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OPERATIONAL STATE SEQUENCE ANALYSIS

Jetfrey A. Brumfield
Peter J. Denning

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

~CSD-TR 431

Abstract. This paper examines flow balance, a basic
assumption used in the operational analysis of queues and
other discrete-state systems. Violation of this assumption
can lead to large errors in estimates of state occupancies
and average performance measures. However. if the state
occupancies of a state sequence are approximated using a
subsequence, then the maximum and average errors are of
the order of the proportion of the state sequence discarded.



2

1. INTRODUCTION

The behavior of many systems can be represented by a state sequence over a

finite or infinite time period. The slate occupancies are the proportions of time the

slales are occupied in the sequence. Formulas relating the slate occupancies to the

parameters of the system are derived under simplifying assumptions about the state

sequence. For queueing systems. the most common assum.ptlons are flow balance and

homogeneity.

For example, the behavior of a queueing network is represented by a sequence of

values of the vector net) = (n!(t) . .... nK(t)) that lists the number of jobs at each dev

ice at time t. Under the assumptions of flow balance and homogeneity, the occupancy

p (n) of any state n is easily computed from the total mean time demands for each

device. Other performance metrics, such as throughput and response time. can be

easily computed from the p (n).

Onz of the goals of operational analysis has been to characterize the errors in for

mulas for performance quantities when the assumptions do noL hold. The primary

focus of error analyses has been the sensitivity of queueing formulas to violations in

the homogeneity assLUnptions [1,6,7J. It has been commonly asserted that the error

arising from the flow balance assumption approaches zero as the length of the state

sequence over a finite state set approaches infinity.

Surprisingly, this assertion is not necessarily true. It is possible for arbitrarily

large errors to exist between the actual state occupancies and estimates computed

from formulas derived on the assumption of flow balance.

In contrast, relative errors will be bounded if the state occupancies of a ma:xi.rnal

flow balanced subsequence are uflcd as approximations for the state occupancies of the

entire sequence. In this case, the absolute error cannot exceed the proportion of the
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state sequence falling outside the flow balanced subsequence.

This paper establishes these claims by studying errors between actual state occu

pancies and estimates derived on the assumption of flow balance. Bounds on absolute,

relative. and average errors are derived and shown by example to be attainable. The

main results are: 1) errors may be large if the state sequence in which the parameters

are measured is not flow balanced, and 2) errors will be small if the parameters are

measured using a significant flow balanced subsequence. The conclusion is that the

common technique of removing end effects to obtain flow balanced observations of sys

tems before measuring parameters introduces little error.

Derivations of all llwnhered equations are outlined in the Appendix; full details are

given in [2].

2. NOTATION

Consider a state sequence

S 1,52, ...• 5K (SK+1)

in which each 5i is one of the integers 1,2, ... , N. The state 5K+l is not part of the

sequence; it is recorded (in parentheses) so that an exit transition can be defined for

every state in the sequence. A state sequence represents data that could be collected

by sampling the system at K +1 arbitrary times or by observing the system continu

ously and recording the state at each change.

The operational notation for a state sequence is listed in Table 1. We will be

interested in the relationship between the one-step transition matrix Q = [gi.d and the

occupancy vector p =[pd. A one-step transition frequency. gij. is the proportion of

occurrences of state i followed immediately by an occurrence of state j. A state occu

pancy, Pi. is the proportion of occurrences of state i. The matrix ,Q will be regarded
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Table 1: Operational notation for a state sequence.

Symbol Definition Description

K Length of state sequence

N Number of unique stales observed

q, Number of one-step transitions from ito i

Ci Number of exits from state i

[Ci =j~' e,,]
A, Number of entries into state i

[A,=£e.)
1=1

g" ClJ/ Q Proportion of exits from stale i that
immediately enter state j

[£ g'i =I]
1=1

p, Ci/J( Proportion of total transitions occurring
from state i

[£P,=I]
~=l

Q [g,,] One-step transition matrix

p lP'] State occupancy vector

as the parameters in terms of which the occupancy vector p must be expressed.

The physical interpretation of the vector p depends on the experiment used to

obtain Q. If the state sequence contains samples taken at arbitrary times, the rela-

lion between the Pi and the actual state occupancy times of the system is unknown. If

all state transitions are observed, Pi can be interpreted as the proportion of all transi-

tions occurring from state i. If the mean holding times in each state are known, the

relation between the Pi and the time the system was in state i is easily computed.
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(Details appear in the Appendix.)

The following sections study ways to produce an estimate p= [fi,J of the actual

stale occupancy vector p of a state sequence. Table 2 defines several measw'es of the

error between p and p. The bounds shown in this table arB derived without making

any assumptions about the state sequence. (See Appendix.) A bound on the sum, E, of

the error magnitudes also serves as a bound on the maximum absolute error, the aver~

age absolute error, and the weighted mean relative error.

The first part of this paper (Sections 3 and 4) assumes nothing about the system

from which the stale sequence was observed. In Section 3, the state occupancy vector

is approximated by assuming the slale sequence is flow balanced and solving the state

balance equations. In Section 4, the state occupancy vector is approximated by the

state occupancy vector of a flow balanced subsequence. The second part of this paper

(Section 5) restricts attention to systems whose states are recurrent; in such systems

every state is revisited within a bounded time.

3. APPROXIMATIONS USING STATE BALANCE EQUATIONS

A state sequence is flow balanced if the number of entries into each state is equal

to the munber of exits from that state; eqUivalently, SI and SX+l are the same state.

For any flow balanced state sequence, the state occupancy vector p satisfies the sys

tem of linear equations

pQ = p . (3.1)

These equations are not linearly independent; given Q, we can compute p by replac

ing any equation by the normalizing condition (P 1+ ... +PN ;;; 1) and solving the result

ing system.
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Table 2: Error measures.

Name Definition

Maximum absolute max Ip, -pil,
N

Average absolute _, I; Ip, -pd = E/N
N 1=1

Maximum relative IPi - Pi Imax, p,
N Ip, -p,1

Average relative LI;
N '=1 p,
N Ip, - pd

Weighted mean relative l; p, = E
1=1 p,

Bound

E/2 s; 1

2/N

K-l

K-l

2

where E
N
l; Ip,-p,1
'=1

If a state sequence is not flow balanced, there exists one state (i ;: SK+1) for which

At = Ct + 1 and one state (i ;: 51) for which Ai ;: Ci - 1. For all other states we still

have ~ ;: Ci. Define do;, = ~ - Ci. Then d;: [d;,] is a row 'lector in which all but two

elements are zero. For any state sequence, the state occupancy vector p satisfies the

system of linear equations

pQ 1= p+ - d
K

(3.2)

Augmenting this system with the normalizing condition produces a linear system whose

unique solution is the state occupancy vector p.

Suppose flow balance is assumed when analyzing a state sequence that is not flow

balanced. This means that the normalized solution to (3.1) is used as an approximation

of the solution to (3.2). How much error will result?
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The following example shows that the errors in Table 2 can be within 1/ K of their

bounds.

EXAMPLE. Consider the following state sequence of length K = nl +n2 +ns :

The superscripts denote repetitions of a stale. For this slale sequence,

71.1- 1 1 0n, n,

Q = 0
71.2- 1 1
n, n,

0 0 1

Th . (71- 1 71.2 71. 3 ) ••e actual state occupancy vector IS P = K' X' K . The solutIon esllmated

from (3.1) is p = (0, 0, 1). The vector of absolute errors is (~ I n; ,- K;3): the

vector of relative errors is (I, 1, - K-n 3
). The error measures are maximizedn,

when n3 = 1. In this case, state 3 has the largest absolute error of K;l and the

largest relative error of K-l: the average absolute error is ~ K;/ and the

weighted mean relative error is 2 K~l .

Equations (3.1) and (3.2) differ only in the terms ± ~ associated with the initial

and final states. ]t has been conjectured [5] that if the initial and final states are

visited often, then the terms ± ~ are small compared to the occupancies of these

states, and the solutions of (3.1) and (3.2) nearly the same. The previous example

shows this conjecture is false. Suppose that n l = ns = aK for some constant a; no

matter what the value of K , Pl =prJ =a and the largest absolute error is 1-a. ]n
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other words, as K becomes targe, the terms i d vanish from (3.2) and yet the largest

absolute error remains close to its maximum.

The conclusion is that violation of the flow balance assumption can lead to large

errors in the estimate of the occupancy vector. This statement is true even if the ini

tial and final states occur frequently.

4. APPROXIMATIONS USING SUBSEQUENCES

Another way to approximate the state occupancy vector of an arbitrary state

sequence is to selecl some flow balanced subsequence, solve for its stale occupancy

vector. and use the result as an estimate of the state occupancy vector of the entire

sequence. In this section we will derive bounds on the errors in this type of approxima

tion. If a slate sequence has no flow balanced subsequence, then every state is distinct

and we know Pi = 1/ K for all states i.

Table 3 summarizes the necessary notation. The state occupancy vector for the

entire sequence is p = (p l' ... , PN) and for the subsequence it is P= CPI' ... , PN)' The

occupancy vector p satisfies the linear system pQ = p, where Q is the one-step tran

sition matrix for the subsequence. Note, Pi may be zero if the subsequence contains

no occurrences of state i.

The diagram below shows a typical state sequence and subsequence. The shaded

areas are the states outside the subsequence; these states comprise K;/ of the entire

sequence.
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Table 3: Notation for subsequence analysis.

Sy:rnbol Definition Descriplion

I(

J

N

""
"'"
"""
p, ""II(

p, 1l-j'/ J

p [p.J
p [fj.J

Length of stale sequence

Length of subsequence

Number of unique slates observed

Number of occurrences of slate i in slale sequence

Number of occurrences of stale i in subsequence

Number of occurrences of stale i outside subsequence

Proportion of occurrences of slale i in sequence

Proportion of occurrences of slale i in subsequence

Slale occupancy vector for state sequence

Slate occupancy vector for subsequence

J

4.1 Absolute Errors

The largest absolute errol" magnitude in any element of p is bounded by the pro~

portion of the state sequence that is not used. That is,

K-J

'" K
(4.1)

An example shows that this bound can be attained.
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EXAMPLE. Consider the following state sequence:

The state occupancy vector for the entire sequence is p = ( i, K~J ), whereas

the approximation using the subsequence is p= (1, 0). The vector of absolute

errors is ( J-;t, Ki/). Each absolute error has magnitude equal to the bound.

While the error in some Pi may be as large as the bound in (4.1), the errors in all

the Pi cannot be that large (except when N =2). The average absolute error magnitude

is bounded by

1 N
-L;
N ;'=1

2

'" N
K-J

K
(4.2)

Usually both ~ and KicJ will be much less than 1. Their product may easily be an

order of magnitude smaller than either of the terms. An example shows that this

bound can be attained.

EXAMPLE. Consider the following state sequence having three different stales:

( J K-J K-J)The exact solution is p = K' 2K' 2K and the approximate solution is

A ( ) (J-K K-J J(-J) hp = 1, 0, 0 . The vector of absolute errors is ---y-, """2K' 2J( and t e mean

absolute error magnitude is ; K~J .
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4.2 Relative Errors

The largest relative error magnitude in any element of Ii is bounded by

Ip, -p,1
max

• P, [
K-J ]:s:: max -J-' 1 (4.3)

This bound can be attained by state sequences of any length. The relative error for a

state not represented in the subsequence (ni" =n,;) is always 1. The relative error for

a state occurring only in the subsequence (n,;' = 71.t) is always - K7J .

The mean relative error magnitude is bounded by

1 f Ip, -p, I
N i=l Pi

(4.4)

Since the mean error is bounded by the maximum error. the tighter of the bounds in

(4.3) and (4.4) can be used.

The weighted mean relative error gives more significance to errors for states that

occur frequently. The weighted mean relative error is bounded by twice the proportion

of the state sequence that is not used. That is.

N

2: P,
i=l

(4.5)

This error bound is N times the mean absolute error bound in (4.2).

The following example shows that while both types of average errors may be large,

the weighted mean can be much less than the mean.

EXAMPLE. Consider the state sequence
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The relative errors in slates 1 and 2 are K -1 and L respectively. The mean rela-

live error is ~; the weighted mean relative error is 2 K~l . This shows that the

bOWld In (4.5) can be attained.

EXAMPLE. Even if most of the state sequence is used, the mean relative error can

be within 1 of the maximum relative error. Consider the following state

sequence:

]f J ~ 4, slates 2, 3. 4. and 5 all have the largest relative error of 1. The mean rela

tive error magnitude of : J;1 is greater than: for all J. The weighted mean

error of ~ approaches zero as J increases.

Application of the bounds in this section is illustrated by the following example.

Suppose we observe a state sequence of length K = 1000 and use a subsequence of

length J = 900 to approximate the state occupancy vector. The largest absolute error

for any state will be no greater than 10%. ]f we know that there are N = 50 ditrerent

states in the sequence, then the mean absolute error will be no larger than 0.4%. The

largest relative error and the mean relative error are both bounded by 100%. The

weighted mean relative error is bounded by 20%.



" ".- :'-

13

5. STATE SEQUENCES WITH RECURRENT STATES

The worst cases illustrated in Sections 3 and 4 were caused by states occurring

only once or many times consecutively. In reality, observed states often recur regu-

larly. We offer un operational definition of "recurrent states" and show that the worst
•

case errors are smaller for sequences of states of systems of recurrent states.

We will say that the states of a given system are recurrent if there exists an upper

bound L on the maximum distance between consecutive occurrences of state i. This is

eqUIvalent to saying that every subsequence of length L contains at least one

occurrence of every state. In many cases, an estimate of L may be known from some

characteristic of the underiying system.

This definition implies that. for a given system, there exists a lower bound P = 1/ £

on all the state occupancies Pi that can be observed in state sequences of that system.

Because the property that all Pi;:;: P does not rule out the occurrences of a state being

all in a single run, it is not equivalent to the definition of recurrent states.

For systems of recurrent slates a bound on tolal absolute error for the balance-

equation approximation is

1
E " 2 (1 - -)

L
(5.1)

(We believe this bound can be tightened.) A bound on the total absolute error for the

subsequence approximation is

E :::= 2£
K

(5.2)

This bound shows that, for any system whose states are recurrent and any given error

tolerance, there exists a sufficiently long observation that the error [rom the flow bal-

ance assumption will be less than the given tolerance.
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6. CONCLUSIONS

If the transition matrix Q of a flow-imbalanced state sequence is used to solve the

balance equations pQ = p, large errors may occur in the resulting estimates of the

state occupancies p. But if a flow balanced subsequence is used to approximate the

state occupancies of the entire sequence, most errors are of the order of the propor

tion of the state sequence discarded. The conclusion is that the subsequence approxi

mation (from section 3) is more robust and accurate than the balance-equations

approximation (from section 4).

If the observed state sequence comes from a system whose states are recurrent,

the errors are smaner than for unconstrained sequences. The errors induced by the

subsequence approximation tend to zero as the length of the observation period

increases for such systems. (We conjecture that this statement is true for the

balance-equations approximation as well, but have not yet obtained a proof.)

The assumption that the approximating subsequence is flow balanced is not neces

sary. It is only necessary to assume that an exact solution for the subsequence has

been obtain by any method. In generaL the error of the solution of the subsequence

must be added to the errors of our bounds. Therefore, these results can apply to any

situation in which a subset of available data is used to approximate performance quan

tities.

The subsequence approximation appears commonly in simulation and measure

ment, where "end effects" due to jobs in progress at the start and end of the observa

tion period are discarded. The performance quantities of the resulting subset of the

data are used to approxim ate the performance quantities of the original observation

period. Our results show that this technique is robust and will not introduce much

error.
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The principle of the subsequence approximation is also used in the theory of

nearly completely decomposable systems [3,4]. ]f a subsystem inleracts weakly with

its environment. the steady state behavior of the subsystem will be a good approxima-

tion of the subsystem behavior between interactions with the environment. In our ter-

minology, the flow balanced subsequence corresponds to a portion of the slate

sequence between interactions. Near complete decomposability assures that the time

constants of the subsystem are short and, hence, each state of the subsystem will be

observed in a short time. Thus the amount of the sequence between interactions that

must be discarded to obtain a flow balanced subsequence is small and the error intro-

duced by assuming tlow balance for the full interval between interactions is small. We

have not yet explored how to exploit the assumption of decomposability to partition

the transition matrix Q and tighten the error bounds.
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Appendix

This appendix outlines the derivations of all numbered equations in the text.

Table 2 Bounds The bounds on the average absolute error and weighted mean error follow
from the fact

N
I; [p, - p, I
1=1

N
:$ L: (P, + p,) = 2

'1=1

The bounds on the maximum and average relative errors follows from the fact that Pi <:!: 1/ K for
all i.

Define e, :::: PI - jj,. Let P denote the slates for which e, 2: 0 and M the slales for which
N

8j < O. Now, L: 8{ :::: a implies
'=1

Then,

Since the largest Ie, I is conltlmed in one of these two sums, max Iei I :$ E /2. Equality holds if,
either sum contains one term.

Section 2 The fraction of time slale i is occupied is related to p, as follows. Let T, denole
the toLal time state i is occupied in the original system. The mean holding time in slale i is
h.t :::: Td~ :::: Tdp,K. The fraction of time sLale i is occupied is 11= Td T. But

N N

T = I: Tj = I: hJpJK. Therefore,
j=l J=l

N

I, = ~P( / I: hJpJ
J=l

If the holding times are constant, all I, =p,.

Eqns. (3.1) and (3.2) Applying lhe relationships from Table llo ~ = C, + c4 gives

or

1
P1+

K
c4

for all slales i. Expressing these equations in malrix form gives (3.2). For flow balanced
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sequences, all ~ =0, and the system reduces to (3.1).

EqmI. (4.1) -(4.5) For every slale i.

'"K
",'
--+
K

Therefore, if p, '2!. fi, thenpt - jit :5 (K-J)/ K. Also, nt 2:. ~' implies p, 2:. fi, J / K. If p, < fi, then

K-J
K

These two cases imply (4.1).

The relative error magnitude for state i is bounded by

Ip, - il<l
P,

~'K-J 1l.t"s -----+--n, J 1l.t

ff (K-J)I J.s; 1, this expression is maximized when 1l.t' =0 and nt" ='7tj,. If (K-J)I J > 1, the
maximum occurs when 71.:1:' =1l.t and 7l{" =O. This gives (4.3).

The weighted relative error is

Ipi -p.1
PI

N [74' K-J 'nil!)s L; ---+-
1=1 K J K

This simplifies to (4.5). Multiplying each side by 1/N gives (4.2).

The bound on the mean relative error magnitude is obtained by applying 1l.t ~ 1 to the
relative error bound for s lale i:

1 N
-L;
N '=1

This reduces to (4.4).

Eqs. (5.1) and (5.2) The lotal absolute error satisfies

Given that all PI;;;: p, the first sum evaluales to 1-Np. If all the ih ~ p as well, then
E:;; 2(1-Np). However, as many as (N -1) of the it can be smaller than p, in which case the
second sum can be as large as 1-p +(N-1)p. Therefore the bound on E is 2(1-p). Withp =1/ L,
relation (5.1) is obtained.

The bound of (4.2) says E S 2(K-J)/ K. For a system of recurrent states, at most L states
need be discarded to find a floYi balanced subsequence. Hence K -J s Land E s 2L/ K.
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