit association between Lhe

processes of the algorithm and the processors. We make this relationship

explicit by assigning process names to the appropriate processors using

the Code Names mode of the Poker System. Figure 5 gives the result.

L tear raot ' LT
I] I
T ancer 1 ¥ arcns < ances)__ < arces
{ | | {
Inaf ,ulul 3 :'ln:n ’Iur
| I
Tioar | Yaaf 1 ipar it

Figure 5. Assignment of process names to processors; note that the .
name “ancestor” has been clipped to five characters. i

Next, the porl names mentioned in each process must be associaled
with a specific data path. Each processor has eight ports corresponding

to the compass points. Only those connecled by an active data paih to

-8-

anolher PF need be named. This aclivily is performed using Lhe Port
Names mode of Poker. IMigure 6 shows the result of naiming Lhe poris.

The algorithm is now programmed. Next, each process Ltype men-
tioned in the Code Narmes specification is compiléd inlo assembly code.
The assembly code is then "coordinated,” ie., modified so that Lhe CHiP
Compuler can run il synchronously. The coordinated programs are
assembled Lo produce processor object code. The interconneclion strue-
lure is “compiled” lo produce switch objecl code. The object codes are

Ioaded intto Lhe machine and executed.

T T T
rehi
Tehil

realy

rohl
1chil

pren

il l‘l:ll‘
roki¥ 1cal1

(RS

parwn porem

Figure 5. The specification of Lthe port namnes; note Lhat the names have
been clipped to Lhe first five characters.

-9-

II. Poker Programmer's Reference Guide

This section gives a succinct description of the facilities available to
the programmer with Lhe Poker Programming Environment. The
emphasis is on "what can be done" ralher than "how to achieve particular
resulls.” Although the sections are self-contained, and can be referred Lo
independenLly, it is' suggesled Llhat the reader peruse the sections

sequenlially first. The seclions are:

The facilities and the display
Cursor molions
CHiP parameters mode
Switch settings mode
Port names mode
Code names mode
The XX programming language
Command request mode
Trace values mode

. Port values mode
Catastrophic Bugs
Summary of Key Definitions

WProwONO AN~

Additional informalion is available in “Introduction to the Poker Program-
ming Environmenl,” Lawrence Snyder, Purdue University Technical

Reporl CSD-TR-433, 1983.

To access the Poker System (irom the Research VAX) the user should
include Lhe directory "/usr/lxs/poker/bin” in his search path. This
requires a (one-time) change to the PATH line of your .profile file. The
required modification is to append the text ' /usr/Ixs/poker/bin" to the

PATH line.

1. The facilities and the display

The Poker System uses lwo displays: a BBN BitGraph Display and a

convenlional character display (e.g., ADDS Regent 40).* The user should

*Il is possible, Lhough incenvenient, Lo use just the BilGraph.

-10 -

be logged into both Lerminals and should have both referring to a com-
inon directory. [To avoid name conflicts, it is advised that the direclory
be clear (initially).]

The command ‘poker' irom the BitGraph terminal causes the system
to be entered. Thercafter, the display will have a form of the type shown
in Figure 1. Below the horizontal line is the "field” in which most activity
takes place. The field changes depending on how the programming
environment is being modified. Above the line is the slalus informalion.

The “lallice” gives a schematic picture of the processing elements (Pls)

of the machine being programmed. A box circumscribes that porlion ol

the laitice displayed in lhe field giving the user geomelric conlext. The
chalkboard gives slalus informalion that is largely sell explanatory. The
last line of the chalkboard is where all diagnostics are printed. The com-
mand line is used to give commands (naturally), lo preseni texlual
paramelers, and to perform cerlain kinds of editing. Poker execution

always begins in Lhe CHiP paramelers mode.

The Poker system is inleraclive: wirtually all key sirokes cause on
imrnediale action. (Exceptions lo Lhis statement are described below.)
All actions, excepl Lext insertion and some cursor motlions, are composil
key slrokes formed either by simulteneously siriking the conlrol key
and a letter key (e.g., we write ~h Lo denoie simultaneously striking the
control key and the letter h {which causes ithe cursor to backspacc)), or
by first striking the escape key (written esc) [ollowed by Lthe simullane-
ous slriking of Lhe conlrol key and a leller (e.g., esc-~a is Lhe comnmand
to abourl and return to UNIX). Should esc be inadveriently slruck, il can

be cleared by slriking esc agaiil.

lattice

field

-11 -

chalkboard

e

Ty

Ewitel Eatling

O0CDOO] aw, ¢ e me =

2. Cursor Motions

DDDDDD __.'lenlll:llll
OO0Oarigaoon
J ooo0Dong
O000000
O003J00an
EIEIDEIDDEI
oo irggd
FOOOOOOOOOOOOOOOO
O LiroH:Fo{: O i o e{iloe{i] O |i]
O0CO0OPOOLTOODOOPOOLIO
O [i] o et o [Tte{ile{ife{i]
Q OO0 OR8O0O0Q0O0O0O0
O seHesaHasz HERHE THI=ZH3:ZH
O OO0 O0O0C OOV OOO0
< oRHEeRH -z Ha=zHEoBHIeIHZSHY*1H
00000000 OoOBoe0O6Q0
O[] o GFeo{ie{i] © Gleo{:la{:] o 3]
OO0 OO0O0OHLOBOOOCO
ol HessHes s HEoRH S H sz HERH
OO0 o000V OO0
oNHEsAHz<z HeszHE AHzssHiclHE*JH
O00PO0O0O0_ROOOOPBBICU
\OII=EI=H()HCHE=[|=H()B
Figure 1.

auxiliary data area
diagnostic line

command line

Movement around the latiice and within the PEs is controlled by the

positive numeric keys of the key pad (located on the right side of the

keyboard and illustrated in Figure 2). Two kinds of motions are provided:

gross curser molions and fine cursor motions. The gross cursor motions,

which are Lwo-key operalions composed of an esc followed by a direc-
Lional key, usually move Lo Lhe nexl P in the indicated direction. Fine

molions, which are given just by a directional key, vary in meaning with

the mode.

-12-

~ [~
7 8 9
- HOME -—
4 5 6
RIS
1 2 3

Figure 2. Meaning of the key pad keys.

Fine Moves Directions Gross Moves

4 WEST esc-4
7 NORTH-WEST ese-7
B NORTH esc-8
9 NORTH-EAST esc-9
B EAST _esc-B
3 SOUTH-EAST esc-3
2 SOUTH ese-2
1 SOUTH-WEST ese-1
b HOME esc-5

Figure 3. Gross and fine cursor motions.

-13-

3. CHiP Parameters

Purpose:

Display:

Activily:

Limitations:

To specify Lhe characteristics of the CHiP machine being
programmed.

The current values of the CHiP computer's parameters are
given in Lhe command line; their meaning is described in
Figure 4.

The cursor is moved right and left along the command line
using (gross or fine) east and west cursor . motions.
Numbers enlered replace the symbol pointed to by the cur-
sor. The new values take effect when the mode is changed
provided they are in range and satisfy the constraints; no
changes take place if any parameter is illegal.

Specification of n =64 is not currently possible due to inade-
quate page table space in the UNIX kernel; p>1 is not fully
implemented.

Parameter Range Constrainls Delault

n - size, number of PEs on the side R<n <B4 n=2% 8
of Lhe latlice

w - internal corridor width, Lhe l=w=4 1
number of switches separating
lwo adjacent PEs

u - exlernal corridor widih, the 1=u<4 wew 1
number of switches between
the perimeler and the edge PEs

d - degree, number of data 8 fixed 8
paths incident to PEs and)

switches

¢ - crossover level, number of ife=<4 2
dislinct data palhs Lhrough a
switch

p - number of phases, Lhe size of 1=p=1B 1

of the switch memory

Chenge n:
Change w:

Change w:

Change c:

Figure 4. Description ol the CHiP Parameters.

If Lhe value of n is increased, the old lattice becomes the
upper left-hand corner of the new lattice; if » decreases,
the new lailice is the upper left-hand corner of the old lal-

tice.

A change in w causes switch columns (rows) to be added or
removed [rom the right (botlom) of vertical (horizontal)
swilch corridors. Existing swilches retain their setlings;
new swilches are unset.

A change in u causes switches to be added or removed al
the perimeler. Existing switches relain their settings; new
swilches are unset.

A change in ¢ permits the number of distinct dala palhs
Lhrough a switch thal can be sef Lo be either increased or

- 14 -

decreased.

Change p: If p is increased, phases with consecutive higher numbers
are added; if p is decreased, phases with higher indexes are
removed. Added phases are clear.

Recognized keys:

esc-=a aborl, return to UNIX without saving slate.

esc-~e exil, return to UNIX and save CHIiP parameters, switch sel-
lings, porl and code names in Lhe current directory.

asc-~] redraw; Lhe screen is redrawn.

@sc-"0 output screen; the BilGraph's rasler memory is dumped to a
file named BGzzzzzz in lhe current directory, where zzzzzz is a
random number

<mode> change slale to refleet revised paramelers, if legal, and
switch to a new mode according as mode is

ese-~p porl names mode
ese-~d code namnes mode
ese-~w swileh sellings mode
esc-~r command requesl mode
csc-~v porl values mode
ese-~L trace values mode

<text> replaces the syinbol al Lhe cursor

-15-~-

4. Switch Settings

FPurpose;

Display:

To specify or modify a processor interconnection structure
for the lattice.

The current processor interconnection strueture of (a por-
lion of) Lhe latlice f[or Lhis phase is shown in the field; boxes
represent processors, and circles represent switches.

Cursor motion: Gross cursor molions advance the cursor to the next PE

Activily:

in the indicated direction; fine cursor motions advance Lhe
cursor to the next entity (PE or switch) in the indicated
direclion. 'Home'’, from a switch causes the curser to
return to Last PE, irom a PE causes it to go to Lhe com-
mand line, and from the command line to go Lo the Last PE.

The cursor is moved around the laltice. If the insert mode
is sel, a wire is "pulled along"” rom Lhe currenl position Lo
Lhe cursor's new posilion. If the delele mode is sel, wires
followed by Lhe cursor are removed. Al a swilch all wires
common to Lhe currenl level are highlighled, (with bold
slrokes). I Lhe chase mode is set, Lthe cursor follows Lhe
wire in the direction indicaled until il reaches a PE, or ter-
minates, or reaches a switch thalt fans out, or cycles.

Recognized keys:

esc-—a
esc-"e

esc-~1
esg-"0

<mode>

<text>

i &

~1

~X

abort, return to UNIX without saving state.

exit, return to UNIX and save Lhe currenl values of Lhe CHiP
paramelers, the swilch seltings and the code and port names.
redraw; the screen is redrawn.

oulpul screen; the BilGraph's raster memory is dumped to a
file named BGzzzzzz in Lhe currenl directory, where ITTIITT

is a random number.

swilch to the indicated mode:

esc-~c¢ CHIP parameters mode
cse-~p porl namcs mode
esc-~d code names mode
esc-~r command requesl mode
esc-~v port values mode
esc-~t irace values mode

is placed on the command line.

backspace; ii the cursor is on the command line.

center the display so that Lhe PE whose index is given on the
command line is as close to the center of the field as possible
consistent with the requirement that the field remain fully
utllized; if the command line is blank, use the Last PE lor
cenlering.

insert mode is set, so subsequeni cursor motiions cause a line
Lo be drawn. From Lhe command line, ~i reads in & swiltch set-
Ling file whose name is given on the command line, or, if none
is given, Lhe Swilch Set file of the current directory.

delele mode is sel, so subsequent cursor molions thal follow a
line cause it Lo be removed. From the command line, ~d
deletes all swilch sellings.

set chase mode, so thal (only) the next cursor motion will

~e
~1

~W

- 16 -

follow the line in the indicaled direction until it terminates,
reaches a PIt, reaches a switch thal fans oul or cycles.

¢nd the-currenl mode, i.e., cancel insert, delete or chase.
level change; the level of the swilch pointed to by Lhe cursor
is changed to the next lower level. Repceated usc ol this key
cycles Lhrough all assigned levels and one unassigned level.
wriles the currcul stale of the swilell seltings Lo a file,
SwilchSel, in the currenl direclory.

phase change; e phase number, given on the coinmand line,
becomes Llie new phase. [Not fully implemented.]

17

5. Port Namecs

Purpose:

Display:

To specify or meodify the names assigmed to the eight
input/output ports of a PE.

The current port names of (a portion of) Lthe lattice for this
phase are shown in ithe field. The display format shows one
box representing the PEs; the other display format shows
boxes representing the PEs and lines representing Lhe
interconneclion structure; a key (~t) toggles belween Lhe
two. Names of up Lo 16 characters, clipped Lo the first five
characiers, are shown in the PE boxes:

north port —ﬁ_____p\r——j] northeast port

northwest port — _:':L_,’/east port

-_________,___.———'—""
west port) - southeast port

southwest port

/Ii]_—__—‘r—'i

g south port

Cursor Motion: Gross cursor molions advance the cursor to the home

Activity:

Buffering:

position of Lthe next PE in the indicated direclion; fine cur-
sor molions move the cursor to the first position in Lhe win-
dow for the port name for Lhai direction. 'Home', from a
port window moves to the home position of this PE, from
the home position in a PE to the command line, and from
the command line Lo the home position of Last PE.

Port names are entered inlo the appropriate windows to
name Lhe ports connecting Lo the incident dala paths. Port
names can be any legal identifier of the XX programming
language nol containing blanks.

The port names of any PE can be saved in a buffer (using
~b) ihat is then displayed in the chalkboard. The saved
port names can be deposited inlo one or more PEs by
specifying recipient PE(s) on the command line followed by
an insertion (~i). Recipient PE(s) are specified eilher expli-
citly by an index pair (i j), or implicitly by an expression
where each index posilion is an index, a relation (<, <=, >,
>=) followed by an index, meaning all indices standing in
that relation lo the index, or a period (.) meaning all index
values. Thus a command

. <=4
followed by ~i causes Lhe first four columns Lo receive the
saved port names.

Recognized keys:

ese-~a
esc-"e

aborl, relurn Lo UNIX without saving state.
exil, return to UNIX and save the currenl values of the

csc-~1
esCc-"0

" <mode>

<texl>

~i

“~C

18.

CHIP paramelers, switch sellings, porl and code names.
redraw; Llie serecn is redrawn.

oulput Lhe screen; the BilGraph's raster memory is dumped
lo a file named BGzzzzzz in Lhe current directory, where
zzzzzz is a random number.

switeh to the indicated mode:

ese-~¢ CHiP Parameters mode
csc-~w swileh settings mode
cse-~d code numes mode
ese-~1r command request mode
esc-~v porl values mode

esc-~L trace values mode

if Lhe cursor is in a window, the symbol replaces Lhe

symbol poinled to by the cursor; il the cursor is at ithe home
position of a PE or on the command line, the symbol appears on
Llie commnand line.

backspace. -

buffer the port names of the Pl containing the cursor.
Modificalion of Lhe port names of a buffered PE cause it to

be removed iroimn Lhe bufler.

insert Lhe buffered names inlo Lhe recipient PE(s). [Lhe
comunand line is blank, Lhe recipient is Lthe PE containing the
cursor; if Lhe command line is nonblank, the recipients are
gii)ven by the command line expression as described in Buffering
above.

delete porl names. If the cursor is in a PE, delete all port
names in this PE; if the cursor is on the command line, delete
all port names.

center the display so that the PIl whose index is given on the
command line is as close to the cenler of the field as possible
consistent with the requirement that the field remain fully
utilized; if the command line is blank, use the Last PE for
centering.

loggle the display to be in the "other"” format; see Display above.
display Lhe full (uneclipped) entry of Llie window contlaining Lhe
cursor; Lhe display is given on Lhe auxiliary dala live oi Lhe
e:halkboard.

wrile Lhe currenl valuces of all porl names Lo the file PoriNames
iu Lhe currenl direclory.

phase change; Lhe phase number given on the conunand line
becomes Lhe new phase. [Nol {ully implemented. |

-19-

8. Code Names

Purpose:

Display:

To specify or modify the names of the XX prograims
assigned Lo the PEs or lo specify actual parameters to
these programs.

The current code names and parameter assignments of (a
portion of) the lattice for Lhis phase are given in the field.
One display formal shows boxes representing the PEs; the
olher display format shows boxes represeniing the PEs and
lines representing the interconnection struclure; a key (~t)
Loggles between these lwo. A name ol up Lo 16 characters,
clipped Lo five characters, is shown for Lhe program name,
and four symbeol strings of up Lo 16 characlers, clipped lo
len characlers, is shown for the parameters:

holme
i <4 code name
-] parameter 1
- parameter 2
-————vparameter 3
. parameter 4

Cursor motions: Gross cursor motions advance the cursor to the home

Activity:

Buffering:

position of Lhe next PE in the indicated direection; fine cur-
sor molions (north and south) move to the first position of
the windows {or Lhe code name and the parameters. Home,
from a window moves the cursor to the home position of
the PE, [rom the home position in a PE to the command
line, and from the command line Lo the home position of
Last PL.

Code names and (actual) parameter values are entered inlo
the appropriate positions. Code names can be any legal
identlifier of Lthe XX programming language not containing
blanks, and paramelers can be any legal conslanl of the XX
programming language.

The code name and parameters of a PE can be saved in a
buffer (using ~b) thal is then displayed in the chalkboard.
The saved values are deposiled inlo one or more PEs by
specifying recipient PEs followed by an inserlion (~i). Reci-
pient PIis are specified eilher explicitly by giving an index
pair (i j), or implicitly by an expression where each index
posilion is an index, a relation (<, <=, », >=) [ollowed by an
index, meaning all indices standing in that relalionship lo
the index, or a period (.) meaning all index values. Thus, a

command
<=4

followed by ~i causes Lhe first four columns to receive the
saved values.

20

Recognized keys:

es5c-"a
esc-~e

ase-~1

es5¢c-~0

<mode>

<text>

~hh

~b

~i

“~C

abort, return to UNIX without saving state.

exit, return Lo UNIX and save Lthe ecurrent values of the CHiP
parainelers, switeh setiings, porl and code names.

redraw; Lhe sereen is redrawn.

oulpul the screen; Lhe BitGraph’s raster memory is dumped to
a [lle named BGzrzzzr in the current direclory, where zzrzzz
is a random number.

switch to Lhe indicated mode:

esc-~¢ CHiP paramelers mode
esc-~w switch sellings mode
esc-~p porl names mode
esc-~r command request mode
esc-~v port values mode
esc-~1 trace values mode

il the cursor is in the window, the symbol replaces the

symbol pointed to by the cursoer; if Lhe cursor is at the home
position of a PR or the comimand ling, the symbol appears on
the command line.

hackspace.

buffer the code name and paramelers of the PE containing the
cursor. Modificalion to any of the entries of the buffered FPE
cause it Lo be removed from the bufier.

insert the buffered names inlo the recipient PE(s). If the
command line is blank, Lthe recipient is the PE containing the
cursor; if Lhe command line is nonblank Lhe recipient is given
by the command line expression as described in Buffering
above, :

delete porl names. If the cursor isin a window, delele Lhe
window’s enlry; il the cursor is at the home position ol a PE,
delele all entries in the PE; il the cursor is on the commmand
line delete all code names and paramelers.

center the display so that Lhe PE whose index is given on Lhe
comimand line is as close Lo Lhe center of the field as pessible
consistenl with the requirement thal the fleld be fully ulilized;
if the command line is blank use the Lasl PE for cenlering.
L%ggle Lhe display to Lhe "other” format as described in Display
above.

display the [ull (unclipped} enlry of Lhe window conlaining Lhe
cursor; Lhe display is given on Lhe auxiliary data line of Liig
challcbourd.

wrile Lhe currenl values of all code names and paramclers Lo
Lthe file CodeNames in the currvent direeclory.

phase chauge; Lhe phase number given on Llic cominand line
becomes Lhe new phase. |{Nol fully impleimenled.]

-21 -

7. The XX Programming Language*

Purpose:

Aclivily:

Programs:

Declarations:

e

The XX (dos equis) programming language is a simplified
sequential programming language for defining the codes for
processing elements of Lthe CHiP compuler.

I'iles are crealed or modified using a conventional UNIX edi-
tor. The files are named <name>.x where <name> is the
name of a program referred to in Lhe code names enlrios,
I'or convenicnce in relerring Lo Poker state informalion on
the BitGraph display, it is recommended thal XX program
files be developed on Lhe secondary (character) Pokor
display.

XX programs begin with a preamble that gives Lhe pregram
name, the formal parameters, trace variables and the portl
names. The preamble is followed by the program body
block:

<program> = cade <id> <parmlist>: <tracelist> <port
list> <body>

<parmlisl> ::= (<idlist>) | A

<lracelist> ::= trace <idlist>; | A

<porllist> ::= ports <idlisl>: | A

<idHst> ;= <id>, <idlist> | <id>

<body> ::= begin <declaralions> <statlist> end

where the parameters and Lrace identifiers are limited to a
list of at most four identifiers separated by commas and
the port id list is limiled to a lisl of 8 idenlifiers separaled
by commas. The idenlifier following code names Lhe pro-
gram and should match the <name> of the file and the
<name> used in the Code names enlries. The parameters
are formal parameters that correspond one-lo-one to Lhe
aclual paramelers slored in the Code Names/Paramelers
eniries of Lhe PEs; cach formal musl be declared in Lhe
<declaralions> secelion of Lhe <body>. The trace lislL
idenlifiers have Lheir values displayed during Lracing and
they musl be declared in the <declarations> section of Lthe
<body>. 'The port lisL identifiers are the symbolic port
names lhal are assigned physical posilions in Lhe Port
Names enlries, and they must be declared in the <declara-
lions> section of the <body>.

There are four dala dypes: signed integers (32 bits), signed
reals (32 bils), characlers (8 bits) and Booleans (1 bit).
Excepl [or slatemenl label idenlifiers, all identifiers,
including Lhose appearing in the preamble, must be
declared. Simple identifiers are scalar values of Lhe indij-
caled lype and identifiers followed by [<unsignint>] are
veclors of lenglh <unsigninl> of scalar values of Lhe indi-
cated Lype:

<declarations> := <decl>; <declarations> | A

*Developed with J. E. Cuny and D. 13. Gannon.

Statements:

Assignment:

Conditional:

While:

Break:

IFor:

Compound:

-22 -

<decl]> ;= <type> <varlist>
<type> ;= real | int | bool | char
<varlist> ;;= <varid>, <varlist> | <varid>
<varid> ::= <id> | <id> [<unsignint>]
where no <id> appears more than once.
The statements are:
<slatlist> = <lIstalemenl>; <siatlist> | <Istatement>
<Istatement> ::= <id>: <slatement> | <statemeni>
<stalement> :;= <assignment> | <conditional> |
<while> | <break> | <for> | <compound> | <io>
where <id> is used for tracing rather than the larget of
golo.
The Assignment statement is:

<assignment> ::= <varid> := <cxpression>

where Lhe coercion to Lhe left-hand side idenlifier Lype is
provided as described in Table 1.

In the Condilional statement

<conditional> ::= if <expression> then <lslatemenl>
else <Islalement> | if <expression>
then <lstatement>

the <expression> must evaluate Lo a Boolean value and an
clse is assoclated with the immediately preceding then.

In Lthe While slatement
<while> ::= while <expression> do <lstatement>

lhe expression must evaluate Lo a Boolean value. To assist
in synchronization the compiler recognizes Lhe construe-
tion while true do <Istatemenil> as a special case and does
nol generale the conditional branch code.

The Break stalement

<break> ::= break

has meaning only within the <Istalement> of a While state-
ment, and causes canlrol to skip to the statement following
the immedialely surrounding While statement..

In the For statement

<for> ::= lor <id> := <expression> Lo <expression> do
<Istatement>

the two expressions, the lower and upper limils of the

iteration, respectively, are evaluated once prior to begin-

ning the loop. If the lower and upper limils are not

inlegers, they are coerced Lo integers as described in Table

L.
Nolice Lthal ihe Compound statemenlL

<cumpound> ::= begin <slallisl> end

Is nol a bluck aud may nol conlain declaralions.

1/0:

Expressions:

-23 -

The 1/0 statements
<io> 1= <id> <- <id>

are restricted lo simple variables, exactly one of which
must be a port name. If Lhe port name appears on the
right, Lhe slalement reads [rom the indicated port; if Lthe
porl name appears on Lhe left, the statement writes Lo the
indicaled porl. Dala lype consistency is nol enforced
across the communication links.

The expressions

<expression> = <expression> <binary> <expression> |
<unary> <expression> |
<expression> <relational> <expression> |
<builtin> (<expression>) |
(<expression>) |
<unsigninl> | <unsignreal> | <character> |
<boolean>

have procedence and association as in the C programming
language. Expressions of mixed type are coerced to Lhe
higher type, where types are ranked bool < char < int <
real, as described in Table 1. The operators are given in
Table 2.

bool » char: The Boolean bit becomes the
least significant bit; others are 0.

char » bool: The leasl significant bit
[orms the Boolean.

c¢har -» int: The 8 character bits become
least significanl bits; others are 0.

int » char: The eight leasl significant
bils [orm the character.

mt - real: Converted to floaling point
notalion.

real » ini: The floaling point value is

truncaled and converled Lo integer [orm.

Table 1. Semantics of represenlation conversion:; conversions not listed
are performed Lransitively: Lypel + type2 - type3, etc.

<unary>
+ <real>
- <roal>

~ <char>

The Lype indicates Lhe highest <rcal> mod <real>
type [or which Lhe operalion <real> >= <real>

24

<binary>
no op <real> + <rcal>
negalion <real> - <real>
nol <real> * <real>

<real> / <real>

is defined; the operalion is <real> > <real>

defned for all lower Lypes. <real> =/ <real>

Constants:

idenlifiers:

Yeclors:

Comments:

<real> < <real>»

<real> <= <real>

<real>» = <real>

<char> & <char>

<char> { <char>
<char> || <char>

Table 2. XX operators.

addition
sublraction
multiplicatlion
division

modulus

greater Lhan or equal
greater Lhan

not equat

less Lhan

less than or equal
equal

and

or

exclusive or

The constants are unsigned inlegers and reals in stan-
dard formats, quoted (') characters and true and false.

All identiflers begin with a letler and are followed by
any commbination of leilers and numerals. The max-
imum leuglh of an idewulifier is 10 synibols.

Veclors can only be subscripled by character or integer
Lypes and are referenced using | origin.

Buill in funetions: The built in {funictions are nol yel implemenled.
Comments begin wilh Lhe characters /* and end with

Lhe characlers */.

- 25 -

8. Command Request Mode

Purpose:

Display:

Activity:

To cause the program, as specified by the switch set-
tings, port name specifications, code names and param-
elers specificalions and the associated XX programs, to
be prepared for execution.

The field is not changed, diagnostics and stalus infor-
mation are reported in Lthe chalkboard.

Commands are invoked which cause the source form of
Lhe program Lo be Lransiormed.

Recognized keys:

esc-"a
esc-—¢

esc-~]

e8¢-"0

<mode>

<text>

~h

“c

~v

~a

abort, return to UNIX without saving state.

exit, return Lo UNIX and save the current values of the

CHiP parameters, switch settings and the port and code names.
redraw; Lhe screen is redrawn.

oulput the screen; the BitGraph's rasler memory is dumped

to a fille named BGzzrzzzr in the current dlrecLory, where
zzzzzzr is a random number.

switch to the indicaled mode:

esc-~c¢ CHiP parameters mode
esc-~w switch settings mode
esc-~p porl names mode
esc-~d code names mode
esc-~v port values mode
esc-~t trace values mode

is placed on the command line at the position of the cursor.

backspace.
compile the program whose name is given on the command line;
if the command line is blank, compile all programs whose names

"are mentioned as Code Names for the currenl phase. The

program wilh name <name> is a file in the current directory
wilh name <name>.x. Errors are reported in a file <name>.2.
coordinale the compiled programs whose names are mentioned
in Code Names. The assembly code for a program <name> is
found in a file in the current directory with name <name>.s.
assemble the coordinated programs, one per PE, whose
coordinated assembly code is given in files with names of the
form PE i, j.s in the current directory. Errors are reporied

in PEj, j.2.

compile Lhe object code for the switch settings for this phase
as given by the swilch settings specification. .
load the object code for the PEs and switches inlo the Pringle i
emulator.

go; begin executing the loaded program; if the command line
conlains an integer, execule the program [or that many steps;
olherwise execute il for 10K steps or until it halts.

-26~

9, Trace Valnes

FPurpose:

Display:

To display the currenl values of the traced variables
(peek}, Lo modify Lhose values (poke), and L2 control
the exccution.

The code name and Lhe current values assigned to Lhe
trace variables of PEs in (a portion of} the lallice for
this phase are given in Lhe ficld. One display formatl
shows boxes representing Pls; Lhe other display [ormal
shows hoxes represenling PEs and lines represenling
the inlerconneclion struclure; a key (~1) Lloggles
belween Lhese lwo. The code name is clipped Lo five
characlers (and cannot be changed) and values ure
shown clipped to the first 10 symbols:

home

-

code name

value of firgt trace variable

value of third trace variable

~-ap—
—f—-value of second trace variable
—

-

value of fourth trace variable

Cursor motions: Gross cursor molions advance the cursor to Lhe

Aclivily:

Limitalions:

home position of the next PE in the indicaled direclion;
fine cursor motions (north and south) move to Lhe first
posilion of Lhe windows for the trace values. 'Home',
from a window moves the cursor Lo Lhe home position of
the PE, from the home posilion in a PE moves Lo Lhe
command line, and {romn the commmand line Lo the horae
posilion ol Lasl PI5.

The execulion of a loaded program is coulrelled and ihe
values of Lhe Lraced variables ave displaved. Displayed
values can be changed and when execution begins, Lhey
will be stored inlo Lhe memory of Lhe emulator. Execu-
tion can be effected in single step units, mulliple sleps
or unlil a displayed variable changes value.

This inode cannol be entered unless a program is
loaded.

Recognized keys:

esc-~a aborl, return to UNIX wilhout saving slale.

esc-~g exil, return Lo UNIX and save Lhe curreni values ol Lite CHil?
paramelers, swileh sellings, and porl and code naines.

csc-~1 redraw; Lhe screen is redrawn.

ese~~0 oulpul Lhe screen; Lhe BilGraph's rasler memory is duraped
Lo a file named BGzzzwwe in the current direclory, where
wwwaec is o random number.

<imode> swileh Lo Lhe indicaled node:

<text>

8

-27-

esc-~¢ CHIiP parameters mode; causes the current load
module to be invalidated

esc-~w switch setllings mode

esc-~p porl names mode

esc-~d code names mode

esc-~v command reguest mode

esc-~v port values mode

when entered into any of the trace value windows, becomes

Lhe value of the variable when execution resumes; otherwise the
lext is given on Lhe command line.

go; the command line is interpreted as Lthe (integer) number of
steps the emulalor is to execute; if the command line is blank
10K steps are executed. The new values of the trace variables
are displayed al completion of the execution.

displays in the auxiliary display area Lhe unclipped value

of the window entry.

Lrip; the execution of the emulator resumes until a value of a
variable currently being displayed changes.

buffers the names of the lraced variables and displays Lthem in
Lhe chalkboard.

cenler the display so that the PE whose index is given on Lhe
command line is as close Lo the cenler of the field as possible
consislent with the requirement that the field be fully ulilized;
if the command line is blank, the Last PE is used [or centering.

-28-

. A. Calastrophic Bugs

Like any new, large software system Poker contains many bugs
and inconsistant features. Most of these are harmless annoyances
thal can be casily circumvented. However, a [ew are serious cnough
lo lead to "mystical” behavior or, worse, Lo cause "core dumps” Lhal
kill the current Poker state. They are documenled below.

The cautious user will want, [rom time to time, to save the
current siate of an editing mode using esc-~w. If an error causes a
core dump, it often happens that the BitGraph will nol echo lexl
lyped on the UNIX shell. The echo is restored by typing "resel” in Lhe
UNIX shell.

I.

Switeh Settings - cursor motion off screen.

Cursor motions off Lhe Lop or right side of the ficld automali-
cally shift the window. Cursvr molions off the bollom or left
side of the field are catostrophic., Use Lhe cenler command
Lo manually shill Lhe window.

Switch Seltings - level anomalies.

Swilches Lhat are set Ly joining (i.e., Lwo palhs lhal rendez-
vous al a swilch) may nol join or may join another patl.

All modes - ese-~0 command.

The sofiware Lo dump Lhe sercemn for Lhe new (8.10) Bii-
Craphs is not yel available and czc-~o0 is calaslrophic for
these displays. The copy scrcen command works only for old
(2.0) BitGraphs.

Do0o0o0o0o0ooooon
0o0oO000oooDoooooo
0000000000000000
O000000000o0000n
0Ooo0oyyoog0ooooo
00000000
0000 X] e 0000
oooooO0oo00oooon
000oogpooggoonoo
CDO00DIea0000
OO0 > 000

ooooo00oo00ooooo
0o000ggoogooooon
D000EeAbexa0000
0000 XX 10000
ooooocO00oo00oooon
0Oo000000000o000no
O00000000000n0oon
OooooOO00n0oooooon
00000000000000a0n

B. Summary of Key Definition

esc-~a
esc-~e
esc-~]

esec-=o0

ese--~¢
esc-~p
esc-~d
ese-~v
esc-~w
esc-~r
esc--~1

<lext>
~h

GLOBAL KEYS

abort

exit

redraw screen
copy screen to file

Chip Params mode

Port Names mode

Code Names mode

Porl Values mode
Switch Setting mode
Command Request mode
Trace Values mode

insert text
BACKSPACE

KEYS DIFFERING BY MODE

Switch Setling Mode

-~ center

~d delete
~g end

~i inserl
-~} level
~p phase

~w write (save)
~X chase

Port Names & Code Names Modes

~b
-~c
~d
~i

~p
~{

-W
Yy

buffer

cenler

delete

insert

phase .

toggle (suppress/elicit)
write (saveg

display

Commeand Request Mode

~a assemble
~¢ compile

~] leoad

~g go

~r coordinate
~L connecl

Port Values & Trace Values Modes

~c
g
~r
~t
Y

center

£O

triggered

Loggle (suppress/elicit)

display

	Poker (1.0) Programmers Guide
	Report Number:
	

	tmp.1307986960.pdf.DxLCV

