
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1982

Poker (1.0) Programmers Guide Poker (1.0) Programmers Guide

Lawrence Snyder

Report Number:
83-434

Snyder, Lawrence, "Poker (1.0) Programmers Guide" (1982). Department of Computer Science Technical
Reports. Paper 355.
https://docs.lib.purdue.edu/cstech/355

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

The Poker (1.0) Programmers Guide

Lawrence Snyder

ABSTRACT

The Poker Parallel Programming Environment is a graphics­
based interactive system for writing and running CHiP pro­
~rams. The programs can be emulated or run on the Pringle
(when completed). Poker runs on the VAX 11/780 under
UNIX using two displays (see Figure 1). Poker permits the
programmer to encode a parallel algorithm in a convenient,
"high level" interactive environment. but because our
approach is somewhat nonstandard, we begin with a discus­
sion of our view of the parallel programming activity. The
sections of this document are:

1. CHiP programming is something else
II. Poker Programmer's Reference Guide

Comments on this document or the programs Lo which it
refers are eagerly solicited.

CSD-TR-434

20 December 1982

This work is part of the Blue CHiP Project. Il is supported in part by the Office or
Noval Reseurch Contracts N00014-BO-K-OB16 and NOOOI4-BI-K-0360. The laUer is
Task SnO-IOO.

- 2-

Acknowledgements
The Poker System is the product of the ideas and effort of many peo­

ple. Janice K Cuny and Dennis B. Gannon, in addition to contributing to
the definition of the :xx programming language. were a continual source
or ideas, judgement and constructive criticism. Christopher A. Kent con­
tribuLed extensively to the overall design us well as the programming.
Vcr~jun 1.0 or Poker was written during the :oummer of 1982 by a delight.­
ful anu commilted group of gentlemen. Lhe "poker players"; Steven 3.
_'UllerL, Carl VI. AmparL, Drlan G. Beuning, Alnn J. Chester, John P.
Gllf,\rugno, Christopher A. Kent, John Thomus Love. Eugene J. Shel{ita.. and
CarJdon A. Smith. Concurrenlly, the coordination pha~e of Poker was
·;;r-iI.I.Cll u1ldcr the dirr.cLioll of J;:micc K Cuny by Karen L. Pickering und
l!:l!Cll 1-". ~jL:<Jnloll. J. TiulOllly li'idd ~nd Akji.\lHlro .\. Kapaui.\n chccrfnlly
c.-qJIQjJJeu the d()Li:.'.U£ ':ole L1w l.Jr inglc urchiLecLul'C. Julie 1<. HUllover
l.lXPC1·Uy pr('DurcJ the PoklJl' lIocullleIlL~; under tighL Lime consll'ailI l:-; .
•1. TillluLhv [\(Jru Hilt! l{obr~J'1. L. IJrown l~a\'(~ Iwlpfut p,uid<:tLlCC on L\IC lJil.­
Gt·'lJ.'b, ulUJ. JJoLJ v!l'nL~ tlJ,: 'fll.cr[ucing sofL\';i1I'(~. Vance Waddle :mgllc~L~rl

I. he mIlne, ~dLcr Poker';; "pecldllg ami polcinr," t.ruce facHities. The conlri­
UULi011:1 of ull of Lhc~c'! peojJlc are deeply appreciated.

0 0 0 0
./.

(0 0 0 0 o (
h. -
b 0 ~ 0 0 ~" ~"-.L::::::: ~ [/"

-3-

~"
VAX 11/780

, .

{
,II

I> POKBR

PROGRAMMING
'\ F ENVIRONMENT

11'\L UNIX

IPRINGLE CONTROLLER
-

I . El-
I

IMl- 1PE

64
PE 1M ~

SWITCH

PE 1M ~

Figure 1. The Structure of the Poker Programming Environment.

- 4 -

1. CHiP Programming is Something Else

Thc progralluuinl2 :::IlVll'OllffienL provided by Poker i~ somewhat

uileonvcnLional dul.: lJurLly Lo novel properLies oI the CHiP Computer and

[JUl'Lly Lo novel propcrLic~ oI the system iLself. '1'0 increase the l.1cccssiIJil-

lLy of SllU::H.lquellt sections, we discuss here lhe activity oI CHiP program-

mine und lhe Tole Poker plays_

V"obrummillg, of course, is the conversion of un (abstracl) algorilhm

L1JaL is "mucltillc illdepcndell~" inlo u Iorm sulLnble Ior exeeuLlon on u

pUl'llculur' cumpuLel'. 'l'hu:.;, lu IJcgln progr<.\mming u CHiP mueltlnc, wc

liilVC LllC' fonll ul u I'.rupll wllo:sc vCl'Licc:::i arc proeesse::l und W!IOSC cdges

specify lhe eommunieillio:l IJalhs among lhe processes.

l"o~ exumple, l"igure 2 gives <ll1 algorithm that uses a binary tree as

lile cummunication graph. The algorithm finds lhe maximum of a set of

numb<::rs (slored one per process in a local variable called "val") and then

multiplies each numlJer by lhe maximum. The maximum is found by

·,lllULJIl.:..;" the lurgc:.:L valUL' in each ~mbLl'ee Lo the rooL oI thuL :mbll·cc.

'!'[lCll Uti.: Club'll maximum is broudcasl 'back lhrough lhe lrce where each

1j('ucu~~ 1I1ulLiplie:,; iL lime;.; iL:,; local "val." Notice lhal alLhough Llwre arc

IlfleClL proeesse:,; in thu lrcc, Lllcrc are only three types of processes

used.

The conversion of this algorithm lo run on a CHiP computcr, Le., lhe

'-.'_;.';UIH!l .. [:'Hiliill-ily witl, L1w CiljP COlllpuLe,. Complete inrormv.li~[\ cun LJc
'·'.llnd III "ll\in"IIIc:litJlJ i_" tile Cl";lnr;urL1ble. lligWy Pv.nlllel Compute!'," LUl"fn:Ilcc
~llyJ(JI". c..V7U]Jutc·r, 1:';(1): <17-[;0. Julluary 1902.

- 5 -

leef process:
write val to parent;
read max from parent;
val t- val' maXj

ancestor procesS":
read z from left child:
read y from right child;
write max (x ,y, vCJl) to parent;
read max from parent;
write max to left child:
write max to right child;
Yal +- val' max;

root process:
read z from left child;
read y from right child;
max t- max (z ,y, val);
write max Lo left child:
write max to right child;
val +- val' max:

Figure 2. An algorithm; each leal is an instance of: the leaf: process, the
root is an instance of the root process and all other nodes are
instances of: the ancestor process.

(a) embedding the communication graph into the switch lattice,
(b) programming the process types in a sequential programming

language,
(c) assigning one of the process types to each processor,
(d) naming the data path ports, and
(e) compiling, assembling, coordinating, and loading the program.

We consider each of: these activities in turn.

/

- G-

Embedding the communication graph into the switch lattice requires

that we.: prOi;l;I'uffi the swildlCs of the lallicc so tho.t Lhe processors have u

LOjJuiuby thut mulches (or j;:; u super scL of) the topology oj the communi-

CLlL(UiI L\I'apl1, This l'llIbcdding opcruLion j::; Jone gru{.Jlticully (ruther L1lUH

o'Y'JlbuJicaJJy) ill Lht: PoIH.:r ::.i.y.,;LCIII LlSLllg the 0wiLch :SdLjJl{~" moue. Io'iG-

ulLu i Ill' JaLLic(~. Procu:.;::.>ul' (r .:~) ~~ L1w ruoL of Lhe procc~:;ul' tree, Pl'OCC~;-

._"ll:" (1,1) is u leu!, and pl'vces~ur (1,:.3) is unu~cd.

000000000
o 0 oITJo 0
o 0 00 0
o 0
o 0
o 0
00 00
o 0 0 0:0
000000000

Figure 3: An embedding of the 15 node binary tree.

I\ext we program the t.liree process types in the sequential language

XX. J~uch process is viewed us a procedure with (oplionul) pararnct.crs

;~i1c.ll(j(;ClI variables, In adtliLion Lo the usual dcclaraLions we must specify

- ;~l: 7;0.-[n.",m.es, symbolic nurncs used by u process to refer to other

n,'OC'cs.;r,S \~,.jLl(v.'llicl'l It CO[llrnll[Jicatc~. figure 4 shows the XX coue for

'·'I)L·i.::JULp~!t; il:-::";J~~i1ilJt.: tu iJ. porl. nUIlIe, e.G., PAH~NT <- val, cuuses ollL-

! ul ::;',-1_:. u:;:;i"_[jin;~ from u 1101'l name, e.g., mux <- PAHENl', cuu::;e::; input.

code leaf (val);
ports PARENT;
begin
inl mliX, PARENT;
PARENT <- val;
max <. PARENTj
val:=val • max;
~d

- 7 -

., _ code ancestor (val);
ports PARENT,LCHILD,RCHILDj
begin
inl x,y, max, val,

PARENT, LCHILD, RCHILD;
x <- LCHILD;
y <- RCHILD;
if x>y then max:=x

me max:=y;
if val > max then max:=val;
PARENT <- max;
max <- PARENT;
LCHlLD <- max;
RCHlLD <- max;
val:=val • max;
~d

code root (val);
porta LCHlLD, RCHILD;
beg;"
int X,Y, max, val,

LCHILD, RCHILD;
x <- LCHILD;
y <- RCHILD;
if x>y then max:=x

else m5X:=y;
if val> max then rnax:=val;
LCHILD <- mllx;
RCHILD <- max;
val: =val • max;
~d.

Figure 4. Code for the three process types.

The construction of the processor tree in the switch lattice to match

the communications graph gives an implicit association between the

processes of the algorithm and the processors. We make this relationship

explicit by assigning process names to the appropriate processors using

the Code Names mode of the Poker System. Figure 5 gives the result.

,~, -, D
,.,

.- - ."".. .-
,., _. .""'.. ,.,

,., ,., ,., '""

Figure 5. Assignment of process names to processors; Ilote that the
name "ancestor" has been clipped to five characters.

Next, the port names mentioned in each process must be associated

with a specific data path. Each processor has eight ports corresponding

Lo the compass points. Only those connected by an active data path to

-0-

anoLher' PI': need be numed. This uclivily is performed using Lhe Port

Names mode of Poker. 1l'h~urc 6 shows the result of nanling Lhe ports.

The algorithm is now programmed. Next, each process t.ype men-

Uoned in the Code Names specification is compiled into assembly code.

The assembly code is then "coordinated," i.e., modified so that the CHiP

Computer can run it synchronously. The coordinated program.s are

assembled Lo produce processor object code. The interconnection struc­

lure is "compiled" to prouucc switch object code. The object codes arc

loaded inlo LJIC machine and executed.

- _. Dld111

-,
~- ~_.

~d111- ~"
Pd.1l rdlll IdllI .~,- ~- -

~" .~,

rdlll IdillI

~. - ~-

i"if; lire G. The speciflcutiOlL of lhe port names; nole that the names have
been clip1Jcd to Lhe first fivc characters.

- 9 -

II. Poker Programmer's Reference Guide

This section gives a succinct description of the facilities available to

the programmer with the Poker Programming Environment. The

emphasis is on "what can be done" rather than "how to achieve particular

resulLs," Although the sections are seJiRconlained, and can be referred Lo

independenLly, it is; suggested that the reader peruse the sections

sequenlially first. The sections are:

1. The facililies and the display
2. Cursor molions
3. CHiP parameters mode
4. Switch settings mode
5. Port names mode
6. Code names mode
7. The xx: programming language
8. Command request mode
9. Trace values mode
10. Port values mode
A. Catastrophic Bugs
B. Summary of Key Definitions

Additional informaLion is available in "Introduction to the Poker Program-

ming Environment," Lawrence Snyder, Purdue University Technical

Report CSD-TR-433. 1983.

To access the Poker System (from the Research VAX) the user should

include the directory" /usr/lxs/poker/bin" in his search path. This

requires a (one-time) change to the PATH line of your .profile file. The

required modification is to append the text ":/usr/lxs/poker/bin" to the

PATH line.

1. The facilities and the display

The Poker System uses two displays: a BBN BitGraph Display and a

conventional character display (e.g., ADDS Regent 40).· The user should

-It is possihic, Lhough inconvenicnL, La usc jusL the BitGraph.

- 10-

be logged into both terminals and should have both referring to a com­

mon directory. [To avoid name conflicts, it is advised- that the direcLory

be clear (initially).]

The command 'poker' from the BitGraph terminal causes the system

to be entered. Thereafter, the display will have a form of the type shown

i!l Figure 1. Below the horizonLalline is the "field" in which most activity

tokes place. The field changes depending on how the programming

environment is being modified. Above the line is the stalus inIol'maLion.

The "laLLlce" gives a schematic picture of Lhe processing elements (Pl!:s)

of Lhe machine being programmed. A box circumscribes that porLion of­

the laLlice displayed in Lhe field giving the user geometric conlexl. The

chalkboard gives stalus information that is largely self explanatory. The

last line of the chalkboard is where all diagnostics are printed. The com­

mand line is used to give commands (naturally), to present textual

parameters, and to perform certain kinds of editing. Poker execution

always begins in the CHiP paramelers mode.

The Poker system is interaclive: virtually aLL key strokes cu:use an

immediaJ.e action. (Exceptions to this statement are described below.)

All ac lions, except text insertion and some cursor motions, arc compo:oit

key strokes formed either by simultaneously strilcing the control key

and a letter key (e.g., we write h to denote simultaneously slriking lhe

control key and the letter h (which causes the cursor to backspace)), or

by first striking the escape key (written es~) followed by the simultane­

ous striking of thc control key und a. letter (e.g., eS~-""a is the commund

to abort and return Lo UNIX). Should es~ be inadvertently :::;truch, it can

lw clcurcu by striking es~ ugUi11.

- 11 -

chalkboard

a :
00000

a
a
a

.rl6ug • 11,1' : i<o"'''lII
"-.&1,1 ,"",": •• $.tv,,, .. ,,..

~
oooooo
000000

ooo[]Oooo
0000000

0000000

1

00000000 auxiliary data area
OOOCJODOO diagnostic line

\I~::llo:;u;olub-!JO;;-l!o:;u;o;U;~======~====-=--=-=--:..~=-===~=fJcommand 1 i nc
000000 000

a , ,'"'' ",..,"', , I

00
a
a
a
a
a
00
a
a
a m-e-f:J-€>-fTI--e-1J]
a
a
00
a

field

lattice

Figure 1.

2. Cursor Motions

Movement around the lattice and within the PEs is controlled by the

positive numeric keys of the key pad (located on the right side of the

keyboard and illustrated in Figure 2). Two kinds of motions are provided:

gross cursor malions and fine cursor motions. The gross cursor motions,

which arc two-key operalions composed of an esc followed by a direc-

lional key, usually move Lo the nexl PE in the indicated direction. Fine

malians, which are given just by a directional key, vary in meaning with

the mode.

- 12 -

DODD
5J[JJ[I]D
~GJQD
[Z]OJDJ
I IDL--J

Figure 2. Meaning of the key pad keys.

Fine Moves Directions Gross Moves

4 WEST esc-4
7 NORTH-WEST esc-?
B NORTH esc-B
9 NORTH-EAST esc-9
B EAST esc-6
3 SOUTH-EAST e-sc-3
2 SOUTH esc·2
1 SOUTH-WEST esc-l
5 HOJ4E esc-5

Figure 3. Gross and fine cursor motions.

- 13-

3. CHiP ParameteI"5

Purpose: To specify the characteristics of the CHiP machine being
programmed.

Display: The current values of the CHiP computer's parameters are
given in Lhe command line; their meaning is described in
Figure 4.

Activity: The cursor is moved right and left along the command line
using (gross or fine) east and west cursor - motions.
Numbers entered replace the symbol pointed La by the cur­
sor. The new values take effect when the mode is changed
provided they are in range and satisfy the constraints; no
changes take place if any parameter is 1l1egal.

Limitations: Specification of n =64 is not currently possible due to inade­
quate page table space in the UNIX kernel; p>l is nol fully
implemented.

Parameter Range Constraints Default

n - size, number of PEs on the side 2~n~64 n ;:;2'" 8
of the latlice

w - internal corridor width, the 1~w~4 1
number of switches separating
two adjacent PEs

u - external corridor width, the 1~u~4 u~w 1
number of switches between
the perimeler and the edge PEs

d - degree. number of data 8 fixed 8
palhs incident to PEs and
switches

c - crossover level, number of lscS4 2
disLinct data paths through a
switch

p - number of phases. the size of 1':=;pS16 1
of the switch memory

Figure 4. Description of the CHiP Parameters.

Change n:

Change w:

Change u:

Change c:

If the value of n is increased, the old lattice becomes the
upper left-hand corner of the new lattice; if n decreases.
the new lallice is the upper left-hand corner of the old lat­
tice.
A change in w causes switch columns (rows) to be added or
removed from the right (botlom) of vertical (horizontal)
swilch corridors. Existing switches retain their settings;
new switches are unset.
A change in u causes switches to be added or removed at
lhe perimeler. Existing switches relain their settings; new
switches are unsel.
A change in c permits the number of distinct dala palhs
Lhrough a switch that can be set lo be either increased or

<tcxl>

- 14-

decreased.
Change p: If p is increased, phases with consecutive higher numbers

urc added; is p is decreased, phases with higher indexes are
removed. Added phases are clear.

Recognized keys:

esc- a aborl, return to UNIX without suving stale.
esc- e exit, return to UNIX and save CHiP parameters, switch set­

Lings, porL and code names in the current directory.
esc- l redraw; the screen is redrawn.
csc- o output screen; the BilGraph's rasler memory is dumped to a

file named BGxxxxxx in the currenl directory, where xxxxxx is a
random number

<mode> change sLaLe to relled revised parameLers, if legiJ.l, and
switch Lo a new mode according as mode is

C3C- p porl names mode
L!sc- u cude IHlUles mode
csc- w swiLch scLtings mode
e:~c-""J' comnlilud rcquc:,;llnode
csc-~v porl vidues mode
esc- L lrace vulues mode

replaces lhe symbol al lhe cursor

- 15 -

4. Switch Seltings
Purpose: To specify or modify a processor interconnection structure

for the lattice.
Display: The current processor interconnection structure of (a por­

Lion of) the latlice for this phase is shown in the field; boxes
represent processors, and circles represent switches.

Cursor motion: Gross cursor malions advance the cursor to the next PE
in the indicated direction; fine cursor motions advance the
cursor La the next entity (PE or sWitch) in the indicated
direction. 'Home' J from a switch causes the cursor La
return to Last PE, from a PE causes it to go La the com­
mand line. and from the command line La go to the Last PE.

Activity: The cursor is moved around the lalLice. If the inserL mode
is seL, 0 wire is "pulled along" from the currenL position La
lhe cursor's new pasilion. If the deleLe mode is seL, wires
followed by the cursor are removed. AL a switch all wires
common to Lhe current level are highlighted. (with bold
sLrokes). If lhe chase mode is seL. lhe cursor follows the
wire in Lhe direction indicaled until il reaches a PE, or ter­
minates. or reaches a switch that fans out, or cycles.

Recognized keys:

esc-~a

esc-~e

esc- l
esc- o

<mode>

abort. return to UNrx without saving state.
exit. return to UNIX and save the current values of the CHiP
parameters, the switch settings and the code and port names.
redraw; the screen is redrawn.
outpuL screen; the BilGraph's raster memory is dumped to a
file named BGxxxxxx in the current directory. where xxxxxx
is a random number.
switch to the indicated mode:

esc-~e

csc- p
esc- d
esc- r
esc-~v

esc- t

CHiP parameters mode
port names mode
code names mode
command request mode
port values mode
trace values mode

<text>
-h

is placed on the .command line.
backspace; if the cursor is on the command line.
center the display so that the PE whose index is given on the
command line is as close to the center of the field as possible
consistent with the requirement that the field remain fully
utilized; if the command line is blank, use the Last FE for
centering.
insert mode is set, so subsequent cursor motions cause a line
to be drawn. From the command line, i reads in a switch set­
ling file whose name is given on the command line, or. if none
is given, the Switch Set file of the current directory.
delete mode is sel. so subsequent cursor motions that follow a
line cause it to be removed. From the command line..... d
deletes all switch settings.
sel chase mode. so that (only) the next cursor molion will

- 16-

follow the line in the indicated direction until it terminates,
reaches a PE, reaches a switch thaL fans out or cycles.
end the' current mode. Le., cancel insert. delete or chase.
lell'el change; the level of the swilch pointed to by- the cursor
is changed La the nexllowcr level. H~pculed usc or this key
cycles through all assigned levds t\nd one ulla~sigrwd l~vel.

wriLes the currcuL stale of Lhe :::wilch selling::> Lo a fUe,
SwiLchSel, in the currenl directory.
phase change; the phase nwnbcr. given on the command linc,
becomes Lhe new phase. [Not fully implemented.]

- 17 -

5. Porl Names
Purpose: To specify or modify the names assigned to the eight

input/output ports of a FE.
Display: The current port names of (a portion of) the lattice for this

phase are shown in the field. The display format shows one
box representing the PEs; the other display format shows
boxes representing the PEs arid lines representing Lhe
interconnection structure; a key (...... t) toggles between the
two. Names of up to 16 characters, clipped Lo the first five
characters, are shown in the PE boxes:

home

north por';;~~~~=::~'~l"!i[;;l~~'[:-::=:::~northeast portnorthwest port ~ east port
•west port ~_ southeast port

southwest port~ south port

Cursor Motion: Gross cursor motions advance the cursor to the home
position of the next PE in the indicated direction; tine cur­
sor motions move the cursor to the first position in the win­
dow for the port name for that direction. 'Home', from a
port window moves to the home position of this PE, from
the home position in a PE to the command line, and from
the command line Lo the home position of Last PE.

Activity: Port names are entered into Lhe appropriate windows to
name Lhe ports connecting Lo the incident data paths. PorL
names can be any legal identifier of the XX programming
language noL containing blanks.

Buffering: The port names of any PE can be saved in a buffer (using
......b) that is Lhen displayed in the chalkboard. The saved
port names can be deposited inLo one or more PEs by
specifying recipient PEes) on the command line foHowed by
an insertion (..... i). Recipient PEes) are specified eiLher expli­
citly by an index pair (i j), or irnpliciLly by an expression
where each index position is an index, a relation «, <=, >,
>=) followed by an index, meaning all indices slanding in
that relation to the index, or a period (.) meaning all index
values. Thus a command

. <= 4

followed by i causes the first four columns La receive the
saved port names.

Recognized keys:

esc· a abort, reLurn Lo UNIX without saving slate.
esc· e exiL, reLurn Lo UNIX and save the currenL values of the

csc- I
esc- o

<mode>

<texL>

- 18-

CHiP parameLeTs, switch seLLings. porL and code names.
redraw; the screen is redrawn.
ouLpuL Lhe screen; the BitGraph's raster memory is dumped
La a file named BGxzzxxx in the current directory, where
xxxxxx is a random nwnbcr.
switch to the indicated mode:

csc-..... c CHiP Parameters mode
csc~""'w :-Jwitch seLtings mode
ese- u code l1UlnCS Inode
csc- r command request mode
ese- v porL values mode
esc· l trace values mode

if lhe cursor is in a window, the symbol replaces the
symbol pointed to by the cursor; if the cursor is at the home
position of il PE or on the command line, the symbol appears on
lhe command line.
backspace.
buffer the porl names of the PE containing the cursor.
ModificaLion of Lhe port names of a buffered PE cause it to
be removed from Lhe buffer.
inserL Lhe buffered names inlo Lhe recipienL PI~(s), J[Lhc
cOllunuud line is blank, Lhe rccipien Lis Lhe PI!: cOiltaining the
cursor; if the command line is nonblanlc, the recipients are
given by Lhe command line expression as described in Buffering
above.
delete porl names. If the cursor is in a PE, delete all port
names in this FE; if the cursor is on the command line, delete
all port names, -
center the display so that the PE whose index is given on the
command line is as close to the center of the field as possible
consistent with the requirement that the field remain fully
utilized; if the command line is blank, use the Last PE for
centering.
toggle the display to be in the "other" format; see Display above.
display Lh9 full (unclippcd) entry of LIte window conLuini1Jg Lhe
CltnJOI'; lhe di~play i!i given on lhe auxiliary daLu line oi Lhe
(:Jtalkboard.
wriLc Lhc cUlTcnL values of all porL Hilmes Lu the fill! PUl'lNames
ill the currellL direcLory.
phase change; the phase number given on the commund line
becomes the new phase. [NuL fully implemenlcd_J

- t 9 -

8. Code Names
Purpose: To specify or modify the names of the xx: programs

assigned to the PEs or Lo specify actual parameters to
these programs.

Display: The current code names and parameter assignments of (a
portion of) the lallice for this phase are given in the field.
Onc display formal shows boxes representing the PEs; t.he
olher display formal shows boxes representing the PEs and
lines representing the interconnection structure; a key (~l)
toggles between these two. A name of up Lo 16 characters,
clipped Lo five characters, is shown Ior the program name,
and lour symbol strings of up Lo 16 charaet.ers, clipped to
Len characters, is shown for the parameters:

home

~
. code name

parameter 1
!Jarameter 2
parameter 3
parameter 4

Cursor motions: Gross cursor motions advance the cursor to the horne
position of Lhe next PE in the indicated direction; fine cur­
sor moLions (north and south) move to the first position of
the windows for Lhe code name and the parameters. Home,
from a window moves the cursor to the home position of
the PE, from the home position in a PE Lo the command
line, and from the command line Lo the home position of
Last PE.

Activity: Code names and (actual) parameter values are entered inLo
the appropriate positions. Code names can be any legal
identifier of Lhe :xx programming language noL containing
blanks, and parameters can be any legal consLanL of the XX
programming language.

Buffering: The code name nnd parameters of a PE can be saved in a
buffer (using b) that is then displayed in the chalkboard.
The saved values are deposited inLo one or more PEs by
specifying recipient PEs followed by an inserLion (....i). Reci­
pient PEs are specified eiLher explicitly by giving an index
pair (i j), or implicitly by an expression where each index
posiLion is an index, a relation «, <;:;, >,):;) followed by an
index, meaning all indices standing in that relationship 1.0
the index, or a period (.) meaning all index values. Thus, a
command

. <= 4
followed by .-.i causes Lhe first four columns to receive the
saved values.

<text>

- 20-

Recognized keys:

esc- a abort, return to UNIX without saving state.
esc- e exit, return Lo UNIX and save the current values of the CHiP

paramet.ers, switch settings. porl and code names.
e5c- l reuraw; t.he screen is redrawn.
C5C- 0 output. the screen; Lhe I3itGraph's ruster memory is dumped to

a me llamed BGxxxxxx in the current. directory, where xxxxxx
is a random number.

<mode> switch to the indicated mode:

esc- c CHiP parameters mode
esc· w switch seLLings mode
esc- p port names mode
esc- -r command request mode
esc- v port values mode
esc- t trace values mode

if Lhe cursor is in the window, the symbol replaces the
symbol pointed t.o by the cursor; if Lhe cursor is al the home
position of a PE or the command line, the symbol appears on
the command line.
"'ackspace.
buffer the code name and paramet.ers of the PE containing the
cursor. Modification to any of the entries of the bu1Iered PE
cause it to be removed from the buffer.
insert the buffered names into the recipient PEes). If the
command line is blank, the recipient is the PE containing the
cursor; if the command line is nonblank the recipient is givcn
by t.he corrunand line expression as described in Buffering
above. ,
delete port names. If the cursor is in a window, delct.e Lhe
window's entry; if the cursor is at the home position of u PE,
deletc all entries in the PE; if the cursor is on the command
line delete all code names and parameters.
center the display so that the PE whose index is given on the
command line is as close t.o the center of the field as possible
consistent with the requirement that the field be fully utilized:
if the command line is blank use the Last PE for centering.
toggle the display to t.he "other" format as described in Di~play
above. ' .
display the full (unelipped) entry of the window containinr, the
cur~or; Lhe displuy is given on Lhe auxiliary dat.a line or Lile
chalkboard.
wriLc Lhe current values of all code names and pUI'amdcrs Lo
the Iile CodeNames in the cUI'l'ent. directory. -
phase challgc; the phase llllrnbcl' l~iven 011 the command line
becomes Lhe new phase. [NoL fully implcrnellLed.]

- 21 -

7. The XX Programming Language.

Purpose: The XX (dos equis) programming language is a simplified
sequential programming language for defining the codes for
processing elements of the CHiP computer.

Activity: I'~iles are creaLed or modified using a conventional UNIX edi­
lor. The files are named <name>.:..: where <name> is the
name of a program referred to in the code names entrlCs.
VOl' convenience in referring Lo Poker slale informalion all
the DilGraph display, it is recommended that XX program
files be developed on the secondary (character) Poker
display.

Programs: XX programs begin with a preamble that gives the program
name, the formal parameters, trace variables and the port
names. The preamble is followed by the program body
block:

<program> :;;::: code <id> <parmlist>; <tracelist> <port
list> <body>

<parmlist> ::;::: «idlist» I A
<tracelist> ;:;::: trace <idlist.>; I A
<porllist> ::;::: ports <idlist>; I ~
<idlist> ;;;::: <id>, <idlist> I <id>
<body> :;= begin <declarations> <staUist> end

where the parameters and trace identifiers are limited to a
list. of at most four identifiers separat.ed by commas and
the port. id list is limited to a list of 8 identifiers separated
by commas. The identifier follOWing code names the pro~
gram and should match the <name> of the file and the
<name> used in t.he Code names entries. The parameters
are formal parameters t.hat correspond one-to~one to the
actual parameters stored in t.he Code Names/Parameters
enlries of the pgs; each formal musL be declared in lIw
<declaralions> seelion of the <body>. The lrace list
identifiers have their values displayed during lracing and
lhey musl be declared in the <declarations> section of the
<body>. The porl lisl identifiers are the symbolic porl
names thal are assigned physical positions in the Port
Names enlries, and t.hey musl be declared in the <deelara~
lions> section of the <body>.

Declarations: There nre four dala dypes: signed integers (32 bit.s), signed
reals (32 bils). characters (8 bits) and Booleans (1 bil).
Except for statement label identifiers, all identifiers,
including lhose appearing in t.he preamble, must be
declared. Simple identifiers are scalar values of the indi­
cated type and idcntifiers followed by [<unsignint>J are
vectors of length <unsigninL> of scalar values of t.he indi­
cated lype;

<declarations> := <decl>; <declarations> J >..

·Developed with J. E. Cuny and U. U. Gannon.

- 22-

<decl> ::= <type> <varlist>
<type> ::=: real I int I bool j char
<varlist> :;= <varid>. <varlist> I <varid>
<varid> ::= <id> I <id> [<unsignint>]

where no <id> appears more than once.
Statements: The statements are:

<siatlisl> ::= <lstatemenl>; <slallist> I <lslatement>
<lslatement> ::= <id>: <statement> I <statement.>
<statement> :.:= <assignment.> I <conditional> I

<while> I <break> I <for> I <compound> I <io>
where <id> is used for tracing rather than Uw target of
goLa.

Assignment: The Assignment statement. is;

<assignment> :;= <varid> := <~xpression>

where Lhe coercion to the left-hand side identifier type is
provided us described in Table l.

Conditional: In the Conditional sLatement

<condilional> ::= if <expression> then <lstatement>
else <lstatemcnt> I if <expression>
then <lstatement>

the <expression> must evaluate to a Boolean value and an
else is associated with the immediately preceding then.

While: In the While statement

<while> ::= while <expression> do <lstatement>

the expression must evaluate La a Boolean value. To assist
in synchronization the compiler recognizes Lhe consLruc­
tion while true do <lstatement> as a special case and does
noL generaLe the conditional branch code.

Break: The Dreak sLaLemcnt

<break> ::= break

has meaning only wiLhin the <lsLaLement> of a While state­
ment, and couses conlrolto skip to the slatement following
the immediately surrounding While statement.

For: In the For statement

<for> ::= lor <id> := <expression> to <expression> do
<lstatement>

the two expressions, the lower and upper limiLs of the
iteration, respectively, are evaluated ont::e prior to begin­
ninG the loop. If the lower and upper limits are not
integers, Lhey are coerced La integers us described in Table
1.

Compound: Noticc thaLLhe Compound statemenl

<compound> ::= begin <slallisl> end

is lIul a bluc1.; alld lIlay noL conLaill dcclaraLiom;.

- 23 -

I/O: The I/O statements

<10> ::= <id> (- <id>

ar~ restricted to simple variables, exactly one of which
must be a port name. If lhe port name appears on the
right, lhe slatement reads from the indicated port; if the
porL name appears on the lefi, the statement writes to the
indicaled porL. Data type consistency is noL enforced
across the communication links.

Expressions: The expressions

<expression> ::== <expression> <binary> <expression> I
<unary> <expression> 1
<expression> <relational> <expression> I
<builtin> «expression» I
«expression» J

<unsigninL> I <unsignreal> I <character> I
<boolean>

have procedence and association as in the C programming
language. Expressions of mixed type are coerced to the
higher type, where types are ranked bool < char < iut <
real, as described in Table 1. The operators are given in
Table 2.

bool >-) char: The Boolean bit becomes the
leasl significant bit; olhers are o.
char --) bool: The leasl significant bit
forms the Boolean.
char --) fit: The B characler bits become
leasl significanl bils; olhers are o.
iut ... char: The eighlleasl significanl
bils form t.he character.
int ... real: Converled to floating poinL
notation.
real --) inl: The floating point value is
t.runcat.ed and converted Lo integer form.

Table 1. Semantics of representation conversion; conversions not. listed
are performed transitively: type! --) type2 -) lype3. elc.

The Lype indicates the highest
lype for which the operation
is dcfmed; the operation is
defined for all lower types.

<unary>
+ <real>
- <reul>
..... <char>

no op
negation
not

- 24-

<binary>
<real> + <real>
<real> - <real>
<real> + <rcal>
<real> / <real>
<real> mod <rcal>
<real> >= <real>
<real> :> <real>
<real> =/ <real>
<reed> < <real>
<real:> <= <real>
<reul> = <real>
<char> & <char>
<char> I <char>
<char> II <char>

Table 2. XX operators.

addition
subtraction
multiplication
division
modulus
greater Umll or equal
greater than
Hol equal
less than
less than or equal
equal
and
or
exclusive or

(.

Constants: The constants are unsigllccl. integers and reals in stan­
dard formats. quoted (') characters and true and false.

IdenLifiers: All identifiers begin wilh a leUer and arc foHowed by
any combination of leUers anti numerals. The max­
imum Icmglh of 0.11 idclllHier i~ 10 symbols.

Veclor::;: Veclors can only be sub::;criplcd by character or inLeger
Lypes and are referenced using 1 origin.

Buill in functions: The built in fUllctions arc Hal yel implemenLed.
Commenls: Comments begin wilh Lhe characters ;. anti enu with

Lhe ch!:lraclers .. /.

- 25-

8. Command Request Mode

Purpose: To cause the program, as specified by the switch seLR
lings. port name specifications, code names and param­
eLers specifications and the associated XX programs, to
be prepared for execution.

Display: The field is nol changed. diagnostics and status infor­
mation are reported in the chalkboard.

Activity: Commands are invoked which cause the source form of
the program to be transformed.

Recognized keys:

esc-.....a
esc--e

esc- }
esc- o

<mode:>

abort. return to UNIX without saving slale.
exit. return La UNIX and save the current values of the
CHiP parameters, switch settings and the pori and code names.
redraw; the screen is redrawn.
output the screen; the BitGraph's rasler memory is dumped
La a file named BGx.:z:.:z:x.:z:x in lhe current directory, where
xxxxxx is a random number.
swilch lo lhe indicated mode:

esc-"'c
esc-"'w
esc-"'p
esc-"'d
esc-"'v
esc-"'l

CHiP parameters mode
switch settings mode
port names mode
code names mode
porl values mode
trace values mode

<text>
~h

~c

is placed on the command line at the position of the cursor.
backspace.
compile the program whose name is given on the command line;
if the command line is blank, compile all programs whose names
are mentioned as Code Names for the current phase. The
program wilh name <name> is a file in the current directory
with name <name>.x. Errors are reported in a file <name>.2.
coordinate the compiled programs whose names are mentioned
in Code Names. The assembly code for a program <name> is
found in a file in the current directory with name <name>.s.
assemble the coordinated programs, one per PE, whose
coordinated assembly code is given in files with names of the
form PE i, j.s in the current directory. Errors are reported
in PE i, j.2.
compile the objecl code for the switch settings for this phase
as given by lhe switch settings specification.
load the object code for lhe PEs and switches into the Pringle
emulator.
go; begin executing the loaded program; if the command line
contains an integer, execule the program for that many steps;
olherwise execute it for 10K steps or unLilll halls.

- 26-

9. Trace Values

Purpose:

Display:

To displuy the currenL values of the traced variables
(peek), to modify those values (poke), and b control
the execution.
The code name and the current values assjgncd to the
lJ'Ucc variables of p~s in (a portion of) the luLLkc for
lhis phase urc given in the Lield. One display formaL
shows boxes representing P l!":s; the ollIeI' display iormal
shows boxes representing PEs and linc~ r~presenLing

the inll,lrCOIUlecliun struciure; a key (~l) toggle.,:
b8lwccll these two. The code nume is clipped L.o I1ve
characLers (and cannot be changed) and values are
shown dipped to the lirsllO symbols:

home

~
. code name

value of first trace variable
value of second trace variable
value of third trace variable
value of fourth trace variable

Cursor motions: Gross cursor motions advance the cursor to the
home position of the next PE in the indicated direc Lion;
[me cursor motions (north and south) move to the first
position of the windows for the lrace value~. 'Home',
from 11 window moves the cursor to the horne position of
the PE, from the home position in a PE moves La Lhe
command line, and frOID the command line to the hortle
po::;iLioIl of Lust PK

Activity: The exeeuLion of nloatll!d pl'ogrmn i:,; cOllLn..'Heu ullc1 i..IlC
vulue~; of Uw lraced vuriables arc displayeu.])1;:;~laycd

value::; can be changed and whell execution begjn~, Lhuy
will be slored into Lhe memory of the emulalor. Execu­
lion can be effected in single step units, multiplc steps
or ttnlil a displayed variable changes value.

LimitaLions: This moue cannot be entered unless a program is
loaded,

H.ecognized l<:eys:

csc-~a aborl, return to UNIX wilhout suvinr, state,
csc-.....~ 8xiL, retura Lo UNIX and ::lave lhe ClILTCnt valuc~ of Ute CHiP

purameters, swiLch seLLings, and port und code lUlllles,
csc- l redraw; Lhe screen is redrawn,
CSL:- O ouLpuL Lhe ~;Cl'ecn; the OiLGraph's rasLer l1lCffiory j~ dumped

La u mc nUllled 13G:rxx.'1;X:r. in the current direcLory, where
XJ:X:l::r.:r: i,; a 1',1IH10111 lIltlllUCI'.

<lI1uue> swilcll Lo lilt..' ilJulcuLcd Illode:

- 27-

esc-"'c CHiP parameters mode; causes the current load
module to be invalidated

esc- w switch settings mode
esc- p porL names mode
esc- d code names mode
esc- v command request mode
esc- v port values mode

<text.> when entered into any of Lhe trace value windows, becomes
the value of the variable when execution resumes; otherwise the
text is given on the command line.

....g go; the command line is interpret.ed as the (integer) number of
steps the emulator is to execute; if the command line is blank
10K steps are executed. The new values of the trace variables
are displayed at completion of the execution.

....y displays in the auxiliary display area Lhe unclipped value
of the window entry.

.... t trip; the execution of the emulator resumes until a value of a
variable currenlly being displayed changes.

~b buffers lhe names of lhe lraced variables and displays t.hem in
lhe chalkboard.

~c cenler lhe display so lhat lhe PE whose index is given on lhe
command line is as close lo the center of the field as possible
consislenl wilh the requirement that the field be fully ulilized;
if the command line is blank, the Last PE is used for centering.

- 28-

A. Catastrophic Bugs
Like any new I large software system Poker contains many bugs

and inCOllsislanl features. Most of these are harmless annoyances
that can be easily circumvented. However, a few are serious enough
Lo lead to "mystical" behavior or, worse, La cause "core dumps" thaL
kill the current Poker staLe. They are documenLed below.

The cautious user will wanl, Irom time to time, to save the
current slate of an editing mode using esc-...... w. If an error causes a
core dump. it ollen happens that the BitGraph will noL echo text
typed on the UNIX shell. The echo is restored by typing "reseL" in the
UNIX shell.

1. Switch Settings - cursor motion off screen.
Cursor motions off the top or right side of the field automati­
cally shifllhe window. Cursor motions oj] the bottom or left
side of the field are calastrDphic, Usc lhe cenler command
La manually shiflLhe window,

2. Switch Settings - level anomalies.
Swilches lhat arc seL uy joiniu{l (i.e., Lwo paLl13 1h<.ll. rCllucz­
vous al a swilch). may nol join or may join anoLher pull!.

3. All modes - esc-......o command.
The soflware Lo dump the scrcem jor the lleW (8.IU) l:liL­
Graphs is noL yet available and c:sc-......o is cala::;tf'ophic for
these displays. The copy screen command works only fur old
(2.0) BitGraphs.

- :~n -

0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
00000 ° 00 ° 00000
00000°0°00°0°00000
DDDDDQQDDQQDDDDD
0000000000000000
00000 ° 00 ° 00000··
00000°0°00°0°00000
DDDDDQQDDQQDDDDD
0000000000000000
00000 ° 00 ° 00000
00000°0°00°0°00000
DDDDDQQDDQQDDDDD
0000000000000000
0000000000000000
0000000000000000
0000000000000000

B. Summary of Key Definition

- 30 ~

KEYS DIFFERING BY MODE

switch SetLing Mode

esc- a
esc- e
esc- l
esc-"'o

esc-"'c
esc· p
esc- d
esc- v
esc· w
esc-"'r
esc-..... t

<Lext>
~h

GLOBAL KEYS

abort
exit
redraw screen
copy screen to file

Chip P arams mode
Port Names mode
Code Names mode
PorL Values mode
Switch Setting mode
Command Request mode
Trace Values mode

insert text
BACKSPACE

.....c center

.... d delete
.....e end
..... i inserL
.....1 level
.....p phase
.....w write (save)
.....x chase

Porl Names & Code Names Modes

buffer
center
delete
insert
phase
toggle (suPJ?ress/elicil)
write (save)
display

Command Request Mode

~a assemble
~c compile
~l load
~g go
~r coordinate
~l connect

Port Values & Trace Values Modes

..... c center
..... g go
..... r triggered
... t Loggle (suppress/elicit)
.....y display

	Poker (1.0) Programmers Guide
	Report Number:
	

	tmp.1307986960.pdf.DxLCV

