
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1981

An Analytical Study of Strategy-Oriented Restructuring Algorithms An Analytical Study of Strategy-Oriented Restructuring Algorithms

Jehan-François Päris

Domenico Ferrari

Report Number:
81-395

Päris, Jehan-François and Ferrari, Domenico, "An Analytical Study of Strategy-Oriented Restructuring
Algorithms" (1981). Department of Computer Science Technical Reports. Paper 321.
https://docs.lib.purdue.edu/cstech/321

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

"

An Analytical Study of Strategy-Griented Restructuring Algorithms

Jehan-Francois Paris

Department of Computer Sciences
Purdue University

W. Lafayette, IN 47907

Domenico Ferrari

Department of Electrical Engineering and Computer Sciences
Computer Sciences DiVision

and
Electronics Research Laboratory
Unive.rsity of California. Berkeley

Berkeley, CA 94720

CSD-TR-395
PROGRES Report 82.1

ABSI'RACT

Considerable expertr::lental eVidence has been accumulated showing that
the performance ot programs in virtual memory environments can be signifi·
cantly Improved by restT".J.cturing the programs. I.e. by modifying their
block-la-page or block-ta-segment mapping. This evidence also points aut
that the so-caned strategy-o'r'iented algorithms. which base their decisions on
the lmoW"ledge of the memory management strategy under which the pro·
gram will run, are more efficient than those algorithms whicr~ do not take
this strategy into account.

We present here some thecretical argwnents to explain Why strateg~'­

oriented algorithms perform better than other program restructuring algo­
rithms and deterI!1ine the conditions under which these algorithms are op·
timUI:::1. In particular. we prove that the algorith.."11s oriented towacds the
working set or sampled working set policy are optimum when applied to pro­
grams haVing no more than two blocks per page. and that, when this restric­
tlon is removed. they minimize an upper bound of the performance index
they consider as the figure of merit to be reduced. We also prove that the
restructuring algorithms aimed at reducing the page fault frequency of pro­
grams to be run under such policies as LRU. Global LRU. and PFF (the Page
Fault Frequency policy) minimize a upper bound of the page fault rate, and
we extend some of our results to some non-strategy·oriented algorithms.
Throughout the paper, the only assumption about program behavior is that it
can be accurately modeled as a stationary stochastic process,

Key Words and Phrases: virtual memory, program restructuring, restructur­
log algorithms. program behavior, page replacement. working set policy.
sampled working set policy, LRU policy. PFF policy.

•

1

1. INTRODUCTION

Program Restructuring (P.R.) [5] is one of the various techniques aimed

at. improvtng the behavior of programs fn Virtual memory environments. It

has the distinguishing feature of being applicable to already written pro­

grams. and operates by modifying the order according to which the various

blocks of code or data constituting a program are stored in the program's

virtual address space. If well conducted. this reordering will result in a new

blocketo·page-or block·to-segmenl-mapping, which will improve the degree

of locality of the program.

Considerable expsrimental evidence has been accumulated on the per­

formance af P.R. algorithms and this evidence clearly shows that P.R. can

significantly improve the behavior of programs in both paged. [16.20,9.10.

12, 13, 23] and segm.entation [22. 23J enVironments. The observations also

point out that the so-called stTategy~ri.ent'2d algorithms. which base their

decisions on the kno~"ledge on the memory management strategy under

which the program will run. are more efficlent that those algorithms which

do not takg this strategy into account.

We present here some theoretical arguments to explain why strategy­

oriented algorithms perform better than other program restructuring algo­

rlthms and determine the conditions under which these algorithms are

optimum. Section 2 of the paper briefly reViews existing strategy-oriented

restructunng algorithms. Sections :3 to 5 study their performance under

various memory policies. including Working Set. Sampled Working Set, LRU .

Global LRli and Page Fault Frequency. Section 6 presents some analytical

results on non-strategy-orlented P.R algorithms and Section 7 contams our

concluslons.

2

Although we shall refer in this paper to paging environments. most of

our considerations could be applied to segmented systems as well [2:3].

2. srRATEGY-DRIENTED RESTRUCTURING ALGORITHMS

With very few exceptions (e.g., [2]), all P.R. algorithms share the same

organization in four phases [10J:

(1) partitioning of the progra.r:u. to be restructured into blocks. the size ot

which should ideally be less than or equal to one half of the page size.

(ii) construction of a restructuring mairiz -or restructuring graph- A. the

elements of which express the "affinities" between blocks,

(iii) application of a clustering algorithm. that tries to gather into the same

page blocks exhibiting the strongest mutual affinities. and

(iv) relocation of the blocks in the program's virtual address space accord­

ing to the results of the clustering algorithm.

Among these four phases. phase (ii) is defil"'Jtely the most critical for

both the algorithm's performance and its run-time. The first P.R. algorithms

based their restructuring matriX on the analySIS of the stalic structure of

programs. Since then, they have been outclassed by the so-called dynamic

algorithT'fLS, which take into account the run-time referencing behaVior of

programs. Gathering such information normally involves simulating or moni­

toring one or more executions of the program to be restructured and this

step is often the most expensive and time-consuming part of the whole res.

trucluring process.

All of the most efficient dynamic restructuring algorithms known today

belong to the class of the so-called stra.tegy-oriented algorithms introduced

by one of the authors [9-11J. These algorithms construct the restructuring

3

matrix in a manner that

(i) takes into account the memory mana.gement stratr:gy of the system in

which the program 'Will be run. and

(ii) is explicitly based on a measurable indicator of the program's perfor­

mance.

The Critical Working Set Algorithm (CWS) [10] is probably the best

known example of these strategy-oriented algorithms. It attempts to minim­

ize the page fault frequency ot programs and assumes that the restructured

program Will be executed on a system using a work::i.og set (W3) replacement

policy [7,8]. Define a critical. reference as a reference to a block that is not

guaranteed to be present in memory at that time. Under a WS policy. this

Will be any block that has not been referenced during the last T time units,

where T is the value ot the policy's parameter (the 'lJ"indow size). 1: we

store a block to which a critical reference is made into the same page as a

block that is guaranteed to be present in memory at that time. we avoid the

page fault that could have occurred olherwise.

Let TI' 'i'2' ...• Tn be a reference string coUected during one execution ot

the progra.rn we want to restructure. Define R,,(t), the resident set of blocks

at time t, as being the set of blocks guaranteed to be present in memory

after the t-th reference is processed. In a WS enVironment, R,,(t) contains

all blocks that have been referenced during the time interval (t -T,t).

The restructuring matrix C=(c;j). which has initially all zero entries, will

be constructed in the folloWing way:

(a) Fer all t frem 1 te n de

if T, I! R, (I -1) then

increment by one all c<!'s such that i E RIJ(t) and j=rt

Ii

cd:

(b) Fer all i alld j <i de

ed.

Other critical algorithms have been developed and tested for LRU (CLRU

(13]).F1FO (CFIFO [13]), Sampled Working Set (CSWS [ll, 12]), Glebal LRU

(CPSI [14]), and Page Fault Frequency envirenments (CPFF [23]). They can

be derived trom the CWS algorithm. by modifYing in an appropriate manner

the definition of the resident set of blocks Ro(t).

Unlike c:"itical algorithms, minimal algorithms [13) attempt to minimize

the memory occupancy of restructured programs.- To achieve this goal, they

attempt to store within a common page blocks that will often be simultane­

ously resident in memory. Thus. the algorithm will inc:-ement by one, at

rixed sampling intervals during a simulated execution of the program. all

entries ot the restructuring matrix ccrresponding to a pair (i,j) of blocks

which are members of the current resident set ot blocks.

Let ri. T2 , T I10 represent again a block reference string collected dur­

ing a run of the program to be restructured. Assume that the algorithm's

sampling interval is equal to K referenc2s. Then, the restructuring matrix

M=(~i) will have initially all zero entries and will be constructed in the fol­

loWing way:

5

(a) For all I from 1 to n do

if t mod K = a then (" sampling time ,,)

increment by one all ",<j'S such thati E R,(I) and; E R,(t)

f1

od;

(b) For all i and all; <i do

od.

.M.icimal algorithms have been developed and tested for various memory poli­

cies. including Working Set (MWS) , Sampled Working Set (MSIfS), Global LRU

(MPSJ), and Page Fault Frequency (MPFF).

The effectiveness of these algor-lthms obviously depends or.. the value of

the sampling co~tantK. In order to avoid this problem, we will r2strict our­

selves ror the sequel of this paper to miD..imal algorithms with full sampling.

Le".• "nth K=1.

Strategy-oriented restructuring algorithms of a third kind have been

recently introduced by one ot the authors [21-23]. They are t.he so·caHed

balanr:ed. algarithms, w"hich attempt to mini?1ize the spac2-time product of

the programs be~g restructured.

The space-time product characterizes the behaVior of a program in a

Virtual memory enVironment by its main memory usage expressed in space­

time units, tor instancs in page-seconds or byte-seconds. Every page fault

occurring during the execution of a program will increase the space-time

product of the program by a quantity equal to the product S(tl)Tw of the

program's memory occupancy S(tf) at the time tf cf the fault by the page

6

wait time TUJ· Similarly, the eost of increasing the program's memory occu-

paney by s memory units during a time i..IJ.terval At would be equal to 5 M

space-time units. Any restructuring algorithm attempting to minimize the

space-time product or a program will have to reduce the sum of these contri-

butions. It will thus attempt to reduce simultaneowly the program's page

fault frequency aI!.d its mean memory occupancy. leading thus to a more

"balanced" improvement of the program's performance.

One of the difficulties encountered in the design of balanced restructur-

ing algorithms lies in the fact that it is practically impossible to estimate at

restructuring time the quantities S(tl) TUj' The solution adopted consists of

making the page wait time Tw constant and replacing all S(t/) by a constant

factor § which is an estimate of the program's mean memory occupancy S.

Because at this simpWication. the balanced restructuring matriX A =(CI;;) for

a given program to be run under a given memory policy will always be a

linear combination of the corresponding critical and minimal restructuring

matrices, and one will have

"
CI;J = STwc\J + KTmffi;j.

'V"here KTmis the sampling lntenal of the miwI:lal algorithm.

Balanced algorithms have been developed and tested for several

t:1emory polic~~s, inclUding Working Set (BWS), Sampled Working Set (BSW3).

Global LRU (BPSl). and Page Fault Frequency (BPFF). A more complete

description of these algorithms may be found in [23].

3. ANALYSlS OF THE CWS. 1lWS AND BY/S ALGORITHMS

The traditional approach to the analytical stUdy of the performance of

P.R. algorithms implied the choice of a well defined model of program

behaVior in Virtual memory environments like the Independent Reference

7

Model (IRM) [6. 1, 4], the Simple LRU Stack Model (SLRUSM) [24, 4]. or the

first-order Markov model [15]. Rather than restricting ourselves to one of

these models._ we will only assume that the behavior of the program to be

restructured can be accurately described by a stochastic chain having a

steady·state solution. From the practitioner's viewpoint, this assumption

t:leans that the program exhibits an essentially stable behavior. which should

obviously be a prerequisite for any attempt to restructure the program.

A restructuring matrix is not a complete representation of all interac­

tions between the various blocks of a program. In particular, it does not pro­

vide any information on the possible interactions involving more than two

blocks. We Will thus first consider the cas.e ot programs that contain at most

two blocks per page and examine later which. results can be extended to the

more general case of programs having an arbitrary number of blocks per

page.

3.1. ProgrilDls With No More Than Two Blocks per Page

Let us consider a program. consisting of m blocks occupying a total of n

pages with the restriction that no page Will ever con.tain more than two

blocks. We must then necessarily have m':::2n.

For convenience, we would like to have always exactly two blocks per

page. If this is not the case, we wlll add to the m original blocks 2n -m ficti­

tious blocks o! size 0, which will ne\7er be referenced. Since these blocks will

never cause a page fault or occupy any memory space, their introduction will

not alter the performance of the program. Besides. they will appear in the

restructuring matrix as empty rows and empty columns without any influ­

ence on the clustering process.

6

Taking into account these fictitious blocks. one can assume that each

page i contains two blocks With indices i 1 and i 2 respectively. The iniinite

sequence T I ••. ", TI_1• Tt. Tt +I •.. , represents an infinite block reference string

. produced by the program. In a Working Set environment. the mean page

fault (requency and the mean memory occupancy can be written in terms of

block reference probabilities and of the probability that a given block is in

the resident set of blocks Rb (t), if these probabilities do indeed exist.

Rather than restricting our analysis to a specific class of stochastic models.

we Will aSSume, as mentioned above, that the program's behavior can be

described by a stochastic model haV1.n,g a steady-slate solution. Under these

assumptions. the steady-state probability that page i causes a fault at time t

exists and is equal to the probability that either block i l or i 2 is referenced

at time t given that neither of them is a member of RIJ (t -1). Thus,

Pr(i causes a fault at time t] =

Pr[i 1=T: (iiI £. R!I (t -1) n i 2 I! Rb(t -1)]

+ Fr[i,=r,ni, £ R,(t-1) ni, £ R,(t-1)Jl.
and the page fault rate f !s given by

n

! = L:IFr[i,=r,ni,£R,(I-l)ni,£R,(1_1)]
i=I

Similarly, the probability that page i is in memory at ti..z:I:.e t exists and is

equal to

Fr [i, e: R, (I) U i, e: R, (I)1
The mean memory occupancy S of the program is then given by

_ n

S" L: Fr[i, e:R,(t)ui, e:R,(I)].
i=1

9

THEOREJ.lI: The CWS algorithm mjnjmizes the page fault rate of all programs

'Whose behavior can be described by a chain having a steady-state solution

and which have at most two blocks per page.

Proo!:

Assume without loss of generality that each page conlai.r:ts exactly two

blocks. In the C't'rS algorithm, each element Oij of the restructuring matrix is

then proportional to

Pr[i=r,ni;! R.(I-l) nj € R.(I-l)]

+ Pr[j=r,nj;! R.(I-l) ni € R.(I-l)].

By clustering two blocks per page With the objective of maximiziL"lg the sum

of intra-page affinities, we attempt to find

n
~max) c, < =
I...J I' 2

'1=1

• •

maxL; IFr[il=r, nil;! R. (I -1) n i, E R.<I -1)]
i=1

This maximum is evaluated on the set of all possible block-la-page mappings,

rejecting those where the sum of the sizes of the two blocks would be greater

than the page size.

Observing that

Pr[i=r,ni;! R.(I-l) n j E R.(t-l)] =

Pr[i=r,ni;! R.(I-l)]

- Pr[i=r,ni It R.(I-l) nj It R.<I-l)],
we can thus rewrite our objective function as

•
maxL; !Pr[i,=r,ni1;! R.(I-l)]

\=1

10

- Fr [i 2=r, "'2 £ R. (I -1) n i, £. R. (I -l)Jl.

Since all non·oegative terms are independent of the block-ta-page mapping.

the objective can be reformulated as

"minI: IPr(il=T~nil JO: Ro(t -1) n i 2 £ Ro(t-l)]
\=1

+ Fr[i2=r, ni2 £. R.(I -1) n i, £. R.(I -1)]/.

which is equivalent to minimizing the program's page fault frequency! .

II

THEOREM: U: The MWS algorithm minimizes the mean memory occupancy of

all programs whose behavior can be described by a chain having a steady-

state solution and which have at most two blocks per page.

Froof:

Assume Without loss ot generality that each page contains exactly two

blocks. In the MWS algorithm wi.th full sampling (K= 1). each element ""-ij of

the restructuring matrix is then propor~ioIlal to

Fr[i e: R.(I) nj E R.(I)]

By clustering two blocks per page with the objective at maximizing the sum

of intra-page affinities, we attempt to find

"maxE"'<,.1, = Fr[i, e: R. (I) n i 2 e: R. (I)]
"=1

Observing that

Fr[i e: R.(I) nj e: R.(t)] =

Fr[i e: R.(!)] + Fr[j e: R,(I)]

11

-Pr[i ER,(I) Uj ER,(I)]

we can thus rewrite our objective tunctlon as

"maxI; {Pr[i, E R,(I)] + Pr[j E R, (I)] - Pr[i E R,(I) U j E R, (I)ll
(=1

Since all non-negative terms are independent of the block-ta-page ma?ping,

the objective can. be reformulated as

"minI; IPr[i, E R,CI) U i, E R,(I)]I
\=1

which is equivalent to rr.JDimizing the mean memory occupancy S.

•
Theorems I and 1I generalize the results in [18], which prove that cws

and MWS are optimal with respect to programs whose behavior can be

described by an independent reference model and which have at most two

blocks per page. Theorem I also extends the result obtained by Lau [17]. who

has proved that CWS ls optimal 'Nith regard to all programs whose behaVior

could be described by a first-order Markov model and which have two blocks

per page.

THEOREM DI: The BWS algorithm minimizes a linear combination of the page

fault rate and of the mean memory occupancy of all programs whose

behaVior caLl be described by a chain haVing a steady-state solution and

which have at most two blocks per page,

PrOD!:

Assume Without loss ot generality that each page contains exactly t,.,o

blocks. If Cij and ~j represent the generic entries of the CWS and MWS res­

tructuring matrices. each element rJ;,j of the BWS matrix A is

CI.fj ~ 5'TUI Ci; +Tm 77l.o£j'

By clustering two blocks per page With the objective of maximizing the swn

of intra-page aftini,ties. we attempt to find

12

which is equivalent to

n ~

maxL; {8.TW.Cii.t2 + Tm .17t;,I"21.
1=1

Using the results of Theorems I and II. we can rewrite our objective as

n

max 2; IS. T~.Pr[i,=T, n i, "- R,(1-1)]
(=t

- Tm·Pr[i, E R,(I) U i, E R.(I)J!

Observing again that all positive terms of the summation do not depend on

the blocK4 to-page mapping, we can reformulate our objective as

n ~

minE Is. Tw·Pr(il=T~ (l i 1 It. Rb (t-l) n i 2 ;t. Rb{t -1)]
i=l

which 1s equivalent to

min S.Tw .! + TmS,

where f stands for the program's page fault frequency and S for its mean

memory occupancy.

..
3.2. Programs with an Arbitrary Number- ot Blocks per Page

Since the restructuring graph OI'l..ly takes inlo account interactions

between two blocks; the problem of defining affinities among more than two

blocks Will always remai..n without a completely satisfactory solution.

Consider. for instance, the case of a critical restructuring algorithm

like CWS. As we said before. the affinity cii between l','{o blocks i and. j is:

equal to the number of page faults that could be avoided if the two blocks i

and j were stored into the same page. Suppose now that we want to compute

the affinity Ciik among the three blocks i, j and k. Obviously, Ci.il: should be

equal to the total cumber of page faults that could be avoided by storing

blocks i, j and k into the same page.

It could happen that none of the expected beneficial effects of the res~

tructuring process would overlap, that [5, that

storing blocks i and j into the same pilge would not avoid any or the

page faults that ',lI'ould be avotded if i or i were stored with k, and

storing blocks j and k into the same page would not avoid any of the

page faults that would be avoided if j or k were stored with i.

In this case, the affinity Ctjk should be set equal to the sum of all affinities

between aU pairs of blocks in {i, i, k I We would then have

Cijk =c~j +Cjk +cm;

and we would then speak of adciilive affinities.

However, It could also happen that some of the page faults that would be

avoided if i were stored with j or k could also be eliminated by storing j and

k together. Then

i=l, 2..... n.

14

In the general case, we have

C;jJ:SC;,j +Cjll; +c~,

and no means to estimate C;,j+CjJ:+ckf, - c;p;,

From the practitioner's Viewpoint, the simplest solution consists at

assUI::ling that affinities will always add up and defining the affinities among s

blocks it. i 2, '''' ~ as being equal to

S'-I S'

0-"''''0'1·'· .. ~ - i..l L. 'ittl='
;=I..1:=i+1

Similar problems also ar~se with minimal and balanced algorithms and. there

too. the simplest solution Will be to assume that affinities are additive,

In all three cases. when the restr.ucturing algorithm assumes that aU

'beneficial effects of the restructuring process always add up. it may be con-

strued as being essentially "overoptimistic". Since the algorithm attempts to

maximize an optimistic estimate of the beneficial effects of the new block~

to~page mapping, it tends to minimi:e some lower bound of its perfar:nance

index. Note that all performance indices considered by strategy-orient:;!d

algorithms are indic!:!s to be minimized. We waat to show new that this 1V0uld

also cause the algorithm to minimize a relati'7ely weak upper bound of the

same performance index. In all cases. we will suppose that the program to

be restructured consists of m blocks at sizes sl. 52, .•.• Sm' After restructur-

ing. these m blocks Will be partitioned into n clusters K
1

• K
2

, K
n

such

that

2; Sj S s:;J
i'14

where s1' is the system's page size. in order to allow each cluster to be stored

in a single page.

15

THEOREM IV: The CWS algorithm with additive affinities minimizes both an

upper bound and a lower bound ot the page fault rate for all programs whose

behavior can be described by a stochastic chain having a steady-slate satu-

lion.

Praol:

Suppose that ~"e apply the CWS algorithm to ~ program whcse behavior

can be described by a stochastic chain having a steady-state solution. The

result of the restructuring process will be a partition of the program into n

clusters ot blocks that wilt maximize

n

L; L; L; Cj'
1::='1 Je...r; J:ElG.l:>J

over the set of all possible block-la-cluster mapping.

This last condition can be rewritten as

n

max L L L Pr[T, =jnjJZR,(t-1)nkERoCt-1)].
i=l jE.r; J:EH;J: ..j

,.),>

The page fault frequenc:t of the. prog:-am after restructuring will then

be equal to

n
f = L L; Pr[T,=jn n kJZR,(t-1)].

i=l iEJG kE:K(

which can be rewritten as

n

f = L; L; Pr[T,=jnj£R,(t-l)]
i=liE-'G

n

- L; L Pr[r,=jnjJZR,(t-1)n U kER,(t-l)].
i=ljE4 kEKt.k "'!

(2)

The first double sum on the right~hand side of the last equation is equal to

the frequency of critical references and does not depend on the block-to-

cluster mapping. The second double sum.

16

n

~ ~ Pr[r,=jnjt!.R,(I-I)n U kER,(I-I)]. (3)
"=11 EK(. kEKc·J:rflj

then represents the sum of the frequencies of all page faults that have been

avoided because of the new block-ta-cluster (and thence block-la-page) map.

ping. Maximizing this expression would thus resull in ,minimizing the pro.

gram page fault frequency.

Upper bounds and lower bounds tor (3) are respectively given by

and

n

~ ~ ~ Pr[r,=jnU:R,(I-I)nkER,(I-l)]
~=l JElli, k€~J;""j (4)

J

f: 2; -'-- ~ Pr[r,=jnU:R,(t-l)nkER,(I-I)]. (5)
(=1 JEI4 T-l kE:lG.ic7l"!

where T is equal to the maximum number of block!:: per cluster.

Since CWS maximizes (1). it also maximizes (4) and (5). which aLe

respectively upper and lower bounds of the beneiicial effects of the restrue-

tw'ing process. As a result, it minimizes a lower bound of the page fault fre-

'luency given by

n

ImJn = ~ ~ Pr[r,=jnj.<:R,(I-I)]
t=ljEKi

n

- ~ ~ ~ Pr[r,=jnj.<:R,(t-I)nkER,(t-I)].
1:=1 }€J4 I:EK.,J:'I'}

and an upper bound of the same page fault frequl;-ncy given by

n

1m., = ~ ~ Pr[r,=jnj.<:R,(t-I)]
i=l}EKj

•
COROUARY I: Consider a program whose behavior can be described by a sto-

chastic chain haVing a steady-state solution. It this program is running

17

under a Working Set policy With a given block-ta-page mapping

(K,. K,• Kn), its page fault frequency will be bounded bv

n n
f_= ~ ~ Pr[r,=jnj£R.(I-l)] - ~ ~ L: e,.

'i=tjEf(j, (=1 jE.'4 1ce:!G.J;>j

and by

n n •

fm.. = ~ ~ Pr[r,=jnj£R,(I-l)] - L: ~ -"- ~ OJ''
\=> Ii e:.!G. i=(i€.'G r-l,I:e:!Ii.ic>'L

where C=(C:-::i) is the CWS restructuring matrix for that program and for the

current windoW' size.

"
TIfEOREM V: The MWS algorithm with additive affinities minimizes both an

upper bound and a lower bound of the mean memory occupancy for all pro-

grams whose behavior can be described by a stochastic chain having a.

steady-state solution.

PrOOf:

Sup!'ose that we apply the MWS algorith..":l with additive affinities to a

program ·..,hose behaVior can be described by a stochastic chain having a

steaciy~state solution. The result of the restructuring process wUl be a parti-

tiOD ot the program into n clusters of blocks that will maximize

n n

~ L ~ m,. = L ~ ~ Pr[jER,(t)nkER,(t)] (6)
1=1 ilO:.~ k.EJG.,l=>i 1=1 i~K.. klO:.'GJ:)J 6

over the set of all pos!S'ible block·to-cluster mappings.

The program's mean cemory occupancy will then be equal to

_ n

S = ~Pr[UiER.(I)],
1:=1 JrtJG

which can be rewritten as

18

- n n

S = L: L: Pr[jER.(I)] - L: L: Pr[U jER.(I)nkER.(I)]. (7)
'=1 if!JG f=lj~l4: I; E/4); >1

The first double sum on the rigb.t~hand side of the last equation does not

depend on the block-to-cluster mapping. The second double sum.

n

L: L: Pr[U jER.(I)nkER.(I)], (8)
i=ljE.[(j kEJG.J:>;

represents the average memory space that would be saved if the new block-

to~cluster (and thence block-la-page) mapping was adopted. Ma."{imizing this

~xpressiOIl ~'fQuld thus result in minimizing the program's mean memory

occupancy.

Upper bounds and lower bounds for (8) are respect.ively given by

n

L: L: L: Pr[jER.(I)nkER.(I)]
1=1 iEJG ~ElG.J:>j

and

n _1L: L: '" Pr[jER,(t)nkER.(I)],
1.=1 j€JG r-l ceR:.Jc>f

where T is equal to the maXimum number of blocks per cluster.

(9)

(,0)

Since MWS maximizes (6), it also maximizes (9) a..Ild (10), which aLe

respectively upper and lower. bounds of the beneficial effects of the restruc-

turing process. As a l"esult, it minimizes a lower bound of the mean memory

occupa:lcy given by

- n n

05'""" = L: 2: Pr[jER.(I)]- L: 2: L: Pr(jER.(I)nkER.(I)],
\=1 ;"'Xi i=l jeXi 1cEJ;.1c>i

and an upper bound of the same mean memory occupancy given by

s_ = f; L: Pr(jER.(I)] - f; L: _1_ L: Pr[jER.(t)nkER.(I)].
\=Ij€.!li \=1 jEll; r-l 1cE~,1:>j

"
COROLLARY II: ConSider a program whose behaVior can be described by a sto.

chastic chain haVing a steady- state solution. If this program is running

19

under a Working Set policy With a given block-lo-page mapping

(K1• K2• ...• It';J. its mean memory occupancy will be bounded by

and

- n 11 1
S~ = I: I: ro[jER.(t)] - L: I: T-1 I: mi"

\=liE:~ i=t je:.~ - klZ.'G..k>i

where U=(m;,j) is the MWS restructuring matrix for that program and tor the

current window size.

a

THEOREM VI: The BWS algorithm. with additive affinities minimizes both a

lower and an upper bound of the same linear combination of the page fault

rate and ot the mean memory occupancy of all programs whose behavior can

be described by a chain having a steady-state solution.

rooof:

If c"j and ~j represent the generic entries of the CWS and MWS restrl1C-

turing matrices. each element cr...j of the BWS matrL~ A is

Our objective.

can thus be rewritten as

Which is eqUivalent to

" n
max ISTwI: I: I: ro[T,=jnj.e:R.(t-l)nkER.(t-l)]

(=1 jeiG J:ElG,J:'II"j

~ Pr[j€R.(t)Nc: €R. (I)]!.
he:K,.,A:>/

20

(11)

Consider now the expression

STwf + Tm·S (12)

which is a linear combination of the program's page fault frequency l and its
-

mean memory occupancy S. Using equations (2) and (7). it can- be r~wrilten

as

n

- Tm ~ ~ Pr[U j€R. (I)nk €R. (I)].
\=Ife.~ J:EJG,,1:>i

where all positive terms do not depend on the block-la-page mapping. Upper

bounds and lower bounds for (12) are then given by

n

+Tm~ 2: Pr[j€R.(I)]
1=1 fer;

(13)

j

and

21

I:' Pr[je:R.(t)]
f'lG

1 n
- -Tm I: I: I: Pr[je:R.(t)nke:R.(t)],

T -1 "=liE."f,UKj..l:>i

wher~ r 1s equal to the maximum number of blocks per cluster.

(14)

Since BWS ma.x:i..n:izes (11), it ma."(imizes the sum of all negative terms in

(13) and in (l?) and thus minimizes an upper bound and a lower bound oi

(12).

..
4. ANALYSlS OF rAE CSWS. MS'iIS AND BSWS ALGORITH1lS

For coa.veni~nce of implementation. the Working Set policy can be

approximated by measuring" the working set periodically instead of at every

reference. This replacement algorithm is known as the Sampled Working

Set, or SWS. We wtll restrict ourselves to the case ;,yhere the sampling int.er-

val J is a SUbmultiple of the window size T. In other words. T=kl. with k

integer. The SWS algorithm ''fcdes then in the foHovrtng way: Each time a

page fault occurs, the missing page ~s added to the program's resident set of

pages. At the end of each san:.pling interval, aU pages that have not been

referenced during the last k sampling intervals a!'e expelled from mer:::lory.

As a r~sult. the program's resident set of pages wiiI then only contai:u. those

pages that have been referenced at least once during the last k!=:T time

un.its. As program execution resumes, the size at this window will increase

linearly With time until it reaches T+! time units at the end of the next sam­

pling period. TQ.e SaI!lpled Working Set policy thus behaves as apure Work­

ing Set algorithm. whose window size periodically varies between T and T+I

with a period I. Let us denote by T(t) this instantaneous Window size. One

has then

22

T(/) = T + 1 mod [

where tmod/1s the remainder of the diVision of t by I.

Assume now that the behaVior of the program we want to ~nalyze can be

described by a Markov model with a steady-state solution and l~t us denote

by Wb(f;T) its resident set ot blocks at time t under a pure Working Set pol-

icy With window size 7. The resident set of blocks at time t for the SWS policy

is then given by

R,(/) = W,(/;T+t modI) (15)

which shows that R,(/) oscillates between W,(/;T) and W,(/;T+I) following a

sawtooth curve. A program running under a SWS policy will thus exac tty

behave as if it were running under a WS policy with a wtndow size T(t) varying

between T and T+I according to a sawtooth pattern. Once the program

reaches the steady state, the probabilities af referenciog. o~ not referencing.

any given :,Jage do not depend any more on ~he time elapsed since the

program's inception and are thus totally independent of the current ...alue of

.(t). The probability that block i causes a critical reference at time t. is::

then fluctuating between

Pr[i=r, ni£;Y, (I; T)]

and

Pr[i=r, ni£ fY, (I: T+I)]

and 1s thus time~dependent. FoUoW'tng an approach similar to the one of

Marshall and Nute [19]. one may however introduce a time-rz:uera.ged proba~

biUty that i causes a critical reference. equal to the average probability that.

the same block would cause a critical reference if the program were running

under a WS policy with window sizes,. uniformly distributed on the interval

[T. T+I). In other words. we ha'le

23

T+r
Pr[i causes a critical reference] = ~ f .Pr[i =r~ l1i£ Wb(t ;T}] dT

T

where TC 1s the t~th page reference and Wb (t ;T), contains all blocks that have

been referenced during ~he last T time units.

Assuming again that each page contains exactly two blocks. the time-

~veTa.gedpage fault frequency J is then given by

J\ 1 T+I

j = 2: j !IPr[i,=r,ni,.£IY,(t;T)ni,.£IY,(t;T)]
i:::rl T

for any t large enough to offset the influence of the initial conditions.

THEOREM VTI: The CSWS algorithm minimtzes the page fault rale of all pro-

grams whose behavior can be described by a chain having a steady-state

solution and which have at most two blocks per page.

PrOOf:

Assume without loss of generality that each page contains exactly two

blocks. Let C = (Cij) be the restructuring matrix constructed by the CSWS

algorithm. Each element C;'j of that matrix is proportional to

1 1+/

j !IPr[i=rTni.£ R,(T-l) n j E R,(T-l)],

for any t large enough to offset the influence at the initial conditions.

Since

R,(t) = rt,(t;T+t modI).

the expression can be remittee. as

• T+/

~ .{ {Pr[i=r, ni J£ W, (l-l;T) n j E: W, (1-1 ;T)J

+ Pr[j=r,nj;!. IY,(I-I;T) ni E: W,(I-l;T)]!dT.

By clustermg two blocks per page with the objective of rnaJdmizing the sum

of intra-page affinities. we attempt to find

n
r:::J.a.'{ L: Ct1 . iz =

(=1

n 1 nl
maxL; I J

T
jPr[i,=r,ni,J£ W,(I-l;T) ni,.(. W,(t-l;T)]

(=1

+ Pr [i,=r, ni, t: W, (l-l;T) n i, ;!. W, (l-l;T) lldT.

This maximum is evaluated on the set of all possible block~to-pagemappings.

rejecting those where the sum of the sizes of the two blocks would be greater

than the page size.

Observing that

Pr[i=r,ni t: W.(I-l;T) nj E: iY,(I-l;T)] =

Pr[i=r,ni.(. iY,(I-l;T)]

- Fr[i=r: ni J£ W, (1-1;T) n j t: w, (l-l;T)]

and remoViZlg all terms that do not depend on the block-la-page mappir...g. we

can retarraulate our objective as

+ Pr[i,=r, ni, J£ iY, (l-l;T) n i, J£ W, (l-l;T)JldT,

which is equivalent to minimizing the program's page fault frequency J .

"
Prom (15), we can also infer that the program's time-averaged m~mory

occupa.ncy S is given by

25

_ 110 1 T.,.l

S = L; -JI Pr[i l e: W,(I:.) ui, e: W.(!;.)]d •.
t=1 T

We then have the following theorem.

THEOREM VIII: The MSWS algorithm mini.I!l.izes the mean memory occupancy

of all programs whose behavior can be described by a chain having a steady-

state solution and which have at most two blocks per page.

Proo!:

Assume without loss of generality that each page contains exactly two

blocks. Each element ~j of the MSVlS restructuring matrix is then propor­

tional to

1 tH .

[I Pr[i e:R,(.) I1j e:R,(.)]d.,,
which can be rewritten as

T./

~ I Pr[i e: W,(I:.) I1j EO W,(I;.)]d •.
T

By clustering two blocks per page with the objective of maximizing tb.e sum

of intra·page affinities, we attempt to find

"l. " r+J
::nax'L17L\l.il!:: max2: J1 J Fr[i 1 e: rill (t;,) f"'.i2 e: Wb{t;T)]::7.

;=1 i=l T

Observing that

Pr[i EO Woel:.) I1j e: W.(I:;)] =

Pr(i e: W.(I:;)] + Pr[j E W,(I;;)]

-Pr[i e: W,(I;;)uj EO W,(t:.,-)]

and deleting all terms that do not depend on the block-ta-page mappL.i.g. we

can reformulate our objective as

n 1 T+!
minL; -JI IPr[i, E W, (I;;) u i, e: W. (1;.,-)lId.,

1.=1 T

which is equivalent to minimizing the mean memory occupancy S.

j

26

•
THEOREM .IX: T"ne BSWS algorithm minimizes a linear combination ot the page

~ault rate and of the rr:.ean memory occupancy of all programs whose

behaVior can be described by a chain haVing a steady-state solution and

which have at most two blocks per page.

Proof:

Similar to the one or Theorem 111 but based on the proofs and the results

af T'neorems VlI and V1II.

a

Using the same approach, one could also conside:- the case at programs

having an arbitrary number of blocks per page and shaw that CS'ffS. MSWS

and BSWS then minimize lower and upper bounds ot their objecliyes.

5. E:G'ENSlON TO 0'l'HER MEMORY POUCJES

As the reader has probably noticed. the proofs of the optimality of CWS

and MWS did not take int:J account the composition of the resident set of

blocks Rb (t) for the Working Set policy. These proofs thus hold fer any

strategy-criented restructuring algorithm mirUmizing the Sa..t:!le performance

i!ldic es as long as

[i] the probability thc>.t a block i b~longs to the resident set of blocks at

time I. Pr [i €R. (I l]. has a stationary distribution lor all blocks;

[Ii] the probability that a page resides in memory 1s equal to the probability

that at least one ot the blocks It contains belongs to the current

resident set of blocks; in other words,

Pr [page i in memory] = Pr[U k €R, (I l].
"1<;

•

27

This second condition is the more restrictive: it assumes that the probability

that a page resides in memory does not depend on the composition of the

other pages. This is not true tor the FIFO, LRU, Global LRU and PFF replace~

ment policies and. more generally, for all policies where replacement deci-

sions are (or may be) triggered by the occurrences of page faults.

For the LRU, Global LRU and PFF policies. it is howe'ler possible to con­

struct resident sets of blocks Rb{t) such that all pages containing at least

one bleck belonging to the current resident set ot blocks will nee essarily

reside in memory, while some pages residing in memory may not contuin any

block belonging to the set. One has thus

Pr[pageiinmemoryj;,Pr[U ke:R,(t)].
>Ex,

As a consequence the page fault rates J generated by these policies have an

upper bound J ma::r gil;en by

n

! rn.. = L: L: Pr[j =r,'" n k ~R, (t)].
-(=l i€.~ .l:e:.;;

One has then the follOWing theorems.

THEOREM X: CLRli and CPFF minimize an upper bound or the page fault rate

of all programs run.ning ur:.der the corresponding memory policy ?ro..ided

that the behavior of the program in that environment can be described by a

stochastic chain having a steady-state solution.

Proo!:

Similar to the one of Theorem IV but with J I:Il.Il.I: replacing! .

"THEOREM XI: CPSl minimizes an upper bound of the page fault rate of all pro~

grams rUnning under a Global LRU memory policy proVided that the behavior

at the program In thc:.t environment can be described by a stochastic chain

j

•

26

having a steady-state solution, and that the Global LRU enVironment in which

the program is to run can be modeled by Bard's Page Survival Index model

[3].

Proo!:

Similar to the one ot Theorem IV but With J l:l.oU: replacing J.

"Theorem X g:meralizes a similar finding made by Lau [17, 18] for the

CLRU algorithm under IRM program behavior assumptions.

Unfortunately, the same approach cannot be applied to minimal algo­

rithms. Since some pages may be resident in memory Without containing

any block belonging to the current resident set of blocks. one could only

compute a loweT bound fol" the mean memor}" occupancy S. One could

therefore only prove that MPSI and MPFF minimize a lower bound of the

program's mean memory occupancy. Results for BPSI and BPFF would be

even weaker.

6. EXrE:NSlON TO OTHER RESTRUCTURING ALGORITIl1IS

The same approach can also be applied to r::.on-strategy-oriented res­

tructuring algorithms, proVided they define lmpl.icitly or explicit!y the

eqUivalent of a resic.ent set of blocks.

Hatfield and Gerald's Nearness method is one example of such algo­

rithms [.i.6]: it implicitly assumes that all references are critical and is there~

fore essentially eqUivalent to a CWS algorithm With a Window size T equal to

one reference, or to a MWS algorithm tuned for a wi.ndow size equal to two

references. One can thus stale that the Nearness Method minimizes a very

weak upper bound of the program's page fault frequency as well as a very

weak lower bound of its mean memory occupancy.

•

29

Another nonestrategy-oriented restructuring algorithm. proposed by

Masuda et ai. [20], attempts to minimize the 'Working set size of the pro-

gram to be restructured tor an arbitrary window size T·, This algorithm

operates like MWS but With a "wrong" value of the memory policy parameter

T. When applied to a program to be run in a working set enViroI"'~ent, it will

tr.erefore minimize a upper bound of the program's mean memory oc~u­

pancy if '->T. and a lower bound of this memory occupancy if '-'T.

7. CONCLUSIONS

We have presented in this paper some analytical results cqncerning the

performance ot strategy-oriented program restructuring algorithms in pag­

ing enVironments. These results essentially correlate the performance ot a

restructuring algorithm With its ability to predict the influence of any block-

toapage mapping on the perfotT.:1ance of the program to be restructured.

These findings corroborate all the experimental evidence t':ollected to date,

showing that restructuring algorithms taking into account the char.;),cteris-

tics of the environment under which the program will run significantly oul-

perfor:n the restructuring algorithms which ignor!:! that e-mironrnent.

Acknowledgements
The work reported here was supported in part by the NSF grant MeS fJQa

12900.

References

[1] A. V. Aho. P. J. Denning and J. D. Ullman. "Principles of Optimal Page
Replacement." J. ACM lB. 1 (Jan. 1971), BO·9~.

[2] J .Y. Babonneau. M. S. Achard, G. Morisse.t and M. B. Mounajjed,
"Automatic and General Solution to the Adaptation of Programs in a Pag­
ing Environment." Proc. 6th. ACM Symp. on Oper. Sys. Prim. (Nov.
1977). 109-116.

I

· "

30

[3] Y. Bard. "Characterization at Program Pa.ging in a Time-sharing
EnVironment," lEU J. Res. Develop. 17. (Sept. 1973),387-39:3.

[.;] E. G. Coffman and P. J. Denning. Operating Systems Theor:/. (Prentice­
Hall, Englewood Cliffs, NJ, 1973).

[5] L. Comeau. "A Study of the Effect of User Program Optimization in a
Paging System," ACU Symp. on Oper. Sys. Prin.. (Oct. 1967). Gatlinburg,
Tenn.

[6] P. J. Denning, "Memory Allocation In Multiprogrammed Computer Sys­
tems," MIT Project MAC. Computation Structures Group Memo 24. (Mar.
1966).

[7] P. J. Denning, "The Working Set Model for Prograr.::r. Beha....;or,'· C.:nnm.
ACM E, 5 (May 1968). 323-333.

[8] P. J. Denning. "Working sets Past and Present," IEEE Trans. So/two
EngTg. SE-6, 1 (Jan, 1980), 64-84.

[9] D. Fer!"ari. "ImproVing Program Locality by Strategy-Oriented Restruc­
turing." Information Pr~cessing 74, Froe. 1974- IFIP Congress. pp. 266-
"0. •

(10] D. Ferrari "ImproVing Localities by Critical Working Sets." Comm. ACU
17 , 11 (Nov. 1974), 614-620.

(11] D. Ferrari, "Tailoring Programs to Models of Prog'ram Behavior," fElt! J.
Res. Dev.lop, 19,3 (May 1975), 244-251.

(12] D. Ferrari and E. Lau. "An Experiment in Program Restructuring for
Performance Enhancement." Pioc. 2nd Int. Conf. on SOftware Engineer­
ing. San Francisco. Calif. (Oct. 1976). pp.203-206.

(13) D. Ferrari, "The lmprovement of Program Behavior," Computer 9. 11
(Nov. ,978),39-47.

[1<;) D. Ferrari and M. Kobayashi. "Program Restructuring for Global LRU
Environment," Conf. Proc. of Int. Computing Symp., Li~5e. Belgium.
Apri14-7. 1977.

[15] M. A. Franklin and R. K. Gupta. "Computation of Page Failit Probability
from Program Transition Diagram." Comm. ACU 17. ? (Apr. 1974). ~87­
~91.

(16) D. J. Hatfield and J. Gera!d. "Program Restructuring ror Virtual
Memory," lEU Sys. J. 10,11 (Nov 1971),39-47.

[17] E. Lau. "Performance lmprO\.-ement of VirtUal ;\oiemory Systems by Res­
tructuring and Prefetching," Ph. D. Dissertation. Department of EECS,
University of California. Berkeley, 1979.

[1B) E. Lau J. and D. Ferrari, "Program Restructuring in a M\.l.1tilevel Virtual
Memory," PROGRES Report 81.2 & Memorandum No. UCB/ERL M81/26,
Electronics Resee.C'ch Laboratory. College of Engineering, University of
California. Berkeley. May 198!.

[19] W. T. Marshall and C. T. Nute. "Analytical Modelling of 'Working Set Like'
Replacement Algorithms." 1979 ConI. on Simulation, Measurement and
Modeling of Computer Syst., 65-72.

[20] T. Masuda. H. Shiota. K. Noguchi. and T. Ohki. "Optimization of Program
Performance by Cluster Analysis." In/oTTfl.a.tion Processing 74, Proc. IFlP
1974- Congress, 226-270.

•. .' ...

31

[21] J.~F. Pe.ris, "Strategies Optimales en Restructuration de Programmes,"
R. P. 14/76, Institut d'Informatique, Facultes Universitaires de Namur.

[22] J.-F. Peris, "Program Restructuring in Segmentffig Enviroaments," in: D.
Ferrari and M. Spadoni eds., ErpeM.mental Com.puter Performance
Evaluation (North-Holland. Amsterdam, Netherlands,lSlBl) Pl'. 249-264.

[23] J.-F. Paris... Application of Restructuring Techniques to the Improve­
ment ot Program Behavior in Virtual Memory Systems," Ph. D. DIsserta­
tion. Department or EECS, University of California, Berkeley, 19a 1.
(available as Memorandum No. UCD/ERL MB1/44, Electronic Research
Laboratory, College of Engineering. University ot California)

[24J J. E. Shemer and B. Shippey, "Statistical Analysis of Paged and Seg­
mented Computer Systems," IEEE TTa.ns. Compo EC~15.6 (Dec. 1966),
855-863. .

	An Analytical Study of Strategy-Oriented Restructuring Algorithms
	Report Number:
	

	tmp.1307986960.pdf.NCkdn

