View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1981

Testing the Coordination Predicate

Janice D. Cuny

Lawrence Synder

Report Number:
81-391

Cuny, Janice D. and Synder, Lawrence, "Testing the Coordination Predicate" (1981). Department of
Computer Science Technical Reports. Paper 317.
https://docs.lib.purdue.edu/cstech/317

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4951479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Testing the Coordination Predicate

Janice £, Cuny
Lawrence Snyder

Purdue University

ABSTRACT

A collection of parallel processors is said to be coordi-
nated if each write from one processing element (PE) to
another is answered by a read. We report on an efficient
algorilhm lo lesl coordination for parallel programs in which
Lhe code for cach PE is a loop. We also test a weaker predi-
cale for parallel algorilhms wilh oblivious PE codes and we
show that Lhe general problem is PSPACE-hard.

August 20, 1982

CSD-TR-3%1

This work is porl of the Dlue CHIiP Project. It is supported in part by the Office of Naval
Research Conlracts NOOO14-U0-1¢-00810 and NOOC14-831-K-0300, The latter is Teak SRC100,

Testing the Coordination Predicate

Junice E. Cuny

Lawrence Snyder

Purdue University

Pipelined or systolic [1] multiprocessors often depend critically on
data values arriving at the right processing element (PE) at the right
ttme withoul the benefit of explicit, interprocessor synchronization. In
the simplesl cases [1], when these algorithms involve a mesh intercon-
neclion of identical processors perlorming simple read-compute-write
cycles, ib is a straightiorward matter to establish that the patterns of
inlerprocessor reads and wriles are compalible. Often, however, we find
anorithh-ls wilh mulliple processor types, complex interconnection pat-
terns {2], or differing data rales [3] and in these cases, the coordination
ol inlerprocess reads and writes can be quite complex. An objective then
in simpli{fying parallel algorithm development is to support the coordina-

lion of interprocessor 1/0 operations.

Wc have reporied earlier [4] on progress toward this objective. Start-
ing wilh a paralle] algorithm which assumes an abstract data flow execu-
tion mode, we show that {or a limited, but widely practical class of algo-
rilhmms, we can automalically generale the timing necessary lor synchro-
nous execulion. Bul whal il the algorithim is not in the class or if manual
design is required? In Lhis paper, we reporl on algorithms Lhal assist Lhe
designer by lesting programs lor incompatibilities in interprocess com-

Imunication.

-2 -

The Model of Parallel Programs

We postulate a parallel processor composed of m processing ele-
ments (PEs), M, M,....M,, which communicate with read and write opera-
tions. The PEs are all of the same type and since we are concerned only
wilh inlerprocessor input/output behavior, it is sufficient to let them be
devices capable of defining a regular sel. We assume that the PEs execute
synchronousiy and lhat, on each step, a PE can simultaneously execute a
sct ol operalions.

We model such systems as nterprocessor Communication (IC) Sys-
tems. 1 An IC systern is completely deflned by a set of reduced, Moore-
type machines, V,,Va.....V,,, each describing the interprocess input/output
behavior ol a single PE The i-th machine describes the behavior of the
i-lh PE. The alphabet of the machines consists of symbols denoting sets
of operalions that are to be executed simultaneously. Each symbol is an

element ol the power sel of i

frielie[m] A geB} U [wq[ie[m] A o€k}

where I is a finite sel of values, r;, denoles an operation that reads o
f[rom PE 7, w;, denotes an operation that writes o to PE 7, and ¢, the
empty sel, takes ithe place ol any operation not involved in interproces-
sor communication (including operations that transfer values to aﬁd from

the external environment).

Figure 1(a) is an IC system describing a systolic processor for band

T e Syslems can be defined more generally [5] bul for the purposes of this pa-
per, we present only a limiled version

1 7] denotes the sot [1.2....,m] Note that we usc slandard set notation to
represenl belh sels and the symbols of our alphabet; Lthe dislinction will be clear
from the surrounding conlext.

e

-3-

matrix-vector multiplication with a bandwidth of four [7]; only interpro-
cessor reads and wriles appear in the model, all other operations are

replaced by . f

Processor I: Vy o (D D D Ty x D Wo o V*
Processor 2: (Pz P&,x _ D ¥ p W om DD D) *

Processor 3: wz,x w4,x ([:] ::} [] szm P4,x []
Processor 4: I'.3,:c w&',:c D j D

l{a) 1IC system representing systolic processor
for band matrix - vector multiplication.

®
w4,z wz,x)
) *

1(b) Communication graph for the IC system of
Figure 1l(a).

Figure 1. : !
IF'or Lthis example, there are no data-dependent branches and so we
denote Lhe values passed between processors by a single, generic value =.
If PE % wriles to P j or PE # reads from PE 4, we say that therc is a com-
muntcation link {from i to j. Tigure 1(b) is a comrunication graph in
which the communication links for tlie system in Figure 1(a) appear as
cdges.

We dofine the execution of an IC syslem in terms of two sequernces,

Tln the figures, we use a rectangle Lo enclose the elements of a set rather than
seb braces,

-4 -

CLc? 03, and @99, @%.... Each element of the first sequence is an an m-
vector of symbols, one coordinate for each PE, desecribing the operations
executed by an IC system in a single step. Each element of the second
sequence is an mxm matrix of strings, giving the status of communica-
tions; qf; gives the status of communications on the link from PL i to
PE j on step £. Values that have been written but that have not yel been
read are denoted by elements of an alphabet ¥; values that have been
requested but that have not yet been written are denoted by their
inverses. The inverse of a symbol o is written ¢7! and ¢'o7! is deflned to
be A, the empty string. Each gf, is of the form af where « is a queue of
writlen values (head on the right end) and f is a queue of requested
values (head on Lhe left end) and corresponding writes and reads cancel
at Lhe boundary belween these queues. Tor all £>0, C* describes the set
of operalions executed in the k-th step and Q* describes the status of

communicalions alter those operations complete.

To start Lhe sequences, we define ¢/ for all ie[m], to be the first sym-
bol in some sequence generated by ¥ and ¢ for all i,j€[m] to be A. .C?
shows all Plis executing their first set of operations and 4% shows that

Lhere are no outslanding reads or writes. The remainder of the sequence

of Cs is defined so Lhat a PE moves to a new set of operations on each -

time step and the operations that it execules form sequences generated

by ils associated finile slale machine: ¢f*! = ¢ for some ¢ such that
eitefed - ke € L(Y).

The remainder ol lhe sequence of s is defined to reflect the execution of

read and wrile operations: ¢f;'=a ¢f;-b where

[o ifw;, €cft?
g =

Tl A otherwise

L T e

and

o7l iy €kt
® = |A otherwise .

We intend for the operalions Tz ald Wy, Lo correspond only if o = ¢'. To
enforce the matching, we define the legal computotion sequences of an IC
system Lo be the set of all compulations with the property that for all 4,
j.and &
gf; e 2T U (Z7)°,

This restriction allows us to express the dependency of branching on
lransmitted values because, unless all corresponding reads and writes
match, some link will have a status in Z*-(E-1)°,

The definition of our model allows computations in which a PE exe-
cutes before the corresponding write; this is acceptable in a formal
model but not in an actual system. In order to be correct, the reads and
wriles of a synchronous systelm must be coordinated. We say that a Sys-~

tem is sirongly coordinated if for all4, 5, and %
ok =X,

thal is, corresponding reads and writes are simultaneous. | We say that a

system is weakly coordinated if for all i, 7, and k
g, e fAJUE A (k>0 A afes A qf; = a-gfflb)=>a = A)

thati is, every read is preceded by its corresponding write and there are
no conscecutive wriles.

Vi is mare customary to assume some unit time dclay belween a wrile nnd the
subsequenl read. We have chosen Lhem Lo be simultaneous to simplily ocur
presentation bul our algorillirus cen be trivially ntodified to incorporate any fixed
delay i cormmunications belween PEs. :

- -

One of the mosi complex aspects of programming for parallel proces-
sors is the problem of insuring that the resulting system is correctly
coordinated. In lhis paper we address this problem by providing algo-

rithms Lo queslions of the form
Given an IC system, is it strongly (weakly) coordinated?

We consider the problem for a sequence of cases, based on increasingly
ecomaplex IC system struclure. For the first two cases, which are sufficient
to cover most of ihe cxisting parallel algorithms, we present efficient
algorilhins to test coordination. I'or the third, general case, we show Lhat

the problein is computalionally intractable.

Loop Programs

In the simplest case, we restrict our attention to loop programs in
which each PL first execules an initialization sequence and then repeat-
edly executes a single cycle of instructions. While this restriction seems
prohibitive, many highly parallel systems, including most of the systolic
processors, can be characlerized in this way. Strong coordination across
a single communication link of a loop program can be tested with the {ol-
lowing algorithm.

Algorithm 1. Verification of strong coordination on a commumcatlon
link belween two loop programs.

Input: Two finile slate machines, ¥; and V,, representing the source
and deslinalion PEs of the communicalion link te be tested respec-
Lively.

OQuipui: CORRECT if the input/oulpul behavior across Lhe given com-
unication link is slrongly coordinated; ERROR otherwise.

o —————

Melhod:

(1) Ior cach ol the PIi's, determine the length of ils initialization
sequence f; and its cyele L. Let MAX be the maximum of s,
and fp and lel LCH be the least common maultiple of ¢, and I,.

(2) Construct the IC system V", Vy' where V' is ¥ with all I/0 opera-
lions to links olher than the given one replaced by ¢.

(3} TBxecule Lhe newly constructed IC system for MAX +LCHM steps.
II a sirong coordination error is found, reporl ERROR; otherwise
report CORRECT.

(4) HALT.

Theorem 1. Algorithm 1 correctly detects strong coordination errors in
loop programs.

Prool: The machines ¥\’ and V' have the same behavior across the given
link as the machines V; and V; respectively, so it is sufficient to test the
coordinalion ol Lhe newly construcied system. or all k>MAX+LCH, the
Pls in this new syslem execule the same operations at time & as they do
at lime (k — MAX) mod LCH and so the test in slep (3) of the algorithm

covers all possible execulion steps. //

In order to lest weak coordination, the algorithm must be modified
slightly. After MAX+LCH steps, both PEs are at the same point in their
cycles as they were aller ¥AX steps. In the case of strong ccordination,
we can be sure lhat any coordination errors Would have shown up by this‘
point. In the case of weak coordinalion, however, it is possible that there
is an oulslanding write on slep MAX and nol on step MAX+LCH or vice
versq, in eilher case, this would cause a coordination error to show up on
the nexl 170 operation. To guarantee weak coordination, therelore, step

(9) of the algorithm musl be replaced by

-8-

(3) Ixecute the newly constructed IC system for MAX+LCH steps.
If a wealt coordination error is found or there is an oulstanding
write after slep MAX and no outstanding write after step
MAX+LCHM or vice versa, reporli [RROR; otherwise reporl
CORRECT.

If we assume that each machine of Lthe IC system has at most n
states, then we lest at most n? execulion steps and the algorithm
requires O0(n?) time per comnmunication link. If we further assume that a
system is composed of a small number of distinct PE types which are
connected in analogous ways, then il is suflicient to test each link type

just once. I'or a system with £ link types and at most n states per

machine, we have

Theorem 2. The coordination of a system of inlerconnected, loop pro-
grams can be tested in O(n?t) time. ’

Notice Lhat this result is dependent, not on the number of PEs, but on the

variely of their interconnection structure.

Oblivious Programs

To Lesl the coordinalion of more general systems, we define oblivious
programs, in which we allow arbitrarily complex finite state machines but
we replace all data values in E with a single, generic value. Since all com-
pulalion sequences ol an oblivious machine are legal, PIis do not have the
capability ol selectively branching on incoming data values. For these
syslems, we can Lesl only worst case coordination, that is, we can answer

the question

-
Frm— -

-0 -

(iven an oblivious IC system, is lthere a potential coordinalion error?

If our algorithm reports CORRECT then the system is coordinated; if our
algorithm reports POTENTIAL ERROR, it is possible that the detected

error will never show up in any legal computation of the system.

To tesl worst case coardination along a single cornmunication link, we
form the "cross producl” machine for the two PEs involved as in Figure 2.
The new machine has a state set of size ¢ where, if 2 is the maximum
number of states of any of the machines in the IC system, g is at most n2.
Fach sequence generated by the cross produet machine represents a
simultaneous execution of ihe two oblivious programs involved. If we
deflne an //0 state for a particular link to be any state in which a read or
write to Lhal link occurs, the question of strong coordination is reduced

to Lthe queslion

[s Lhere a reachable I/0 state in which a read and write do not both
occur?

This is jusl the state reaghability question for finite state machines which
can be answered in 0(g)} = 0(n®) time. The question for weak coordination
is more complicated.

To oblain an appropriate test for weak coordination, we represent
the behavior of a finite state machine with a computetion free in which
nodes are labelled by states and edges signifly transitions. We are
inlerested in the compulalion tree for a particular link, that is, the tree
in which all I/0 operations nol pertaining to that link have been replaced
by ¢. ligure 3 shows Llie computation tree for the link rom PE 4 to PR 7

ol the cross producl machine depicled in Figure 2.

Figure 2. Two PEs and their cross product machine.

qq.9,/9

qzlquwB'a q3rq2/W

9371y o Agrdy/np v

..'I'[_

q1.97/¢

dy:9,/¢

9y /95 wp 4 9yr93/wp 1,

Figure 3. Computation tree for cross product machine in Figure 2.

-12-

We define the outcome of a path p in a computation tree to be

(
1 if there is 1 more write then read along p

and there are no consecutive writes along p

0 il Lhere are an equal number of reads and writes along p
and Lhere arc ne consecutive writes along p

—1 if there is 1 more read Lhan write along p
and Lhere are no consecutive writes along p

L olherwise

The [ollowing lemma relates the outcome of paths to potential weak coor-

dinalion errors

Lemma 1. The computation tree for a link contains no potential weak
coordination errors il and only il all paths from the root have an outcome
of eilher D or 1.
Proof: I'or a gliven link 4,7, consider the IC system thal is composed of the
two Plis using 1.7 with all of their other [/0 operations replaced with .
This syslem has a weak coordinalion error if and only if the original IC
syslem had such an error on the given link. Iach path in the computa-
lion Lree of the cross product machine for the new system corresponds
direclly to one ol its execution sequences and it is easily shown by induec-
lion that
() Lhe path [rom the root to a nede at level I in the computation
Lree has outcome 0 if and only if in the corresponding execution
scquence
0l; €I A (k>0 A gfi'el A gfj = oqftb)=>a =)
and
(#) Lhe path from the root to a node at level { in the computation

lree has outcome 1 if and only if in the corresponding execution

sequence

e

=13 -

Hi€E A ((k>0 A gf7'€Z A gf; =a-gfflb)=>a =)
Thus the path to a node at level I in the computation tree has outecome 0
or 1 i and only if
gi; € A UE A {(k>0 A 7€ A gf;=aqile)=>0 =)
that is, if and only if there is no potenlial weak coordination error in the

tree. //

As a result of this lemma, we can reduce the question of potential weak

coordinatlion errors to the queslion

Is ithere a palh Irom the root in the computation tree for the link
that has outcome -1 or 1?

We now introduce a series of lemmas to show that we. can determine the
enswer to this question after having seen only a finile amount of the com-

pulalion lree. We show

Lemma 2. No palh between two nodes in an error-free computation tree
has an outcome of L.

Prool: Let p = {y.z,...,f be the shartest path in the tree with outcome L:
» musl have at least two nodes. Since p is shortest, there are three pos-

sibililies for the oulcome of the path p' = ¢,t5,... .,

(i} p' has oulcome 1: then there is one more write than read along
?'. Since reads and writes must alternate on any pc"lxt.h in an
error-Iree iree, ithe last 170 operation in p' must be a write and
£, cannol conlain a write. The ouicome of p must be 0 or 1, a

conlradiction.

(i) p' has ottcome 0: as deflned, the oulcome of p cannot be L

-14 -

(41} p' has oulcome -1: then as in case (i}, p must have ouicome

cither 0 or 1, a contradiction.

Thus, ¢ cannot have outcome Lwhich is a contradiction. //

Defining a cycle in a compulation tree to be a path irom a node to (but h
nol. including) Lthe next occurrence of a node labelled wilh the same state,

we show

Lemma 3. The outcome of a eyele in an error-free computation tree
musli be 0.

Prooi: Suppose there is a cycle from node v, to node v with outcome
olLher than 0. By Lemma 2, the ouicome of the cycle must be either 1 or
-1, If the outcome is [, then there must be one more write than read on
the eyele and so Lhere must be at leasl one node ' on the cycle labelled

by a slate containing a wrile operation but no read operation:

Let @y be Lhe path from v; to the node immediately preceding v' and let

py be ilie path [rom Lhe node immediately following v' Lo v, p, and ps

.-15..

together must contain an equal number of reads and writes. In addition,
there must be a path in the tree which starls al »' and has the same
labels as v lollawed by pe followed by p, [ollowed by »' again. This path
musl have an oultcome L since it has two more writes than it has reads. By
Lemma 2, Lhis is a conlradiction. Likewise if the outcome of the original

eycle was -1. //

The algorithm for testing worst case weak coordination builds a par-
tial computation tree breadth-first, computing the outcome of palhs
[rom the root to each node as it is added. If ¢ is the maximum mumber of
slates in the cross product machine, the [ollowing lemma bounds the
depth of the tree that must be searched in order to determine if there is

an error.

Lemma 4. The exislence ol a potential coordination error in a computa-
tion lree can be determined after examining at most 2g levels of the Lree,

Prool: Lel 1 >2¢ be Lhe earliesl level at which an oulcome from the root to
some hode s becomes ecilher -1 or 1. There must be some state s Lhal

repcals on Lhe palh to Lhe node labelled s Delore level &

-) _.‘._'..‘ |,‘”\I . b

-16 -

The cycle Irom the first occurrence of s' to the next along this path must
have otttcome 0 or, by Lemma 3, we could have detected the existence of
a coordination error when the eycle was encountered. If the cycle out-
come is 0, the palhs froin the root to the two nodes labelled 5° must have
Lhe same outcome and so the outcome al Lhe node labelled s must be the
same as the otuleome al a node reached by a shorter path which does not

contain Lhe eycle:

The oulcome at 5 was 1 and so there must be a 1 outcome before level I

wlicl is a conlradiclion. //

For a cross product machine with at most ¢ states, the following lemma

bounds the number of nodes thal must be relained on any given level

Lemma 6. The compuleiion Lree [or delermining worst case weak coordi-
nailon requires al mosl 2qg nodes per level.

Prool: Consider two nodes with the same label s on some level of the tree

and Lhe sublrees below Lhem:

-17 ~

The sublrces T, and 7, musl be identical. Furthermore, if the paths from
Lhe rool to these nodes have the same outcomes, the outcomes al all
corresponding nodes in those subtrees must also be the same. Thus we

can "merge’ the Lvo nodes

and examine only one of the subirees to detect coordination errors.
Since there are 2 possible legitirnate outcomes for each node and g possi-

ble slales, we need Lo relain al most 8¢ nodes per level. //

We will use these results in conslructing on algorithm for testing

-18-

worst case, weak coordinalion. The algorithm maintains & descriptor for

each node on the current level which contains
(¢) ihe union of the oulcemes of all paths from the root to the node

(¢4) for each of the g states, an indication of whether or not that

state has appeared on any of the palhs Lo this node,
and

(iii) for every state, a set containing the possible oulcomes from all
nodes labelled with Lhal state on some path to (but mot includ-

ing) the currenti slate.

The complete algorithm for finite state machines with ¢ states is as

{ollows

Algorithm 2. Verification of worst case, weak coordination on a single
comimunication link.

Jnpul: Two finile state machines, ¥, and V,, representing the source
and deslination Plis of the communication link to be tested respec-
Lively.

Quipul: POTENTIAL ERROR if there are any potential coordination
errors on Lhe input/oulpul behavior across the communication link
Irom PE 1 1o PIi'2; CORRECT olherwise.

Method:

(1) Build a partial computation tree in a breadth~first manner for
2g levels below the root:

I'or cacli descendent # on a level:

{a) Compute the sel of possible cutcomes from the root
lo # using Lhe sel ol culcomes previously computed
for Lhe parenl of v. I Llie sei for v conlains either -1
or 4, report POTENTIAL BRIROR and HALT: olherwise
build the descriplor [or ihe node.

-19-

(b) I the label of » has appeared earlier on any path to
Lhis node, check to see that the cutcome on each of
those paths since ils last occurrence is ¢; if nol,
report POTENTIAL ERROR and HALT.

(c) If the Jabel ol » has already appeared on ihis level,
merge lhe two occurrences by merging their descrip-
tors (unioning outcomes, states encountered and the

oulcomes since lheir lasl occurrences). Remove the
currenl node.

() Report CORRECT and HALT.

Theorem 3. Algorithm 2 correctly detects all worst case, weak coordina-

Lion errors for the given link.

Prool: PART I. Suppose that the algorithm halts after reporting an error.
This could happen in either of two ways: as a result of step‘ (a) or as a
result of step (b). If it occurred as a result of step (a) Lhen, by Lemma 2,
the tree contains an error. If it occurred as a result of step (b) then the
trec also contains an error because, by Leinma 3 the outcomes of all
cyctes in an error-free tree must be 0. Thus, whenever the algorithm
reporls an error, Lhere is an error in the tree.

PART 11. Suppose the tree computation tree for the link coniains an error.
Then by Lemma 4, that error can be detecled in at most 2q levels of the
tree eilher because of an error in the outcome on a path (reported in
step (a)) or because of a cycle outcome error (reported in step (b)).

Thus, il there is an error in the tree, the algorithm reportsit. //

For IC systems with # link types and machines with at most » states each,
we can combine Lhe resuils for sirong and weak coordinalion testing in

oblivious programs, lo get

-20 -

Theorem 4. The worsl case coordination of a system of interconnected,
oblivious programs can be Lested in 0(n®t) lime.

Again, Lhe resulis are not dependent on the number 6f PEs involved but
just ont Lhe variely of their interconneclions. While a bound containing a
[aclor ol »n” seems large, we cxpecl that in most cases n will be quite
small. [n addition, Lhere are a nuinber of optimizations thal we can make
on the finile slate machines, such as collapsing parallel branches wilh the

same [/0 characleristices, to reduce the size of their state sets.

Genceral Programs

Finally, we consider the general case with unresiricted, data depen-

dent control low within processors.

We show

Theorem §. [For an arbitrary system of interconnected processors, the
problem of tesling communication inlerfaces for strong coordination is
PSPACI-hard.

Prool: We reduce the language recognition problem Iér linear beunded
automata (lba’s), which is known Lo be PSPACE-complete[8], to the coor-
dinalion preoblem. Given an lba and an input string, we construcl an IC
syslem which has a coordination error if and only if the 1ba accepts Lhe
Igiven string.

The IC system has the structure shown in Figure 4 where the Memory
PEs arc storage devices and 1he Control PEs are modified instances of the
lba. "therc is one Memory L, Conlrol PE pair {or each tape square. The
Mcmory PIU keeps Lrack of Lhe current symbol written on its correspond-
ing Lape square and Lhe symbol is transfered back and forth between Lthe

lwo I’is, enabling the Control Pl Lo read and branch on its value. The [sa

-t o

-21-—

Memory Memory Memory Memory
PE) PE, PE,._1 PE,
§]]]
L]
Y f i r
Control [, Controljuw.. <+ Lontrol |e Controll
PE, ~ PE, L & — | PE,_; ~ PE,

Figure 4.

IC system configuration for simulating an 1lba.

for the Memory PEs is shown in Figure 5. We use a two symbol alphabet (0
and 1) and the appropriale initial state is determined by the initial value
of the tape square. -

The Conlrol PEs, in addition to reading Lhe eurrent iape symbol from
their corresponding Memnory PEs, also read two tokens from their adja-
cenl neighbors: one indicales whether Lhe Lape square corresponding to
this Control PE will have the read head on the nexl state and the other is
the index of Lhe nexl slale. As indicated in Figure 6, all Conirol PEs
except for the PE at the square where the head inilally resides, have the
same starting state and Lhe inilial state for the PE with the head depends
on Lhe inilial slale of the 1ba.

The Control PLs read from the Memory PEs (the third level of nodes

-20.

initial state: initial state:
0 cell l cell

DO
OCRDC

Figure 5.

Finite state machine for Memory PE.

LIS hend

I inlrial scote:

o ral s
n

Lnitial state
g head

no head

.i.nlt'lll Batdate!

Figure 8. Finite state machine for Control PEs.

- R4 -

in Figure 6) and then write a value back (the [ourth level of nodes). If the
PL does not have the head, the input value is echoed back. I the PE does
have Lthe head, the new value, determined from the transition function of
the lba, is wrillen (¢f denotes ihe value wrilten for state § and symbol i},

On Lhe next slep (the Gfth level of nodes), the Control PEs simultane-
ously wrile and read to their east and west neighbors, indicating the head
movemenl: 2 and h represent the messages "head” and "no head”
respeclively.

AL Lhis point, the Conirol PIE that hes the head is on lthe null state at
Lthe sevenih level of the figure, Lhe PL that is aboul to receive Lhe head is
either ai the state labelled ** or the slale labelled *** (depending on
whether the head is to be passed from Lhe east or the west), and ihe
remainder of Lhe Plis are at the state labelled *. In the next step, the new
stole informalion is passed to the PE receiving the head and the cycle
repeals.

The IC systemn continues simulating the behavior of the lba until a
hati is reached. The haell is passed lo the control PL wilh the head
inslead of a nexl state, causing Lthat PE to repeat the read which in turn

causes a coordination error. //

Discussion

Although the complexity lheory results indicate that ccordination
lesting is a very complex task, it is lmporlant to notice that many
recently developed paralle]l algorilhms are covered by Theorem 2. The
Lesling algevillinns presenled here are currently being implemenled and

we expeet ithat Lhey will be of significanl assistance to programmers

—35 -

working on parallel algorithms. In addition, as libraries of well under-
slood and well lesled parallel modules become available, we expect that
‘Lhese saune lesling algorilhms can be used Lo check aulomatically Lhe

inlerface compalibililies ol modules.

Acknowlecdgemaenls
We owe a debt ol gratilude to Dennis Gannon for uscful discussions
concerning coordinalien and to Calhy Cole who implemented an initial

version of Lhese algorithms,

Street-vender's stall, Chengtu, Szechwan, 1918 A.D.

(1]

[r)
Fur

[3]

- 26 -

Refercnees

I T. Kung and C. E. Leiscrson, Systolic Arrays (for VLSI), In Carver
Mead and Lyun Conway, Inlroduction lo VLS] Systems, Addison Wes-
ley, 1880, pp. 271-292

D.B. Gannon and L. Snyder, Linear Recurrence Algorithims for VLSI:
Tlic Configurable 1lighly Parallel Appreach, International Conference
on Parallel Processing, pp. 259-260.

L., Guibas, O.T. Kung and C.D. Thompsen, Direcl VLSI Implementa-
tiont of Combinatorial Algorithms, Calteeh Conference on VLSI, Cali-
Tornia Inslilule of Technology, 1979,

JIanice [§ Cuny and Lawrence Suyder, Conversion [rom Data-flow Lo
oyuchronous Nxeculion Mode in Loop Programs, Technical Repaorl
CHD-TR-391, Purdue Unuversily, 1982.

Janice T, Cuny and Lawrence Snyder, A Model [or Analyzing General-
jred Tntecprocessor Commumunication Systems, Teclmical Report
CD-TR-406, Purdue Universily, (in preparation).

siichacl R Garey and David 3. Johnson, Comnpulers and niraciabil-
by, W. H. I'reeman and Co., p. 271 (1979).

	Testing the Coordination Predicate
	Report Number:
	

	tmp.1307986960.pdf.y5nlp

