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OPERATIONAL STATE SEQUENCE ANALYSIS

Jefirey A. Brumfield
Peter J. Denning

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

..CSD-TR 431

Abstract. This paper examines How balance, a basic
assumption used in the operational analysis of queues and
other discrete-state systems. Violation of this assumption
can lead to large errors in estimates of state occupancies
and average performance rmeasures. However, if the state
occupancies of a state sequence are approximated using a
subsequence, then the maximum and average errors are of
the order of the proportion of the state sequence discarded.




1. INTRODUCTION

The behavior of many systems can be represented by a state sequence over a
finite or infinite time period. The state occupancies are the propertions of time the
states are occupied in the sequence. Formulas relating the state ocecupancies to the
parameters of the system are derived under simplifying assumptions about the state
sequence. For queueing systems, the most common assumptlons are flow balance and

homogeneity.

For example, the behavier of a queueing network is represented by a sequence of
values of the vector nf¢) = {n,(¢). .... ng(t)) that lists the number of jobs at each dev-
ice at time £. Under the assumptions of flow balance and homogeneity, the occupancy
2{n) of any state n is easily computed from the total rnean time demands for each
device. Other performance metrics, such as throughput and response time, can be

easily computed from the p(m).

Onz of the goals of operational analysis has been to characterize the errors in for-
mulas for performance quantities when the assumptions do nol hold. The primary
focus of error analyses has been the sensitivity of queueing formulas to violations in
the homogeneity assumptions [1,8,7]. It has been commonly asserted that the error
arising from the flow balance assumption approaches zero as the length of the state

sequence over a finite state set approaches infinity.

Surprisingly, this assertion is not necessarily true. It is possible for arbitrarily
large errors to exist between the actual state occupancies and estimates computed

from formulas derived on the assumption of flow balance.

In contrast, relative errors will be bounded if the state occupancies of a maximal
flow balanced subsequence are used as approximations for the state oceupancies of the

entire sequence. In this case, the absolute error cannot exceed the proportion of the



stale sequence [alling outside the flow balanced subsequence.

This paper establishes these claims by studying errors between actual state occu-
pancies and estimaltes derived on the assumption of flow balance. Bounds on absclute,
relative, and average errors are derived and shown by example to be attainable. The
raain results are: 1) errors may be large if the state sequence in which the parameters
are measured is not flow balanced, and 2) errors will be small if the parameters are
measured using a significant flow balanced subsequence. The conclusion is that the
common technique of removing end effects to obtain low balanced observations of sys-

tems before measuring parameters introduces little error.

Derivaticns of all numbered equations are outlined in the Appendix; full details are

given in [2].

2. NOTATION

Consider a state sequence
S1 Sz - Sk (Skcen)
in which each s; is one of the integers 1, 2,..., N. The state sy, is not part of the
sequence; it is recorded (in parentheses) so that an exit transition can be defined for
every stalte in the sequence. A state sequence represents data that could be collected
by sampling the system at A+1 arbitrary times or by observing the system continu-

cusly and recording the state at each change.

The operational notation for a state sequence is listed in Table 1. We will be
interested in the relationship between the one-step transition matrix Q@ = [gi;] and the
occupancy vector p =[p;]. A one-step transilion frequency, gi;, is the proportion of
occurrences of state ¢ fellowed immediately by an occurrence of state 7. A state occu-

pancy, p;, is the proportion of oceurrences of state 2. The matrix .Q will be regarded




Table 1: Operational notation for a state sequence.

Symbol Definition Descripticon

Length of state sequence
Number of unique states observed

Number of one-step transitions from 1 to §

D H = X

Number of exits from state
v )
=} Cy
F=1

A Number of enltries into state ¢

N

Ag = E C}(
| 1=1

qy G/ G Proportion of exits from state ¢ that
immediately enter state j

X
Yay=1
i=1

Dy G/ K Proportion of total transitions cccurring
from state

i1

i=l

] [qu] One-step transition matrix

P [pf] Stale occupancy vector

as the parameters in terms of which the cccupancy vector p must be expressed.

The physical interpretation of the vector p depends on the experiment used to
obtain Q. If the state sequence contains samples taken at arbitrary times, the rela-
tion between the p; and the actual state ccecupancy times of the system is unknown. If
all state transitions are observed, p; can be interpreted as the proportion of all transi-
tions occurring from state 7. If the mean holding times in each state are known, the

relation between the p; and the time the system was in state 1 is easily computed.




(Details appear in the Appendix.)

The [ollowing sections stidy ways to produce an estimate p = [p;] of the actual
state cecupancy vector p of a state sequence. Table 2 defines several measures of the
error between p and p. The bounds shown in this table are derived without making
any assumptions about the state sequence. {See Appendix.}) A bound on the sum, £, of
the error magnitudes also serves as a bound on the maximum absolute error, the aver-

age absolute error, and the weighted mean relative error.

The first part of this paper (Sections 3 and 4) assumes nothing about the system
from which the state sequence was observed. In Section 3, the state occupancy vector
is approximated by assuming the state sequence is flow balanced and sclving the state
balance equations. In Section 4, the state occupancy vector is approximated by the
state occupancy vector of a flow balanced subsequence. The second part of this paper
(Section 5) restricts attention to systems whose states are recurrent; in such systems

every state is revisited within a bounded time.

3. APPROXIMATIONS USING STATL BALANCE EQUATIONS

A state sequence is flow balanced if the number of entries into each state is equal
te the number of exits from that state; equivalently, s, and sg., are the same state.
For any flow balanced state sequence, the state occupancy vector p satisfies the sys-

tem of linear equations

PR =p . (3.1)

These equations are not linearly independent; given Q, we can compute p by replac-
ing any equation by the normalizing condition (p;+ ... +py = 1) and solving the result-

ing system.




Table 2: Error measures.

Name Definition Bound
Maximum absolute max loe — 85 Es2 =1
. X
Average absolute N 3N ey —%il = E/N 2/ N
=1
Maximum relative max Ipip;p{l K-1
{
N Fa
) 1 Py — Pi |
Average relative — —_— K~-1
N tz=:1 P
N - w~
Weighled mean relative E Pi lpip—Pil = K 2
i=1 i

N
where £ = E [0 =55
i=1

If a state sequence is not flow balanced, there exists one state (i = sx,,) for which
A = C; + 1 and one state {i = s;) for which 4; = C; — 1. For all other states we still
have 4, = C;. Define d; = 4; — ;. Then d=[d;] is a row vector in which all but two
clements are zero. For any state sequence, the state ocecupancy vector p satisfies the

system cf linear equations

- 1
PQ—p+Kd . (3.2)

Augmenting this system with the normalizing condition produces a linear system whose

unique seolution is the state occupancy vecfor p.

Suppose flow balance is assurned when analyzing a state sequence that is not flow
balanced. This rmeans that the normalized solution to {3.1) is used as an approximation

of the solution te (3.2). How much error will result?
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The [ollowing example shows that the errers in Table 2 can be within 1/ K of their

bounds,

EXAMPLE. Consider the [ollowing state sequence of length K = ny+ng+ng:

171 2"z 3™ (3)

The superscripts denote repetitions of a state. For this state sequence,

ELT nl
— 0 ng=1
Q= Thg e
0 0 1

The actual state occupancy vector is p = (%’— -7;—(2- EKE-) The solution estimated

K"‘ﬂ.s

from (3.1) is p = (0, 0, 1). The vector of absolute errors is (n?‘. n%, -—% )i the
K-

vector of relative errors is (1, 1, - nn“ ). The error measures are maximized
L]

when g = 1. In this case, state 3 has the largest absoclute error of K-El- and the

largest relative error of K—1; the average absolule error is E—K% and the

weighted mean relative error is 2 K%

Bquations (3.1) and (3.2) differ only in the terms t-}{-— associated with the initial

and final states. It has been conjectured [5] that if the initial and final states are

visited often, then the terms t;c_ are small compared to the occupancies of these
states, and the solutions of (3.1} and (3.2) nearly the same. The previous example
shows this conjeclture is false. Suppose that n, = ngy = aK for some constant a; no

maliter what the value of K, @, = py =a and Lhe largest absolute errer is 1-a. In




B
other words, as K becomes large, the terms ]? d vanish from (3.2) and yet the largest
absolute error remains close Lo its maximuam.

The conclusion is that violation of the flow balance assurnption can lead to large
errors in the estimate of the occupancy vector. This statement is true even if the ini-

tial and final states occur frequently.

4. APPROXIMATIONS USING SUBSEQUENCES

Another way to approximate the state occupancy vector of an arbitrary state
sequence is to select some flow balanced subsequence, solve for its state oceupancy
vector, and use the result as an estimate of the state occupancy vector of the entire
sequence. In this section we will derive bounds on the errors in this type of approxima-
tion. If a state sequence has no flow balanced subsequence, then every state is distinct

and we know p; = 1/ K for all states %.

Table 3 summarizes the necessary notation. The state occupancy vector for the
entire sequence is p = (p,, ..., py) and for the subsequence it is P = (7,. .... Bx). The
occupancy vector P satisfies the linear system ﬁa = P, where a is the one-step fran-
sition matrix for the subsequence. Note, p; may be zero if the subsequence contains
no occurrences of state .

The diagram below shows a typical state sequence and subsequence. The shaded

areas are the staltes outside the subsequence; these states comprise “(K;J of the entire

sequence.



Table 3: Notation for subsequence analysis,

Symbol Definition Description
I Length of state sequence
J Length of subsequence
Number of unique states observed

T Number of occurrences of state 1 in state sequence
' Number of occurrences cf state 1 in subsequence
n" Number of oceurrences of stale © oulside subsequence
el T Proporticn of occurrences of state i in sequence
By 'S Proportion of oceurrences of state @ in subsequence
P (o] State cccupancy vector for state sequence
P [B:] State occupancy vector for subsequence

< K >

77777 777777

Ey . .o Sipp . - . 8§ .. . 8
/I]Ifl)/ 1+l i !/// /{()
J

4.1 Absolute Errors

The largest absolute error magnitude in any element of p is bounded by the pro-

portien of the state sequence that is not used. That is,

-~ K_J
max Dy — 0| =

= Sz (4.1)

An example shows that this bound can be atltained.



10

EXAMPLE. Consider the following state sequence:

777
17 oK ~J 1
//[1/

The state occupancy vector for the entire sequence is p= (i—. K}{;"r ), whereas

the approximation using the subsequence is p= (1, 0). The vector of absolute

errors is ( g;{_!(‘ XK;J ). Bach absolute error has magnitude equal to the bound.

While the error in some p; may be as large as the bound in {4.1), the errors in all
the p; cannot be that large (except when N =2). The average absolute error magnitude

is bounded by

1 & ~
FE lp; —2;| =

i=1

K—=J
WA (4.2)

= |

Usually both -% and % will be much less than 1. Their preduct may easily be an

order of magnitude smaller than either of the terms. An example shows that this

bound can be attained.

EXAMPLE. Consider the following state sequence having three different states:

T 7 7 7 777 77
37 |, pl&-J)s2 3{}'{—.!)/2 .

VRN AN R R

The exaclt seluticn is p= (L. %. % ) and the approximate solution is
p=(1,0,0). The vector of absolute errors is ( JI:,K, ;;;{J . ";}J ) and the mean
absclute error magnitude is g— KK;J
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4.2 Relative Frrors

The largest relative error magnitude in any element of p is bounded by

max Ip=pil £ max [K_J : 1] . (4.3)
t o

This bound can be attained by state sequences of any length. The relative error for a
state not represented in the subsequence (n;" = ;) is always 1. The relative error for

a state occurring only in the subsequence (n;' = n;) is always - KJ;J

The mean relative error magnitude is bounded by

1 ¥ |p -5 K—J
S B L ER I il A 4.4
v E m N (44)

Since the mean error is bounded by the maximum error, the tighter of the bounds in
(4.3) and (4.4) can be used.

The weighted mean relative error gives more significance to errors for states that
occur frequently. The weighted mean relative error is bounded by twice the proportion

of the state sequence that is not used. Thalt is,

% |pe — 5 | K-J
E: pp —————— = @ —— 4,5
a0 Py K (4.5)

This error bound is N times the mean absclute error bound in (4.2).

The following example shows that while both types of average errors may be large,

the weighted mean can be much less than the mean.

EXAMPLE. Ccensider the state sequence
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LA AF e

1 /EK—I/
£ S e O

The relative errors in states 1 and 2 are K—1 and 1, respectively, The mean rela-

tive error is 2£: the weighted mean relative error is EK%. This shows that the

bound in (4.9) can be attained.

EXAMPLE. Even if most of the state sequence is used, the mean relative error can

be within ;‘,— of the maximum relative error. Consider the [ollowing state
sequence:
77 7777
1/ 2345
Y s s /

1IfJ = 4, states 2, 3, 4, and 5 all have the largest relative error of i, The mean rela-

tive error magnitude of g— J+1 is greater than g— for all /. The weighted mean

error of % appreoaches zereo as J increases.

Appiication of the bounds in this section is illustrated by the following example.
Suppose we observe a state sequence of length A = 1000 and use a subsequence of
length / = 900 to approximate the state oceupancy vector. The largest absolute error
for any state will be no greater than 10%. If we know that there are N = 50 dififerent
states in the sequence, then the mean absclute error will be no larger than 0.4%. The
largest relative error and the mean relative error are both bounded by 100%. The

weighted mean relative error is bounded by 207%.
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5. STATE SEQUENCES WITH RECURRENT STATES

The worst cases illustrated in Sections 3 and 4 were caused by states occurring
only once or many times consecutively. In reality, observed states often recur regu-
larly. We offer an operational definition of "recurrent states” and show that the worst

L]
case errors are smaller for sequences of stakes of systems of recurrent states.

We will say that the states of a given system are recurrent if there exists an upper
bound £ on the maximum distance between consecutive occurrences of state 2. This is
equivalent to saying that every subsequence of length [ contains at least one
occurrence of every state. In many cases, an estimate of  may be known from some

characteristic of the underiying system.

This definition implies that, for a given system, there exists a lower boundp = 1/ L
on all the state occupancies p; that can be observed in state sequences of that system.
Because the property that all p; = p does not rule out the occurrences of a state being

all in a single run, it is not equivalent to the definition of recurrent states.

For systems of recurrent states a bound on total absolute error for the balance-

equation approximation is
1
Esz(l——L) . (5.1)

(We believe this bound can be tightened.) A bound on the total absolute error for the

subsequence approximation is

gL

E = a {5.2)

This bound shows that, for any system whose states are recurrent and any given error
tolerance, there exists a sufficiently long observation that the error [rom the flow bal-

ance assumption will be less than the given Lolerance.
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6. CONCLUSIONS

If the transition matrix Q of a flow-imbalanced state sequence is used to solve the
balance equations pQ= p, large errors may occur in the resulting estimates of the
state occupancies p. But if a flow balanced subsequence is used to approximate the
state occupancies of the entire sequence, most errors are of the order of the propor-
tion of the state sequence discarded. The conclusion is that the subsequence approxi-
mation (from section 3) is more robust and accurate than the balance-equations

approximation (from section 4).

If the observed state sequence comes from a systemn whose states are recurrent,
the errors are smaller than for unconstrained sequences. The errors induced by the
subsequence approximation tend to zero as the length of the observation peried
increases for such systems. (We conjecture that Lhis statement is true for the

balance-equations approximation as well, but have not yet obtained a proef.)

The assumption that the approximating subsequence is flow balanced is not neces-
sary. It is only necessary to assume that an exact solution for the subsequence has
been obtain by any method. In general, the error of the solution of the subsequence
must be added Lo the errors of our bounds. Therefore, these results can apply to any
situation in which a subset of available data is used to approximate performance quan-
tities.

The subsequence approximation appears commeonly in simulation and measure-
ment, where "end effects” due to jobs in progress at the start and end of the observa-
tion period are discarded. The performance quantities of the resulting subset of the
data are used to approximate the performance quantities of the original observation
period. Our results show that this technique is robust and will not introduce much

error.
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The principle of the subsequence approximation is also used in the theory of
nearly completely decomposable systems [3,4]. If a subsystem interacts weakly with
its environment,. the steady state behavier of the subsystem will be a good approxima-
tien of the subsystermn behavior between interactions with the environment. In our ter-
minolegy, the flow balanced subsequence corresponds to a portion of the state
seguence between interactions. Near complete decomposability assures that the time
constants of the subsystem are short and, hence, each state of the subsystem will be
observed in a short time. Thus the amcunt of the sequence between interactions that
must be discarded to obtain a flow balanced subsequence is small and the error intro-
duced by assuming flow balance for the full interval between interactions is small. We
have not yet explored how to exploit the assumption of decompeosability to partition

the transition matrix Q and tighten the error bounds.
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Appendix

This appendix outlines the derivations of all numbered equations in the text.

Table 2 Bounds The bounds on the average absolute error and weighted mean error follow
from the fact

N N
iZ oy ~ 5] = {2 {p; +34) = 2
=1 =1

The bounds on the maximum and average relative errors follows from the fact that py = 1/ K for
all 4.

Define ¢; = p; — 5;. Let P denote the states for which e = 0 and ¥ the states for which
N
e¢ < 0. Now, 3 e¢ =0 implies
=1

2 lec| = 2 leg|
{iep

icld

Then,

E = Ylel+Y gl = 2 0l = 2 le]
{ep i<k {ep ‘e

Since the largesl }ey] is contuined in one of these two sums, max |es| = E/2. Equality holds if
either sum contains one term.

Section 2 The fraction of time state % is occupied is related to p; as follows. Let 7; denote
the total time state 1 is cccupied in the original system. The mean holding time in state 1 is
h=0/n=T/p K. The f[raction of time state {1 is occupied is f;=T/T. But

N N

T =73 T; =3 hyp;K. Therefore,
=1 J=1

N
fi = pt / ,E—:l by by

. If the holding times are constant, all fy = p;.
Egns. (3.1) end (3.2) Applying the relationships from Table 1 to 4 = ¢ + d; gives

G .G G 1

256G K A G K K&

or

=

1
= + ==
gt Py Pt K d

y=1

for all states 4. Expressing these equations in matrix form gives (3.2). For flow balanced
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sequences, all & = 0, and the system reduces to (3.1).
Eqns. (4.1} -{4.5) For every state %,

mnm ' K—J ('Y =7
¥k - x Ytk * 7 tx

Therefore, if py = P then py — 5 = (K—J)/ K. Also, ny = 4" impliesp; 2 %t // K. If p; < §; then

- -~ J o~ K"‘J
i~ = Pi—?iﬂc = -

These two cases imply (4.1).
The relative error magnitude for state 7 is bounded by

bos =8|l _ 7' K~J

mlf
=t
o Ty J N

[f (K—J)/ J =< 1, this expression is maximized when ny' =0 and m" = ;. If (K—J)/J > 1, the
maximum cccurs when 7y’ = ny and ny” = 0. This gives (4.3).

The weighted relative error is

N Ips =B
D~ 2|
——— s
12-_-:1 P D tg

K—J '
J K

M
K

-

This simplifies to (4.5). Muiltiplying each side by 1/ N gives (£.2).

The bound on the mean relative error magnitude is obtained by applying my = 1 to the
relative error bound for state %:

, =g
ny'

4 s — 2| 1 &
——— s —
igl N {;1 J

Di

This reduces to (4.4).
Egs. {(5.1) and {5.2) The total absclute error satisfies

E = YNlm—B: = 2 |pv—p|+ 2 15—l .

Given that all p;=p, the fArst sum evaluales to 1-Np. If all the Py =9 as well, then
E = 2(1—-Np). However, as many as (N—1) of the p; can be smaller than », in which case the
second sum can be as large as 1—p+(N—1)p. Therafore the bound on F is 2(1—p). Withp=1/1L,
relation {5.1) is cbtained.

The bound of (4.2) says £ = 2(KA-J)/ K. For a system of recurrent states, at most I, states
need be discarded to find a flow balanced subsequence. Hence K—J < [ and £ <= 2L/ K.




	Operational State Sequence Analysis
	Report Number:
	

	tmp.1307986960.pdf.5Up2y

