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ABSTRACT

Given I set of r-variatc integral polynomials, a cyllndrlt:al allebrtJJc decompoJition. (cad) of
euclidean r-space E' partitioDIl E' into connected lubsets compatible with the zeros of
tbe polynomials. Collins gave a cad construction algorithm in 1975, u part of • quantifier
elimination procedure for real dosed fields. The algorithm has subsequently found
diverse applications (optimization, curve display); new applications hue been proposed
(Ierm rewriting systems, motion planning). In the present two-part paper. we give an
algorithm for determining the pairs of adjacent cella in B cad of £2. This capability is
often needed in applications. In Part [we describe the ClSCntial featurea of the r--space
cad algorithm, (0 provide a framework for the adjaccncy algorithm in Part U.

Keywords: polynomial zeros, computer algebra, computational geometry, semi·a1gebraic
geometry. real closed llelda. decision procedures, real algebraic geometry.
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1. -Int.rodl:tction. Glven a set of r-variate integral polynomials, a cyli:ndrical

algebra.ic decomposilinn (cad) of euclidean r-space er partitions E" into

connected subsets compatible with the zeros of the polynomials. By "l~om-

patible with the zeros of the ·polynomials" we mean that on each subset of

the cad, each of the polynomials either vanishes everywhere or nowhere.

For example, consider the bivariate polynomial

y4 _ 2y :l + y'Z _3x 'Zy + 2%4.

Its zeros comprise the curve shown in Figure 1. Figure 2 shows a cad of the

plane compatible with its zeros. The cad consists of the distinct "dots".

"arcs", and "patches of white space" of the Figure. (A rigorous definition of

cad is given in Sect.ion 2).

Cael's were introduced by Collins in 1973 (see (COL75]) as part of a new

quantifier elimination. and hence decision, method for elementary algebra

F'igure 1
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J

F'igure 2

and geometry. He gave an algorithm for cad construction, and proved that

for any fixed number oC variables, its computing time is a polynomial func

tion oC the remaining para.meters ot input size. As can be seen in the exam

ple above, cad's are cLosely relaled to the classical simplicial and CW

complexes of algebraic topology. In fact, the essential strategy oC Collins'

cad algorithm, induction on dimension, can be found in van der Waerden's

1929 argument ([WAE29], pp. 360-361) that real algebraic varieties are tri

angulab!e..

Collins' cad-based decision procedure for elementary algebra and

geometry is the best known (see [FER79]; very little besides a cad is needed

for the decision procedure). J. Schwartz and M. Sharir used the cad algo~

rithm to solve a molion planning problem ((SCH63a],[SCHB3b)). D. Lankford

[LAN?B] and N. Dershowitz [DER79] pointed out that a decision procedure for

elementary algebra and geometry could be used to test the termination of

•
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term~rewrjti.ng systems. P. Kahn used cad's to solve a probl~m on l'lgid

frameworks in algebraic topology ([KAH79]). Kahn also observed ([KAH7B])

that a cad algorithm provides a basis for a constructive proof that real alge

braic v::lrieties are Lriangulable, and thus for computing the homology

groups of a real algebraic variety.

Implementation of Collins' cad algorithm began soon after its introduc

tion, culminating in the first complete program in 19B1 [ARNBl]. The pro

gram has begun to find use; in May, 19B2 the termination of the term

rewriting ~ystem for group theory in the Appendjx of [HUEBOl was verified

using it. It has also been utilized for display of algebraic curves [ARNB3]. In

1977, Millier implemented certain subalgorithms of the cad algorithm- aria

used them to solve algebraic optimization problems [MUE77].

We use a somewhat different (but equivalent) definition of cad than that

in [COL75]; we devote Section 2 to it. We then take up the cad algorithm.

Its intuitive strategy can be described by means of an example. Consider

the curve of Figures 1 and 2. Given the bivariate polynomial which defines

it, we will compute univariate polynomials whose roots contain a "silhouette"

of the curve. By a "silhouette", we mean the projection onto the x-axis of

the "significant. points" of the curve. Its "significant points" are its singulari

ties (e.g. self-cr.ossings, cusps, isolated points), and the points at which its

tangent is vertical. At any of its "non-significant" points, it is "well

behaved", i.e. locally the graph of a continuous real-valued function of a real

argwnent. Suppose we decompose E 1 into the points of toe silhouette and

their complementary open intervals. Then the portion of the curve "over"

each- of these points (intervals) consists of finitely many disjoint, well·

behaved "dots" ("arcs"). Our cad of the plane is made by decomposing tQ.e
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portion ot the plane "over" each point (interval) in E 1 into the "dots"

("arcs") ot the curve, and the "arcs" ("patches") of the complement of the

curve, tbat it contains.

For our sample curve, we compute a single univaria~e polynomial (its

discriminant):

2046%12 - 460Bx 10 + 37%8 + 12%8.

This polynomial has five roots, whose approximate 'Values are -1.49, -0.23,

0.0, q,23, and 1.49. All roots but the third are projectjons of points with vert-
. .

ical tangent The third is the projection of the two singularities (self--

crossings). Using the roots, we decompose the real line into points and open

interv~s (Figure 3). The Cartesian products or each of the eleven elements

of this decomposition with a line. gi~e us eleven vertical lines and "strips" in

the plane. As we see in Figure 2, each "significant point" or the curve lies on

.one or the Yerticallines of this decomposition. and within each "strip", the

curve has finitely many disjoint, simply behaved, "arcs". The "dots" and

"arcs" which make up each line, and the "arcs" and "patches of white space"

which make up each "strip", constitute a cad of the plane, compatible with

the curve.

• • • • •

F'igure 3
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The general algorithm consists of three phases: projection (computing

successive sets of polynomials in I r - lo I r - 2• ••.• II; the zeros of each set con

tain a "silhouette" of the "significant points" of the zeros in the next higher

dimensional space), base (constructing a decomposition of E 1
). and exten

sion (successive extension of the decomposition of E 1 to a decompositlon of

E 2 , i 2 to E 3• .... cr- I to E'f''). In Sections 3,4. and 5- WE:! describe each of these

phases in turn. In the interests of succintness. we will at various times

specify simple but inefficient methods of performing computations (for

~example. isolating the root.s of a product of polynomials. rather than isolat

ing the roots of each of the factors separately). In Section 6, we give a

detailed ~xample of the algorithm.

2. Definition or cylindrical algebraic decomposition. Connectivity plays an

important role in the theory of cad·s. It is convenient to have a term for a

nonempty connected subset of E?; we will call such sets ·regions. For a

region R. the cyl~der over R. written Z(R). is RxE. A section of Z(R) is a

set s or points < a: .J (a». where a: ranges over R, and I is a continuous.

real-valued function on R. s, in other words, is the graph of f. We say such

an s is the J-!:>'ection of Z(R). A sector of Z(R) is a set s of all points

< a., b >, where a: ranges over R and f ,(a:) < b < f 2(0:) for (continuous,

real-valued) functions f I < f 2' The constant functions f I ;;; - CICI. and

! 2:: + 0:1, are allowed. Such an SO is the (f 1.1 2)-sectoT of Z(R). Clearly

section.,,; and sectors of cylinders are regions. Note that if T ;;; 0 and

R:: EO:: a point, then Z(R):: E I , any point of E1 is a section of Z(R). and

any open.interval in E 1 is a sector of Z(R).



Arnon, Collins. McCallum: Cylindrical algebraic decomposition I 7

For ~y subset X of E". a decomposition of X is a finite collection of dis

joint regions whose union is X. Continuous, real-valued functions

11< 12 < ... < I~. k::::O,definedonR,naturallydetermineadecom

position of Z(R) consisting of the following regions: (1) the (fi,Ji+1)-sectors

of Z(R) for O::::i::::k. where Jo; -00 and IUl= +00, and (2) the li

sections of Z (R) for 1 ~ i ~ k. We call such a decomposition a stack aver R

(determined by f 1•... ,f~).

A decomposition D of E" is cyLindrical if either (1) r = 1 and D is a

stack over EO. or (2) r > 1. and there is a cylindrical decomposition D' of

E"-L such that for each region R of D '. some subset of D is a slack over R.

It is 'clear that D' is unique for D, and lhus associated with any cyHn'drical

decomposItion D of E" are unique induced cylindrical decompositions of E'

for i; r-l, r-2.... ,1. Conversely, given a cad B of E', i < r, a cad D of V

is an extension of B if D induces B.

For 0::::; i ::::; r. an i-ceU in ET is a subset of E T which is homeomorphic to

gi. It is not difficult to see that if c is an i-cell. then any section of Z(c) is

ani-cell, and any sector of Z(c) is an (i+l)-cell (these observations are due

to P. Kahn [KAH7B]). Jt follows by induction that every element of a cylindri

cal decomposition is an i-cell for some i.

The decomposition of E2 in Figure 2 is cylindrical. Figure 3 shows the

induced decomposition of E 1 , consisting of five O-cells and six l-cells. The

decomposition in Figure 2 consists of eleven stacks. The first, or leftmost.

slack c~nsisls of a single 2-dirr.ensional sector; lhe next stack consists of

two l-dimensional sectors and one O-dimensional section; and so forth.
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A sub~et of ff is semi-fllgebraic if it can be constructed by finitely

many applications at the union. intersection. and complementation opera

tions, starting from sets of the form

Ix EE'" I F(x ),=01.

where F is an element of Z [Z1' .... zrJ. the ring of integral polynomials in r

variables. We write lr to denote Z [x) • ... ,Xr ]. As we shall now see. a

different definition of semi-algebraic set is possible. from which one obtains

a llseful characterization of such sets. By a formula we will mean a well

formed- formula of the first order theory of real closed fields_ (The "first

order theory of real closed fields" is a precise name for what we referred to

above as "elementary algebra and geometry"; see [KRE67]). The formulas

of the theory of real closed fields iQ.volve elements of lr- A d.efinable set in

EJ: is a set S such that for some formula 'It(x 1, ...• x",). S is the set of points

in EJ: satisfying v. 'It is a d.efin1:ng formula for S. (We follow the convention

that SO(.:z:I' •• ' .x,t) denotes a formula SO in which all occurrences of

%1•...• .:z:J: are free. each %, mayor may not occur in SO. and no variables

besides %). _ . _ ,xl: occur free in !p.) A definable set is semi-algebraic if it has

a ciefir.ing formula which is quantifier-free. It is well-known that there eKists

a quantifier elimination method for real closed fields ((TAR48]). Hence a

subset of E r is semi-algebraic if and only if it is definable.

A decomposition is algebraic if each of its regions is a semi-algebraic

set. A cylindri.t=al algebraic decomposition of E" is a decomposition which is

both cylindrical and algebraic.

Let X be a subset of E". and let F be an element of IT' F is mva:ri.ani on

X (and X is F-i:nvarinnt). if one of the following three conditions holds:
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(I) F(a) > 0 for all a in X.

(2) F(a)'= 0 for all a iD. X.

(31 F(a) < a for all ct. in X.

("F has positive sign on X").
("F has zero sign on X").

("F has negative sign on X").

Let A ;:: IA 1•... ,An J, be a subset of I r ("subset of I r" will always mean "fiiJ.ite

subset"). X is A-1nvarirrnt it each ..4( is invariant on X. A collection ot subsets

of £1' is A-invariant if each element of the collection is.

The decomposition in Figure 2 is an A -invariant cad of E 2 for A ;;: ly 4 -

2y 3 + y2 • 3x2y + 2x4J. Note that a set A c Ir does not uniquely determine

an A -invariant cad D of E". Since any subset of an A-invariant region is also

A-invariant, we can subdivide one or more regions of D to obtain another.

"finer", A-invariant cad.

3. The cylindrical algebraic decomposition algorithm: projection phase.

Let us begin with a more precise version of the cad algorithm. outline at the

end Section 1. Let A c Ir denote the set of input polynomials, and suppose

T ~ 2. The algorithm begins by computing a set PROJ(A) c I r - 1 ("PROJ"

stands for "projection"). such that for any PROJ(A)·invariant cad D' of E"-l,

there is an A-invariant cad D of F;T which induces D '. Then the algorithm

calls itself recursively on PROJ(A) to get such aD'. Finally D' is extended

to D. If r ;:: 1, an A-invariant cad of E 1 is constructed directly.

Thus for r :::: 2. if we trace the algorithm, we see it compute PROJ(A),

theD. PROJ(PROJ(A)) = PROJ'(A), aD.d so OD.. Ulltil PROJT-1(A) has been

computed. This is the projection phase. The construction of a PRO,rr-1(A)

invariant 'cad of E 1 is the base phase. The successive extensions of the cad

of E 1 to a 'qed of E,2, the cad of E 2 to a cad ot E 3• and so on, until an A-

invariant cad of .£T" is obtainec;l.. arp the extension phase. We remark that for

the example of Section 1, where A ;:: ly 4 - 2y s + y2 - 3x2.y + 2x 4 1, PROJ(A) ;::
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12Q4B:z: 12 _.4606%10 + 37%8 + lZzBI.

The key to the projection phase is to define the map PROJ (which takes

a subset of f r to a subset of IT-I)' and to prove that it has the desired pro

perty: We stated this property above as: any PROJ(A,)-invariant cad of E r - 1

is induced by some A-invariant cad of ET. To establish this, clearly it

sutlices to show that over anY,semi-algebraic, PROJ(A)-invariant region in

er- I , there exists an A-invariant algebraic stack. In this section. we will

derme PROJ and outline the proof th~t it has this latter property.

Central to our definition of PROJ will be the notion of delineability,

which we alluded to in Section 1 with the term "well-behaved". For

FEIT.·r ~ 1, let V(F) denote the reBJ. variety of F. Le. the zero set of F. LeL

R be a region in gr-l. F is delineable on R if the portion of V(F) lying in

Z(R) consists of Ie disjoint sections of Z(R), for some Ie ~ O. Clearly when F

is delineable on R, it gives rise to a stack over R, namely the stack deter

mined by the continuous functions whose graphs make up V(F) n Z(R). We

wrIte S(F,R) to denote this sLack. and speak of the F-s~ctionsof Z(R). One

easily sees that S(F,R) is F-invarianl.

For· example, consider again F(% ,y) = y" - 2y3 + y2 - 3x2y + 2%4. F is

delineable on each of the eleven cells shown in Figure 1. and in fact the

stacks which comprise the cad of Figure 2 are just the stacks determined by

F over these eleven cells.

Our tentative strategy for defining PRO! is: insure that for any

PROJ'(.A)~invariantregion R, the following two conditions hold: (1) each t\ EA

is delineable on R, and (2) the sections of Z(R) belonging to ditlerent..\ and

Aj are either disjoint or identical. If these conditions are mGt. then clearly
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we have an A-invariant stack over R, namely tbe slack determined by the

functions whose graphs are tile sections of the J\ 's.

The lefthand drawing in Figure· 4 illustrates a region R and hypothetical

bivariate polynomials AI. A2• and As for which these conditions do not hold.

A} and A 2 are delineable on R I but the AI-section meets the A2-section. As is

not delineable on R. The -rlghthand drawing in the Figure illustrates a parti

tion of R into five regions, on each of which the conditions are satisfied.

The follo-wing example points out a difficulty with our tentative strategy.

Let A C 12 be the set IA 1(x,y),A2(x,y)! ;; {x,y2 + x 2 -IJ. A1(O,y) is the zero

R

V(A I) I

V(A2l~--

V(A3l L>-<
l--J
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polynomial.

hence AI vanishes everywhere on ZOO!), hence AI is not delineable on the

set {Ol eEl, nor on any superset of it. We res~lve this difficulty as follows.

We say FElr is identically zero on X c F;T-l if F(a.,xr ) is the zero polynomial

for every o.:EX. U F is identically zero on X, then any decomposition of Z(X)

will be F-invariant. Hence we may simply ignore F in decomposing Z(X). In

particular, in our example. we need only take account of the sections of A:a

in decomposing ZOol). Thus, we modify condition (1) above to read "(1')

each t\EA is, either delineable or identically zero on R".

PROJ(A) will consist of two kinds of elements: tbose d~signed to attend

to condition (1'), and those to attend to condition (2). Elements of both

kinds are formed from the coeB'icients of the polynomials of A by addition,

subtraction, and multiplication (remark: I r consists of polynomials in x r

whose coefficients are elements of I r - 1). We now speci1y exactly how this is

done.

Let J be any unique factorization domain. and let F and G be nonzero

elemenls oC J [:z:]. We write deg (F) to denote the degree of F (the zero poly

nomial has degree -00). Let 71. = mi:n(deg(F).deg(G». For OSj <71., ~et

Si(F,G} denote.. the ilk subresultant of F and G. an element of J[x] of

degree :s; i. (each coefficient of Sj(F,G) is the determinant of a certain

matrix of F and G coefficients; see [LOOB2b], -[BRT71], or [COL75] for tbe

exact definition). For o:s; i < n. the ilk pri:ncipal subresulta:nt coeJJici.2nt of

F and G, written pscj(F,G), is the coefficient of xi in Sj(F,G). We define

psc,., {F, G) to be 1EJ.
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The following theorem is the basis for definition of the first class of ele

ments of PROJ(A). Some notation: suppose F is an element of Ir . The'

derivative of F. written F', is the partial derivative of T with respect to zr.

deg (F) is the degree of F in Xr . For aEEr - 1, we write Fa(xr ) or Fa to denote

THEOREM 3.1. Let FElr . T<:!:2, and let R be a Tegwn in E T - 1• Suppose that

deg (Fa) is constrrnt and nonnegative for aER, and thai if positive, then the

least k such that pscJ; (Fa,F 'a):;I!Q is c01lStant fOT aER. Then F is delineable

on R.

A proof is given in ~ACM82] (Theorem 3.6). The essential idefl,s are contained

in the proof of 'l'heo~em 4 of [COL75]. [COL75] uses a definition of delineabil-

ity stronger than ours, but a polynomial delineable by that definition IS

delineable by ours.

The theorem suggests that lor a PROJ(A)-inYariant region R, and for

each At lEA, we should have deg «At)a) constant for aER. This may be a non-.
trivial requiremen~.. Consider, for example, the polynomial

F(z,y,') = (y' + z' -1),3 + (z -I),' + (z -1)' + y'.

If R is a region in the plane disjoint from the unit circle, then Fa has degree

3. lf R is a sub~et of the unit circle which does not contain the point

< 1,0>, then F,;, bas degree 2. 1f R is the point <1.0>, then Fa is the zero

polynomial. PROJ must separate these cases. The theorem also suggests

that if R is a PRuJ(A)-invariant region which does not contain the point

<1.0>. then we should also insure that the least k such that pscJ; (Fa,F'a):#O

is constant -tor ar::.R.
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We iI:t.troduce the ncLion of the reductum at a polynomial. For any

nOlizero FEJT = Jr_1[xr ]. ldcf(F) denotes the leading coefficient of F. The

leading term of F, written ldt (F), is

ldc! (F)·z,. ...(F).

The:: reductum of F. written red (F), is F -ldJ. (F). If F ;;; 0, we define

reel(F) = o. For any k~O. the kth reductum oj F, written redJ: (F), is defined

by inductton on k:

redO(F) = F.

rsdH1 (F);;:; red (red.t (F)).

Fa:" any FEJr , the reductaset of F, written RED(F), is

Ired'(F) IQ:!;k"deg (F) & red'(F);O!OI.

Thus the reducta set of our sample F(x ,y.z) above is

!F(x,y,z), (x -1)z' + (x -1)' + y', (x -1)' + y'l.
We can now ir.corporate. the notion of reduclurn into a specification of

the (first) desired property of a PROJ(A)-invariant region R. For each FEA,

there should exist an m such that deg (F Q) = m for all a,ER, Furthermore. if

m is positive, then where i is such that deg(red'(F)) = m. and Q:::; rea"(F),

the leas:' k such .that pSC.t (QQ' Q '(1.);1:0 should be constant for aEoR,

Let F and G be nonzero elements of Jr[x]. Let .

n == min (deg (F).dp.g (G)). The psc set oJ F and G. writlen PSC(F.G). is

(pscJ(F,G)IO"i"" & pscJ(F,G);O!O!

If either F == 0 or G == 0, then PSC(F, G) is defined to be the empty set. Let

.A ;;:; {AI' ,., .Anl, n:::1. be a set of polynomials in Jr , r:::2. PROJj(A) C Ir_I'
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the first class of'polynomials in PROJ(A). is defined as follows. For each

1 ~ i ~ n, let Ri ::; RED(At). Then

n

PROJ,(A) = U U ({Ide! (G;)! U PSC(G"G',) )
i=l ~ER,

With the following simple observation. we can prove that PROJ 1 behaves

as we want. Suppose F and G Gre nonzero elements of IT' and suppose that

for some a€.£T- l
• deg(F)=deg(Fa)~O, and deg(G)=deg(Gcr.)~O. Let

n ;::min(deg(F).d~g(G». Then lor every j,05.j5.n. it is the case that

(psC'j(F,G»",::; pscj(F,uGa)' We see this as follows. For j < n, since

deg(F)::; deg(Fa) and deg(G)::; deg(G",). the matrix obtained by evaluating

th<l ent~i€s of the Sylvester matrix of F and G at a: is just the Sylvester

matrix of fa and Gal hence if j <'n. then (Sj(F,G»a is equal to Sj(Fa.Ga).

and so (pscj(F,G)). = pscj(F.,G.). If j = n, then (pscj(F,G)). = pSCj (F., G.)

THC:OREM 3.2. For A c Jr , r:a2. if R is a PROJ l(A)-invariant regiDn in. ~-1,

then every element oj A is either delineable or identically zero on R.

Proof· Conslder any Fe:A. If F::; O. then F is identically zero on R. Sup·

pose F#O. By definition, PROJI(A) includes every nonzero coefficient of F,

so each coefficient of F either vanishes everywhere or nowhere on R. Hence

d.eg(Fa) is constant for aER. Let deYR(F) denote this constant value. If

degR(F)::; • CICI, then F is identically zero on R. If d.egR(F)::; O. then obvi

ously F is delineable on R. Suppose degR (F) :=!:: 1. Then there is a unique

reductum Q of F such that deg(Q) ::; deYR(Q) ::; degR(F). Then Fa::; Qa for

all a€R. hence if Q is delineable on R I then F is delineable on R. Since

PSC(Q,Q ') c PROJ(A), the least k such that (PSC. (Q,Q ')).;'0 is constant lor
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ae:.R. Hence by our observation above, the least k such that pSC/r, (Q(l.' Q ',,)Jl!"O

is constant· for aER. Hence by Theorem 3.1. Q is delineable on R, hence F

is delineable on R. Thus every element of A is either identically zero or

deJineaUe on R .•

thE.. following theorem is the basis for definition of the second class ot

element, 01 PROJ(A).

1'H30REM 3.3. Let A c lr, T <:!:: 2, and let R be a Teginn in er-1. Suppose th4t

fOT every FEA, the hypotheses of ThsoTem 3.1 aTe satisfied. Suppose also

that for every F,GEA, FJl!".G, the lea...<::t k sur:h that psr:/r, (F", Grl)Jl!"O is r:onstant

JOT aER. Then every FEA is delineable on R, and/or every F,GEA. rrny F-

sec.:twn and any G-ser:ticm oj Z(R) erre either disjoint or identical.

A proof is given in [ACM82] (Theorem 3.7). The essential ideas are contained

in the proof of Theorem 5 of [C0175].

Let A and R.t be as in the definition of PROJl . Let

PRDJz(A) = U U PSC(G;..G,)
lsi<i"'h Gt"Rt <k GJERJ

PROJ(A) is the union of PROJ,(A) and PROJz(A).

We prove that PROJ works, i.e. that conditions (1') and (2) are satisfied

for a PROJ(A)-invariant region:

TH30REM 3.4. FOT A c Jr , r~2, if R is a PROJ(A)-invariant region in er- l ,

th"n. eV2ry eh:ment 01 A is either deli:n.eable or identica.Uy zero on R, and

fOT every F,Ge:.A. any F-ser:tion and any G-sectian of Z(R) erre either dis-

joint OT identical.
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Proof. :i3y Theorem 3.2. every element of A is either delineable or identically

zero on R: Let B be the set of elements of A which are delineable on R.

Now by a!l argument similar to that used in the proof of Theorem 3.2. using

TheoreQ 3.3 in place of Theorem 3.1, it follows that for every F,GEA, any F

section and any G-section of Z(R) are either disjoint or identical.•

Thi;:, completes the proof that. it R is a PROJ(A)-invariant region in

W-I, then there exists an A-invariant stack over R, namely the stack whose

sections are the sections of those At's in A which are delineable on R. We

VrTite S(A,R) to denote this st.ack. Our agenda for this Section will be com

pleted by showing thal if also R is semi-algebraic, then S(A,R) is algebraic.

By our remarks in Section Z. it suffices to show that each region of S(A.R) is

definable. Let:J: denote <Xl, ...• Xr-l > and Y denote X r . Any section of S

is an F-section of Z(R) for some FEA, which is delineable on R: say that it is

the j'h section of S(F,R) (where sections are numbered from bottom to

top). Then we can define it as the set of <z,y> satisfying a formula "xER

and Y is the jth real root of F(z.y)". If rp is a defining formula for R, then

th.3 following is such a formula:

~(z) & (~y,)(3y,) ... (3Yj-l)[ y, < y, < ... < y;_, < y

& F(z.y,) = 0 &F(z.y,) = 0 & ... &F(z,y,_,) = 0 &F(z,y) = 0

& ('v'Yj+l)l (Yj+l ¢ Yl &Yj+l ¢ Ye &- ... & YJ+l ¢ Yj_1 &

y; .. " y & F(z ,y; .. ) = 0) => y, .. > y I ].

ThE: sectors of S can now be defined using the detlning formulas for the sec

tions: any sector of S is either the set of <:r:.y > between two sections of S .

. or the se:t of <% ,y:.> above the topmost section of S, or the set of <z ,y >
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below the boltom~ostsection or s. This concludes the proof.

16

4. The cylindrical algebraic decomposition algorithm: 'base phase. Let us

use th<.: precise definition of cad given in Section 2 to give precise

specitici<.tions for a cad algorithm. Its input is a set A C lr' T ~ 1. Its output

is a description of an A-invariant cad D of E'". This description sh(,uld

in10rm one 01 the number of cells in the cad, how they are arranged into

sti.1cks, "~nd the sign of each element of A on each cell. In this section, we

define the index of a cell in a cad; the cad algorithm meets the first two of

the above requirements by producing a list of indices of the cells of the cad

of E r that it constructs. We also define in this section an exact representa

tion for algebraic points in ET, that is, points whose coordinates are all real

algebraic· numbers. The cad algorithm. constructs, for each cell of the cad of

E'", an exact representation of a particular algebraic point belonging to that

cell (we can this a sample point for the cell). The sign of ~EA on a particu

lar cell can then be determined by evaluating At (exactly) at"the cell's sam

ple poinL. and in this way we meet the third requirement above.

Whbre A c lr is the input to the cad algorithm, in the projection phase

we compu~ed PROJ(A), PROJ2(A) , and finally K = PROJr-I(A) c II' It is the

ta,;:k of the base. phase to construct a K-invariant cad D- of E 1 , that is. to

conslruct 'cell indices and sample points for the cells of such a cad. Let us

now define cell indices.

In a cad of E l
, the index of the leflmost I-cell (the I-cell with left end

POlOt - co), is (1). The index of the O-cell (if any) immediately to its right is

(2), the lndex of the l-cell to the right of that Owcell (if any) is (3), etc. Sup

pose that cell indices have been defined for cad's of er- I
• T ~ 2. Let D be a
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cad of E r . D induces a cad D I of V-I, Any cell d of D is an element of a

stack S(c) over a cell c of D '. Let (i l..... '4--1) be the index of c. The cells

of S(c) may b~ numbered from bOltom to top, with the bottommost seclor

being called cell 1. the section above it (if any) cell 2, the sector above that

(if any) cell 3, etc. If d is the jth cell ol the stack by this numbering. then

its cell index is (i l •...• i,.-1,j).

The sum of the parities of the components of a cell index is the dimen

sien of the cell (even parity;; 0, odd parity;; 1). In a cad of E 2 , for example.

cell (2,4) is a O-cell, (2.5) is a !-cell.

We begin the base phase by constructing the set of all distinct (i.e. reLa

ti...~ely prime) irreducible factors of nonzero elements of K (see [KAL82] for

polynomial factorization algorithms), Let M = 1M}•...• M.!:"! C II be the set

of these factors. The real roots al < .' .. < Ctn. n =::: O. ot I1M will be the 0

cells of D- (if n = 0 then D- consists of the single I-cell E I ), We determine

the cz.;'s ~y isolating the real roots ot the individual M;,'s [CLOB2]. By their

relative primeness. no two elements of M have a common root. Hence by

refining the isolating intervals for the o:;'s. we obtain a collection of disjoint

left-open and right-closed intervals (T l'S I]' (T2,5:;d •... , (T" .s"] with rational

endpoir.:ts, each containing exactly one aj, and with TI < 5 1 :S r2 < ...

As soon as we .know n, we can trivially write down the indices of the

2n+l cells of D-. To describe sample point construction, we first define a

representation for an algebraic point in E', i ~ 1. Loos ([L0082a], Section 1)

describE's the representation of a real algebraic number 7 by its minimal

polynomial M(x). and an isolating interval for a particular root of M(x).

With..., so represented. and letting m = deg (1/), one can represent any ele-
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ment of Q(r) as an element of Q[x] at degree ::: m - 1 (as Laos describes).

For an alge·braic point in E i , there exists a real algebraic I' such that each

coordinate of the point is in Q(y): -y is a primitive element for the point. Our

representation for the ppint is: a primitive element -y and an i-tuple of ele

ments of Q(-y), aU represented as described by Loos.

For the 1-cells or D· we primarily use appropriately chosen (rational)

endpoints from the isolating intervals above as sample points. However. if Si

= ritl is a O-cell, we find (by bisecton) a positive rational e, such that

(T;:+1 + l:.,si:td iwlates ai:tl' and use T;:+1 + e as sample point for cell (2i + 1).

Also, we use Sn + 1 as a sample point for cell (2n + 1). It D· = IEII, we use

an arbitrary rational nwnber. Obviously the only point in a O-cell is the cell

itself. Its value is an algebraic number. Thus all our sample points for D·

are algebraic numbers, and hence can be trivially expressed in our just

defined algebraic point representation, Examples of sample points for a cad

of E 1 can be found in Section 6.

5. The cylindrical algebraic decomposition algorithm: extension pha..c;e.

First, consider the extension of the cad D· of E 1 to a cad of E 2, In the pro

jection phase, we computed a set J = PROJT-2(A) C 12 • Let c be a cell of D·,

The stack 8(J,c) is a subset of the cad of E 2 we are building. Let a be the

sample point for c, and let Jr; be the product of all elements G of J for

which G(cr:,X2)~O, Using algorithms for exact arithmetic in Q(a) [L0082a],

we construct Jr; (a,x2)e:Q(a)(x2]. We isolate the real roots of Jr; (0.,%'2)

([L0082a]. Section 2). This determines $(J,c): p is a root of Jr;(a.x2) if and

only if < Ct.,{i > lies on a section of 8(J,c). For each such p, we use the

·_re?re~entaticnfor cr:, the isolating interval for P, and the algorithms NORMAL
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and SIMPLE of [LOOB2a] to construct a primitive element 7' for Q(a..fJ); we

use "'I to co"nst.ruct a representation of the form we require for < a..fJ >. We

gel sector sample points for S(J,c) from a. and the (rational) endpoints of

the isolating intervals for the roots of Jc (o.,x2). much as was done in Section

4 for E 1. Thus sector sample points are of the form < o..r>. r rational. so

we can take 1 = ct. Given the cell index for c. and the isolated roots of

Jc (a,x2). we can trivially write down the indices fa!" the cells of S(J.c) (as

for E I in Section 4).

After prucessing each cell c of D· in this fashion. we have determined a

cad at £2 and constructed a sample point for each cell.

Extension from £i-I to Ei Cor 3:S: i :!:> r is essentially the same as from

£1 to £2. The only difference is that a sample point in E(-l has i - 1, instead

01 just one. coordin~tes. But where a is the primitive element of gi-l sam

ple point. and F = F(xI •. .. . Xi) an element of 1(. arithmetic in Q(a) still

suffices for constructing the univariate polynomial over Q(ex) that results

from substituting the coordinates < a.I' .... !Ii-I> for <Xl • .••• X(_I > in

F.

The following abstract algorithm summarizes our discussion of the cad

algorithm.

CAD(r.A:I,S)

Inputs: T is a positive inteeger. A is a list of n~O integral polynomials in r

variables.

Ou/puts: J is a list of the indices of the cells comprising an A -invariant cad

D of Er . S is a list of sample points for D.



Arnon. Collins. McCallum: Cylindrical algebraic decomposition I 22

(1) [r::.: 1.] It r > 1 then go to 2. Set I~ the empty list. Set S~ the empty

list. Isolate the real roots of the irreducible factors of the nonzero

elements of A. Construct the indices of the cells of D and add

them to I. ConsLruct sample points fa: the cells of D and add

them to S. Exit.

(2) [r> 1.] Set P+-PROJ(A). Call CAD recursively with inputs r-1 and P to

obtain Ol'.tputs l' and S' that specify a cad D' of E'"-I. Set I+- the

empty list. Set S +- the empty list. For each cell c of D', lel i

denote the index of c, let ex denote the ~ample point for c. and

carry out the following four steps: first, set h(xr)+-TII~(a,xr)1

Aj e:A & Ai (a.%r );;!OJ; second. isolate the real roots of h (:r;.); third.

use i, ex. and the isolating intervals for the roots of h to construct

cell indices and sample points for the sections and sectors of a

stack over c; fourth. add the new indices to J and the new sample

points to S. Exit.

6. An example. We now show what algorithm CAD does for a particular

example in E 2. Let

A1(%,y) = 144y 2 + 96%2y + 9.%'4 + 105x2 + 70x -98,

A2(z.y) = zy2 + 6zy + %:1 + 9%.

and A = !Al.A,j.CAD is called with input A. We compute PROJ(A):

Ide] (AI) =

pSC:c;(A1,Ai)

psc I(Al.A~)

.ldcf(Ted(A,))

144.

= - 580608(%4. 15%2 - lOx + 14).

= 1.



/.rnon. Collins, McCallum: Cylindrical algebraic decomposition I 23

psc,(T.d(A,),[TSd(A,)]') = I,

ldcj(red2(A 1» = 9x4 + 105x2 + 70x -96.

Idef (A,) = :,

psc o( A2 , A2) = 4x~,

psct(A2 ,A2) = I,

Idcf(T.d(A,») = 6:,

pse,( T.d (A,). [T.d( A,)] ,) = I,

ldef (Td'( A,)) = : (:' + 9),

psr.c( Ai A2) =

x 2(61x 8 + 3330x 8 + 126C.:z:~ - 37395x· - 45780x 3 - 32096.:z:2 + 167720x + 1435204).

pse,(A"A,) = 96:(:'-9),

psc,(A"A,) = I,

pse,(TSd(A,).A,) =

x(61x 8 + -5922%'6 + 1260xO" + 31725.:z:4 - 25620.:z:3 + 4076&:2 - 13720x + 9604).

psc 1(Ted(A 1),A2) = 1,

pso,( A" red (A,» = -36: (3:z:< - 33:' - 70: - 226),

psc,(A,.T.d(A,)) = l.

pse,(red(A,),red(A,» = l.

It turns out that the roots or PI (x) =x 4 - 15x2 - lOx + 14 and 1'2(.:z:) = x give

us a "silhouette" of VeAl) U V(A2), hence for simplicity in this example. let

us 'set PROJ(A) = 11' ,(:),p,(:)J (in general, PROJ(A) may contain

superfluous elements; [COL75] and [ARNB1] describe techniques for detect

ing and 8liminating such elements).

P I and P2 are both irreducible. so we have MI = PI and M2 = P2 in the

. noLatipn of Section 5. Irl l has four real roots with approximate values -3.26,
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-1.51, 0.7, and 4.08; J.f2 has the unique root:c = O. 'i.'he following collection of

isolating intervals tor these roots satisfies the conditions sel out in Section

5:

1(-4,-3], (-2,-1], (-1,0], (2'1], (4,6].

Since tbere are five O-cells. the cell indices for the cad are (1). (2) .... , (11).

We now construct representations for the sample points of the induced

cad of };I. Each 1-cell will have a rational sample point. hence any rational )'

will be a primitive element. We arbitrarily choose 7 = O. (-1.0] is an isolal

ing inter....al for 1 as a root of its mimimal polynomial. We may take the 1

cell sam~le points lo be -4, -2. -1. ~ , 4, ·and 9.

ThC:l four irrational O-qells have as their primitive elements the four

roots of M1(x). The representation for the leftmost O-cell, for example, con

sists of M1(x), the isolating interval (-4.3]. and the 1-tuple <z>. where:c

corresponds to the element 7 of Q(-y). The O-celL:r: = 0 is represented in the

same fashion as the rational I-cell sample points.

We now come to the extension phase of the algorithm.. Let c be the left

mosll-cell at the cad D' of E i
. Ai ( -4.y);tO and A2 ( -4.y)~0. hence

I,A2(-4,y) =24ly2 + 6y + 25) (24y 2 + 256y + 601).

y2 + By + 24 has no real roots. but 24y 2 + 256y + 601 has two real roots,

wh~ch can be isolated by the intervals (-8.-7] and (-4,-2]. Thus the stack

S(c) has two sections and three sectors; the indices for these cells are (l, 1).

(1.2), .... (l,5). From the endpoints of the isolating intervals we obtain sector

sample points of <-4.-8>. <-4.-4>, and <-4.-1> (which will be

. represented in the customary fashion). The two roots 11 and 72 of
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24y 2 + 25By + 601 are both 'b'-coordinates for the section sample points and

primitive elements for these sample points. Thu~ the (representations for

the) section sample points are

124y' + 256y + 601, (-6,-7] ,<-4.y>!

and

124y' + 256y + 601, (-4,-2] ,<-4,y>J.

Now let c be the leftmost O-cell of D '; let a also denote this point.

A,(ex,y)"O and A,(ex,y)"O; we have

A,A,(ex,y) = (y' + 6y + ex' + 9)(y + -&-ex')'.

y2 + By + a 2 + 9 E Q(a)(y] has no real roots, but obviously y + -&-ex2 has

exactly one; (-B,B] is an isolating interval for it. Hence S (c) has one section

and t~o sectors; the indices of these cells are (2,1), (2,2), and (2.3), The

aprropriate representations for < • a,-a> and < - a.9> are the sector

sample points. Since y + -&-ex2 is linear in y, its root is an element of Q(a).

Hence

IM,(z), (-4,3], < z, - -}x' > J

is the representation of the section sample point.

Thus in this p:'lrticular case it was not necessary to apply the NORMAL

and SHlPLE algorithms of [L00821::1.] to fmd primitive elements for the sec

tions of S(c). and it is alsq nat necessary for the other sample points of this

eX'Unple. ln general. however. for a O-cell 0:, Ac: (a.y) will have nonlinear fac

tors Vrith real roots. and it will be necessary to apply NORMAL and SIMPLE.

, Saying Uils another way. where a is a O-cell of D' and < a.~ > is a section
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sample point of D, we had in our example above Q(a,f1) = Q(a), but in gen

eral. 'l(a) Will be a proper subfield ot Q(a:,P).

The steps we have gone through above for a 1-cell and a O-cell are car

ried out for the remaining cells of D' to complete the determination of the

A-invariant cad D of E 2•

Although information of the sort we have described is all that would

actually be produced by CAD. .it may be useful to show a picture of the

decomposition of the plane to which the information corresponds. The

ew've de,fined by AI(x,y) = 0 ha~ three connected components which are

easily identified in Figure 5 below. The curve defined by A2 (x,y) = 0 is just

th~ y-axis, Le. the same curve as defined by x = D, and cuts through the

middle of the second component of V(AI). The A-invariant cad of E 2 which

CAD determines is shown in Figure 5. We remark that the cur:re A1(z,y) is

Pigure 5
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from ([IlIL32]. p. 329).

7. Refet-ences

Rererence fDr bDth Parts I and II are cDllected at the end Df Part 1I.
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