Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1983

STORK: An Experimental Migrating File System for Computer
Networks

Jehan-Francois Paris
Walter F. Tichy

Report Number:
81-411

Paris, Jehan-Francois and Tichy, Walter F., "STORK: An Experimental Migrating File System for Computer
Networks" (1983). Department of Computer Science Technical Reports. Paper 335.
https://docs.lib.purdue.edu/cstech/335

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

STORK: AN EXPERIMENTAL MIGRATING FILE SYSTEM FOR COMPUTER NETWORKS

Jehan-Francois Paris

Department of EE & CS, University of California, San Diego
La Jolla, CA 92093

Walter F. Tichy

Department of Computer Sciences, Purdue University
West Lafayette, IN 47907

February 10, 1983

CSD-TR-411

STORK: AN EXPERIMENTAL MIGRATING FILE SYSTEM FOR COMPUTER NETWORKS

Jehan-Frangoeis PAris

Department of EE & C5, University of Califernia, San Diego

La Jclla

r CA 92093

Walter F. Tichy

Department of Computer Sciences, Purdue University
West Lafayette, IN 47907

Abstract

STORK is an experimental Efile system
designed for local and long-haul networks.
It ensures that each user has a single
vliew of his flles, independent of the net-
woark node where he works, and independent
of the locaticn of the files. BSTORK files
have no fixed 1leocatien; instead they
migrate to the network node where they are
needed. File consistency is ensured by
permitting only one current copy of each
Eile to exist in the net at any given
time. A .lock mechanism Is provided for
controlling concurrent access.

The performance of the system depends
on the lecalit of the references to a
glven file and not on the host where the
file was created. An analytical model is

presented that compares Ffile mnigration
with remote file access.

STORK hgs been implemented on a net-
work of UNIX systems running on VAXes and
PDP-11's, using primitives of the Berkeley
Network software, It can alse be quickly
installed on any network of UNIX systems
allewing remeote execution of commands.

Keywords: networks; distributed file sys-
tems; flle transfer; migration; UNIX
operating system.

1. INTRODUCTION

Modern operating systems Iimplement
abstract machines that are meore convenient
to use than bare hardware is. They hide
low-level details of managing hardware and
seoftware resources, and present powerful
virtual machines Eor user pregrams. For
example, the locatlens of files ocn a disk
are irrelevant -- the oper-ting system
performs the mapping of file names ko disk
addresses automatlcally.

x
UNIX 1s a trademark of Western Elec-
tric

NMetwork services are a relatively
recent addition to operating systems. A
wide variety of communication technologies
is available, providing reliable, low
cost, high-speed computer communication.
Although the underlying hardware and
method of transmissicn vary significantly
from network to network, layers of con-
trolling software hide these differences.
Thus it is possible to previde a uwnique
application-leyel interface that works
over a variety of configurations.

The services offered by current net-
worka wvary wldely with the speed of the
links available, the integration of the
different systems, and the sophistication
of the network software. File transfer,
message transfer (electrenic mail), and
the passibility of executlng commands on
remate hosts are examples of basle capa-
bilities provided by nearly all networks.
More advanced networks also support ser-
vices llke remote login, remote Interac-
tive commands [Hwan82], or operations on
files residing on remote hosts [RoweB2].

These networks share a common draw-
back: they require the user to remember
where he ls currently logged in and where
his files are. Thls property complicates
the user's task considerably, because It
violates the principle of location tran-
sparency. Locatlon transparency permits a
user toc reference files by name rather
than by address. Most <centralized £file
systems lmplement location transparency by
mapping file names to disk addresses
automatically. Current netwarks add an
additional level to the naming hierarchy,
but provide no automatic location tran—-
sparency., Thus, in using networks, the
user must take a step backwards and deal
with files at a lower level of abstracticn
than wikth flles on traditicnal operating
systems.

Wnat the user really needs is a true
network file system spanning the segcondary
stores of all network hosts. Such a sys-
tem 1is able to provide users at all sites
with the same view of the file system,

independent of where files actually
reside.

The STORK system described 1n this
paper Is an experimental file system that
provides complete lecatlon transparency
for £filles scattered throughout a network.
It is Iimplemented on a net of UNIX
machines using the Berkeley MNetwork
software. STORK is based upon the idea of
flle migration. This means that Elles do
not have a fixed home; Iinstead, they
migrate to network nodes where needed.
For example, a programmer may create a
file on cone machine, but edit It on
another. Referencing the "file to be
edited on the second machine iS5 sufficient
to force the file system to transfer the
Eile to where It will be needed. This
apprecach assures fast access if the file
reference patterns exhibit locality at the
host level,

An important assumptlon is that users
tend to access a certaln set of files
repeatedly from the same host, giving
migrating files a considerable performance
advantage over files wlth fixed hocmes,
STORK has been built In part to test
whether this assumpticn is justified, and
to measure the effects of migration,

A major constraint in building STORK
was that we could mot afford to redesign
the f£ile system of every host on the net-
work. Instead, we took the approach of

"extending an existing fille system, the
Unix flle system, which is supported by
most hosts on our network. To simplify
integration, STORK provides an interface
similar ta that of the Unix file system,
with only minor extenslons.

Sectien 2 of this paper summarizes
the approaches to Eile handling on net-
woerks., Section 3 presents the STORK sys-—
tem, and Section 4 gives an analytical
performance comparlsen of STORK wilth
remote flle operations. Section 5
discusses our current implementation based
on the UNIX operating system and the
Berkeley Network software. our conclu-
sions appear in Sectlon 6.

2. ACCESS TO REMOTE FILES

There are three alternative
appreaches ta accessing remote files:
remote f£ile operatlons, remocte login, and
Elle migration, As we shall see, only
remote file operatlions and file migration
are sultable for supporting a network file
system.

2.1 Remote Flle Operations

Remcte file operations allow the
cpening, reading, writing, and closing of
remote flles through the network. At the
application 1level, local and remcte files
are treated 1in exactly the same way.
COCANET is a typical example of this
approach {Rowe82]. It is Implemented on a
net of computers running the UNIX operat-
ing system, and allows programs toc access
remote resources, in particular remote
files, COCANET requires that the names of
all remote files be prefixed with the name
cf the host where the Eile is stored. When
a4 process attempts to apen a file whose
name is prefixed by the name of a non-
loccal hoast, <ontrel is passed from the
standard UNIX open routine to the network
manager. The network manager communicates
with its counterpart in the remote host to
create a private remote server for the
process attempting the open. All further
operations on the remote file are passed
to the remote server, which executes them
and transfers the results back through the
net. -

The maln drawback of COCANET is that
it requires the user to remember where his
files are located. There is no attempt to
pravlide locatlon transparency on the host
level.

A potential advantage of remote Eile
operatlons I3 that they send aonly those
buffers that are actually read cr written
threugh the net. Thus, remcte Eile cpera-
tions handle accesses te relatively small
portions of large files efficiently. Such
a situatlon is often Eound in data base
applications. Remote file coperations are
somewhat 1less efficient if filles are
accessed completely and repeatedly from a
single host. This is typlcally the case
in program development or text processing
applications that account for a large part
of the workload of many interactlive sys-
tems. For example, UNIX text editors do
not noermally overwrite porticns of a file
—— when the editing session is finlished,
they write a completely new file and
delete the old one. Moreover, text pro-
cessing and pregram development typically
require many lterations and therefore
repeated access from the same host te the
same set of flles, A flle system based on
remote £lle operations weould move the
whole content ofF each flle back and forth
between the twe hosts every time the file
is accessed. These transfers not only
take Etime, but may alsc be So numerous as
te exceed the capacity of the network.

2.2. Remote Login

Ancther approach to the problem of

accessing remoke files is remote login.
This facility allows any terminal con-
nected to the local host to act as if it
were directly wired to a remote host.
Such a facllity is provided by many net-—
works, for instance ARPANET, CSNET,
Telenet, etc. However, remote login has a
serious restriction: at any time, the user
can access conveniently only those files
residing at the machine where he 1s lagged
in. If he wants te work with files at
other machines, he must wander around in
the net to get to them. 1f he needs to
combine several files, he must transfer
them to a single hest. This is a rather
severe limitation which precludes the use
of remote logln For supperting a network
file system,

2.3. Flle Migration

The concept of file milgration Is not

new. It has been implemented on several
computer lnstallations and studied inten-
sively, for example by Stritter [Strit77],
Smith [SmitBla, Smit81b], Lawrle e.a.
[Lawr82], and Porcar [Porc82]. With one
exception, previous research has only con-
.sldered file wmigration within the memory
hierarchy of a single computer. The
exception is Parcar's thesls, which
analyzes several strategies for a distri-
buted file system, including mlgrating
files. His study relies on data obtained
on a single machine. ’

Supperting migration requlres few
changes to hest file systems. Once a £ile
has been migrated te a given hest, it can
be accessed there using the file primi-
tives of the host operating syatem, Con-
currency control is simple, since the
current cepy of the File 1s always 1lecal
to the host updating 1t. Migration per-
-Eorms best when - files are repeatedly
referenced from the same hest rather than
accessed at random. It is our contention
that this behavior occurs frequently
enough to make file migratlen more effi-
clent than remote flle operaticns.

3. THE STORK SYSTEM.

Since a true netwozk file system com=-
Dletely hides the location of files from
its users, the system can assume all
respansibility for file placement. As a
consequence, Elles do not need fixed
homes. Instead, they are free to migrate
to network hosts where needed or where
there 1{s space available for them. For
example, a programmer may work on several
dlEferent hosts, Referencing a file on
any hest is sufficient te force the net-
woTtk to locate the file and bring it to
that hest. 1In addition, £iles that are
located on hosts where Elle space is at

premium may be transferred automatically
to less congested hosts.

3.1. The File Search Mechanism

On a broadcast network, name searches
can be managed with a single brcadcast
message. On networks withecut any broad-
cast mechanism, some directory informaticn
must be kept to locate files efficlently.
In STORK, thls information is minimized by
providing each user with a host search
list, consisting of a number of hosts to
Be interrogated when locating FEiles.
Whenever a file cannot be found locally,
STORK sends a request for the file to
eyery host on the host search list until
one responds by sending the file +to the
raquesting host. Now suppese that we had
a hybrid network consisting of broadeast
(sub) nets 1linked by gateways. The host
search list would then be a list cf gate-
ways; each of these gateways would brgad-
cast the request on 1ts respective sub-
net,

As a consequence, the name af a file
and the dlrectory where it resides must be
the same for all hests included in the
system, This restrictien is necessary te
assure uniform file names on all hosts.
The local directory hierarchy of every
host is simply an image, sometimes Incom-
plete, of the directory hierarchy of the
network file system.

A common way cof crganizing a flle
system is to let each user manage his own
directory tree. Unfertunately, administra-
tors of computing facilities have differ-
lng opinions of what the root names of
these directory trees should be. For
example, John Doe could have the root
directory names doe, john, jdee, jxd, or
even a randem string on the various net-
work hosts. Fer such cases, STORK pro-
vides a simple roct name translaticn
feature.

3.2. Concurrency Control

Like any file system on a single
machine, the distributed file system must
contend with Ethe problem o©f concurrent
access., The design of STORK aims for sim-
plicity and utility, rather than general-
ity. The system permits multiple simul-
taneous readers of a file, but only a sin-
gle writer. Readers may obtain a copy of
the Eile when they first access it,
updates written to a file while 1t is
being read are not gquaranteed to be wvisi-
ble to the readers, The system alsc pro-
vides 1locking prilmltlves Eor ensuring
exclusive access te a Eile.

3.3. File Access Rights

An important requirement of a distri-
buted file system 1s a file praotection
mechanlsm similar tc theose existing 1in
centralized file systems. STORK satisfies
tEhis requirement simply by preserving the
ewnership and protection attributes of a
migrated file.

A sSomewhat more compllicated issue
involves the right to migrate a File to a
di fferent node in the network. The owner
of a file may not wish te permit others to
move his file away, because he will then
incur the delay of transmitting the flle
back., One solution is te introduce a Eile
migration right, analcgous to the well-
known read/write rights for files. Thus,
the owner of a file can decide what is
most appropriate, Independent of other
access rights. This approach has two main
drawbacks. Filrst, it makes rthe users
aware of the migration process and there-
fore contradicts our objective of location
transparency. Second, 1t raises the prob-
lem of how ta access remote [Elles that
cannot be mlgrated. A process reguesting
read-only access Is easily taken care of
by providing ,it with a temporary local
copy of the flle. A process that wants to
write a non-migratable flle causes more
dlfficulties, One approach would be to
perform the write by means of remote Eile
operations similar to COCANET. Anather
aene would be to make a local copy of the
file, to let the process update that copy,
and to update the remote original when the
process closes the file,

A simpler solution Ete the migrate
right problem is to associate the migrate
right with the write right. Thls tech-
nique could incenvenlence the cwner of a
Elle, since he might have to rekrieve it
after it has been migrated tec other nodes.
On the other hand, thls solutien is falir
in that ({t does not give preference to a

partlcular writer, and 1t 1is consistent .

with location transparency.

3.4. STORK File Access Primltives

STORK's aim 1s to hide the 1locatlon
of flles, Bach time a process reads or
writes a file, STORK tries to seize it, i.
e. to cache 1t in the hast on which the
precess is running. The precise semantics
of the seize operation are as follows. If
the file already resldes on the local
machine, seize checks Efor a 1leock and
returns successfully 1f the file is not
locked. If no local ceopy of the file is
found, seize successively interrocgates all
hosts in the host search list. TIf the
file 1s found, seize determines whether It
is locked or unlocked and whether the pro-
cess initiating the seize has the permis-

sion to migrate the flle.

If the file is unlocked and the requestar
has migrate permission, seize creates a
local copy of the flle, under the same
name and with the same same access rights-
as the remote copy of the file. Selze
alse marks the remote copy as stale. 1In
all other cases, seize returns an errer
code describing the status of the file
{not found, locked, or migrate permission
denied).

The primary purpose of the latch and
unlatch primitives 1s to ensure con-
currency coentrol by prohibltlng concurrent
writes of the same file, [atch creates a
lock for a file, preventing other
processes from writing and migrating the
file. Latch Eails 1f the £flle 15 not
local, “sc 1t must normally be preceded by
a call to seize. Unlatch removes the
lock.

The primitive aperation carben-co
provides read-enly access to Eiles whic
are locked or cannot be migrated.
Carbon-copy creates an input stream frem
which the requesting process can read the
centents of the Eile. If the file 1s

non~-lacal, carbon-co first copies it
into a a lccal flle that remains inacces-

sible to the caller., (Users that want to
avaid the delays resulting from repeated
carbon-copy operations en the same file

can always make thelr own lacal copy of

the file.}

Seize and carbon-copy are beth low-
level operations., The user interface of
STORK consists of network analogues of the
usual file primitives cpen, create, close,
etec. For Ilnstance, net o¥en 15 the analo-

-gue to the open primitive and is imple-

mented as fellaws:

procedure net open{file, mode)
begin -
1f seize(flle)=successful then
~ open(flle, mode) I
elsif mode=read-only then
carbon-copy(Elle, tempfile)
open (tempfile, read)
else
fail
end if
end net _open;

4. PERFORMANCE ANALYSIS

Let us neglect for a mement the prob-
lem of concurrent accesses and assume that
files are always seized and never carbon-
copied. Under this assumption, STORK files
always reside on the host where they have
been accessed most recently. Since users

generally tend to access the same file
Erom the same host repeatedly, the Eile
system continucusly adapts ltself to the
demands of its wusers. This flexibility
has a price. Since files have no £fixed
addresses, the search feor a non-local file
normally involves the interrogation of
several remate hosts.

Conslder a computer network consist-
ing cf n hosts numbered 1, 2, ..., N.
Assume that the status of a £file can be
modeled by a Eirst-order Markov chain
whose states correspond to the nodes where
the flle was accessed for the last time —-
and thus where it resides. The transition
probability matrix of the chain ¢an then
be written as P = { P{s), where .
the probability that the "file is accgssed
from host j, given that it was accessed
for the 1last time at host i. Obviously,
the sum of these probabllities must be
one.

m

33 Piy=1, i=1, 2, «.., n.
Assuming that the <chaln 1s homogenecus,
irreducible and aperlodic, one can compute
its 1imiting state probabllity vector as
Y= ces %n This vector) is
the e{genvect matrix P. Bach)\,
represents bnth

- the steady-state probabillty that the
file will be accessed next frcm hast
i,and

- the steédy—state probability that the
file resides on host i.

This first-crder chain can simulate
the behavior oF distributed £flles with
different degrees of locality . For the
sake of simplicity, we restrict ourselves
to a special first-order Markov medel that
only considers consecutive references to
the same file from the same host, This
model, known as Easton's moadel, was origil-
nally developed £for modellng the page
referencing behavior of data bases
[Bast7?75]. It reguires n+l rather than n
parameters, but can nevertheless take lnto
account the tendency of flles to be
repeatedly accessed from the same host.
The transition probabilities of Easton's
medel are given by

Py = rH{l-riyy
Piy = {i-t)pq, i # 3,
where'oir(l and }1)0 for i =1, vae; Do

Since
n
2 p

s21 ij = 1; i=1,...,n,
J=

ocne must necessarily have

n
T Mi=l.

Toe evaluate the cost of seizing a remote
file an STORK, one must consider both the
number of remote hosts interrogated during
a seize and the number of blocks shipped
over the network.

The average number of hosts interro-
gated when seizing a f£ile depends both on
the probabilTty of finding the file on any
given host and on the order of the hast
search list. To stay on the conservative
side, we assume that the orderlng of hasts
in the search list has been fixed arbi-
trarily and was not tuned to the indivi-
dual behavior of any file. We also assume
that the probability of searching for a
non-existing flle 1s negliglble. Under
this assumption, the average number of
hosts to be interrogated for locatlng a
flle not found on the lecal host is

&t any given time, there is a pruba-
bility %\. that the file resides on host i.
The probab111ty that it will be accessed
from hest j whilile being away frem that
host is equal to

(3MPEg T TR Dy

The average number N of hosts te be
interrogated when a non-local E£ile is

seized is then given by

n
-1
N = j§1(l-'\j) (1—:);].52—, (1)

and the average number Tm of blocks to be
shipped 1is

Tm = JEl(l =N }(1—r)hj5p (2)

where S is the size of the Elle in blocks.

Suppese now that the same file is
accessed vlia remote file operatlons as
provided by COCANET. To be fair, let us
assume that the file resides at the host
where it is the most frequently rtefer-
enced. (A more detailed dlscussion cf the
problem of cptimal Eile placement can be
found in [Chus%].) The average number N
of remote requests when the file 1%
accessed i1s now equal to

N = 1-Mpax, (3)
where may = max [N\ jli=, <., nl. The
average' ™ Humber of blocks shipped is
egual to

Tr = {1_}\:"3)() (Rt4W) , (1)

where R is the number of blocks read and W
the number of blecks written,

Observe now that

| A

(1-Mmax)®nmax * (1-Amax}

nwia

3 1(1‘}j)hj

|A

(1-Mnax) (L¥hpay) -

One has then
(1-0) (1=Npay) (-1)/2 < Ty
S -1 {1=dpay) (L+hpax) (A=1)/2

and

(1-6) (1-ppax)s < T

L -1 U-Npag) (1+hpax) Sr

where § is the size of the file in blocks.

Comparing these two last inequalities
with equatlons {(3) and (4), cne can see
that migrating flle systems constitute the
policy of cholce when flles are accessed
with a high degree of 1localilty (r Z 1),
On the other -hand, network file systems
perform better when only a small pertion
aof the file 1is needed at each access
(R+W<CLS) .

5. THE STORK IMPLEMENTATION

our main objective was te build a
protetype of a migrating file system that
was quickly implemented and easily instru-
mented. The fastest way to Implement
STORK was to use the command language C-
shell [Joy80]1 as the programming language
and to use an existing network, the Berke~
ley MNetwork, for communication between
hosts. Since transmission delays are the
major influence on the performance of the
new commands, the performance penal ty
stemming Erom an interpretive command
lanquade was judged insignificant.

The Berkeley Network [Schm80] pro-—
vides facilitles for file transfer,sending
and receiving mall, and remote printing.
1t was designed for low cost and cperates
in a batch mode, not unlike a line printer
queuye., At its lowest level, the original
Berkeley Network transmits data over TTY
lines through terminal interfaces and sys-—
tem drlvers acting as if characters were
coming from terminals., This sclution was
adopted for its low Implementatieon cost,
but has the disadvantage of permitting
crily extremely slow transmissien rates
{between 1200 and 9500 baud}.

Thanks to a local modification of
the network softwaze, the Berkeley Network
at Purdue University now runs on taop of
the ARPANET protocol TCP/IP [PostBl],
which allews it to use the 1local PRONET
ring connecting the two VaXes of the Com—
puter Science Department. The PRONET
hardware achieves transmission rates of up
tc 1 Mbaud and alleviates the bottleneck
caused by the silow TTY lines. A third
machlne, a PDP-11/70, is also cannected,
but only via 9600 baud lines.

5.1, File Handling

In STORE, the single current copy ofF
a file resldes on the network host where
the file was successfully seized last. In
order toc keep the system simple to use,
the current copy of any STORK Eile is
represented as a standard Unix flle, and
may be accessed wlthout additional over-
head at the current host. One may seize a
standard UNIX file existing on a “remote
host as long as one has the proper migrate
permission. There are neo special data
structures or additicnal parameters needed
in order to make a file migrate.

Keeping a single copy of every £lle
has the drawback that the Eile may be lost
iE the host tec which 1t migrated is
unrellable. <This problem 1s alleviated in
STORK by not deleting the Eile when It
migrates away. 1Instead, the selze gpera-
tion merely renames Ethe original f£flle,
making it it invisible to the user. Thus,
a stale copy of the file exists on every
host wvisited by the file. 1In case of a
loss, the most recent stale version of the
flle can be recovered., Stale coples are
deleted autematically if they have not
been accessed in three consecutive days.
Before deletion, they are saved on backup
tape.

5.2. The STORK Primitives

A full implementation of & netwerk
Eile system under UNIX would require modl-
fying all UNIX pregrams to perform seize
or c¢arbon-co operations on all non-
temporary files. 5Such a task was clearly
beyond our geal of building a prototype.
Instead, we decided to put the burden of
conversien on the users, providing them
only with a set of STORK primitives, some
to be included in shell scripts, cthers in
C programs.

The STORK primitives that may be
included in shell scripts are as Eollows:

Selze migrates a file to the 1lgcal hest
T and is defined as follaws.

procedure seize{file)
1f file 1s local then
if Eile is locked or File in transfer
Then fail -
end Lf
else” ~
feorall hosts in sitepath de
if file is present then
i1f file is lccked
ar file in transfer
orf no migrate permission
then
fail
else
. set in_ transfer flag
mark remote file stale
ship file te local host
reset In transfer flag
return success
end iEf
end T
end forall
fail -—flle not found

end

Carben-copy lists the content of a file an
the standard output of the local
host.

Latch YTocks a {local) file.
Unlatech unlecks a {(local) file.

Net 1s performs a Unix ls operatlion on all
machines given “By the varlable
Sitepath and coalesces the results.

These Eive primltives are {implemented as
" shell programs and expect the STORK user
to have a shell variable sitepath contaln-
ing the host search 1Ist. The migrate
right is implemented with the read/write
tlghts of the directery containing the
flle. (Thus, migrate rights are handled
at the directory level and not at the file
level as they should be.)] STORK also
implements the primitive net open, dis-
cussed earller, as a C-program.

As its present stage, STORK Is as yet
far from providing all of the services one
expects from a true network file system.
For Iinstance, it does not contaln any
mechanlsm for avoiding name conflicts
between files residing on different hosts
and always requires the explicit use of
STORK primitives to access non-local
files, A main reason for these 1limita-
ticns lles in the slowness of the network.
On heavily loaded hosts, the transfer time
for a flle may rise from the normal 10-30
seconds te 1-3 minutes. The reason for
this poor performance lies in our relilance
on the Berkeley Network software for han-
dling all communications between hosts,
The Berkeley MNetwork 1Is essentially a
batch-oriented system, not aimed at pro-

viding fast turn-around for short
requests. Version 4.la of Berkeley Unix
includes more efficient prokoceols for
inter-hest communication. STORK is being
currently rewritken at the University of
California, San Dlego using these proto-
cels and we expect dramatic improvements
of the response times of gur system,

5.3. Directlons for Future Work

A main purpase of the STORK system is
to demonstrate the feasibility of file
migration as an implementation technigque
Eor network file systems, and toc allew the

collection of data on Eile access patterns

in distributed environments. Such data
are an absolute prerequisite for better
understanding distributed file systems and
the design of bhetter file migraticn algo-
rithms. We plan to insert data-gathering
facilities into the STORK primitives that
monitor, ameng other things, how often
Eiles are accessed and when they migrate.

A more practical problem wlth the
current implementatien of ~STORK lles in
its relative slowness. We plan to explore
the use of better protocols, and possibly
reimplement STORK using TCP/1P.

A host of other 1ssues remains. A
more efficient mechanism sheould replace
the current sitepath solution., The system
should detect name conflicts occurring
when two files residing on different nodes
are given the same name. The migrate
right should be handled better, Multiple
coples of £flles should be permitted, at
least for read-only files. This raises the
preblem of updating multiple copies when
they turn stale. Version control is
another issue, In software development, it
is often useful to save multiple versions
of software, in order te have back-up
copies and te be able to maintain old ver-
sions [TicB2]. Providing redundancy and
verslon control will require a caomplete
redesign of STORK.

6 . CONCLUSIONS

We have presented an experimental
network Ffile system aimed at local and
long—-haul networks. It provides users at
all sites with a wuniform and location-
independent method for accessing €£iles.
Files do not have a flxed home, but
migrate within the network teo the haost
where needed. Such a scheme is espe-
cially well tailored to situations where
files are repeatedly accessed £from ane
host before beling requested from another
host. ©Our system ensures file consistency
by allowing only one active copy of a
given "file at any time. It provides a
lock mechanism for controlling concurrent

access to a flle.

STORK has been Iimplemented on a nek-
work of OUNIX systems using the Berkeley
Hetwork software and standard UNIX tools.
As a result, our scftware is compact,
highly portable and can be quickly
installed on any standard UNIX system sup-
porting the Berkeley Network. Since cour
design is by no means speciflc to UNIX
systems, 1t could be applled to other com-
puter networks providing an efficient file
transfer protocol and remote execution of
commands.

Acknowledgements

The work reported here was supported
in part by WSF grant MCS-8109513, We
would like to thank Professcr P. J. Den-
ning, Purdue University, for his comments
and suagestions.

References

[Bour78] Bourne, 5. R., "The UNIX Shell,®
The Bell System Technical J. 57, 6
Part 2 (Jul.-Aug. 1978), 1971-1990.

{Chu69] Chu, W. W., "Optimal File Alloca-
tien 1in A Multiple Computer System,”
IEEE Trans. Comput., Vol .£-18, No.
10 (Oct, 1969, B85-889.

(Bast75] Easton, M. C., "Model for
Interactive Data Base Refarence
Strings,” IEM J. Res. Develop., 19,
{(Nov. 75), 550-556.

(HwanB2] Hwang, K., W. J. Croft, G. H.
Goble, B. W. Wah, F. A. Briggs, W. R.
Simmens, and C. L. Coaktes, "A UNIX-
Based Local <Computer Network with
Load Balancing,"” Computer, Vvol. 15,
Ne. 4 (april 1982), 55-65.

[Joay80] Joy, W., "An Introduction to the
¢ Shell," Fourth Berkeley Software
Distributlen UNTIX Documentation,
Bepartment of EECS, Unlversity of
California, Berkeley, Calif., 1980.

[¥ern8l] Kernighan, B. W. and J. R.
Mashey, "The UNIX Programming
Environment ,* Computer 14, 4 (April
1981), 12-24.

[Lawr32] Lawrle, D, H., J. M. Randal, and
R. R. Barten "Experiments with
Automatic File Migration,® Computer,
Voel. 15, Wo, 7 (July 1982), 45-54,

(Porc82] Porcar, J. "File Migration in
Distributed Computer Systems", Ph. D.
Dissertation, Department of EECS,
University of Callfornia, Berkeley,
calif., 1982, {also available as
Repert LBL-14763, Lawrence Berkeley
Laboratories, Berkeley, calif.,
1982.)

[PostBl] Postel, J. "DARPA Internet Pro-
gram Protocol Specificatlions,” RFC's
790-796, 0USC Informatien Sciences
Institute, Marina del Rey, Calif.,
l981.

[Rite74] Altchie, D. M. and K., L. Thomp-
son, "The UNIX Time-Sharing System,”
Comm, ACM 17, 7 {(Jul. 1974), 365-375.
A revised versioen appeared in The
Bell System Technical jJ. 57, 6 Part
7 T =Aug. T978)— T295-1390.

[Rite78] Ritchie, D. M., S. €. Johnson,
M.E., Lesk and B. W, Kernighan, "The C
Programming Language,” The Ball Sys—

tem Technical J. 57, & Part 2
{Ful.,-Aug. 1978), 1991-2019,

[RoweB2] Rowe, L. A. and K. P. Birman, "A
Local Network Based aon the UNIX
Operatling System,” IEEE Trans.
Software Engineering, Vol. SE-8, No.
2 (Mar. 1982), 137-146.

. [$chm80] Schmidt, E., "An Intraduction to

the Berkeley Netwark,”™ Fourth Berke-
ley Software Distrlbution UNIX Dacu-
mentatlion, Department oF EECS,
University of <California, Berkeley,
Calif., 1980.

[(Smile8lal sSmith, A. J. "Analysis of
Long—Term File Migration pPatterns,"
IEEE Trans, Scoftware Englneering,
Vol. SE-7, No. 4, 403-417.

(Smit81lb] sSmith, A. J. "lLong-Term File
Mlgration: Development and Analysis
of Algorithms," Comm. ACM, Vol. 24,
No. B (Aug. 1981), 521-532.

[strit77] -Stritter, E. P., "File Migra-
tlen,” Ph. D. Dissertation, Stanfard
Unlv, Computer Sci. Rep. STAN-CS5-77-
594, Jan. 1977.

(Tic82] Tichy, W. F. "Design, Implemen-
tation, and Evaluation of a Revisien
Control System,” Proceelings of the
Ath International Conference an
Software Engineering, Tokyo, Sept.
1982,

	STORK: An Experimental Migrating File System for Computer Networks
	Report Number:
	

	tmp.1307986960.pdf.d4CvX

