
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1983

STORK: An Experimental Migrating File System for Computer STORK: An Experimental Migrating File System for Computer

Networks Networks

Jehan-Francois Paris

Walter F. Tichy

Report Number:
81-411

Paris, Jehan-Francois and Tichy, Walter F., "STORK: An Experimental Migrating File System for Computer
Networks" (1983). Department of Computer Science Technical Reports. Paper 335.
https://docs.lib.purdue.edu/cstech/335

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

STORK: AN EXPERIMENTAL MIGRATING FILE SYSTEM FOR COMPUTER NETWORKS

Jehan-Francois paris

Department of EE &CS. University of California, San Diego
La Jolla, CA 92093

Walter F. Tichy

Department of Computer Sciences, Purdue University
West Lafayette, IN 47907

February 10, 1983

CSO-TR-411

STORK: AN EXPERIMENTAL MIGRATING FILE SYSTEM FOR COMPUTER NETWORKS

Jehan-Fran90is paris

Department of EE & CS, University of California, San Diego
La Jolla , CA 92093

Walter F. Tichy

Department of Computer Sciences,
West Lafayette, IN

Purdue
47907

University

Abstract

STORK is an experimental file system
designed for local and long-haul networks.
It ensures that each user has a single
view of his flIes, independent of the net­
work node where he works, and independent
of the location of the files. STORK files
have no fixed location; instead they
migrate to the network node where they are
needed. File consistency is ensured by
permitting only one current copy of each
file to exist in the net at any given
time. A. .lock mechanism is provided for
controlling concurrent access.

The performance of the system depends
on the locality of the references to a
given file and not on the host where the
file was created. An analytical model is
presented that compares file migration
with remote file access.

STORK h~s been implemented on a net­
work of UNIX systems running on VAXes and
PDP-II's, using primitives of the Berkeley
Network software. It can also be quickly
installed on any network of UNIX systems
allowing remote execution of commands.

Keywords: networks; distributed file sys­
tems; fIle transfeq migration; UNIX
operating system.

1. INTRODUCTION

Modern operating systems implement
abstract machines that are more convenient
to use than bare hardware is. They hide
low-level details of managing hardware and
software resources, and present powerful
virtual machines for user programs. For
example, the locations of files on a disk
are irrelevant the oper:'.ting system
performs the mapping of file names to disk
addresses automatically.

*UNIX Is a trademark of Western Elec­
tric

Network services are a relatively
recent addition to operating systems. A
wide variety of communication technologies
is available, providing reliable, low
cost, high-speed computer communication.
Although the underlying hardware and
method of transmission vary significantly
from network to network, layers of con­
trolling software hide these differences.
Thus it is possible to provide a unique
application-level interface that works
over a variety of configurations.

The services offered by current net­
works vary widely with the speed of the
links available, the integration of the
different systems, and the sophistication
of the network software. File transfer,
message transfer (electronic mail). and
the possibility of executing commands on
remote hosts are examples of basic capa­
bilities provided by nearly all networks.
More advanced networks also support ser­
vices like remote login, remote interac­
tive commands {Hwan82], or operations on
files residing on remote hQsts [RoweB2].

These networks share a common draw­
back: they require the user to remember
where he is currently logged in and where
his files are. This property complicates
the user's task considerably, because it
violates the principle of location tran­
sparency. Location transparency permits a
user to reference files by name rather
than by address. Most centralized file
systems implement location transparency by
mapping file names to disk addresses
automatically. Current networks add an
additional level to the naming hierarchy,
but provide no automatic location tran­
sparency. Thus, in using networkS, the
user must take a step backwards and deal
wi~h files at a lower level of abstraction
than wi th files on tradi tional operating
systems.

What the user really needs is a true
network file system spanning the secondary
stores of all network hosts. Such a sys­
tem is able to provide users at all sites
with the same view of the file system,

2. ACCESS TO REMOTE FILES

There are three alternative
approaches to accessing remote files:
remote file operations, remote login, and
file migration. As we shall see, only
remote file operations and file migratIon
are suItable for supporting a network file
system.

~n important assumption is that users
tend to access a certain set of flIes
repeatedly from the same host, giving
migrating files a considerable performance
advantage over files with fixed homes.
STORK has been built in part to test
whether this assumption is justified, and
to measure the effects of migration.

Section 2 of this paper summarizes
the approaches to file handling on net­
works. Section 3 presents the STORK sys­
tem, and Section 4 gives an analytical
performance comparIson of STORK with
remote fIle operations. Section 5
discusses our current implementation based
on the UNIX operating system and the
Berkeley Network software. Our conclu­
sions appear in Section 6.

A potential advantage of remote file
operations is that they send only those
buffers that are actually read or written
through t.he net. Thus, remote file opera­
tions handle accesses to relat.ively small
portions of large files efficiently. Such
a situation is often found in data base
applications. Remote file operations are
somewhat less efficient if files are
accessed completely and repeatedly from a
single host.. This is typically t.he case
in program development or text processing
applications that account. for a large part
of the workload of many interactIve sys­
t.ems. For example, UNIX text editors do
not normally overwrite port.ions of a file
-- when the editing session is finished,
they write a completely new file and
delet.e the old one. Moreover, text pro­
cessing and program development typically
require many iterations and therefore
repeated access from the same host to the
same set of files. A file system based on
remote file operations would move the
whole content of each file back and forth
between the two hosts every time the file
is accessed. These transfers no t only
take time, but may also be so numerous as
to exceed the capacity of the net.work.

The main drawback of COCANET is that
it. requires the user to remember where his
files are located. There is no attempt. to
provide location transparency on the host
level.

2.1 Remote FIle Operations

Remote file operations allow the
opening, reading, writing, and closing of
remote files through the network. At the
application level, local and remote files
are treated in exactly the same way.
COCANET is a typical example of this
approach {Rowe82]. It is implemented on a
net of computers running the UNIX operat­
ing system, and allows programs to access
remote resources, in particular remote
files. COCANBT requires that the names of
all remote files be prefixed with the name
of the host where the file is stored. When
a process attempts to open a file whose
name is prefixed by the name of a non­
local host, o::ontrol is passed from the
standard UNIX open routine to the network
manager. The network manager communicates
with its counterpart in the remote host to
create a private remote server for the
process attempting the open. All further
operations on the remote file are passed
to the remote server, which executes them
and transfers the results back through the
net.

files actuallywhereofindependent
reside.

The STORK system described in this
paper Is an experimental file system that
provides complete locatIon transparency
for files scattered throughout a network.
It is implemented on a net of UNIX
machines using the Berkeley Network
software. STORK is based upon the idea of
fIle migration. This means that files do
not have a fi xed home; 1nstead, they
migrate to netwo rk nodes where needed.
For example, a programmer may create a
file on one ma~hine, but edIt it on
another. Referencing the· file to be
edited on the second machine is sufficient
to force the file system to transfer the
file to where it will be needed. This
approach assures fast access if the file
reference patterns exhibit locality at the
host level.

~ major constraint in bUilding STORK
was that '",e could not afford to redesign
the file system of every host on the net­
I..ork. Instead,' we took the approach of
extending an existing file system, the
Unix file system, which is supported by
most hosts on our network. To simplify
integration, STORK provides an interface
similar to that of the Unilc file system,
with only minor extensIons.

2.2. Remote Login

Another approach to the problem of

accessing remote files is remote login.
This facil ity allows any terminal con­
nected to the local host to act as if it
were directly wired to a remote host.
Such a facility is provided by many net­
wo rks, for instance ARPANET, CSNET,
Telenet, etc. However, remote login has a
serious restriction: at any time. the user
can access conveniently only those files
residing at the machine where he is logged
in. If he wants to work with files at
other machines, he must wander around in
the net to get to them. If he needs to
combine several files, he must transfer
them to a single host. This is a rather
severe limitation which precludes the use
of remote login for supporting a network
file system.

2.3. File Migration

The concept of file migra~ion is not
new. It has been implemented on several
computer installations and studied. inten­
sively, for example by Stritter [Strit77],
Smith [SmitBla, SmitBlbl, Lawrie e.a.
[Lawr821. and porcar [porc82]. With one
exception, previous research has only con­
sidered file migration within the memory

"hierarchy of a single computer. The
exception is Po rear's thesis, which
analyzes several strategies for a distri­
buted file system, including migrating
files. His study relies on data obtained
on a single machine.

Supporting migration requires few
changes to host file systems. Once a file
has been migrated to a given host, it can
be accessed there using the file primi­
tives of the host operating system. Con­
currency control is simple, since the
current copy of the file is always local
to the host updating it. Migration per­
formS best when files are repeatedly
referenced from the same host rather than
accessed at random. It is our contention
that this behavior occurs frequently
enough to make file migration more effi­
cient than remote file operations.

3. THE STORK SYSTEM.

Since a true network file system com­
pletely hides the location of files from
its users, the system can assume all
responsibility for file placement. As a
consequence r files do not need fixed
homes. Instead, they are free to migrate
to network hosts where needed or where
there is space available for them. For
example, a programmer may work on several
different hosts. Referencing a file on
any host is sufficient to force the net­
wo rk to locate the fi Ie and br ing it to
that host. In addition, files that are
located on hosts where file space is at

premium may be transferred automatically
to less congested hosts.

3.1. The File Search Mechanism

On a broadcast network, name searches
can be managed with a single broadcast
message. On networks without any broad­
cast mechanism, some directory information
must be kept to locate files efficiently.
In STORK, this information is minimized by
providing each user wi th a host search
list, consisting of a numberOTnosts to
oe--interrogated when locating files.
!'ihenever a file cannot be found locally,
STORK sends a request for the file to
every host on the host search list until
one responds by sendIng the file to the
requesting host. Now suppose that we had
a hybrid netwo rk consisting of broadcast
(sub) nets linked by gateways. The host
search list would then be a list of gate­
ways; each of these gateways would broad­
cast the request on its respective sub­
net.

As a consequence, the name of a file
and the directory where it resides must be
the same for all hosts included in the
system. This restrIction is necessary to
assure uniform file names on all hosts.
The local directory hierarchy of every
host is simply an image, sometimes Incom­
plete, of the directory hierarchy of the
network file system.

l\ common way of organizing a flle
system is to let each user manage his own
directory tree. Unfortunately, administra­
tors of computing facilities have differ­
ing opinions of what the root names of
these directory trees should be. For
example. John Doe could have the root
directory names doe, john, jdoe, jXd, or
even a random string on the various net­
work hosts. For such cases, STORK pro­
vides a simple root name translation
feature.

3.2. Concurrency Control

Like any file system on a single
machine, the distributed file system must
contend with the problem of concurrent
access. The design of STORK aims for sim­
plicity and utility, rather than general­
ity. The system permits mUltiple simUl­
taneous readers of a file, but only a sin­
gle writer. Readers may obtain a copy of
the file when they first access it;
updates written to a file while it is
being read are not guaranteed to be visi­
ble to the readers. The system also pro­
vides locking primitIves for ensuring
exclusive access to a file.

1.3. ~ile ~cceSS Rights

An important requirement of a distri­
buted file system is a file protection
mechanism similar to those existing in
centralized file systems. STORK satisfies
this requirement simply by preserving the
ownership and protection attributes of a
migrated file.

A somewhat more complicated issue
involves the right to migrate a file to a
di fferent node in the netwo rk. The owner
of a file may not wish to permi t other~ to
move his file away, because he will then
incur the delay of transmi tting the flle
back-. One solution is to introduce a file
migration ~, analogous to the werI=
known read(wr ite rights for files. Thus,
the owner of a file can decide what is
most appropriate, independent of other
access rights. This approach has two main
drawbacks. First, it makes the users
aware of the migration process and there­
fore contradicts our objective of location
transparency. Second, it raises the prob­
lem of how to access remote flIes that
cannot be migrated. A process requesting
read-only accesS is easily taken care of
by providing. it with a temporary local
copy of the fIle. A process that wants to
wr ite a non-migratable file causes more
difficulties. One approach would be to
perform the write by means of remote file
operations similar to COCANET. Another
one would be to make a local copy of the
fIle, to let the process update that copy,
and to update the remote original when the
process closes the file.

A simpler solution to the migrate
right problem is to associate the migrate
right with the write right. This tech­
nique could inconvenience the owner of a
fIle, since he might have to retrieve it
after it has been migrated to other nodes.
On the other hand, this solution is fair
in that it does not give preference to a
particular writer, and it is consistent
with location transparency.

3.4. STORK File Access Primitives

STORK's aim is to hide the location
of f 11 es. Each time a process reads 0 r
writes a file, STORK tries to seize it, i.
e. to cache it In the host on which the
process is running. The precise se~antics

of the seize operation are as follows. If
the fileaI'read I" resides on the local
machine, seize checks for a lock and
returns successfully if the file is not
locked. If no local copy of the file is
found, seize successively interrogates all
hosts rn--the host search list. If the
file is found, seize determines whether it
is locked or unICi'C"K'ed and whether the pro­
cess initiating the seize has the permis-

sion to migrate the file.

If the file is unlocked and the requestor
has migrate permission, seize creates a
local copy of the file, under the same
name and with the same same access rights"
as the remote copy of the flle. Seize
also marks the remote copy as stale:--rn
all other cases, seize returns an error
code describing~ status of the file
(not found, locked, or migrate permission
denied) •

The primary purpose of the latch and
unlatch primitives is to ensure con­
currency control by prohibiting concurrent
writes of the same file. Latch creates a
lock for a file, preventing other
processes from writing and migrating the
file. Latch fails if the file is not
local, -so-Tt must normally be preceded by
a call to seiz"e. Unlatch removes the
lock.

The primitive operation carbon-~p-y

provides read-only access to fIles wfilCh
are locked or cannot be migrated.
Carbon-copy creates an input stream from
which the requesting process can read the
contents of the file. If the file is
non-local. carbon-copy first copies it
into a a local fIle-tnat remains inacces­
sible to the caller. (Users that want to
avoid the delays resulting from repeated
carbon-copy operations on the same file
can always make their own local copy of
the file.)

Seize and carbon-fioPY are both low­
level--operations. T e user interface of
STORK consists of network analogues of the
usual file primitives open, create, close,
etc. For instance, net 0fen is the analo­
gue to the open pdmit ve and is imple­
mented as follOWS:

procedure net open(file, mode)
begIJ?' -

If seize(file)=successful then
-- open(file, mode)
elsif mode=read-only then
-----carbon-copy{flle,tempfile)

open (tempfile, read)
else
----fail
end if

end net_open;

4. PERFORMANCE ANALYSIS

Let us neglect for a moment the prob­
lem of concurrent accesses and assume that
files are always seized and never carbon­
copied. Under this assumption, STORK flIes
always reside on the host where they have
been accessed most recently. since users

generally tend to access the same file
from the same host repeatedly, the file
system continuously adapts itself to the
demands of its users. This flexibility
has a price. Since files have no fixed
addresses, the search for a non-local file
normally involves the interrogation of
several remote hosts.

Consider a computer network consist­
ing of n hosts numbered 1, 2, ••• , n.
AssLUlle that the status of a file can be
modeled by a first-order Markov chain
Whose states correspond to the nodes where
the file was accessed for the last time -­
and thus where it resides. The transition
probability matrix of the chain can then
be written as P = (Pi'), where Pi' is
the probability that lhe file is acc~ssed
from host j, given that it was accessed
for the last time at host i. Obviously,
the sum of these probabilities must be
one.

m
"5: Pi]' =1 , i=l, 2, ••• , n.
]=1

Assuming that the chain is homogeneous,
irreducible and aperiodic, one can compute
its limiting state pr-obabllity vector as
'} = (tAl' },2' ••• , An)' This vector).. is
the e genvector of" matrix P. Each ~i
represents bo th

one must necessarily have

n
:i" t.,=l.

i=1 1

To ellaluate the cost of seizing a remote
file on STORK, one must consider both the
number of remote hosts interrogated during
a seize and the number of blocks shipped
over-tlie network.

The average number of hosts interro­
gated when seizing a file depends both on
the probabllity of finding the file on any
gillen host and on the order of the host
search list. To stay on the conservative
side, we assume that the ordering of hosts
in the search list has . been fixed arbi­
trarily and was not tuned to the indivi­
dual behallior of any file. We also assume
that the probability of searching for a
non-existing flle is negligible. Under
this assumption, the average number of
hosts to be interrogated for 10catin~ a
file not found on the local host is !S-.

At any given time, there is a proba­
bility}, that the file resides on host i.
The prob&bility that it will be accessed
from host j while being away from that
host is equal t.o

the steady-state probability that the
file resides on host i.

the steady-state probability that the
file will be accessed nex.t from host
i ,and

n] • The
shipped is

0)

.1\i 1i=1, ••• ,
Tm of blocks

where ~ma = max
average ~umber
equal to

n
T m ", ,:l (l->-]") (l-rlt.],s, (2)

]=1

where S is the size of the file in blocks.

Suppose now that the same file is
accessed via remote file operations as
provided by COCANET. To be fair, let us
assume that the file resides at. the host
where it is the most frequently refer­
enced. (A more detailed discussion of the
problem of optimal file placement can be
found i~ [Chu69].) The average number HI
of remote requests when the file i
accessed is now equal to

~ t.'Pi" :: (1-t.],) (l-r)t.].•
i;lj 1)

The average number Nm of hosts to be
interrogated when a non-local file is
seized is then given by

n n-l
~m = ,~ (1->-],) (l-r)}.],-Z-' (1)

]=1

and the average number 'Tm of blocks to be
shipped is

i=l, ••• ,n,1.

Since

Pii r+(l-r))..i

Pij'" {1-r)}.j, i;lj,

where 0<r<1 and ~i>O for i 1, .•• , n.

This first-order chain can simulate
the behavior of distributed flles with
different degrees of locality. For the
sake of simplicity, _we restrict ourselves
to a special first-order Markov model that
only considers consecutive references to
the same file from the same host. This
model, known as Easton's model, was origi­
nally developed for modeling the page
referencirq behavior of data bases
(East751. It requires n+1 rather than n 2

parameters, but can nevertheless take into
account the tendency of f11es to be
repeatedly accessed from the same host.
The transition probabilities of Easton's
model are given by

T r = (l-f.max) (R+W) , (4)

where R is the number of blocks read and W
the number of blocks written.

Observe now that

n
.5 (l-~].,,], < (l-f.max)f.max + (l-f,.max)
J=l

< (l-~max) (l+f,.max) •

One has then

(i-r) (l-~max) (n-ll/2 ~ Nm

~ (i-r) (l-~max) (l+>"maxl (n-l)/2

and

(l-r) (l-~ax)5 ~ Tm

~ (l-r) (l-~max) (l+f,.maxl 5,

where S is the size of the file in blocks.

Comparing these two last inequalities
with equations (3) and (4), one can see
that migrating file systems constitute the
policy of choice when files are accessed
with a high degree of locality (r: 1).
On the other hand, network file systems
perfor~ better when only a . small portion
of the file is needed at each access
(R+W«S) •

5. THE STORK IMPLEMENTATION

Our main objective was to build a
prototype of a migrating file system that
was quickly implemented and easily instru­
mented. The fastest way to implement
STORK was to use the command language C­
shell [Joy801 as the programming language
and to use an existing network, the Berk,e­
ley Network, for communication between
hosts. Since transmission delays are the
major influence on the performance of the
new commands, the performance penalty
stemming from an interpretive command
language was judged insignificant.

The Berkeley Network (Schm80] pro­
vides facilities for file transfer ,sending
and receiving mall, and remote printing.
It was designed for low cost and operates
in a batch mode, not unlike a line printer
queue. At its lowest level, the original
Berkeley Network transmits data over TTY
lines through ter~inal interfaces and sys­
tem drivers acting as if characters were
coming from terminals. This solution was
adopted for its low implementation cost,
but has the disadvantage of permitting
only extremely slow transmission rates
(between 1200 and 9500 baud).

Thanks to a local modification of
the network software, the Berkeley Network
at Purdue university now runs on top of
the ARPANET protocol TCP/IP [post8l],
which allows it to use the local PRONET
ring connecting the two VAXes of the Com­
puter Science Department. The PRONET
hardware achieves transmission rates of up
to 1 Mbaud and alleviates the bottleneck
caused by the slow TTY lines. A third
machine, a PDP-II/70, is also connected,
but only via 9600 baud lines.

5.1. File Handling

In STORK, the single current copy of
a file resides on the network host where
the file was successfully seized last. In
order to keep the system simple to use,
the current copy of any STORK file is
represented as a standard Unix file, and
may be accessed wi thout addi tional over­
head at the current host. One may seize a
standard UNIX file existing on a -remote
host as long as one has the proper migrate
permission. There are no special data
structures or additional parameters needed
in order to make a file migrate.

Keeping a single copy of every HIe
has the drawback that the file may be lost
if the host to which it migrated is
unreliable. This problem is alleviated in
STORK by not deleting the file when it
migrates away. Instead, the seize opera­
tion merely renames the original file,
making it it invisible to the user. Thus.
a stale copy of the file exists on every
host visited by the file. In case of a
loss, the most recent stale version of the
file can be recovered. Stale copies are
deleted automatically if they have not
been accessed in three consecutive days.
Before deletion. they are saved on backup
tape.

S.2. The~ Primitives

A full implementation of a network
file system under UNIX would require modi­
fying all UNIX programs to perform seize
or carbon-£~ operations on all non­
temporary fT'I'e5. Such a task was clearly
beyond our goal of building a prototype.
Instead, we decided to put the burden of
conversion on the users, providing them
only with a set of STORK primitives, some
to be included in shell scripts, others in
C programs.

The STORK primitives that may be
included in shell scripts are as follows:

Seize migrates a file to the local host
-----and is defined as follows.

procedure seize{file)
if file is local then

if file is 10CKeO or file in transfer
then fail
eii(]if

else-- --
----forall hosts in sitepath do

if file is present then
if file is loc~

or file in transfer
M no migrate permission

then-
--fail
else
---set in transfer flag

mark remote file stale
ship file to local host
reset in transfer flag
return success

end 1£
end Tr

end "f'O"raIT
EaTl - file not found

,nd

Carbon-copy lists the content of a file on
the standard output of the local
host.

Latch locks a (local) file.

Unlatch unlocks a (local) file.

Net Is performs a Unix Is operation on all
machines given -oy the variable
sitepath and coalesces the results.

These five primitives are implemented as
shell programs and expect the STORK user
to have a shell variable sitepath contain­
ing the host search list. The migrate
right is implemented with the read/wr ite
rights of the directory containing the
file. (ThUS, migrate rights are handled
at the directory level and not at the file
level as they should be.) STORK also
implements the primitive net open, dis­
cussed earlier, as a C-program.

As its present stage, STORK is as yet
far from providing all of the services one
expects from a true network file system.
For instance, it does not contain any
mechanism for avoidinq name conflicts
between files residing on different hosts
and always requires the explicit use of
STORK primitives to access non-local
files. A main reason for these limita­
tions lies in the slowness of the network.
On heavily loaded basts, the transfer time
for a file may rise from the normal 10-30
seconds to 1-3 minutes. The reason for
this poor performance lies in our reliance
on the Berkeley Network software for han­
dling all communications between hosts.
The Berkeley Network is essentially a
batch-oriented system, not aimed at pro-

viding fast turn-around for short
requests. Version 4.1a of Berkeley Unix
includes more efficient protocols for
inter-host communication. STORK is being
currently rewritten at the University of
California, San Diego using these proto­
cols and we expect dramatic improvements
of the response times of our system.

5.3. Directions for Future Work

A main purpose of the STORK system is
to demonstrate the feasibility of file
migration as an implementation technique
for network file systems, and to allow the
collection of data on file access patterns
'in distributed environments. Such data
are an absolute prerequisite for better
understanding distributed file systems and
the design of better file migration algo­
rithms. We plan to insert data-gathering
facilities ir}to the STORK primitives that
monitor, among other things, how often
files are accessed and when they migrate.

A more practical problem with the
current implementation of' STORK lies in
its relative slowness. We plan to explore
the use of better protocols, and possibly
reimplement STORK using TCP/IP.

A host of other issues remains. A
more efficient mechanism should replace
the current sitepath solution. The system
shou~d detect name conflicts occurring
when two files residing on different nodes
are given the same name. The migrate
right should be handled better. Multiple
copies of files should be permitted, at
least for read-only files. This raises the
problem of updating multiple copies when
they turn stale. Version control is
another issue. In software development, it
is often useful to save multiple versions
of software, in order to have back-up
copies and to be able to maintain old ver­
sions [TicB2]. Providing redundancy and
version control will require a complete
redesign of STORK.

6 CONCLUSIONS

We have presented an exper imental
network file system aimed at local and
long-haul networks. It provides users at
all sites with a uniform and location­
independent method for accessing files.
Files do not have a fixed home, but
migrate within the network to the host
where needed. Such a scheme is espe­
cially well tailored to situations where
files are repeatedly accessed from one
host before being requested from another
host. Our system ensures file consistency
by allowing only one active copy of a
given . file at any time. It provides a
lock mechanism fo[controlling concurrent

access to a file.

STORK has been implemented on a net­
work of UNIX systems using the Berkeley
Network software and standard UNIX tools.
As a result, our software is compact,
highly portable and can be quickly
installed on any standard UNIX system sup­
porting the Berkeley Netwo rk. Since our
design is by no means specific to UNIX
systems, it could be applied to other com­
puter networks providing an efficient file
transfer protocol and remote execution of
commands.

Acknowledgements

The work reported here was supported
in part by 'NSF grant MCS-8l09513. We
would like to thank Professor P. J. Den­
ning, Purdue university, for his comments
and suggestions.

References

(Porc82] Porcar, J. "File Migration in
Distributed Computer Systems", ph. D.
Dissertation, Department of BECS,
University of California, Berkeley,
Calif., 1982. (also available as
Report LBL-14763, Lawrence Be rke1ey
Laboratories, Berkeley, CaliL,
1982.)

[PostSl] Postel, J. "DARPA Internet Pro­
gram Protocol Specifications,n RFC's
790-796, USC Information Sciences
Institute, Marina del Rey, Calif.,
1981.

[Ritc74] Ritchie, D. M. and K. L. Thomp­
son, "The UNIX Time-Sharing System,"
Comm. ~CM 17, 7 (Jul. 1974), 365-375.
'A""""CevTSe'd version appeared in The
Bell System Technical J. 57, 6 part
2l'JU!.-Aug. 1978), 1295-1990.

[Ritc78] Ritchie, D. M., S. C. Johnson,
M.E. Lesk and B. W. Kernighan, "The C
programming Language," The Bell Sys­
tem Technical J. 57, 6 Part 2
(Jul. Aug. 1978) ,-1991-2019.

[Bour791
The
Part

Bourne, S. R., "The UNIX Shell,·
Bell System Technical~. 57, 6
2 (Jul.-hug. 1978), 1971-1990.

[Rowe82] Rowe, L. A. and K. P. Birman, "A
Local Netwo rk Based on the UNIX
Operating System,· IEEE Trans.
Software Engineering, Vol. SE-~.
2 (Mar. 1982), 137-146.

[Chu69] Chu, W. W., "Optimal File hlloca­
tion in A Multiple Computer System,·
IEEE Trans. Comput., Vol .C-18, No.
~Oct. 19~9), 885-889.

(East75] Easton, M. C., -Model for
Interactive Data Base Reference
Strings," IBM J. Res. Develop., 19,
(Nov. 75) ,550:;55~

(Hwan82] Hwang, K., W. J. Croft, G. H.
Goble, B. w. Wah, F. h. Briggs, W. R.
Simmons, and C. L. Coates, "A UNIX­
Based Local Computer Ne two rk wi th
Load Balancing," Computer, Vol. 15,
No. 01 (hpril 1982), 55 65.

[JoySO! Joy, W., nAn Introduction to the
C Shell," Fourth Berkeley Software
Distribution UNIX DocumentatIon,
Department of BECS, university of
California, Berkeley, Calif., 1980.

[~ern8l] Kernighan, B. W. and J. R.
Mashey, nThe UNIX Programming
Environment,· Computer 14, 4 (April
1981), 12-24.

(Lawr'32] Lawrie, D. H., J. M. Randal, and
R. R. Barton "Experiments with
Automatic File Migration,· Computer,
Vol. 15, No.7 (July 1982),45-56.

[Schm80] Schmidt, E., "An Introduction to
the Berkeley Network," Fourth Berke­
~ Software Distribution UNIX Docu­
mentatIon, Department -or- EECS,
university of California, Berkeley,
Calif., 1980.

(Smit8lal Smith, A. J. -Analysis of
Long-Term File Migration" Patterns,"
IEEE Trans. Software Engineering,
Vol. SE-7, No.4, 403-417.

(SmitS1b] Smith, A. J. ·Long-Term File
Migration: Development and Analysis
of Algorithms,· Comm. ACM, Vol. 24,
No.8 (1I.ug. 1981);521-532.

[Strit77] -Stritter, E. P., "File Migra­
tion," ph. D. Dissertation, Stanford
Uni\7. Computer Sci. Rep. ST1I.N-CS-77­
594, Jan. 1977.

[Tic82] Tichy, W. F. "Design, Implemen­
tation, and Evaluation of a Revision
Control System," ProceeJings of the
15th International Conference on
Software E:ngineering, Tokyo, Sept.
1982.

	STORK: An Experimental Migrating File System for Computer Networks
	Report Number:
	

	tmp.1307986960.pdf.d4CvX

