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ABSTRACT

Given n set of r-variate integral polynomials, a cylindrical algebralc decomposition (cad) of
cuclidesn r-space E® partitions £ inte connected subsets compatible with the zeros of
the polynomials. Collins gave & cad construction elgorithm in 1975, es part of a quantifier
elimination procedure for rcal closed fields. The algorithm has subsequently found
diverse applications (optimization, curve display); new applications have been proposed
(term rewriting systems, motion planning). In the presenat two-part paper, we give an
algorithm for determining the pairs of adjacent cells in & cad of E3. This capability is
often needed in applications. In Part I we describe the essential fertures of the r-space
cad elgorithm, to provide a framework for the adjacency algorithm in Part II.

Keywords: polynominl 2eros, computer algebrs, computational geometry, semi-algebraic
geometry, real closed ficlds, decision procedures, real algebraic goometry.
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1. Introduction. Given a sel of r-variate integral polynomials, a eylindrical
elgebraic decompositinn (cad) of euclidean 7-space ET partitions £7 into
connected subsets compatible with the zeros of the polynomials. By "com-
patible with Lhe zeros of the polynomials" we mean that on each subset of
the cad, each of the polynomials either vanishes everywhere or nowhere.
For example, consider the bivariate pelynomial
y* -2y + y*-3z% + 2z*

Its zeros comprise the curve shown in Figure 1. Figure 2 shows a cad of the
plane compatible with its zeros. The cad consists of Lhe distinct "dots",
"arcs”, and "patches of white space” of the Figure. (A rigorous deflnition of

cad is given in Section 2).

Cad’s were introduced by Collins in 1873 (see [COL75]) as part of a new

quantifier elimination, and hence decision, method for elementary algebra

Figure 1
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Figure &

and geometry. He gave an algorithm for cad construction, and proved that
for any fixed number of variables, its computing time is a polynomial func-
tion of the remaining parameters of input size. As can be seen in the exam-
ple above, cad’s are closely relaled to the classical simplicial and CW-
commplexes of algebraic topology. In fact, the essential strategy of Collins’
cad algorithm, induction on dimension, can be found in van der Waerden's
1929 argument ([WAE29], ;;p. 360-361) that real algebraic varieties are tri-
angulable. )

Collins® cad-based decision procedure for elementary algebra and
geometry is the best known (see [FER79]; very little besides a cad is needed
for the decision procedure). J. Schwartz and M. Sharir used the cad algo-
rithm to solve a motion planning problem ([SCH83a],{SCHB83b]). D. Lankford
- [LAN?8] and M. Dershowitz [DER79] pointed out that a decision procedure for

elementary algebra and geornetry could be used to test the termination of
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term-rewriting systems. P. Kahn used cad's Lo solve a problem on rigid
frameworks in algebraic topology ([KAH79]). Kahn also observed ([KAH78])
that a cad algorithm provides a basis for a constructive proof that real alge-
braic varieties are Llriangulable, and thus for computing the homology

groups of a real algebraic variety.

Implementation of Collins’ cad algorithm began scon after its introduc-
tion, culminating in the first complete program in 1981 [ARN81]. The pro-
gram has begun to find use; in May, 1982 the Lermination of the term-
rewriling system for group theory in the Appendix of [HUEBQ] was verified
using it. It has also been utilized for display of algebraic curves [ARNB3]. In
1977, Ml‘lll'er-' implemented certain subalgorithms of the cad algorithm and

used them to solve algebraic optimization problems [MUE?7].

We use a somewhat different (but equivalent) definition of cad than that
in [COL75); we devote Section 2 to it. We then take up the cad algorithm.
Its intuitive strategy can be described by means of an example. Consider
the curve of Figures 1 and 2. Given the bivariate polynomial whick defines
it, we will compute univariate polynomials whose roots contain a "silhouette"
of the curve. By a 'silhouette', we mean the projection onto the x-axis of
the "significant points” of the curve. Its 'significant points” are its singulari-
ties (e.g. self-crossings, cusps, isolated points), and the points at which its
tangent is vertical. At any of its '"non-significant” points, it is “well-
behaved”, i.e. locaily the graph of a continuous real-valued function of a real
argument. Suppose we decompose E! into the points of the silhouette and
their complementary open intervals. Then the portion of the curve "over"
each- of these points (intervals) consists of finitely many disjoint, well-

behaved "dots” (“ares”). Our cad of the plane is made by decomposing the
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portion of the plane “over” each point {interval) in E! into the "dots"
("arcs") of the curve, and the "arcs" (“patches") of the complement of the

curve, that it contains.

For our sample curve, we compute a single univariate polynomial (its

discriminant):
204Bz1% - 4608z 1% + 37z% + 1229,

This polynomial has five roots, whose approximate values are -1.49, -0.28,
0.0, .23, and 1.49. All roots but: the third are project!ons of points with vert-
ical tangent The third is the projection of the two singularities (self-
crossipgs)_. Using the roots, we decompose the real line into points and open
-int.erva_ls ”(F‘igure 3). The Cartesian products of each of the eleven elements
of tlhis,decomposition with a line, give us eleven vertical lines and "strips" m
the plane. As we see in Figure 2, each "significant point” of the curve lies on
one of the vertical lines of this decomposition. and within each “strip", the
curve has finitely many disjeint, simply behaved, "ares". The "dots" and
"arcs" which make up each line, and the "arcs" and “patches of white space"
which make up each "strip”, constitute a cad of the plane. compatible with

the curve.

Figure 3
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The general algorithm consists of three phases: projection (computing
successive sets of polynomials in -y, fr—2. .... /1; the zeros of each set con-
tain a "silhouette"” of the "significant points"” of the zeros in the next higher
dimensional space), base (constructing a decomposition of £!), and exten-
sion (successive extension of the decomposition of E' to a decompositlon of
E? E%to ES, ... ET"! to £7). In Sections 3,4, and 5 we describe each of these
phases in turn. In the interests of succintness, we will at various times
specify simple but ineflicient methods of [.;nerformi.ng computations (for
‘example, isolating the roots of a product of polynomials, rather than isolat-
ing the roots of each of Lhe [actors separately). In Section 6, we give a

detailed example of the algorithm.

2. Deﬁnjﬁon of cylindrical algebrair decomposition. Connectivity plays an
i.mportanf role in the theory of cad's. It is convenient to have a term- for a
noriempty connected subset ol £7; we will call such sets regions. For a
regioﬁ .R. the cylinder over R, written Z(R), is RxE. A section of Z(R) isa
set s of points < e, f (a)>, where a ranges over R, and f isa contiﬁuous.
real-valued function on F. s, in other words, is the graph of f. We say such
an s is the fsection of Z(R). A sector of Z(R) is a set § of all points
<a,b> where « ranges over B and f,{a) <b < fa{a) for (contiﬁuous.
real-valued) functions f, < fp The constant functions f,= -«, and

fa= + ou are allowed. Such an § is the (f,.fz)—sector of Z(R). Cleariy
| sections and sectors of cylinders are regions. Note that if r =0 and
R = E®= a point, then Z(R) = £', any point of £' is a section of Z(R), and

any open interval in £! is a sector of Z (/).
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For any subset X of E”, a decomnposition of X is & finite collection of dis-
joint regions whose unien is X Continuous, real-valued functions
f1<fz2< -+ < fg k=0 definedon &, natu:ra.lly determine a decom-
position of Z(R) consisting of the following regions: (1) the (f;,fi+1)—sectors
of Z(R) for 0<i <k, where fg= -« and fes = + =, and (2) the fy-
sections of Z(R) for 1<i=<k. We call sucha decomposition a stack over R
(delermined by f1.. . . . f&)-

A decomposition D of ET is cylindrical if either (1)r=1and Dis a
stack over E°, or (2) r > 1, and there is a cylindrical decomposition D' of

ET-! such that for each region R of D', some subset of D is a stack over K.

It is clear that D’ is unique for D, and thus associated with any cylindrical
decomposition D of ET are unique induced cylindrlcai decompositions of £
for i = r—1, 7—=2.....1. Conversely, given a cad Dof B5,1<7,acad D of ET

is an eztension of 5 if I induces ﬁ

For 0 <i <, an i~cell in ET is a subset of £7 which is homecomorphic te
E' It is not difficult to see that if ¢ is an i-cell. then any section of Z(c) is
an i-cell, and any sector of Z(c) is an (i+1)-cell (these observations are due
to P. Kahn [KAH78]). It follows by induction that every element of a eylindri-

cal decomposition is an i-cell for some %.

'i"he decomposition of E? in Figure 2 is cylindrical. Figure 3 shows the
induced decomposition of £?, consisting of five 0-cells and six l-cells. The
decomposition in Figure 2 consists of eleven stacks. The first, or leftmost,
stack consists of a single 2-dimensional sector; the next stack consists of

two 1-dimensional sectors and one O-dimensional section; and so forth.
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A subset of ET is semialgebraic if it can be constructed by finitely
many applications of the union, intersection, and complementation opera-

tions, starting from sets of the form

iz €ET | F(z)=0},
where F is an element of Z{z,, . . .,z ). the ring of integral polynomials in 7
variables. We write I. to denote Z [z, ... ,Z,.]. As we shall now see, a

different definition of semi-algebraic set is possible, from which one obtains
a useful characterization of such sets. By a formule we will mean a well-
forméd formula of the first order theory of real closed fields. (The "first
order theory of real closed flelds" is a precise name for what we referred te
above as "elementary algebra and geometry”; see [KRE67] ). The formulas
éf the theory of real closed flelds involve elements of I.. A definable sel in
E* is a set S such that for some formula ¥(z,, . .. .2Zz). S is the set of points

in £* satistying ¥. ¥ is a defining formula for 3. (We follow the convention

that ¢(z,, ....z;) denotes a formula ¢ in which all occurrences of
z,.....I are free, each z;, may or may not occur in ¢, and no variables
besides z,, . . . ,z; occur free in ¢.) A definable set is semi-algedraic if it has

a defining formula which is quantifler-free. It is weli-known that there exists
a quantifier elimination method for real closed fields ({TAR48]). Hence a
subset ot-E’ is serri-algebraic if and only if it is definable.

A decomnposition is :_ztgebrm'.c if each of its regions is a semi-algebraic
set. A cylindricel algebraic decomposition of E” is a decomposition which is

both eylindrical and algebraic.

Let X be a subset of £7, and let F be an element of /. F is invariant on

X (and X is Frinvariant), if one of the following three conditions holds:
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(1) F(a)>0foralainX. ("F has positive sign onX").
(2) Fla)=0forallainX. ('F has zero sign on X").
(3) Fla)<Oforall«inX. ("F has negative sign on X").

Let 4 = {4,. ..., 4], be a subset of I. ("subset of [, will always mean "finite
subset"). X is A<nvariont if each 4; is invariant on X. A collection of subsets

of £7 is A-invariant if each element of the collection is,

The decompesition in Figure 2 is an A-invariant cad of £? for 4 = [y* -
2y? + y% - 3z%y + 2z%. Note that a set 4 C [, does not uniquely determine
an A-invariant cad D of £7. Since any subset of an A-invariant region is also
A-invariant, we can subdivide one or more regions of 0 to obtain another,

"finer", A-invariant cad.

3. The éyhndrical algebraic decomposition algorithm: projection phase.

Let us begin with a more precise version of the cad algorithm outline at the
end Section 1. Let A c I, denote the set of input polynomials, and suppose
r = 2. The algorithm begins by computing a set PROS(4) c I._, ("PROJ"
stands for "projection"), such that for any PROJ(4)-invariant cad D ‘ of E7 7},
there is an A-invariant cad D of E” which induces D'. Then the algorithm
calls itself recursively on PROJ(A4) to get such a D', Finally D' is extended

to D. If r = 1, an A-invariant cad of £! is constructed directly.

Thus for 7 = 2, if we trace the algorithm, we see it compute PROJ(4).
then PROJ(PROJ(A)) = PROJ%A), and so on, until PROJ "!(4) has been
computed. This is the projection phase. The construction of a PROJT7'(4)-
invariant ‘cad of £! is the base phase. The successive extensions of the cad
of £! to a'cad of E? the cad of £2 to a cad of £% and so on, until an A-
invariant cad of £7 is obtained, are the extension phase. We remark that for

the example of Section 1, where A = {y*-2y® + y* - 3z% + 2z}, PROJ(A) =
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{R04Bx!? - 4608z '° + 37z% + 122%.

The key to the projection phase is to deflne the map PROJ (which takes
a subset of [, to a subset of f,.,). and to prove that it hes the desired pro-
perty. We stated this property above as: any PROJ(4)-invariant cad of £7!
is induced by some A-invariant cad of ET. ' To establish this, clearly it
suffices to show that over any semi-algebraic, PROJ(A)-invariant region in
ET"1 there exists an A-invariant algebraic stack. In this section, we will

define FR(J and outline the proof that it has this latter property.

Central to our definition of PROJ will be the notion of delineability,
which we alluded to in Section 1 with the term "w;all-behaved". For
Fé[r,'r = 1, let V(F) denote the real variety of F, i.e. the zero set of F. Lel
R be a region in £7"). F is delinecble on R if the portion of V(F)} lying in
Z(R) consists of k£ disjoint sections -of Z(R), for some k = 0. Clearly when F
is delineable on F, it gives rise to a slack over K, namely the stack deter-
mined by the continuous functions whose graphs make up V(F) N Z(F). We
write S{F,R) to denote this stack, and speak of the F-sections of Z(R). One
easily sees that S(F /) is F-invariant.

For ‘example, consider again F(z.y) = y*-2y® + y?-3z% +2z% F is
delineable on each of the eleven cells shown in Figure i, and in fact the
stacks vhich comprise the cad of Figure 2 are just the stacks determined by

F over these eleven cells.

Our tentative strategy for defining PRGOJ is: insure that for aﬁy
PROJ(A)-invariant region /., the following twe conditions hold: (1) each A4 €4
is delineable on &, and () the sections of Z(R) belonging to different 4 and

Aj are either disjoint or identical. If Lhese conditions are met, then clearly
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we have an A-invariant stack over R, namely the stack determined by the

functions whose graphs are the sections of the 4;'s.

The lefthand drawing in Figure- 4 illustrates a region £ and hypothetical
bivariate polynomials A;, 4z, and A3 for which ﬁhese conditions do not hold.
A and A; are delineable on R, but the 4,-section meets the A;-section. Ag is
not delineable on K. The righthand drawing in the Figure illustrates a parti-

tion of & into five regions, on each of which the conditions are satisfied.

The following example points out a difficulty with our tentative strategy.

Let A C [ be the set {4,(z.y).42(z.y)} = {z.9% + z% - 1}. 4,(0y) is the zero

V(A,)

V(A )

V(A 3)

Figure 4
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polynomial,

hence A, vanishes everywhere on Z({0}), hence 4, is not delineable on the
set {0} ¢ £7, nor on any superset of it. We resolve this difficuity as follows.
We say FEl, is idenfically zevo on X © ET~V if F(ee.z,) is the zero polynomial
for every a€X. If F is identically zero on X, then any decomposition of Z(X)
~ will be F-invariant. Hence we may simply ignore F' in decomposing Z(X). In
particular, in our example, we need only take account of the sections of Ay
in decomposing Z({0}). Thus, we modify condition (1) above to read “(1')

each 4 €4 is either delineable or identically zero on R".

PROJ(A) will consist of Lwo kinds of elements: those designed to attend
i'.o condi.tlion (1"}, and those to attend to condition (2). Elements of both
kinds are formed from the coefﬁciepts of the polynemials of A by addition,
subtraction, and mﬁltiplication (remark: /. consists of polynomials in z,
whose coeflicients are elements of f._,). We now specify exactly how this is

done.

Let J be any unique factorization domain, and let £ and G be nonzero
elements of J[z]. ‘We write deg () to denote Lhe degree of F (the zero poly-
nomial has degree -). Let n = min(deg(F).deg(G)). For 0<j <n, let
Sj(F.-G} denote the j** subresultant of F and G. an element of J[z] of
degree s'j. (each coefficient of S;(F.G) is the determinant of a certain
matrix of F and G coeflicients; see [LO0B2b], {BRT71], or {COL75] for the
exact definition). For 0 £ j < n, the 7 principal subresultant coefficient of
F and G, written psc;(F.G), is the coeflicient of-zJ in 5;(F,G). We define

psc, {F,G) to be 1eJ.
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The following theorem is the basis for definition of the first class of ele-

ments of PROJ{4). Some notation: suppose F is an element of /.. The"

dertvative of F, written F'' is the partial derivative of 7 with respect to =z,.

deg (F) is the degree of £ in z,. For a€E""!, we write Fa(z,) or F, to dendte

Fla.z,).

THEOREM 3.1. Let F&l. 722, and let R be a region in £7~!, Suppose that
deg {F,) is constant and nonnegative for a€R, and that if positive, then the
least k such that psey (F, F'p)#0 is constant for q€R. Then F is delineable
on 7.

A proof is given in [ACM:82] (Theorem 3.6). The essential ideas are contained
in the prc;of of Theorern 4 of [COL75]. [COL75] uses a definition of delineabil-
ity stronger than ours, but a polynomial delineable by that definition is
delineabie by curs. _

The theorem suggests that for a PROJ{A)-invariant region K, and for
each 4; €4, we should have deg ((4;),) cons.tant for aeX. This may be a non-
trivial requiremen’. Consider, for example, the polynomial

Flzyz)=(y2+z%-1)23 + (z - 1)22-;- (z -1)% + 2
If # is a region in the plane disjoint from the unit circle, then F, has degree
8. If ® is a subset of the unit circle which does not contain the point
< 1,0 >, then F; has degree 2. If £ is the point <1,0>, then F, is the zero
polynomial. PROJS must separate these cases. The theorem also suggests
that if R is a PROJ{A)-invariant region which does not contain the point
<1.0>, then we should also_insure that the least & such that pscg (Fa, 7 2)#0

is constant for ek,
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We introduce the nclion of the reductum of a polynomial. For any
nouzero Fel, = I,_,[z,]. ldef(F) denotes the leading coefficient of . The

leading term of F', written Idf (F), is
Idef (F)-z,99¢F),

The reductum of F, written 7red(F), is F-ldi(F). It F = 0, we define
red(F) = 0. For any k=0, the kth reductum of F, written red® (), is defined
by induction on k:

red%(F) = F.

rad* *1(F) = red (red® (F)).
For any F€l,, the reducte set of F, written RED(F), is
fred®(F)|0sk=<deg(F) & red*(F)#0}.
Thus the reducta set of our sample F(z y,z} above is

(F(zy.2) (z-1)2%+ (z-1)2 + 42 (z - 1)? + 9.

We can now incorporate the notion of reductum inte a specification of
the (first) desired property of 8 PROJ(4)-invariant region . For each FeA,
there should exist an » such that deg (F,) = m for all € R. Furthermore, if
m is positive, then where 1 is such that deg (red*(#)) = m, and @ = red'(F),

the least k such that pscy(@a. @ ‘'a)#0 should be constant for aeR,

let¢ F and G be nonzero elements of [ [z]. Let

n = min(deg {F).deg(G)). The psc set of F and G, writlen PSC(F.G), is
{psc; (F.G)|0sj=n & psc;(F.G)#£0}

If either ¥ = 0 or G = 0, then PSC(F,G) is defined to be the empty set. Let

‘A = {A), ..., 4] n=1, be a set of polynomials in I, r22. PROJ{A)C [,
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the first class of ‘polynomials in PROJ(A). is defined as follows. For each
l=i=n, let By = RED(4). Then
PROIWA) = ( U ({idef ()} U PSC(G.G"))
=1 GER,

With the following simple observaticn, we can prove that PROJ 1 behaves
as we want. Suppose F and G are nonzero elements of /,, and suppose that
for some a€f77), deg(F) =deg(F,)} =0, and deg(G) = deg (G,) = 0. Let
n = min(deg (F),d2g (G)). Then for every j,0<4 <mn, it is the case that
(pse;(F.G))a = psc;(Fa,G,). We see this as follows. For 7 <n, since
deg (F) = deg (F,) and deg (G) = deg (G,), the matrix obtained by evaluating
the entries of the Sylvester matrix of F and & at « is just the Sylvester
matrix of F; and G,, hence if j <n then (S;(F,G)), is equal to S5i{(Fa.Ga).
and so (psc; (F.G))x = psc;(F,,Gy). If _j = n, then (psc; (F,G)), = pscy (F,:G,)

= 1.

THZOREM 3.2. For A C I, r22, if R is a PROJ \(A)-4nvariant region in E7°},

then every element of A is either delineable or identically zero on R.

Proof. Consider any Fed. If F = 0, then F is identically zero on R. Sup-
pose F#0. By definition, PROJ(A4) includes every nonzero coeflicient of F,
so each coefficient of F -either vanishes everywhere or nowhere on #. Hence
deg (F,) 1s const“a;:lt for aeR. Let deggp(F) denote this constant value. If
degp(F) = - =, then F is identically zero on R. If degp(F) = 0, then obvi-
ously F is delineable on ®. Suppose degp(F) = 1. Then there is a unique
reductum & of F such that deg(@) = degp(@) = degr(F). Then F, = @, for
all ac/R, hence if @ is delineable on R, then F is delineable on . Sinece

PSC(Q.Q') C PROJ(A), the least k¥ such that (psce (.9 ")).#0 is constant for
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acf. Hence by our observation above, the least & such that psc, (@, 8 ';)#0
is constant for ae /. Hence by Theorem 3.1, @ is delineable on X, hence £
is delineable on /#. Thus every element of A is either identically zero or

delinealle on K. »
The following theorem is the basis for definition of the second class of
elements of PROJ(A).

THZOREM 3.3. Let AC I, r =2, and let R be a region in E7"). Suppose that

Jor every F€A, the hypotheses of Theorem 3.1 are salisflied. Suppose also

that for every F,GcA, F#G, the least k such that pscy (Fg, G.)#0 is constant

Jor aeff. Then every F€EA is delineable on R, and for every F,GEA, any F-
section and any G-section of Z(R) are either disjoint or identical.

A proof is given in [ACM82] (Theorem 3.7). The essential ideas are contained
in the proof of Theorem 5 of [COL75).

Let 4 and R; be as in the definition of PROJS,. Let

PROJz(A) = U U PSC(G.Gy)
1=ti<j<n Gefy & Giely

PROJ(4) is the union of PROJ,{4) and PROJ3(4).
We prove that PROJ works, i.e. that conditions (1') and (2) are satisfied
for a PROJ{A)-invariant region:

THZOREM 3.4. For A C I, 2R, if R is o PROJ(A)-invariant region in ET°},
than every element of A is either delineable or identically zero on R, and
Jor every F,Ge€A, any -section and any G-section of Z(K) are either dis-

Joinl or tdenlical.
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Proof. By Theorem 3.2, every element of A is either delineable or identically
zero on K. Let F be the set of elements of 4 which are delineable on 7.
. Now by an argument similar to that used in the proof of Theorem 3.2, using
Theorer 3.3 in place of Thecrem 3.1, it follows that for every F,Ge4, any F-

section and any G-section of Z( &) are either disjoint or identical. «

Thiz completes the proof that if R is a PROJ(A)-invariant region in
ET7}, then there exists an A-invariant stack over R, namely the stack whose
sections are the sections of those 4's in 4 which are delineable on . We
write S(A.R) to denote this stack, Our agenda for this Section will be com-
pleted b}; showing that if also R is semi-algebraic, then S(A4,R) is algebraic.
By sur remarks in Section 2, if. suffices to sh_ow that each region of S{A.R) is
definable. Let z denote <z,,...,z,_; > and ¥ denote z,. Any section of S
is an F-section of Z(R) for some FEA which is delineable on R: say that it is
the 7'* section of S{F,R) (where sections are numbered from bottom to
top). Then we can define it as the set of <z.y> satisfying a formula "zeR
and y is the 7% real root of F(z.y)". If ¢ is a defining formula for R, then

the following is such a formula:

p(z) & (Qy)(Byz) - - Quy-dyv1<y2< - <yjo <y
EFzy)=0&F(lzy)=0& --- &F{zy;))=0&F(zy)=0
& (VY M (Y 2y &Y F Yo & - - - &Y FYjo &

Yin 2y &F(zy0)=0)=>yn >y} ]

The sectors of S can now be defined using the defining formulas for the sec-
tions: any sector of § is either the set of <z.y> between two sections of S,

-or the set of <z,y> above the topmost section of S, or the set of <z y>




Arnon. Collins, MeCallum: Cylindrical algebraic decomposition | 18
below th_e bottommost section of S. This concludes the proof.

4. The cylindrical algebraic decomposition algorithm: base phese. Let us
use the precise definition of cad given in Section £ to give precise
specifications for a cad algorithm. Its inputisaset 4 c i, 7 = 1. Its output
is a description of an A-invariant cad D of ET. This description sheunld
intform one of the number of cells in the cad, how they are arranged into
stucks, .nd the sign of each element of 4 on each cell. In this section, we

define the index of a cell in a cad; the cad algorithm meets the first two of

the above requirements by producing a list of indices of the cells of the cad

of ET that it constructs. We also define in this section an exact representa-
tion for- -algebrajc peints in E7, that is, points whose coordinates are all real
algebraic-numbers. The cad algorithm construets, for each cell of the cad of
E7. an exact representation of a particular algebraic point belonging to that
cell (we call this a semple point for the cell). The sign of A, €4 on a particu-
lar cell ean then be determined by evaluating 4; {exactly) at'the cell's sam-

ple point. and in this way we meet the third réquirement above.

Where 4 C [, is the input to the cad algorithm, in the projection phase
we computed PROJ(A), PROJ*(A), and finally K = PROJTY(A) c I,. It is the
tasiz of the base phase to construct a K-invariant cad D°® of E', that is. to
consiruct cell im_:lices and sample points for the cells of such a cad. Let us
now define cell indices.

In a cad of £', the index of the leflmost i-cell (the 1-cell with left end-
point - =), is {1}, The index of the O-cell {if any) iramediately to its right is
(2), the index of the 1-cell to the right of that 0O-cell (if any) is (3), ete. Sup-

"pose that cell indices have been defined for cad's of £77!, r = 2. Let D be a

fL £
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cad of £7. D induces a cad D' of E77). Any cell d of D is an element of a
stack S{e) over acellc of D' Let (i,,...,%_;) be the index of c. The cells
of S{c) may be numbered from bottom to top, with the bottommost sector
being calle& cell 1. the section above it (if any) cell 2, the sector abov;a that
(if any) cell 3, etc. If d is the j** cell of the stack by this numbering. then
ite cell index is (iy. . . . . G=7.7)-

The sum of thelparities of the components of a cell index is the dimen-
sicn of the cell (even parity = 0, odd parity = 1).- In a cad of E2, for example,
cell (2,4) is a D-cell, (2,5) is a 1-cell.

We begin the base phase by constructing the set of all distinct (i.e. rela-
tively prime) irreducible factors of nonzero elements of X (see [KALBZ] for
polynomial factorization algorithms). Let M = {#,, ..., M} c 7, be the set
of these factors. The real roots a; < -+ < @,, 20, of [[M will be the O-
cells of D° (if n = O then D° consists of the single i-cell £'). We determine
the a;'s by isclating the real roots of the individual #;'s [CLOB2]. By their
relative primeness, no two elements of i have a common root. Hence by
refining the isolating intervals for the a;’s, we obtain a collection of disjoint
left-open and right-closed intervals (r,.s,}), (7a.5z] ..... {rn.s;] with rational
endpoirts, each containing exactly one a;, and with+, < s; <7, < - - -

As soon as ﬁfé_know n, we caﬂ trivially write down the indices of the
. 2n+1 cells of D°. To deseribe sample point construction, we first define a
representation for an algebraic point in £*, i = 1. Loos ([LO0B2a], Section 1)
describes the representation of a real aléebraic number ¥ by its minimal
polynomial M(z). and an isolating interval for a particular root of M(z).

With 7 so represented, and letting m = deg (M), one can represent any ele-
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ment of @(y) as an element of @[z] of degree =m -1 (as Loos describes).
For an algebraic peint in EY, there exists a real algebraic ¥ such that each
coordinate of the point is in @(7); 7 is a primitive element for the point. Oﬁr
representation for the peint is: a primitive elemenl o and an i-tuple of e.l-e-

ments of 2(y). all represented as described by Loos.

For the 1-cells of D° we primarily use appropriately chosen (rational)
endpoinis from the isolating intervals above as sample points. However, if 5;
= 734, is a O-cell, we find (by bisecton) a posilive rational &, such that
(7;41 + £.5¢4,]) isolates a4, and use 7;,; + £ as sample point for cell (27 + 1).
Also, we- use 5, + 1 as a sample point for cell (8n + 1). If D° = [£1}, we use
an arbitrary rational number. Obvicusly the only point in a O-cell is the cell
itself. lts value is an algebraic number. Thus all our sample peints for D°
are algebraic numbers, and hence can be trivially expressed in our just-
defined algebraic point representation. Examples of sample points for a cad

of £ can be found in Section 6.

5. The cylindrical algebraic decomposition algorithm: extension phase.

First, consider the extension of the cad D* of £ to a cad of £%. In the pro-
jeclion phase, we computed a set J = PROJ T ?(4) C I,. Let ¢ be acell of D".
The stack S(J.c) is a subset of the cad of £ we are building. Let « be the
sample point for ¢, and let J; be the product of all elements G of J for
which G{a,z;)#0. Using algorithms for exact arithmetic in @(a) [LOOBRa],
we construct J.(a,z:)e@(a){za2]. We isolate the real roots of J.(a.za)
([LOUBZa). Seclion 2). This determines S{J.c): 8 is a root of J, (a.z3) if and
only if <a,f> lies on a section of S{J,c). For each such 8, we use the

"representaticn for «, the isolating interval for 8, and the algorithms NORMAL
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and SIMPLE of [LOOB2a] to construct a primitive element y for g(a.f); we
use ¥ to construct a representation of the form we require for < a,8>. We
gel sector sample points for S(J,¢) from o and the (rational) endpoints of
the isolating intervals for the roots of J; (a.zz), much as was done in Section
4 for E'. Thus sector sample points are of the form < a,7>, 7 rational, so
we can take ¥ = «. Given the cell index lor ¢, and the isolated roots of

J.{a.z5), we can trivially write down the indices for the cells of S(J.¢) (as
for E! in Section 4).

After prucessing each cell ¢ of D° in this fashion, we have determined a
cad of £? ;nd constructed a sample point for each cell.

Extension from Et~! to E' lor 3= <7 is essentially the same as from
E!' to E2. The only difference is that a sample point in £¢~! has i - 1, instead
of just one, coord.inettes. But where a is the primitive element of £*~! sam-
ple point, and F = F(z,,....z;) an element of f, arithmetic in () still
suffices for constructing the univariate polynomial over @(c) that results
from substituting the coordinates <a,,....g > for <zy,...,Zy1> in
F.

The following abstract algorithm summarizes our discussion of the cad

algorithm.

CAD(r,A:1,S)
Inouis: 7 is a positive inteeger. A is a list of n20 integral polynormials in 7

variables.

Oufputs: [ is a list of the indices of the cells comprising an A-invariant cad

" Dof E”. Sisalist of sample points for D).
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(1) [r = 1.]1f 7 > 1 then go to 2. Set J« the empty list. Set S« the empty

list. Isolate the real roots of the irreducible factors of the nonzero
elements of A, Construct the indices of the cells of P and add
them to /. Conslruct sample points for the cells of £ and add

them to 5. Exit.

() [r > 1.] Set P«PROJ(A). Call CAD recursively with inputs 7—1 and P to

obtain outputs [’ and S* that specify a cad D' of £77!, Set f« the
empty list. Set S« the empty list. For each cell ¢ of D', let ©
denote the index of ¢, let a denote the sample point for ¢, and
carry out the following four steps: first, set h(z )e[]{4;(az,}]
A €A & Aj(a.z,)#0}; second, isolate the real roots of h(z,); third,
use i, ¢, and the iselating intervals for the roots of & to construct
cell indices and sample points for the sections and sectors of a
stack over c; fourth, add the new indices to J and the new sample

points to &. Exit«

6. An éxample. We now show what algorithm CAD does for a particular

example

in B2, Let
Az, y) = 144y® + 96z% + 9z% + 1052° + 70z - 98,

Az{z.y) =zy% + 6y + z° + 9z,

and 4 = {A;.Az}. CAD is called with input 4. We compute PROJ(A):

ldef (A = 144,

pscg(dy 4,) = -5B060B(z*- 15z% - 10z + 14),
psc, (A1 A) = 1,
tdef(red(4,)) = 96z%
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psco(red(4,). [red{4)]) = 1.

ldef (red?(4,)) = DBzt + 105z2 + 70z - 98,
ldcf(Ag) = =,

psco{ dp, Ap) = 4x5

pscy(dz Az) = 1,

ldef (red(4z)) = 6=,

pscolred(4z) [red(4z)]) = i,

ldef (red¥(Az)) = z(z?+9),

psrc( A, Az) =

zz(alzﬂ 3330z¢ + 1260z5 - 37395z * - 4578023 - 3209622 + 167720z + 1435204),
psc {4y, 43)
Psca( A Az)

psco(red(4;). 42) =

9%z (z%-9),

1|

z(81z% + 5922x% + 12602z° + 317252z* - 25620z° + 40768z2 - 13720z + 9604),

psc(red(4,) 4z) L,

psco{ Ay red (Az)) —36z (3z* - 3322 - 70z - 228),

pse (A red (4z)) 1.

psco(red(A4,).red(4d3)) = 1.

It turns out that Lhe roots of p;(x) = =% -15z% - 10z + 14 and py(z) = z give
us a "sjlhouette': of V(4;) U V(A4z), hence for simplicity in this example, let
us set PROJ(A) = {py{z}, pe(z)} (in general, PROJ(A)}) may contain
superﬂuoﬁs elements; [COL75] and [ARNB1] describe techniques for detect-

ing and =liminating such elements).

P1 and pg are both irreducible, so we have M, = p, and M; = p; in the

"nolation of Section 5. M, has four real roots with approximate values -3.286,
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-1.51, 0.7, and 4.08; #; has the unique root x = 0. The following collection of
isolating intervals for these roots satisfies the conditions set out in Section

S:

(~.-8]. (-2.-1]. (-1.0]. (1], (48]
Since there are five O-cells, the cell indices for the cad are (1), (2), ..., (11).
We now construct representations for the sample points of the induced
cad of E'. Each 1-cell will have a rational sample point, hence any rational Y
will be a primitive element. We arbitrarily choose ¥ = 0. (—1,0] is an isolat-

ing interval for ¥ as a root of its mimimal polynomial. We may take the 1-

cell sample points te be -4, -2, -1, %—. 4,-and 9.

The four irrational O-gells have as their primitive elements the four
roots of M,(z). The representation for the leftmost 0-cell, for example, con-
sists of M‘l(z). the isolating interval (—4,3)], and the 1-tuple <z>, where z
corresponds Lo the element 7 of @(y). The O-cell z = 0 is represented in the

same fashion as the rational 1-cell sample points.

We now come to t.he. extension phase of the algorithm. Let ¢ be the left-

most 1-cell of the cad D' of £, A,(—4.y)#0 and 43(—4,)#0, hence
A Ax(~4y) = 24 (y? + By + 25) (24y® + 256y + 601).

y® + By + 24 has no real roots, but 24y? + 258y + 601 has two real roots,
which can be isolated by the intervals (-8,~7] and (—4,—2]. Thus the stack
S(c) has two sections and three sectors; the indices for these cells are (1,1).
(1.2)..... (1,5). From the endpoints of the isolating intervals we obtain sector
sample points of <—4,-B> <—4,-4>, and <-4,-1> (which will be

"represented in the customary fashion). The two roots 9, and 7, of
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24y® + 256y + 601 are both 3-coordinates for the section sample points and
primitive elements for these sample points. Thus the (representations for
the) section sample points are

{Ray® + 268y + 601, (—8.-7) .<—4,y>}
and

{24y® + 256y + 601, {(—4.—2] ,<~4.y>].
Now let ¢ be the leftmost O-cell of D'; let a also denote this point.

Ay(e,y)#0 and 4z{a,y )#0; we have

Ada(ay) = (P + By + o + O)(y + aB)

y®+8y +a®+ 9€ Q(a){y] has no real roots, but obviously y + %—az has

exactly one; (—8,8] is an isolating interval for it. Hence $(¢) has one section
and two sectors; the indices of these cells are (2,1), (2,2), and (2.3). The

appropriate representations for < -a,~8> and < -a,9> are the sector

sarople points. Since y + _:_1_3__az is linear in v, its root is an element of @(a).

Hence

i) (-4.8). <=, - 5z®>]
is the representation of the section sample point.

Thus in this particular case it was not necessary to apply the NORMAL
and SIMPLE algorithms of [LOOBRa] to find primitive elements for the sec-
tions of S(c ). and it is also net necessary for the other sample points of this
example. In general, however, for a 0-cell a, A; (a,y} will have nonlinear fac-
tors with real roots, and it will be necessary to apply NORMAL and SIMPLE.

. SBaying Uiis another way, where a is a O-cell of D' and < a8 > is a section
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sample point of D, we had in our example above @(a.f) = @(a). but in gen-

eral, @(«x) will be a proper subfield of @(a.8).

The steps we have gone through above for a i-cell and a 0-cell are car-
ried cut for the remaining cells of U’ to complete the determination of the
A-invariant cad D of EZ. -

Although information of the sort we have described is all that would
actually be produced by CAD. .it may be useful to show a picture of the
decomposition of the plane te which the information. corresponds. The
curve dr:—::ﬁned by A,{z.y) = 0 has three connected components which are
easily identified in Figure 5 below. The curve defined by Az(z.y)} = 0 is just
the y-axis, i.e. the same curve as defined by z = 0, and cuts through the
middle of the second component of V(4,). The A-invariant cad of £2 which

CAD delermines is shown in Figure 5. We remark that the curve A,(z,y) is

Figure 5
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