Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1981

Processor Displacement: An Area-Time Trade-Off Method for
VLSI Design

David M. DeRuyck
Lawrence Snyder

John D. Unruh

Report Number:
81-394

DeRuyck, David M.; Snyder, Lawrence; and Unruh, John D., "Processor Displacement: An Area-Time Trade-
Off Method for VLSI Design" (1981). Department of Computer Science Technical Reports. Paper 320.
https://docs.lib.purdue.edu/cstech/320

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

; ’5"’1‘5x

/

_~«\’¥b'
PROCESSOR DISPLACEMENT: AN AREA-TIME TRADE OFF

METHOD FOR VLSI DESIGN

Dovid M. DeRuyck*
Lowrence Snyder

John D, Unruh®

Department of Computer Sciences, Purdue University,

West Lafayette, Indiana 47907

ABSTRACT

Direcl VLSI implementation of pipelined (systelic) pro-
cessor arrays can lead Lo an "over parallelized” design caus-
ing the chip Lo have unused or underutilized area. Processor
displacement design is a methodology Lhal provides a spec-
lrum of desighs wilh differing lime-area trade offs. The
methodology is motivated, presenled in detail, and illus-
lrated by several examples. Dircel experience for the Tran-
silive Closure and Dynamic Programming syslolic arrays is
presenled.

The worl described herein is part of the Blue CHiP Project and is support-
cd in part by the Office of Naval Research Contracts NO0OC14-80-K-0816
and N00014-81-K-0360. The latter is Special Research Opportunities Task
SRO-100.

*Aulhors permanent address: Bell Telephone Laboratories, Naperville, IL
60566.

4

PROCESSOR DISPLACEMENT: AN AREA-TIME TRADE OFF

METHOD FFOR VL3I DLSIGN

Doviad M. DeRuyck *
Lawrence Snyder

John D. Unrun*

INTRODUCTION

Area-time trade offs for computing functions in VLSI technologies
have been Lhe subject of much study in recent years [1,2,3,4]. Allhough
importanl theoretically, Lhese resulls tend Lo be based on asymptotic
anulysis and employ rather coarse resource measures. To date, their

iimpacl on VLSI design and layout has been minimal.

We report on a methodology called processor displecement design
which provides area-lime trade offs [or pipelined arrays of processors
(systolic arrays [7]) thal are useful for practical VLSI design and layout

problems.

Processor displacement gives the VL3I designer a range of choices

lhat can be balanced to conform to constraints such as ‘“pin"

The work described herein is part of the Blue CHiP Project and is support-
cd in parl by the Oflice of Naval Research Contracta N0O00O14-80-K-0816
and NODO14-81-K-0360. The latter is Special Rescarch Opportunities Task
HRRO-100.

*Aulhors permanent address: Bell Telephone Laboratories, Naperville, 1L
GOBG6.

-2
limitations and to increase the size of Lhe problem solved with a

given chip area.

The widespread interest in systolic algorithms (see the references [5,8])

. provides many opportunities to apply the methodology.

There are several beneflls to processor displacemenl design. It pro-
vides a means ol rapidly responding to Lhe uneven improvemenls in pro-
cess Llechnology, e.g., when feature sizes reduce without a corresponding
improvement in packaging Lechnology. Il gives a rational basis {or decid-
ing between serial or parallel data transfer on and off the chip The
methodology can even be transferred Lo solving the problem ol mapping

large problems onto fixed size multiprocessor archileclures.

The remainder of the paper is organized as [ollows. The nexl section
gives an example of Lhe use of the methodology as well as its benefils and
liabililies. Nexl comes a Lhorough presenlation of the methodology. The

final seclion gives a summary and a discussion ol some remaining issues.

MOTIVATION AND PROBLEM CONTEXT

i order Lo illustrale processor displacemenl, consider an idealized
design silualion. A syslolic array processing element cell, visualized as

containing processing circuilry and stale memory, has been designed.

—1] eircuit |[—

e state —

-3-
Four processing elements of a linear syslolic array have been imple-
mented as shown in Figure 1. (Kung and Leiserson’s lower triangular
banded-syslem solver is of Lhis variety [8, pp. 285-288]. The slate values
are =, ¥ and a, and the circuitry performs y « vy + az.) We suppose that
the [our elements fully utilize Lthe available chip area al A = 2zum (for
some real value z > 0), and that the timing is such thatl all processors are
aclive on cach step once the pipeline has been filed. Moreover, we
assume Lhe eighl ports of Lhe array are connected to the eightl pins of our
(over simplified) package. (We can ignore power, groﬁnd and clocking

* wires in Lhis discussion.)

Dj!ﬂ.
)
D_H

Figure 1.

Now supposc the circuit is to be [abricated wilth a A = zum process.
This factor ol two densily improvemenl cnables Lthe syslolic array to be
realized with only one-iourth the area of the previous implementation,
(Iigure 2). Il is possible, therefore, to incrcase the implementalion to
sixLlcen processing elements (Figure 3). Nolice Lhat this can be done by a

global reorganization of the cells withoul any cell redesign.

‘the sixteen element syslolic array has itwenty ports, but for the sake

ol this discussion, we still assume Llhal only eight pins are available. Il is

- .

B

R WL B
Figure 2.

possible to multiplex the pins, but doing so has a liability: Processing ele-
ments must remain idle cweiling dute. Nol only does this mean Lhal we
never have all sixleen copies ol the processing circuitry active al once
and thus waste silicon area, we musl break open our compleied cell

design Lo add idling logic.

e

e

lEF

Figure 3.
Specification ol sixteen processing eleincnls without a corresponding
increase in pin ovailability causcs us to over parallelize the design. We
simply have more processing circuilry ihan can be utilized. Aillhough

lhis simplified example can be fixed by adopting a larger package, it is

-5-
illustrative of a general fact that cannot be ignored: There must be o bal-
ance belween the parallel compulation capabilily of the processing cir-
cutiry and the data lransfer capabilily provided by the pins. Ii is this

balance that processor displacement design is intended to control.

Continuing with the example, nolice thal in both of the A=zum
implementations, silicon area is wasted; eilher il is unused (Figure 2) or
underulilized because of multiplexing (Figure 3). We can bring Lhis
wasled area into productive use by incrcasing Lhe size of the probicem
solved on a chip. The idea is Lo reduce the amount of processing circui-
try unlil it malches the data transier capacity of the pins. (In this case,
only lour copics of the circuitry are required (Figure 4), allhough the
silualion is more complicaled in general.) The remainder of the effective
chip area is dedicaled to state storage for processing clements that will
be implemented by essentially multiprogramming the cireuitry. A mulli-
plexor is provided for Lhis purpose. Bach cluster of slale slorage cells
and processing circuitry is called a muwliiPE. By using this processor dis-
placemenl approach, we have increased Lhe size of Lthe implemenled sys-

Lolic array Lo 28.

L
e
Al

UL

000000k
D00k

JOOJO00ge

L

Figure 4.

-8 -

This factor of seven improvement in effective density from a factor of
two improvement in wire width was achieved without an increase in avail-
able pins. We paid [or the improvemenl with a loss in lime, bul assessing
the exact amount is difficull. The layoul in Figure 2 is fosler than Lhal of
Iigure 1 by the speed improvements due to scaling, provided the data
can be delivered fast enough. This gain is offset in the layoul of Figure 3
since it is slower by a factor of {our compared with Figured 2 assuming
we do not multiplex the four "end"” porls. Compared wilh ligure 3, the
layoul of FFigure 4 looses a [aclor somewhal less Lhan Lwo under Lhe same

assumptions on mulliplexing.

THE METHODOLOGY

The methodology to be described is not, as yet, a fully mechanical
procedure suilable for computer implementalion as a subrouline in a
CAD system. It requires the designer Lo make judgements and estimales
based on his experience. Neverlheless, Lhe process is quite procedural
and we will organize our presentlation according lo ihe six sleps of the

melhodology.

In order to aid the reader in understanding Lhe detailed discussion of

the individual steps, we give the methodology in its enlirety:

1. Develop an abstract systolic array processor (ASAP) Lo solve a
problem of arbitrary size.

Design Lhe processing elemenl cell.
Figure the efTeclive chip area and the pin count.
Delermine if processor displacement is needed.

Compute the amount of processor displacemenl.

BRI I

Layout the displaced processors and establish their timing proto-
cols.

We now describe each step in detail.

-7 =

1. Develop an gbsiroct systolic orray processor (ASAP) to solve o
problem of arbilrary size. Syslolic arrays arc regular, locally connecied
arrays ol one (or a small number of) processing element(s) thal operale
in a synchronous, pipelined manner and have external connections only
al Lhe perimeter. (See references [9,10] for characlerizalions by the
invenlors.) Three kinds ol inlerconnection struclure are Lypical: linearly
connected, orthogenelly connecled, and hexagonally connected. OQther
conneclions have appeared, such as the toroidally connected Transitive
Closure Systolic Array [11], and Lhese are suilable for our mythology pro-
vided that Lhe connections are sufficiently "local” that clustering

prescrves the interconnection structure,

tn general, the "size” of an ASAP will be proporiional Lo ils perimeter
and describes sorne properly of Lthe size of a give problem. For example,
in the Kung and Leiserson Banded Matrix Sysiolic Arrays {8], il is the
widlh of the band, nol the size of the matrix, Lhat delermines Lthe size of
Lhe array. Thus, lhe widlh is designated as the size, n, of the ASAP. In
Lthe case of the Transitive Closure Systolic Array [11], the size, n, is the

number of vertices.

The ASAP will determine two functions which have the size as a
pararmeler:

m(n} = number of processing clements in an ASAP of size n,

z(n) = number of inputs of an ASAP of size .

The z(n) function describes Lhe number of “values” ihat must bc
lransferred Lo an array of size n on each logical step, once the pipeline is
full. These inpuls are Lhe candidales [or mulliplexing and so the function

musl be formulaled wilh some care. ln parlicular, for uniformily il may

-8 -
be wise to omit certain inputs from this function as was done with the
four "end” wires in the example of the lasl seclion. The term "values”
here refers to logical values, not bits. (Sce Slep 3 for further discussion.)

Ior example, the linear ASAP of the lasl section has z(n) =n.

2. Design the Processing FElement Cell. The objective iz not lo
design a single, monolithic cell, but rather Lo design two cclls: a process-
ing circuilry cell, pc cell, and a stale mewmory cell, sm cell. Togelher,
these Lwo cells should define a processing elementl for Lthe ASAP. Bul
they should also define a family ol cells, each one composed ol one
instance of the pe cell and multiple instances of Lhe sm cells. These serve
as multiPll's when multiplexing conlrol logic is added. These condilions
imply not only that the two cells have a compatible geomelry, bul that
they are compalible with additional copies of the sm cell. (Sec Stlep 6 for
a discussion of the effecl of various clustering choices.) In order that
"high level" manipulation of Lhese componenls be possible wilhout any
internal modification, bus wires and secleclion lines should be incor-

porated inlo the sm cell.

Although many systolic arrays use only one kind of processing cle-
ment, il is possible Lthat several types will be required [8]. If lhis is the
case, scveral pc cell bypes will obviously have Lo be designed. Several sm
cells may be required too, allhough these tend Lo be the same over the
entire array. When multiple element types are required, there will be
geomelric constraints within Lhe multiPll as well as belween mulliPEs.
Moreover Lhere may be limits on the kinds of clustering possible, (sce
Step 8.) These considerations should obviously be assessed belore design-
ing.

There are Lwo values Lthat are determined by Lhe cell design Lhial will

be needed later:

ez = area of one processing clement, i.c., area of a pe cell and an sm

cell,

g = thatl fraction of e used by the sm cell, i.e., area of an sm cell/ .

Since the subsequenl analysis only requires Lhese Lwo values and nol the
designs Lhemselves, il is sufficient Lo have good eslimales in order lo
proceed.

By proceeding on lhe basis of good eslimales, information can be
learned aboul two important design decisions. Firsl, it is possible that
given layoul dimensions and cerlain clustering strategies can lead o
mulliPE geomelries that do nol pack well into the available chip area.
This could make a processor displacement design unachievable. By
eslimating the area, we can determine ithe degree of cluslering and this
will allow us to infer prelerred cell dimensions Llhal will pack easily.
Secondly, il may nol be obvious how much parallelism is appropriate for
dala transmission. Since this decision will probably influence cell design,
we can work Lhrough the melhodology wilh several assumptions on the
cxtent ol parallelism and compare the results. This approach is recom-

mended when speed is a significanl consideration.

J. Figure the effective chip area and lhe pin count. Nol all of the
chip arca is available for use by Lhe syslolic array processing elements.
L addilion to inpul/oulpul pads, we may need arca for mulliplexor logic,
bus wires for rouling signals belween Lhie pads and Lhe array clernents,
and possibly, buffers for Liming (sce Slep 6). The area occupied by all of
these overhead components should be determined (or estimated). Define

Lhe remaining area as

-10_

A = eflective chip area.

We assume thal 4 is a rectangle with dimensions that permit convenient

packing of pc and sm cells.

Of the pins available on Lhe intended package, some will be dedicaled
to power, ground and clocking signals. The remainder will be assigned to
the data transmission aclivity of the syslolic array. Ii cerlain poris were
not included in the z(n) definition (Slep 1), Lthen they musl be per-
manenlly assigned to pins and the available number reduced accordingly.
If there is a single output {rom Lhe array, ithis should be included in Lhe
permanelllly assigned pins.

The remaining pins are available to be used by Lthe multiPEs. [[the
processing elements use parallel input (and, perhaps outpul), Lhen divide
the available pins by lthe width of the parallelism. (This allows us Lo refer
lo a “pin" without reference to serial or parallel data iransfer.) Now, if
Lhe ASAP produces multiple outputs, then we assume there are z{n) of
them and that they use the same degree of parallelism as Lhe input. Ii
50, divide the number of available pins by lwo, since {or cach pin assigned
to the inpul, one must be assigned to an outpul. (Any other ralio can be

handled analogously.) Deflne this result to be

P = number ol available pins.
This is the number of data “values” Lhat can be read in a single logical
slep (see Step 1).

4. Determine 1if processor displacement is needed. The objeclive of

this step is to determine if there are sufficiently many pins to permit a

direct implemenlation ol a portion of the systolic array. Clearly,

processing elements could fit into the available chip area. By solving

m(n) =y
for n we can delermine Lhe size of the region of the ASAP Lhal fils on one

chip. This region ol the ASAP will requirc z (n) pins. Thus, if

z(n)=p.
dircel implementation of Lhe syslolic array is possible with full parallel-
ism.
Cure musl be exercised in interpreling Lhe resulls of Lhe preceding

Lesl. Il direel implemenlation is possible there is siill the problem of

packing Lthe pe cell, sm cell pairs into the available arca. In Lhe following

we assume that

zn)>p
by a "subsianlial” arnoundl.

5. Compute the amount of processor displacement. Using the previ-

ously defined {funclions,
m(n) = number of processing elements in an ASAP of size n,

z(n) = number ol inpuls of an ASAP ol size n, and conslants,

e = area of a processing element,

g = fraclion ol e required for stale memeory,
A = effective chip area

» = nutnber of available pins,

-12-
we can derive an expression for the area cccupicd by a displaced proces-

sor design.

The key quantity in our analysis is the bundling funclion,

which describes the degree of muitiplexing required of the p pins in order
Lo deliver Lhe z(n) input required by one logical step of an ASAP of size n.
Thus, in k(n) processing sleps Lhe dala for one logical slep ol a size n
ASAP can be read. Since the syslolic array is assumed to require Lhis
many inputs on each logical step, the parallelism of the ASAP should be
reduced by a faclor of £{n). Thus, each mulliPE should simulate k(n)
logical processing elements, and hence the name “bundling funclion.”
With k{n) bundling, the m{n) logical processing elem:ans can be
simulaled by m(n)/&(n) mulliPEs ecach containing 4#{n)— 1 additional

memory slates. The tolal must thus salisfy

m(n) N kin) -1

A= %) T Tk

.

m(n)g

Subslituling for &#(n} and simplilying the resulling quotients yiclds

r z(n) —p

A= Py + 2 (1) m(n)q]a.

m(n)

Further simplification gives

A:E’;LT;E)E)— 1+ z—(pﬂ)——l]] (1)

Since all quantities are known as a result of Steps 1-3, we can solve for n
and delermine Lhe size of the ASAP thal could be designed. Knowing »

allows us Lo compule the bundling [aclor, k, Irom & (n).

-13-
Lxample: Equation (1) can be used to derive the displaced processor
design given in the second section. For the linear syslolic array,
m{n)=n and z(n)=n. We used p = 4 before and if we use 2 =1 and

g = %, Lhen 4 = 16 is appropriate. Thus

and n=28. Since k(n) = n/4. The bundling factor is 7.

Obviously, some judgement must be employed in applying equalion
(). Por example, since Lhe bundling faclor deseribes the extent of the
mulliplexing and Lthe number of displaced processors in a mulliPL, Lhe
design is greally simplified if il is an integer. Thus, one might choose the
greatesl n less than that determined by equalion (1) such thal k(n) is an
inleger.

G. layoul the displaced processors ond establish their {tming prolo-
cols., Wilh a bundling factor of £ eslablished in Step 5, we layoul Lthe mul-
LiPlis such Lhal each contains a copy ol Lhe pe cell and & copies of the sm
cell. The mulliPEs are then laid out in the available area such Lhat their
inpul/oulpul porls are comnnecled either to input/oulpul pads or the
perls of adjacent processing elements. The layoul problem, as has
alrcady been menlioned, is subject lo packing diflicuilies when Lhe
diimensions of Lthe available area are nol mulliples of Lthe dimensions of
the multiPEs. Wiring the poris of a linear systohc.array should be a
slraightiorward operalion. But wiring and timing lwo dimensional sys-

lolic arrays presenls some inleresling problems.

- 14 -

Fach multiPE will simulate a contiguous region of k logical process-
ing cleinenls of the ASAP. ‘The geowncelry of Lhis region significanlly
eflects the mulliplexing operalion. Let the bundling faclor £ = 4 and con-
sider iwo mulliPEs ihat simulale regions of the ASAP wilh inpul on Lwo
sides, each wilh differenl geomelries.* (Refer to Iligure U.) MulliPE I

simulales a 2 x 2 block B

IMigure 5.

of logical processing elemenls while multiPE C simulates a columnar
regiotl.

I'he key difference between multiPEs B and C is thal when they
appear along the perimeter (ignore the corner case for lhe momenl) of
Lhe ASAP, Lhey have differenl numbers ol exlernal ports; 5 has Lwo while
¢ has [our. Since each pin will deliver four values in a logical slep, cach
¢ multiPE processes exaclly the amount of dala provided by the pin. Bul
cach 7 mulliPE can only use two inputs during a logical cycle, so two B

mulliPEs musl be atlached to one pin.

#Nolice thol wo are not referring Lo Lhe geomelry of Lhe pe cell and sm eell orgaa-
izalion of Lhe layoult.

-15-

The main consequence of several multiPEs sharing one pin is that the
order in which the constituent processing elements are simulated cannot
be Lhe same. For example, suppose two F multiPEs appear along the per-
imeler and share a pin. Then on processing step one, they cannot both
simulate processing element <1,1> since Lhat would require them bolh to
read [rom Llhe pin simultaneously. We mustl either introduce a buffer or
change the order in which conslituent processing elements are simu-
late&, so thal they are not both reading al once. Notice that linear mul-

LiPLis are not subject to this difficully.

Handling the external input for the multiPE that simulates the
corner processing element adds a bit more complexity because for either
geoinelry, it has more inputs than ithe others. In either case the mulliPE
will be connected Lo lwo different pins. Again, changing ithe ordering of
Lhe simulalions (now il musi be done along both sides) or buffering solves

Lhe problem.

Perhaps the simplest solution is to use € multiPEs such that ihe
corner multiPE simulales in sequential order down Lhe column and the
k-i adjacenl € multiPEs simulale in an order thal is a cyclic shift
(upward) of Lhis sequence. (Obviously, analogous remarks apply for the

oulput.)

EXAMPLES

We have used Lhe processor displacement methodology to analyze
Lwo syslolic array algorithrns. The compuled resulls are summarized in
Table [. The processing elemenl layouls use Mead and Conway [9]} design
rules. The expression "p = z(n)" means Lhal pins are assumed lo be

unlinmited.

-18-

TABLE I.
Transitive Dynamie
Closure Programming
n? m(n) n®
2n z(nr) 5n
params | émm X 6mm A Bmm X Bmm
11288A% a 2B5000A%
0.6 q 0.25
Al 2um lpm 2um lum
n 28 56 | p=z(n) 5 11
min) 784 | 3136 25 121
n 20 66 | package 8 19
m(n) 784 | 4358 | size =84 64 361
multiPEs 784 | 1452 18 348
0 32 71 | package 8 20
m(n) | 1024 | 5041 | size =40 B1 400
multiPEs 512 | 12681 11 24

For the Transitive Closure Systolic Array [11), » is the number of ver-
tices. Since the input does not overlap with the output, the same pins
are used for both operations. Notice that there is no benefit in processor
displacement for A = 2um and package size of 84 since only 58 pins are
needed in addition to the four overhead pins, i.e., in this lechnology il is

possible Lo have full parallelism.

The Dynamic Programming Systolic Arrey solves siring distance
measurement using an n x n array with six bit data. Thus, for a 84 pin
package p = (84 — 4)/8 = 10 logical pins. Each cell requires three values

from the north and lwo from the west.

Notice that the values in Table I may be optimistic in the sense that
"divisibility constraints” have been ignored. To usc the pins oplimally, n
should be chosen so ilhal z{(n)/k(n) is an integer. If it is not, some
bandwidth will be wasted or the timing will be significantly complicated.

A further constraint that one might require is for m(n)/ k, the number of

-17-
multiPEs uscd, Lo be an interger. I'ractional numbers could be achieved
by having mulliPLs simulale fewer than £ logical processing elements.

The Dynamic Programming array for packages of 84 pins und A = 2um
is the only Lable enlry to salisfy bolh consiraints. We can often reduce
Lhe problemn size to enforce the divisibility constrainls. TFor example, in
the Transitive Closure, package of 40 pins, A = lum case, the problem size
musl be reduced Lo n = 54 before the divisibility conslraints are metl.
This choice reduces Lhe area utilization [rom better than 98% to aboul
61%. Iowever, if the available area were aboul 1.5% larger (or
cquivialenlly, Lthe cells were proportionalely smaller), a problemn size of
n =72 (wilh £ = 4} would be possible. This would require redesigning Lhe
mpul/oulput pad arca. In general the divisibilily constrainls can be con-
Lrolled wilh several paramelers and the optimal combination depends on

the designer's judgement.

SUMMARY

We have presenled a six slep methology that allows Lhe amount of
parallelism in a syslolic array Lo Le malched Lo Lhe data Lransfer
bandwidllh provided by Lhe pins. The technique appears Lo be applicable
Lo syslolic arrays with a wide variety of characlerislics. IL provides a
means of evalualing Lhe benefils of serial vs parallel dala transler and for

fully ulilizing the available silicon.

-18-

N J

[
[
i

M
Z 00N

[
[
ra_ll

L6

]

1

)

S
]
s DO
Hil [

|l
I

(] i

L
T
&
7
N
<

[
£
2
A [=

]
1
[]
Z1

=
2

N
]
e

]
]

Y

|

[[

Temple Window Lattice, Mount Omei, Szechwan, (date unknown).

REFERENCES

[1] C.D. Thompson
Complexily Theory for VLI
Ph.D. Thesis, Carnegie-Mellon University, 1979

[2] R.P.Brentand H. T. Kung
Area Time Complexity of Binary Mulliplication
Technical Report CMU-CS-136, Carnegie-Mellon University, 1979

[31 Jean Vuillemin
A Combinatorial Limit to Lhe Computing Power of V.L.5.1. Circuitry
Proceedings of the 21s¢t Annual Symposium on the Foundations of
Computer Science, IEEE, 1980

{4] R.J. Lipton an Robert Sedgewick
Lower Bounds for VLSI
Proceedings of Lthe 13th Annual Symposium on the Theory of Com-
puting, 1981

[5] John P. Gray (ed.)
VLSI 81 Proceedings of an International Conierence on VLSI
Adademic Press, 1981

{6] H.T.Kung, Bob Sproull, and Guy Steele (eds.)
VLST Systems and Compulations
Computer Science Press, 1981

[7] H.T.Kung and C. E. Leiserson
Systolic arrays (for YLSI)
Technical Report CS-79-103, Carncgie-Mcllon Universily, 1979. (Also
in relercnce [8].)

(8]

[€]

[10]

[11]

=19 -

Carver Mecad and Lynn Conway
Introduction o VLSI Systems
Addison Wesley, 1980

Charles E. Leiserson
Area-Efficient VLSI Computation
Ph.D. Thesis, Carnegie-Mellon University, 1980

H. T. Kung
Why Systolic Arrays?
Computer, IEEE, January 1982

L. d. Guibas, H. T. Kung and C. D. Thompson
Direct VLSI Implementation of Combinatorial Algorithms

Proceedings ol Llie CalTech Conference on VLSI, California Institute
ol Technology, 1979

	Processor Displacement: An Area-Time Trade-Off Method for VLSI Design
	Report Number:
	

	tmp.1307986960.pdf.dwaYP

