View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1981

An Analytical Study of Strategy-Oriented Restructuring Algorithms

Jehan-Francois Paris

Domenico Ferrari

Report Number:
81-395

Paris, Jehan-Frangois and Ferrari, Domenico, "An Analytical Study of Strategy-Oriented Restructuring
Algorithms" (1981). Department of Computer Science Technical Reports. Paper 321.
https://docs.lib.purdue.edu/cstech/321

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4951483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

An Analytical Study of Strategy-Oriented Restructuring Algorithms

Jehan-Prancois Paris

Departmént of Computer Sciences
Purdue University
W. Lalayette, IN 47907

Domenico Ferrari

Department of Electrical Engineering and Computer Sciences
Computer Sciences Division
and
Electronics Research Laboratory
University of California, Berkeley
Berkeley, CA 94720

CSD-TR-395
PROGRES Report 82.1

ABSTRACT
Considerable experimental evidence has been accurrulated showing that

the performance of programs in virtual memory environments can be signifi-
cantly improved by resirucfuring the programs, i.e. by meodifying their
block-to-page or block-te-segment mapping. This evidence also points ocut
that the so-called strategy-oriented algorithms, which base their decisions on
the knowledge of the memory management strategy under which the pro-
gram will run, are more efficient than those algorithms whick do not take

this strategy into account.

We present here some thecretical arguments to explain why strategy-
oriented algerithms perform better than other program restructuring algoe-
rithms and determine the conditions under which these algorithms are op-
timum. In particular, we prove that the algorithms oriented towards the
working set or sampled working set policy are optimum when applied to pro-
grams having no more than two blocks per page, and that, when this restric-
tion is removed, they minimize an upper bound of the performance index
they consider as the figure of merit to be reduced. We also prove that the
restructuring algorithrs aimed at reducing the page fault frequency of pro-
grams to be run under such policies as LRU, Global LRU, and PFF (the Page
Fault Frequeney policy) minimize a upper bound of the page fault rate, and
we extend some of our results to some non-strategy-oriented alsorithms.
Throughout the paper, the only assumption about program behavior is that it
can be accurately modeled as a stationary stochastic process,

Key Words and Phroses: virtual memory, program restructuring, restructur-
ing algorithms, program behavior, page replacement, working set policy,
sampled weorking set policy, LRU policy. PFF policy.

1. INTRODUCTION

Program Restructuring {P.R.) [5] is one of the various techniques aimed
at improving the behavior of programs in virtual mermory enﬂron.ments It
has the dlstm._.,ulsmna feature of being applicable to a.Iready written pro-
grams, and operates by modifying the order according to which the various
blocks of code or data constituting a program are stored in the program's
virtual address space. If well conducted, tpjs reordering will result in a new
black-to-page—or block-to-segment —mapping, which will improve the degree

of locality of the program.

Considerable experimental evidence has been accumulated on the per-
formance of P.R. algorithﬁs and this evidence clearly shows that P.R. can
significantly improve the behavior of programs in both paged {16, 20, 9, 10,
12, 13, 23] and segmentation [22, 23) environments. The observations also
point out that the so-called strategy-srientzd algerithms, which base their
decisions on the knowledge on the memory management strategy under
which the program will run, are more efficlent that those algorithms which

do not take this strategy into account.

We present here sorme theoretical arguments to explain why strategy-
oriented algorithms perform better than other program restructuring zlgo-
rithms and determine the conditions under which these algorithms are
optimum. Section 2 of the paper briefly reviews existing strategy-oriented
restructuring algorithms. Sections 3 to 5 study their performance under
various memeory policies, including Working Set, Sampled Working Set, LRU ,
Global LRU and Page Fault Frequency. Section 6 presents some analytical
results on non-strategy-ortented P.R algorithms and Section 7 contains our

conciusions.

(3]

Although we shall refer in this paper to pPaging environments, most of

our considerations could be applied to segmented systems as well [23].

2. STRATEGY-ORIENTED RESTRUCTURING ALGORITHMS

With very few exceptions (e.g., [2]). all P.R. algorithms share the same

organizatien in four phases [10]:

(i) partitioning of the program to be restructured into blocks, the size of

which should ideally be less than or equai to one half of the page size.

(ii) conmstruction of a restrucluring matriz —or restructuring graph— A, the

elements of which express the "affinities” between blocks,

(iif) application of a clustering algorithm that tries to gather into the same

page blocks exhibiting the strongest mutual affinities, and

(iv} relocation of the blocks in the program’s virtual address space accord-

ing to the results of the clustering algorithm.

Among these four phases, phase (ii) is definitely the most critical for
both the algorithm's performaace and its run-time. The first P.R. alzorithms
based their restructuring matrix on the analysis of the static structure of
Programs. Since then, they have been sutelassed by the so-called dynomic
algorithms, which take into account the run-time referencing behavior of
programms. Gathering such information normally involves simulating or moni-
toring one or more executions of the program to be restructured and this
step is often the most expensive and time-consuming part of the whole res-

tructuring process.

All of the most effictent dynamic restructuring algorithms known today
belong to the class of the so-called strategy-oriented algorithms introduced

by one of the authors [9-11]. These algorithms construct the restructuring

matrix in a2 manner that

(i) takes into account the memory management strategy of the system in

which the program will be run, and

(i) is explicitly based on a measurcble indicator of the program's perfor-

manee,

The Critical Working Set Algorithm {CWS) [10] is probably the best
known example of these strategy-oriented algorithms. it attempts to minim-
ize the page fault frequency of programs and assumes that the restructured
program will be executed on a system using a working set (WS) replacement
policy [7,8]. Define a critical reference as a reference to a block that is not
guarant?.ed to be present in memory at that time. Under a WS policy, this
will be any block that has not been referenced during the last 7 time units,
where T is the value of the policy’s parameter (the window size). It we
store a block to which a eritical reference is made into the same page as a
block that is guaranteed to be present in memory at that time, we avoid the

page fault that could have cccurred otherwise.

Let 7,,. 73, ..., 7, be a reference string collected during one exscution of
the program we want to restructure. Define Ry (), the resident set of blocks
at time £, as being the set of blocks guaranteed to be present in mernory
after the t-th reference is processed. In a WS environment, Ry(t) contains

all blocks that have been referenced during the time interval (f —,¢).

The restructuring matrix C=(cy). which has initially all zero entries, will

be constructed in the following way:

(a) Foralltfrom itondo
if 7 £ Ry(t—-1) then
increment by one all cyy's such that i € Ay (t) and j7=r
ﬁ .
od;
(b) Foralli and j<i do
Gy 1= Gji 1= Cy + €y
od.

Other eritical algorithms have been developed and tested for LRU (CLRU
(18]).FIFG (CFIFO [13]). Sampled Working Set (CSWS [11, 12]). Global LRU
(CPSI [14]), and Page Fault Frequency environments (CPFF [23]). They can
be derived from the CWS algorithm by modifying in an appropriate manner

the deflinition of the resident set of biocks Ry(t).

Unlike critical algorithms, minimal algorithms [13] attempt to minimize
the memory occupancy of restructured programs. To achieve this goal, they
attempt to store within a commeon pagé blocks that will often be simultane-
ously resident in memory. Thus, the algorithm will increment by one, at
fixed sampling intervals during a simulated execution of the program, all
entries of the restructuring matrix cerresponding to a pair {i.) of blocks

which are members of the current resident set of blocks.

Let 7y, 75, ..., 7, represent again a block reference string collected dur-
ing a run of the program to be restructured. Assume that the algorithm's
sampling interval is equal to XK referencss. Then, the restructuring matrix
M=(my;) will have initially all zero entries and will be constructed in the fol-

lowing way:

(a) Forallt from 1ton do

if ¢t mod K = 0 then (* sampling time *)

inerement by one all my;'s such that i € £, {t) and j € R, (¢)

od;
(b) For alli and all j<i do
My 1= My 1= Ty + my
od.

Minimal algorithms have been developed and tested for various memory poli-
cies, including Working Set (MWS), Sampled Working Set {MSWS), Global LRU
(MPS]). and Page Fault Frequency (MPFF).

The effectiveness of-these algorithms obviously depends on the value of
the sampling corstant X. In order to avoid this problem, we will restrict our-
selves for the sequel of this paper to minimal algorithms with fuil sampling,
ie., with K=1i.

Strategy-oriented restructuring algorithms of a third kind have been
recently intreduced by one of the authors [21-23]. They are the so-called
balanced algorithms, which attempt to minimize the space-time product of

the preograms being restructured.

The space-time product characterizes the behavior of a program in a
virtual memory environment by its main memory usage expressed in space-
time units, for instance in page-seconds or byte-seconds. Every page fault
occurring during the execution of a program will increase the space-time
product of the program by a quantity equal to the product S(¢,)T, of the

program's memory occupancy S(¢t,) at the time ty cf the fault by the page

wait time 7),. Similarly, the ecst of increasing the program's memory oceu-
pancy by s memory units during a time interval A¢ would be equal to sA¢
fpace-time units. Any restructuring algorithm attempting to minimize the
Space-time produet of a program will have o reduce the sum of these contri-
butions. It will thus attempt to reduce simultanecusly the program’s page
fault frequency ard its mean memory occupancy, leading thus to a more

"balanced” improvement of the program’s performance.

One of the difficulties encountered in the design of balanced restructur-
ing algorithms lies in the fact that it is practically impossible to estimate at
restructuring time the quantities S(¢r)Ty. The solution adopted consists of
making the page wait time T, constant and replacing all 5(¢ } by a constant
factor § which is an estimate of the program’'s mean memory occupancy S.
Because of this sirnplification, the balanced_ restructuring matrix 4 =(a1-,-) for
a given pregram to be run under a given memory policy will always te a
linear combination of the corresponding critical and minimal restructuring
matrices, and one will have

ay = §Twc.;; + KTmmy.
where KT, is the sampling interval of the minimal algorithm.

Balanced algorithms have been developed and tested for several
memory policies, including Working Set (BWS), Sammpled Working Set {BSWS),
Global LRU (BPSI), and Page Fault Frequency (BPFF). A more complete

deseription of these alzorithms may be found in {23].

3. ANALYSIS OF THE CWS, MWS AND BYS ALGORITHMS

The traditional approach to the analytical study of the performance of
P.R. algorithms implied the choice of a well defined model of program

behavior in virtual memory environments like the Independent Reference

Model (IRM} {8, 1, 4], the Simple LRU Stack Model {SLRUSM) [24, 4]. or the
first-order Markov model [15]. Rather than restricting ourselves to one of
these models, we will only assume that the behavior of the program lo be
restructured can be accurately described by a stochastic chain having a
steady-state solution. From the practitioner's viewpoint, this assumption
means that the program exhibits an essentially stable behavior, which should

obviously be a prerequisite for any atiempt to restructure the program,

A restructuring matrix is net a complete representation of all interac-
tions between the various blocks of a program. In particular, it does not pro-
“vide any information on the possible interactions involving more than two
blocks. We will thus first consider the case of programs that contain at most
two blocks per page and examine later which resuits can be extended tc-r the
more general case of programs having an arbitrary number of blocks per

page.

3.1. Programs with No More Than Two Blocks per Page

Let us consider a program consisting of m blocks occupying a total of n
pages with the restriction that no page will ever coatain more than fwa

blocks. We must then necessarily have m=2n.

For convenience, we would like to have always exactly two blocks per
page. If this is not the case, we will add to the m original blocks 2n -~m ficti-
tious biacks of size 0, which will never be referenced. Since these blocks will
never cause a page fault or occupy any memory space, their introduction will
not alter the performance‘bf the program. Besides, they will appear in the
restructuring matrix as empty. rows and empty columns without any influ-

ence on the clustering process.

B

Taking into account thése fictitious blocks, one can assume that each
pPage i contains two bleocks with indices i 1 and i respectively. The infinite
Sequence 7Ty, ..., Ty Tt Treq, ... Fepresents an infinite block reference string
. preduced by the program. In a Working Set enviromment, the mean page
fault frequency and the mean memory occipancy can be written ip terms of
block refersnce probabilities and of the probability that a given block is in
the resident set of blocks Ry (t), if these probabilities do indeed exist.
Rather than restricting our analysis to a specific class of stochastie models,
we will assume. as mentioned above, that the program’s behavior can be
described by a stochastic model having a steady-state solution. Under these
assumptions, the steady-state probability that page i causes a fault at time ¢
exists and is equal to the probability that either block 11 or iy is referenced

at time ¢ given that neither of them is a member of Ry (t=1). Thus,

Pr{i causes a fault at time ¢] =
Priiy=r.nip £ Ry (E=1) nip £ Ry (£-1)]
* Prlis=rinia £ Re(t—=1) 04y £ Ry (£ -1)]}

and the page fault rate f is ziven by

J = 2 [Priiy=renviy £ Ry (¢ =) Nniz g Fy (¢ -1))

i=1
* Priig=rinis £ Ry(t-1) niy £ Ry (£-1)]].

Similarly, the probability that Page i is in memory at time ¢ exists and is

equal to

Prli,e Ry(t}uiz e Ry (£3]
The mean memory occupancy S of the program is then given by

§:= i Fr[tl Eﬁb(t)UT,a Eﬁb(t)].
i=1

THEOREM Y: The CWS algorithm minimizes the page fault rate of all programs
whose behavier can be described by a chain having a steady-state selution

and which have at most two blocks per page.
Praof:

Assume without loss of generality that each page contains axactly two
blocks. Inthe CWS algorithm, each element cyy of the restructuring matrix is

then provortional to

Priizrymi £ Ry(t-1) nj € Ry (t-1)]
t Prlj=rnj £ Ry{t-1) nie Ry (t-1)].
By clustering two blocks per page with the objective of maximizing the sum

of intra-page affinities, we attempt to find

n .
maxz [F‘r[‘i.1='r, nfrl ~ ‘,?b (t "'1_) Al 1:2 = Hb (t _1)]
=1

+ Prig=rimvip £ By(t-1) ni, € By {t-1)]].
This maximum is evaluated on the set of all possible block-to-page mappings,
rejecting those where the sum of the sizes of the two blocks would be greater
than the page size.

Observing that

Prii=r,ni £ By (£ -1) n FER(t-1)] =
Prii=rini £ Ry (t-1)]

~ Prii=rymi £ Ry(t=1)nj g R, (£-1)],
we can thus rewrite our objective function as

maxi {Priy=rni; £ Ry(t-1)]

i=l

i0

+ Prlig=ryni; £ Ry(t-1)]
- Fr[il—_-?'g I""l"l'rl £ R, (f—'l) Nig £ Eo (t -'1)]

- Pr['!:2=7": n?:z £ Rb (f"l) N il E Hﬁ (t “'1)_”
Since all non-negative terms are independent of the block-to-page mapping,
the objective can be reformulated as

n
miny; [Priiy=rini, £ By (E~1) niy £ By (£ ~1)]
i=1

+ Pritz=rni £ Ry(t-1) ni, £ Ry(t-1)]}.

which is equivalent to minimizing the program's page fauit frequency f.
=

THEOREM H: The MWS algorithm minimizes the mean rmemory oceupancy of
all programs whose behavior can be described by a chain having 2 steady-

state solution and which have at most two blocks per page.
Proof:
Assume without loss of generality that each page conlains exactly two

blocks. In the MWS algorithm with full sampling (K=1), each element my; of

the restructuring matrix is then proporiicnpal to

Fl’['ﬁ Eﬁo(f) nj = Ro(t)]
By clustering two blocks per page with the objective of maximizing the sum

of intra-page affinities, we attempt te {ind
maxzmtl.ig = Prliy € Ry(t) nige Ry{t)]
1=1
Observing that

Prii e Ry(t) nj € Ry(£)] =
Prii € Ry(t)] + Pr{j € Ry ()]

11

~Prlie Ry(tYujs e Ry(t)]
e can thus rewrite our objective function as

T
maxtz {Pritye R ()] + Prj € Ry(t)] = Prli € Ry(t) uj € Ry ()]}
=1
Since all non-negative terms are independent of the block-to-page manping,

the objective can be reformulated as

miny) [Prli, € Ry () Uiz € By (£)]]
i=1

which is equivalent to minimizing the mean memory occupancy 5.
n
Theorems I and II generalize the results in [18], which prove that CWS

and MWS are optimal with respect to prograxﬁs whose behavior can be
described by an independent reference model and which have at most two
blocks per page. Theorem I also extends the result obtained by Lau [17], who
has proved that CWS (s optimal with regard to all programs whose behavior
could be described by a first-order Markov model ard which have two blocks
per page.

THEOREM II: The BWS algorithm minimizes a linear combination of the page
fault rate and of the mean memory oceupancy of all programs whose
behavior can be deseribed by a chain having a steady-state solution and

which have at most two blocks per page.
FProof:
Assume without loss of generality that each page contains exactly two

blocks. If ¢y and my; represent the generic entries of the CWS and MWS res-

tructuring matrices, each element 2y of the BWS matrix 4 is

By clustering two blocks per page with the objective of maximizing the swn

of intra-page affinities, we attempt to find

i2

n
ma“‘(E a'll.tz'
i=1
which is equivalent to

max), {S. Tw.Ciq, + Tm T i)
1=l

Using the results of Theorems I and 11, we can Fewrite our objective as

maxy, |87y .Prii,=r niy £ Ry(t-1}]
{=1

+ B8.Ty . Priiz=r niy £ Ry (t=1)]
= 5.7y Priy=r niy £ Ry(E=1) Nig £ Ry(t—1)]
=87y Priie=r, nig £ Ry(tE-1) ni, £ By (t-1)]
+ T Prii, € B, (¢)]
+ Tm.Friiz € By {t)]

Observing again that all positive terms of the summation do not depend con

the block-to-page mapping, we can reformulate our objective as

min}, (5.7,.Prii,=r, ni, £ R {t-1) nip £ R, {t=1)]

i=1

+ 5.Tw.Prlissr nig £ Ry(E~1) niy £ Ry(t—1)]

+ T . Prli, € By(t) uip € By (t)]],
which is equivalent to

min 5.Ty.f + Ta S,
where f stands for the pregram's page fault frequency and S for its mean

memory occupancy.

3.2. Programs with an Arbitrary Number of Blocks per Page

Since the restructuring graph only takes into account interactions
between two blocks; the problem of defining affinities among more than two

blocks will always remain without a completely satisfactory solution.

Consider. for instance, the case of a eritical restructuring algorithm
like C'WS. As we said befere, the affinity c;; between two blocks 1 and j is
equal to the number of page faults that could be avoided if the two blocks 1
and j were stored Into the same page. Suppose now that we want to compute
the affinity ¢, among the three blocks 1, J and k. Obviously, ¢y should be
equal to the total number of page faults that could be avoided by steoring

blocks i, j and k into the same page.

It could happen that ncne of the expected beneficial effects of the res-

tructuring precess would overlap, that is, that

— storing blocks i and j into the same page would not aveid any of the

page faults that would be avoided if 1 or j were stored with %, and

— storing blocks j and k& into the same page would not avoid any of the

page faults that would be avoided if j or & were stored with .

In this case. the affinity cy; should be set equal to the sum of all affinjties
between all pairs of blocks in {i, 7, k} We would then have
Cije =Cy5 +Cpp +Cpy
and we would then speak of additive affinities.
However, it could also happen that some of the page fauits that would be
avoided if 1 were stored with j or & could aiso be eliminated by storinz 7 and

k together. Then

Cﬁk <Gi, +f-';‘k +ch
In the general case, we have

c,-,-bﬁcﬁ- +cjk +Cpy,
and no means to estimate CiyFCpe +Cxt — Cypre.
From the practitioner's viewpoint, the simplest solution consists of
2ssuming that affinities will always add up and defining the affinities among s

blocks i, 1y, ..., 1, as being equal to

sil i
e = Cit,-
e S kde 1%

Similar problems also arise with minimal and balanced algorithms and, there

too. the simplest solution will be to agsume that affinities are additive.

In all three cases, when the restructuring algorithm assumes that all
beneficial effects of the restructuring process always add up. it may be con-
strued as being essentially “overoptimistic". Since the algcn"ithm attempts to
Mmaximize an optimistic estimate of the beneficial effects of the new block-
to-page mapping, it tends to minimize some lower bound of its performarnce
index. Note that all performance indices considered by strategy-oriented
algorithms are indices te be minimized. We want to show new that this would
also cause the algorithm to minimize a relatively wsak upper bound of the
same perfermance index, In all cases. we will suppose that the program to
be restructured consists of m blocks of sizes S1, 820 o, Sy, After restructur-
ing, these m blocks will be partitioned into » clusters Ky, Ka. K, such

that

3 S5 S S; i=1, 2, ... n,
3.4
where s, is the system's page size, in order to allow each cluster to be stored

in a single page.

15

THEOREM IV: The CWS algorithm with additive affinities minimizes both an
upper bound and a lower bound of the page fault rate for all programs whose
behavior can be described by a stochastie chain having a steady-state solu-

tion.
Proaf:

Suppose that we apply the CWS algorithm to a program whese behavior
can be described by a2 stochastic chain having a steady-state solution. The
result of the restructuring process will be a partition of the program into =n
clusters of blocks that will maximize

cjk
i=1 Jely kel k>f

over the set of all possible block-to-cluster mapping.

This iast condition can be rewritten as
Ti
max » 3, 2 Prirg=injER,(£-1)nkeR, (t-1)). (1)
i=t jeX kel kwnj
The page fault frequency of the program after restructuring will then
be equal to

11
F =3 3 Prin=jn N kER,(t-1)],
i=l JEK; ked;

f =i$1, ‘qPT(Tg=Jn].ERb(t—1)] (2)

=% Y Prin=ing£R{t-1)n U keRy(t-1)].
i=ljel kEXK kRS

The first double sum on the right-hand side of the last equaticn is equal to
the frequency of critical references and dees not depend on the block-to-

ciuster mapping. The second double sum,

16

1
2 X Prn=inieR(t—1)n U keR,(t-1)], (3)
i=lJeXR; kel kny

then represents the sum of the frequencies of all page faults that have been
avoided because of the new block-to-cluster (and thence block-to-page) map-
ping. Maximizing this expression would thus resull in minimizing the pro-

gram page fault frequency.

Upper bounds and lower bounds for {3) are respectively given by

Y 2 3 Prin=infER,(t-1)nkeR, (t-1)] (4)
121 Je&g kek, kaj

and

Y 2 B PrimsingeRy(t-nkeR, (t-1)), (s)
i=1jek 771 kekgim

where 7 is equal to the maximum number of blocks per cluster.

Since CWS maximizes (1), it also maximizes (4¢) and (5), which are
respectively upper and lewer bounds of the beneficial effects of the restruc-
turing process. As a result, it minimizes a lower boungd of the page fault fre-
auency given by

Fam= 3 T Prir=jnje Ry (t-1)]
{=1jek

=X % L Prlnesin£Ry(E—1)nkeR, (£ ~1)],
1=1 J€i; ke kay

and an upper bound of the same page fault frequency given by

Smex = 2, Y, Primy=jinjgR, (¢ -1)]
i=17ek;

n
-3 X . Y, Prlm=jnjeR,(E-1)rkeR,(t-1)].
is1yek, Tl pekhm

COROLLARY I: Consider a program whose behavior can be described by a sto-

chastic chain having a steady-state solution. If this program is running

17

under a Working Set policy with a given block-to-paze mapping
(K1, Ko, ... Ku). its page fault frequency will be bounded by

Fom= 3 g Frin=ins£Ru(t-1)] - ST % cu

i=tj t=i JEX, Eek ko)
and by
T

S maz = z 2 Fr[Ttr'jnanRb(t-l)] - E Z 7,11 2 Cies
ialjek. =l jek fkekjEo

where C={cy} is the CWS restructuring matrix for that progrém and for the

current window size.

THEOREM V: The MWS algorithm with additive affinities minimizes both an
upper bound and a lower bound of the mean memory oceupancy for all pro-
grams whose behavior can be described by a stochastic chain having a

steady-state solution.
Proof:

Suppose that we apply the MWS algorithm with additive affinities to a
program whose behavior can be described by a stochastic chain havinz a
steady-state solution. The result of the restructuring process will be a parti-
tion of the program inte n clusters of blocks that will maximize

LY N omp=) Y Y FrijeRy{t)nkeRy(f)] (6)
(=t jeXy ke k>f 1=1 JeF; keiGxk>f .

over the set of all possible block-to-cluster mappings.

The program's mean memory occupancy will then be equal to

L

S =P UieR ()]
JeK,

i=1

which can be rewritten as

— n

S§=% T AR)]~ T Al U JER(EINKER, ()] (7)
i=1 jeX& I=1fei Eeky k>f

The first double sum on the right-hand side of the last equation does not
depend on the block-to-eluster mapping. The second double sum,

ST U FeR(t)nkeR, (t)], (8)
i=ljef kEL; k>

represents the average memory space that would be saved if the new block-
to-cluster (and thence block-to-page) mapping was adopted. Maximizing this
expression would thus result in minimizine the program's mean memory

occupancy.

Upper bounds and lower bé:u.nds for (8} are respectively given by

i S Y PrjeR, (t)nkeRy(t)] (9)
1=t JeX] Bl ko)

and

where 7 is equal to the maximum number of blocks per cluster.

1 2 Prijemy(t)nker,(t)], (1G)
1€k, T7L peigusy

Since MWS maximizes (8), it alse maxirmizes (9) and (10), which are
respectively upper and lower bounds of the beneficial effects of the restruc-
turing process. As a resuit, it minimizes a lower bound of the mean memeory
occupancy given by

Sen= Y, LEURMI-D T T ArljeR(t)ker)]
i=1 jexg 1S JeX] kel k>j

and an upper bound of the same mean memory occupancy given by

Sou= 3 8 PR - B B oD, PR Ok eR D)

COROLLARY II: Consider a program whose behavior can be described by a sto-

chastic chain having a steady- state solution. If this program is running

19

under a Yorking Set policy with a given block-to-page mapping
(K. K2 £,). its mean memory occupancy will be bounded by

San= Y, L Prijer(t)]-3 ¥ ¥ ma
i=1 jai i=l jei keX k>)

and

—_ n

VY AUeR®]-3 ¥ = T my,

izljek, iztjek 775 kel k>j

S rmax

where /M =(my) is the MWS restructuring matrix for that program and for the

current window size.

THECREM VI: The BWS algorithm with additive affinities minimizes both a
lower and an upper bound of the same linear combination of the page fault
rate and of the mean memory occupancy of all programs whose behavior can

be described by e chain having a steady-state selution.
Praof:

If ¢y and my represent the generic entries of the CWS and MWS restrue-

turing matrices, each element ai; of the BWS matrix A is

@y = STycy+ Tmmy.
Qur objective,

n
maxy ¥ 3 s,

el -
izl jeK kX k>]
can thus be rewritten as

max [T T F catTmd T T mul

1=1 JEeif k€ k> i=1 jek&; kelg k>]
which is equivalent to

max I§Twi Y, Y Prim=inigRy(t-1)nkeR, (t—1)]
t=1 jef ke knj

20

FTadll X% PrlieRy(E)nkeR (£))). (1)
a1 JEi; kek k>f

Consider now the expression

ST,F+T,..5 (12)
which is a linear combination of the program’'s bage {ault {requency f ard its

mean memory occupancy S. Using equations (2) and (7), it can be rewritten

as

Twdl 3 Prim=jnj 2Ry (t-1)]
(=15 €k

- 8§13 T Prim=jrj2Ry(t-1)n [keRy(t-1)]
i=ljek LefG kaf

n

+ Trm 2, jg}ﬁPf[j ERy(£)]

i=1

—Tmd 2 Prl U JER(t)nkeR, (t)],
i=lfel;, kel .kdj

where all positive terms do not depend on the block-to-page mapping. Upper

bounds and lower bounds for (12) are then given by

aA B L)
STw Y, ¥ Prim=ini 2Ry (£—~1)]
iZ15€A

%
—§Twi2 y Prir=jnjERy (t-1)rk €Ry (£ ~1)]
isljsik el k=g

T

+Tmd o PrljeRr,(t)]
=1 Jex

~TaR T Y PrljeR,(t)nkeR, ()], (13)
t=SeQReK ko) '

and

STy Z": Y, Pr(re=jnj £Ry(t-1)]
t=1jex

“ETSLY T T Prlne=ini£R(t-1)nkeR, (i -1)]
t=lfeGhek] kinj

21

F T T PrjER(t)]
i=1 jek;

1 n .
STl X X PrljeRy(t)nkeR, (1)), (14)
ST AT WTY,

where 7 {3 equal to the maximum number of blocks per cluster.,
Since BWS maximizes (11), it maximizes the sum of all negative termsin
t18) and in (14) and thus minimizes an upper bound and a lower bound of

(12}

4. ANALYSIS OF THE CSWS, ¥SWS AND BSWS ALGORITHMS

For convenience of implementation, the Working Set policy can be
approximated by measuring the working set periodica].ly-lnstead of at every
reference. This replacement algorithm is known as the Sampled Working
Sel, or SWS. We will restrict ourselves t'o the case ihere the sampling inter-
val / is a submultipie of the window size 7. In other words. T=k/. with k
integer. The SWS algorithm werks then in the following way: Each time a
page fault accurs, the missing page is added to the program’s resident set of
pages. Al the end of each sampling interval, all pages that have not been
referenced during the last & sampling intervals are expelled from merory.
As a reswlt, the program's resident set of pages wiil then only contain those
pages that have been reierenced at least once during the last &/=T time
units. As program execution resumes, the size of this window will increase
linearly with time until it reaches T+/ tirne units at the end of the next sani-
pling périod. The Sampled Working Set policy thus behaves as a pure Work-
ing Set algorithm whose window size pericdically variss between T and T+/
with a period /. Let us denote by 7(¢) this instantaneous window size. One

has then

22

T(t}=T+ ¢ mod /
where £mod/ is the remainder of the division of ¢ by !.

Assume now that the behavior of the program we want to analyze can be
described by a Markov model with a steady-state solution and let us denote
by Ws(£;7) its resident set of blocks at time ¢ under a pure Working Set pol-
icy with window size 7. The resident set of blocks at time ¢ for the SWS policy
is then given by

Ry(t) = Wy (2;T+t mod [) (15)
which shows that R, (¢) oscillates between #,(¢:T) and W, {¢;:T+/) following a
sawtooth curve. A program running under a SWS policy will thus exactly
behave as if it were running under a WS policy with a window siza T(t) varying
between T and T+/ according to a sawtooth pattern. Once the program
reaches the steady state, the prol:;abilities of referencing, or not referencing,
any given page do not depend any more on the time elapsed since the
program’s inception and are thus totally independent of the current value of
7(t). The probability that block i causes a critical reference at time ¢ is
then fluctuating between

Prii=rymigin, (¢;T)]
and

Prii=rinig W, (t:T+1)]
and is thus time-dependent. Following an approach similar to the one of
Marshall and Nute [19], one may however introduce a time-zueraged proba-
bility that ¢ causes a critical reference, equal to the average probability that
the same block would cause a critical reference if the program were running
under a WS poliey with window sizes 7 uniformly distributed on the interval

[T, T+7). In other words, we have

23

Tl
Pr(i causes a critical reference] = }—-fPr['i =reMEH(£;7)] dT
T

where 7; {s the ¢-th page reference and Wy (£;7), contains all blocks that have
been referenced during the last 7 time units.

Assuming again that each page contains exactly two bloci«:s. the time-
averaged page faull frequency f is then given by

T+I

7= 8 PrliEnoi, e iy (tm)miag Wy (t1m)]

izl
T Priia=ryni £ W, (£:7) Mg Wy (£:7)]) d 7
for any ¢ large enough to offset the influence of the initial conditions.
THEOREH VII: The CSWS algorithm minimizes the page fault rate of all pro-

grams whose behavior can be described by a chain having a steady-state

solution and which have at most two blocks per page.
Proof:

Assume without loss of generality that each page contains exactly two
blocks. Let C = (ci7) be the restructuring matrix constructed by the CSWS
algorithm. Each element cy; of that matrix is proporticnal to

L7
1 - - u
?—[[Pr[z:r.,.m E Ry (T-1)nj e Ry(r-1)]
* Pr(j=r.nj £ By(t-1)ni € Ry(T-1)lidT
for any £ large enough to offset the influence of the initial conditions.
Since

Ry(t) = Wy (8:T+f mod [),
the expression can be rewritten as

24

LTI
?—f [Prii=rini £ B {t=1T) N € Wy (t~1:7)]
T

+ Prij=rnj £ Wy(t-L7) ni € B {t-1;7)]}4dT.

By clustering two blocks per page with the objective of maxdmizing the sum

of intra-page affinities. we attempt to find

gt 1

ax

” .
. “ty.in
i

1

n T+
max)y’ ‘:_}‘f iPriiy=mniy £ #(t-1;7) niy £ Wy {E=1;7)]
i=1 T

+ .Pr[ig-:?'; n'i.z E Wll (t—l,T) N 1'.1 £ Wb (t"}.,T)]IdT
This maximum is evaluated on the set of all possible block-to-page mappings,

rejecting those where the sum of the sizes of the two blocks would be greater

than the paze size.
QObserving that

Prii=rynd £ My (t=LiT) N j € ¥ (E=1i7)] =
Prli=r,ni £ Wy (t-1;7)]

~FPrii=rmi £ W (t=37)nj & #(t=1:7)]
and removing all terms that do not depend on the block-to-page mappingz, we
can reforraulate our objective as i
Tel T

min)] }—_4' [Prlii=reniy £ Wyt =1i7) nig £ Wy (£~1:7)]

i=l

+ Pr[?'.2=r¢ ."11..2 E Wa(t—liT) M 1:1 K Wb (t "LT)]IdT.

which is equivalent to minimizing the program's page fault frequency f.
n

From (15), we can also infer that the program'’s fime-avereged memory

occupancy Sis given by

25

_ n T+l
5=73 %.fpr[il € Wy(t:1) Uia € Wy (t;7)]dT
=1 T

We then have the following theorem.
THEOREM VII: The MSWS algorithm minimizes the mean memeory occupancy
of all programs whose behavior can be described by a chain having a steady-

state solution and which have at most two blocks per page.
FPraof:

Assume without loss of generality that sach page contains exactly two
bloeks. Each element myy of the MSWS restructuring matrix is then propor-
tional to

t+])
]—,—f Prli € Ry(T) 0§ € R, (1)]dT,
t

which can be rewritten as

}—?Z!Pr['i EMp(tiTING € Wy(t;7)]d~.
By clustering two tlocks per page with the objective of maximizing the sum
of intra-page affinities, we attempt to find
T+

L n .
max) m, ;, = maxy, jlr—-fFr[i.I € W& Ty niye WtT]eT
=l izl T

Observing that
Priie My(t:T) nj € Wy(t:7)] =
Priie Wy(t:7)] + Prj € #,(t:7)]

—FPriie W(t:T)ujE F,(t:7)]
and deleting all terms that do not depend on the block-to-page mapping, we

can reformulate our objective as

n T+l
mi.ntz -},—4[}:’?‘[11 e W, (t;'.-) Uis € Wy (t;'r)]]d'r.
=1

which is equivalent to minimizing the mean memory occupaney S,

26

THEOREM IX: The BSWS algorithm minimizes a linear combination of the page
‘ault rate and of the mean memory occupancy of all programs whose
behavier can be described by a chain having a steady-state solution and

which have at most two blocks per page.
Proof:

Similar to the one of Theorem 11 but based on the proofs and the results

of Theorems VII and VIIL.

Using the same approach, one could also consider the case of programs
having an arbitrary number of blocks per page and show that CSWS, MSWS

and BSWS then minimize lower and upper bounds of their objectives.

0. EXTENSION TO OTHER MEMORY POLICIES

As the reader has probably noticed, the proofs of the optimality of CWS
and MWS did not take ints account the compesition of the resident set of
blocks &y (¢) for the VWorking Set policy. These proofs thus hold fer any
strategy-criented restructuring algorithm minimizing the same performancs

indices as long as

[i] the probability that a bloek 1 belongs to the resident set of blocks at

time ¢, PrieR,(¢))], has a stationary distribution for all blocks;

(1i] the probability that a page resides in memory is equal to the probability
that at least one of the blocks it contains belongs to the current

resident set of blocks: ir other words,

Prlpage i inmemory] = Pr[U keR,(t)].
kek;

27

This second condition is the more restrictive: it assumes that the probability
that a page resides in memory dees not depend on the composition of the
other pages. This is ot true for the FIFO, LRU, Globai LRU and PFF replace-
ment policies and, more generally, for all policies where replacement deci-

sions are {or may be) triggered by the oceurrences of page faults.

For the LRU, Global LRU and PFF policies, it is however possible to con-
struct resident sets of blocks K,{¢) s;u:h that aill pages containing at least
one bicck belonging to the current r_esident set of blocks will necessa'rily
reside in memory, while sorme pages residing in memory may not contain any

block belonging to the set. One has thus
Pripage i in memory] = Pr{ U keR,(t)].
kel
As a consequence the page fault rates f generated by these policies have an
upper bound f ., given by

Fomx= 5 X Prij=rmn keRy(t)].

izl feX EEH
One has then the following theorems.
THECKEM X: CLRU and CPFF minimize an upper bound of the page fauit rate
of all programs running under the correspondinz memory pelicy previded
that the behavior of the program in that environment can be described by a

stochastic chain having a steady-state solution.
Praof:

Similar to the one of Theorem IV but with f ., replacing f.

-]
THEOREM XI: CPSI minimizes an upper bound of the page fault rate of all pro-

grams running under a Global LRU memory policy provided that the behavior

of the program in that environment can be described by 2 stochastie chain

28

having a steady-state solution, and that the Global LRU environment in which
the program is to run can be modeled by Bard's Page Survival Index model
(31
Proof:

Similar to the cne of Theorem IV but with /. replaci-ng I.

Theorem X generalizes a similar finding made by Lau {17, 18] for the

CLRU algorithm under IRM program behavior assumptions.

Unfortunately, the same approach cannot be applied te minimal alge-
rithms. Since some pages may be resident in memory without containing
any block belonging to the current resident set of blocks, one could only
compute a lower bound for the mean Memory occupancy S. One could
therefore only prove that MPSI and MPFF minimize a lower bound of the
program’s mean memory occupancy. Results for BPS] and BPFFF would be

even weaker.

8. EXTENSION TO OTHER RESTRUCTURING ALGORITHMS

The same approcach can also be applied to non-strategy-oriented ras-
tructuring algerithms, provided they define implicitly or explicitly the

equivalent of a resident set of blocks.

Hatfield and Gerald's Nearness methed is one example of such algo-
rithms [16]: it implicitly assumes that all references are critical and is there-
fore essentially equivalent to a CWS algorithm with a window size T equal to
one reference, or to a MWS algorithm tuned for a window size equal to two
references. One can thus state that the Nearness Method minirnizes a very
weak upper bound of the program’s page fault frequency as well as a very

weak lower bound of its mean memory occupancy.

29

Another non-strategy-oriented restlructur'mg algorithm, ovroposed by
Masuda ef al. [20], attempts to minimize the working set size of the pro-
gram to be restructured for an arbitrary window size 7*. This algorithm
operates like MWS but with a "wronz" value of the memory poliEy parameter
T. When applied to a program to be run in a working set enviror-mént. it will
therefore minimize a upper bound of the program’s mean memory eccu-

pancy if 7°>7, and a lower bound of this memory occupancy if 7*<T.

7. CONCLUSIONS

We have presented in this paper some analytical results concerning the
performance of strategy-oriented program restructuring algorithms in pag-
Ing environments. These results essentially correlate the performance of a
restructuring algorithm with its ability to predict the influence of any block-
to-page mapping on the performance of the program to be restructured.
These findings corroborate all the experimental evidence collected to date,
showing that restructuring algerithms taking into account the characteris-
ties of the environment under which the program will run significantly out-

perform the restructuring algorithms which ignore that environment.

Acknowledgements

The work reported here was supported in part by the NSF grant ¥CS n0-
12900, _

References

[1] A. V. Aho, P. . Denning and J. D. Ullman, "Principles of Optimal Page
Replacement,” /. ACH 18, | (Jan. 1971), 80-93.

(8] J .Y. Babonneau, M. S. Achard, G. Morisset and M. B. Mounajjed.
"Automatic and General Solution to the Adaptation of Programs in a Pag-
ing Environment,” Prac. 6th. ACH Symp. on Oper. Sys. Prin. {Nov.
1877), 109-116.

30

(3] Y. Bard, “Cheracterization of Program Paging in a Time-sharing
Environment,” /B J, Res. Develop. 17, (Sept. 1973), 387-395.

[¢] E. G. Coffman and P. . Denning, Operating Systems Theory, {Prentice-
Hall, Englewood Clifts, NJ, 1973).

[6] L. Comeau, "A Study of the Effect of User Program Optimization in a
Paging System,” ACH Symp. an Oper. Sys. Prin., (Oct. 1967). Gatlinbursg,
Tenn.

(6] P.J. Denning, "Memory Allocation in Multiprogrammed Computer Sys-
termns,” MIT Project MAC, Computation Structures Group Memo 24, (Mar.
18686).

f7]1 P. I Denning, "The Working Set Model for Program Behavior," Camm.
ACH 11, 5 (May 1968), 323-333. :

(8] P. J. Denning, "Working sets Past and Present.” /EEE Trans, Saftw.
Engrg. SE-8, 1 (Jan. 1980), 84-84.

{9} D. Ferrari, "Improving Program Locality by Strategy-Oriented Restrue-
turing,” Mmjormation Pracessing 74, Proc. 1972 [FIP Congress, pp. 265-
R70. .

(18] D. Ferrari "Improving Localities by Critical Working Sets,” Comm. ACH
17 . 11 (Nov. 1974), 614-620.

(£1]D. Ferrari, "Tailoring Programs to Models of Program Behavior,” /B J.
Res. Develop. 19, 3 (May 1975), 244-251.

[12]D. Ferrari and E. Lau. “An Experiment in Program Restructuring for
Performance Enhancement.” Proc. 2nd /nt. Conf. on Software Engineer-
ing, San Franciseo, Calif. {Oct. 1976), pp.203-2086.

[13) D. Ferrari, “The Improvement of Program Behavior,” Computzr 9, 11
(Nov. 1978), 39-47.

{14] D. Ferrari and M. Kobayashi, "Program Restructuring for Global LRU
Eavironment," Conf. Proc. of Int. Computing Symp., Li¢ge, Belgium,
April 2-7, 1977.

{15] M. A. Franklin and R. K. Gupta. "Computation of Page Fault Probability
from Frogram Transition Diagram.” Comm. ACH 17. = (Apr. 1974), i87-
191.

[16] D. J. Hatfield and .. Gerald. "Program Restructuring for Virtual
Memory." I15H Sys. J. 10, 11 {Nov 1971), 39-47,

[17] B. Lau, “Performance Improvement of Virtual Memory Systems by Res-
tructuring and Prefetching,” Ph. D. Dissertation, Department of EECS,
University of California, Berkeley, 1979.

[18] E. Lau J. and D. Ferrari, "Program Restructuring in a Multilevel Virtual
Memory,” PROGRES Report 81.2 & Memorandumm No. UCB/ERL M81/286,
Electronics Research Laboratory, College of Engineering, University of
California, Berkeley, May 1981.

(18] W. T. Marshall and C. T. Nute, “Analytical Modelling of 'Working Set Like'
Replacement Algnrithms.” 1979 Cont. on Simulation, Measurement and
Modeling of Computer Syst., 65-72.

(R0] T. Masuda, H. Shinta, K, Noguchi, and T. Ohki, "Optimization of Program
Performance by Cluster Analysis," Information Processing 74, Proc. [FIP
1974 Congress, 226-270.

31

[21] J.-F. Paris, "Strategies Optimales en Restructuration de Programmes,”
R. P. 14/76, Institut d'Informatique, Facultes Universitaires de Namur.

{@R] J.-F. Peris, "Program Restructuring in Segmenting Environments,” in: D.
Ferrari and M. Spadoni eds., Ezperimentel Compufer Performance
Evaluation (North-Holland, Amsterdam, Netherlands,1981) pp. 249-264.

[23]) J.-F. Paris. " Application of Restructuring Techniques to the Improve-
ment of Program Behavior in Virtual Memory Systems.” Ph. D. Disserta-
tion, Department of EECS, University of California, Berkeley, 193%.
(available as Memorandum No. UCB/ERL MB81/44, Electronic Research
Laboratory, College of Engineering. University of California)

i2¢])J. E. Shemer and B. Shippey., “Statistical Analysis of Paged and Seg-
mented Computer Systems,” [EZE Trons. Comp. EC-15.8 {Dec. 1968),
855-863. '

	An Analytical Study of Strategy-Oriented Restructuring Algorithms
	Report Number:
	

	tmp.1307986960.pdf.NCkdn

