
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1981

Testing the Coordination Predicate Testing the Coordination Predicate

Janice D. Cuny

Lawrence Synder

Report Number:
81-391

Cuny, Janice D. and Synder, Lawrence, "Testing the Coordination Predicate" (1981). Department of
Computer Science Technical Reports. Paper 317.
https://docs.lib.purdue.edu/cstech/317

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Testing the Coordination Predicate

Janice E. Cuny
Lawrence Snyder

Purdue University

ABSTRACT

A collection of parallel processors is said to be coordi­
nated if each write from one processing element (PE) to
another is answered by a read. We report on an efficient
algoriLhm to LesL coordination for parallel programs in which
the code [or each PE is a loop. We also test a weaker predi­
calc Ior pnrallcl algorithms wiLh oblivious PE codes and we
'dhow that the general problem is PSPACE-hard.

August 20, 1902

CSD-TR-391

'l'his lVork 1:1 pw-L of the DIlle CHiP Project. It is supported in pnrt by the Ofiice oi Naval
llcscorch Contracts N00014-IJD-K-OUlO and N00014-BI-K-0300. The latter is Taslr: SHOI00,

Testing the Coordination Predicate

Janice E. Ouny

Lawrence Snyder

Purdue University

Pipclincd or systolic [1] multiprocessors often depend critically on

data values arriving al the right processing element (FE) at the right

time without the benefit of explicit, interprocessor synchronization. In

the simplest cases [1], when these algorithms involve a mesh intercon­

nection of idcnticD.I processors performing simple read-compute-write

cycles, it is a straightforward matter to establish that the patterns of

inLerprocessor reads and writes are compa~ible. Often, however, we find

algorithms with multiple processor types, complex interconnection pat­

terns [2J, or difi'ering data raLes [3J and in these cases, the coordination

of interprocess reads and writes can be quite complex. An objective then

in simplifying parallel algorithm developnlent is to support the coordina­

tion of interprocessor liD operations.

Wc have reported earlier [4J on progress toward this objective. Start­

ing with a parallel algorithm which assumes an abstract data flow execu­

tion mode, we 8ho",.- that for a limited, but widely practical class of algo­

riLhms, 'ire can aulomaLically generaLe the timing necessary Ior synchro­

nous execution. Gut what if the algorithm is not in the class or if manual

d{~:~if,ll is required? In Lhis paper, we report on algorithms thaL assist Lhe

designer by LesUng programs for incompatibilities in inlerprocess com­

munication.

- 2 -

The Model of Parallel Programs

We postulate a parQUel processor composed of m processing ele­

ments (PEs), M1,M2 ,•.. ,Mm • which communicate with read and write opera­

tions. The PEs are all of the same type and since we are concerned only

with inLerprocessor input/output behavior, it is sufiicient to let them be

devices capable of defining a regular set.. We assume that the PEs execute

synchronously and t.hat. on each step, a PE can simultaneously execute a

sel of operations.

We model such systems as lnterprocessor Communication (IC) Sys­

tems) An Ie system is completely defined by a set of reduced, Moore­

type machines, Vi' V2•... , v~, each describing the interprocess input/output

behavior or a single PE. The i-th machine describes the behavior of the

i-th FE. The alphabet of the machines consists of symbols denoting sets

of operations that are to be executed Simultaneously. Each symbol is an

element of the power set of tt

{7'i.aliE[mJ 1\ GEEJ U I Wi.a/iE[mJ 1\ GEEI

where E is a finiLe seL of values, Tj.a denotes an operation that reads 11

Irom PE j, Wj.a denotes an operation thal writes G to PE j, and rp, the

empty set, takes the place of any operation not involved in interproees­

SOl' communication (including operations t.hat transfer values to and from

the cxLernal environment).

Figure l(a) is an Ie system describing a systolic processor for band

t lC Sy:o;Lems can be defmed more generally [5] buL Cor the purposes of this pn­
per, we present only n limiled version.

t1' rm] dC'llotes the sel !l,2, ... ,ml. Note that we usc sLandard set notation to
repn:snnl L:)Oth sels Ilnd the symbols of our alphabet; Lhe distinction will be clear
froUl the ~ml"roundillgcontext.

- 3 -

matrix-vector multiplication with B. bandwidth of four [7]; only interpro-

cessor reads and wriLes appear in the model, all other operations are

replaced by rp. or

Processor 1 , 5] (00 Ow 05]) *

Processor 2,
((1'1 .. X I'3

J
X! 0 [W 1JX W 3 .. X ! 00 o)*

Processor 3,
[W 2 .. X W4JX ! (00 Dh,x P4,xIDI"'4,x '" !l*2,x

Processor 4, (h,xl D~ DO 0) *

l(a) Ie system representing systolic processor
for band matrix - vector multiplication.

4

l(b) Communication graph for the Ie system of
Figure 1 (a) .

Figure 1.

Ji'OI' this example, there are no data-dependent branches and so we

denote Lhe values passed between processors by a single. generic value x.

H PE i wriLes lo PE j or FE j reads from PE it we say that there is a com-

municalion linlc from i Lo j. Figure 1(b) is a communica.tion graph in

which the commlmication links for the system in Figure l(a) appear as

edges.

We define the execution of an Ie sysLem in terms of two sequences,

t In Lhe n~ures, we use D. rectangle Lo enclose the elements of a set rather than
:lel bra~c!j.

- 4.,

C
1
.C

2
,C

3
.... and QO,Ql.Q2..... Each element of the first sequence is an an m-

vector of symbols, one coordinate for each PE, describing the operations

executed by an Ie system in a single step. Each element of the second

sequence is an mxm matrix of strings, giving the status of communica­

tions; qt.; gives the status of communications on the link from PE i to

FE j on step k. Values that have been written but that have not yet been

reod are denoted by elements of an alphabet E; values that have been

requested but that have not yet been written are denoted by their

inverses. The inverse of a symbol (J is written a-I and 0"'lT-1 is defined to

be A, the empty slring. Each qf.J is of the form a{1 where IX is a queue of

wrilLen values (head on the right end) and {1 is a queue of requested

values (head on lhe len end) and corresponding writes and reads enncel

al lhc boundary belween Lhese queues. For all k>O, c;k describes the set

of operations executed in the k -th step and Qk describes the status of

communicaLiollS after those operations complete.

To start LIle sequences, we define Cj,l for all iE:(m], to be the first sym­

bol in some sequence generaLed by Vt and qt~j for all i,j E(m] to be A.. C1

shows nIl PEs executing their first set of operations and QO shows that

therc are no outs Landing reads or writes. The remainder of the sequence

of Cs is defmed so Lhnt a FE moves to a new set of operations on each

time step and the operations that it executes form sequences generated

by iLs associated finite sLate machine: cr+ l = c for some c such that

The remainder of the sequence of Qs is defmed to reflect the execution of

read and wrile operations: q;Jl=a·Qf.rb where

if W E: CJ:+1i.a t

otherwise

- 5 -

and

(

(}'-1 if T, E: C~+l
.• J

b;:: "A otherwtse.

We intend for lhe operations Ti,u and Wj,fl' to correspond only if CT;:: u', To

enforce the matching, we define the legal computation sequences of an Ie

system to be the sel of all computations with the property that for all i,

j, and k

This res lriction allows us to express the dependency of branching on

transmitted values because, unless all corresponding reads and writes

match, some link will have a status in E"·(1:~-I".

The definition of our model allows computations in which a FE exe-

cutes be!ore the corresponding write; this is acceptable in a formal

model bul nol in an actual system. In order to be correct, the reads and

writes oJ a synchronous system must be coordinated. We say that a sys­

tem is strongly coordinated if for all i, j, and k

ihai is, corresponding reads and writes are simultaneous, t We say that a

syslem is weakly coordinated if for all i, j, and k

lhaL is, every read is preceded by its corresponding write and there are

no consecutive wriLes.

j'lt is more customary to assume SOIne unit time delay ucl1veen <1 wrile and the
subsequ{,IlL read, IVe have ~hosell Lhem Lo be simultaneous to simplHy our
presenLation buL our ulp,orilhms cell be trivially lllodified to incorporate any flXed
deluy jll communication::; belween PEs.

- 6 -

One of the most complex aspects of programming for parallel proces­

sors is the problem of insuring that the resulting system is correctly

coordinated. In this paper we address this problem by providing alga-

rithms to questions of the form

Given an Ie system, is it strongly (weakly) coordinated?

We consider the problem for a sequence of cases, based on increasingly

complex Ie system structure. For the frrst two cases, which are sufficient

t.o cover most of the existing parallel algorithms, we present efficient

algorilhms to test coordination. For the third, general case, we show t.hat

the problem is compulaLionally intractable.

Loop Programs

In the simplest case, we restrict our attention to loop programs in

which each PE first executes an initialization sequence and then repeat­

edly executes a single cycle of instructions. While this restriction seems

prohibiLivc, many highly parallel syslems, including most of the systolic

processors, can be characlerized in this way. Strong coordination across

a single communicalion linl< of a loop program can be tested with the fol-

lowing algorithm.

Algorithm 1. Verification of strong coordination on a communication
link beLween two loop programs.

input: Two finile slale machines, VI and V2, representing the source
and deslination PEs of lhe communication link to be tested respec­
lively.

OlLl7JV.l: CORRECT if the input/outpul behavior across lhc given com­
munication JlnIt is strongly coordinaled; ERROR otherwise.

- 7 -

Method:

(1) li'OT each of the PE's, determine the length of its initialization
~equencc If and its cycle 4. Let MAX be the maximum of J 1

and f 2 and lei Leu be the least common multiple of II and l2'

(rZ) ConstrucL the Ie system VI" Vz' where Vi' is ~ with all I/O opera­
Lions to links other than the given one replaced by 'P.

(:3) KxceuLc the newly constructed Ie system for UAX+LCM steps.
II a sLrong coordination error is found, report ELZIWH.; otherwise
report CORHIcCT.

('I) HALT.

Theorem L Algorithm 1 correctly detects strong coordination errors in
loop programs.

ProoI: The machines Vi' and V2' have the same behavior across the given

link as the machines VI and V2 respectiveJy, so it is sufficient to test the

coordiIl.<:\Lion or the newly constructed system. For all k>MAX+LCM, the

PEs in this new syslem execute the same operations at time k as they do

al time (k - MAX) mod LCfi,! and so the test in step (3) of the algorithm

covers all possible execulion sleps. / /

In order to LesL weak coordination, the algorithm must be modified

slighLly. After MAX+LCM steps, both PEs are at the same point in their

cycles as Lhey were aIter MAX steps. In the case of strong coordination,

we can be sure that any coordination errors would have shown up by this

point. In the case of wenk coordination, however, it is possible that there

is an ouLstanding wrile on slep MAX and not on step MJL:'(+LCM or vice

versa; in eiLher case, lhis would cause a coordinalion error Lo show up on

the ncxt 110 operation. To gunranlee weak coordination, therefore, step

(:3) 01 lhe algorithm ffil.lst be replaced by

- 0 -

(3) Execute the newly constructed Ie system for MAX+LCM steps.
If a weak coordination error is found or there is an outstanding
write nfter step MAX and no outstanding write after step
MAX+LC};{ or vice versa, report ERROR; otherwise report.
COHRf~C'L

If we assume that each machine of the Ie system has at most n

slales, then we lest at most n 2 execution steps and the algorithm

requires O(n2) time per communication link. If we further assume that a

system is composed of a small number of distinct PE types which are

connected in analogous ways, then il is sufficient to test each link type

just once. For a system with t linl< types and at most n states per

machine, we have

TIlcoTcm 2. The coordination of a system of interconnected. loop pro­
grams can be tested in O(n 2t) time.

Notice that this result is dependent, not on the number of PEs, but on the

variety of their interconnection structure.

Oblivious Programs

To Lest the coordination of more general systems, we defme oblivious

programs, in which we allow arbitrarily complex finite state machines but

we replace all data values in E with a single, generic value. Since all COIIl­

puLation sequences of an oblivious IIlachine are legal, PEs do nol have the

capability of selectiveJy branching on incoming data values. F'or these

sysLcms, we can test only worst case coordinatioll, that is, we can answer

the question

, ['
.,:~. ' ,

- 9 -

Given an obJivious Ie system, is there a potential coordination error?

If our algorithm reports CORRECT then the system is coordinated; if our

algorithm reports POTENTIAL ERROR, it is possible that the detected

error will never show up in liny legal computation of the system.

To t.est worst case coordination along a single communication link, we

form lhe "cross producL" machine for Lhe two PEs involved as in Figure 2.

The new machine has a staLe sel of size q where, if n is the maximunl

number of staLes of any of the machines in the Ie system, q is at most n 2 ,

Each sequence generated by the cross product machine represents a

simultaneous execution of the two oblivious programs involved. If we

define un 1/0 sl'ate for a particular link to be any state in which a read or

write to that link occurs, the question of strong coordination is reduced

to the question

Is there a reachable I/O state in which a read and write do not both
occur?

This is just the state reachability question for finite- state machines which

can be answered in O(q) :::: O(n 2) time. The question for weak coordination

is more complicatcd.

To obLain an nppropriate test for weak coordination, we represent

the behavior of n finite state machinc with a computation lree in which

nodes arc labelled by states and edges signify transitions. We are

intcrested in the computation tree for a particular link, that is, the tree

in which all I/O operations noL pertaining to that link have been replaced

by rp. Figure 3 shows the computation tree for the link Irom FE A to FE B

of lhe cross producl machine depicted in Figure 2.

PE A

- 10 -

PE A x B

PE B

Figure 2. Two PEs and their cross product mac~ine.

,
~

~,

•

•
•
• •

• • •
•
•

•

•

Figure 3. Computation tree for cross product machine in Figure 2.

- 12-

We derme the outcome of a path p in a computation tree to be

1 if there is 1 more write than re ad along p
and there o.re no consecutive writes along p

o if there arc au equal munber of reads and writes along p
and Lhere arc 110 consecutive writes along p

-1 if there is 1 more read Lhan write along p
v.nd there are no consecutive writes along p

1 otherwise

The follOWing lemma relates the outcome of paths to potential weak coor-

uinuLion errors

Lemma 1. The computation tree for a link contains no potential weak
coordination errol'S if and only if all paths from the root have an outcome
of eiLher 0 or 1.

Proof:]Tor a given link i,j, consider the Ie system that is composed of the

two PEs using i,j with all of their other I/O operations replaced with rp.

This system has u weak coordinaLion error il and only if the original Ie

sysLem had such an error on the given link Each path in the computa­

Lion Lree of the cross product machine for the new system corresponds

directly to one of its execution sequences and it is easily shown by induc-

Lion that

('i) Lhe path from the root to a node at level l in the computation

Lree has outcome a if and only if in the corresponding execution

sequcnce

ilwl

(ii) Lhe path from Lhe root to a node at levell in the computation

Lree has oULcome 1 iI and only if in the corresponding execution

sequence

,,
I

- 13 -

qt.} E: E A «k>O A qr.i1£E A qf.i;::; a·qt-jl.b) => a;::; A)

Thus the pat.h to a node at levell in the computation tree has outcome a
or 1 if and only if

qi,i E IAI vI: A «k >0 A qf.j1EE A qfJ;::; a ·qf.T1'b) => a = >..)

that is, if and only if there is no pot.enLial weak coordination error in the

tree. 1/

As a result of this lemma, we can reduce the question of potential weak

coordination errors to the question

Is there a path from the root in the computation tree for the link
that has Dutcome -lor 1?

We now introduce a series of lemmas to show that we can determine the

answer to tIns question after having seen only 0. finiLe amount of the com-

puLaLion tree. We show

Lemma 2. No path between two nodes in an error-free computation tree
has an outcome of J..

Proof: Lel p ;::; l'l.tz,,,.,lr be the shortest path in the tree with outcome 1;

p must have at least two nodes. Since p is shortest, there are three pos­

sibiliLies for the out.come of the pathp' := t 1,t2, .. "tr _ 1

(i) p' has oulcome 1: then lhere is one more write than read along

p'. Since reads and writes must alternate on any path in an

error-free tree, t.he last I/O operation in p' must be a write and

tr cannot. cont.ain a write. The outcome of p must be 0 or 1, a

contradiction.

(ii) p' has outcome 0: as defined, the outcome of p cannol be L

l"­

i,' ".\.
"" ',-'

- 14-

(iii)p' has oulcome -1: then as in case (i), 'P must have outcome

either 0 or 1, a contradiction.

Thus, p cannot have outcome 1. which is a contradiction. / /

Defining a cycle in a computation tree to be a path from a node to (but

noL including) the next occurrence of a node labelled with the same state,

we show

Lemma 3. The outcome of a cycle in an error-free computation tree
must be O.

Proof: Suppose there is a cycle from node 1) 1 to node V2 with outcome

other LImn O. By Lemma 2, the outcome of the cycle must be either 1 or

-1. If Lhe outcome is 1J then there must be one more write than read on

the cycle and so Lhere must. be at least one node v' on the cycle labelled

by 11 sLate containing a write operation but. no read operation:

v'

Let Pl be the path from VI to the node immediately preceding v' and let

1->2 be the path from Lhc node immediately followIng v'to '/12- PI and p?

- 15-

together must contain an equal number of reads and writes. In addition,

there must be a path in the tree which starLs at 'Il' and has the same

lnbels as v' followed by P2 followed by PI followed by v' again. This path

musL have OIl oulcome 1. since it has two more writes than it has rends. By

Lemma 2, this is a contradiction. Likewise if the outcome of the original

cycle was -1. / /

The algorithm Ior testing worst case weak coordination builds a par­

tial computation tree breadth-flrst, computing the outcome of paths

from tlle root to each node as it is added. If q is the maximum number of

sLates in Lhe cross product machine, the follOWing lemma bounds the

depth of the tree that must be searched in order to determine if there is

an error.

Lemma 4. The existence of a potential coordination error in a computa­
tion tree can be determined after examining at most 2q levels of the t.ree.

Prool: LcL l >2q be the earliesL level at whieh an outcome [roln the root to

:mIlW node :~ uecomes eiLher -lor 1. There must be some state s' that

repeats all the paLh to the node labelled s before levell

£'

0'

, ,., 'I'".:.' .", ,~-', , "

- 16-

The cycle from the first occurrence of s' to the next along this path must

have outcome 0 or, by Lemma 3, we could have detected the existence of

a coordinat.ion error when the cycle was encount.ered. If the cycle out­

come is 0, the paLhs from the root to the two nodes labelled s' must have

Lhe same outcome and so the outcome aL t.he node labelled.s must be the

same ns the ouLcome aL a node reached by a shorter path which does not

contain t.he cycle:

, ., ", "..

.'

.' , , ,,
\ .

The ouLcome at s was .l- and so there must be a.L outcome before levell

which is a contradiction. / /

For a cross product rnachine with at most q st.ates, the following lemma

bounds Lhe number of nodes that must. be retained on any given level

Lemma 5. The computation tree for determining worst case weak coordi­
naLlon requires at most 2q nodes per level.

Proof: Consider two nodes wiLh the same label s on some level of the tree

aw..l Lhe sulJLn:~cs below Lhem:

- 17-

The subLrees T 1 und T 2 ffi"L1SL be identical. Furthermore, if the paths from

Lhe rooL t.o these nodes have the same outcomes, the outcomes aL all

corresponding nodes in those subtrees must also be the same. Thus we

l:un "Il1Crgc" the Lwo nodes

and examine only one of the subtrees to detect coordination errors.

Since there are 2 possible legitimate outcomes for each node and q possi­

ble sLaLes, we need Lo reLain aL mosl2q nodes per level. /1

We will usc these results in consLructing an algorithm for testing

,
. !

- 10-

worst casc, weak coordination. The algorithm maintains a descriptor for

each node on the current level which contains

(i) the union of the outcomes of all paths from the root to the node

(ii) for each of the q states, an indication of whether or not that

stotc has appeared on any of the paths to this node,

and

(iii) Ior every slate, a set containing the possible outcomes from all

nodes labelled wilh Lhal slate on some path to (but not includ­

ing) the current sLale.

The complete algorithm for finite state machines with q states is as

follows

Algorithm 2. Verification of worst case, weak coordination on a single
communicalion link.

fnpuL Two fmile slate machines, VI and Vz, representing the source
and desLil1ution PEs of the communication link to be tested respec­
Lively.

Output: POTENTIAL ERlWn if there arc any potential coordination
errors OIl the input/output behavior across the communication link
from PE 1 to pg 2; COHRECT otherwise.

Method:

(1) Build a partial computation tree in a breadth~first manner for
2g levels below the root:

For 8ach descendent 1) on a level:

(a) Compute Lhe sci of possible outcomes from the root
to v using Lhe sel or out.comes previously computed
for Lhe parent of v. If Lhe set lor v conLains either -l
or' J~ report PO'n~N'l'IAL gmWR and HALT; ot.herwise
build the descriptor for the node.

- 19-

(b) If the label of v has appeared earlier on any path to
this node, check to see that the outcome on each of
those paths since its last occurrence is 0; if not,
repol'll'O'l'ENTlAL IlRIWH and HALT.

(c) If the Jnbcl of v has already appeared on t.his level,
merge the two occurrences by merging their descrip­
tors (unionil1g outcomes, states encountered and the
outcomes since their last occurrences). Hemove the
current. node.

(2) Report COllRIlCT and HALT.

Theorem 3. Algorithm 2 correctly detects all worst casc, weak coordina­

tion errors for the given linle

Proof: PART 1. Suppose that the algorithm halts after reporting" an error.

This could happen in either of two ways: as a result of step (a) or as a

result of step (b). II it occurred as a result of step (a) then, by Lemma 2,

the tree contains an error. If it occurred as a result of step (b) then the

tree also contains an error because, by Lcmma 3 the outcomes of all

cycles in an error-frce tree must be O. Thus, whenever the algorithm

reports an error, there is an error in the tree.

PAHT II. Suppose the tree computation tree for the link contains an error.

Then by Lemma 4, that error can be detected in at most 2q levels of the

tree either because of- an error in the outcome on a path (reported in

step (a)) or because of a cycle outcome error (reported in step (b)).

Thus, if there is an error in the tree, the algorithm reports it. / I

For Ie systems with { link types and machines with at most n states each,

we can combine Lhe results Ior sLrong and weak coordination testing in

oblivious programs, to get

- 20-

Theorem 4. The worsL case coordination of n system of interconnected,
oblivious progrums can be tested in O(nGt) lime.

Again, the results are not d.ependent on the number of PEs involved but

just. on Lhe variety of their interconneclions. While a bound containing a

IaeLor o[nO seems large, we expect that in most cases n will be quite

small. In addition, there are a number of optimizations that we can make

on Lhe fmile sLate machines, such as collapsing parallel branches with the

same 110 characteristics, to reduce the size of their state sets.

General Programs

Finally, we consider the general case with unrestricted, data depen- ­

dent control flow within processors.

We show

Theorem 5. For nn arbitrary syst.em of interconnected processors, the
problem of tesLing communication interfaces for strong coordination is
PSPACl'~-hard.

Proof: We reduce the language recognition problem for linear bounded

automata (Ibn's), which is known to be PSPACE-co:rpplele[6], to the coor-

dinalion problem. Given an lbe. and an input string, we construct an IC

system which has a coordination error if and only if the lba accepts the

given s lring.

The Ie system has the structure shown in Figure 4 where the Memory

PEs ar'e sLofuge devices and the Control PEs are modified instances of the

Ibn. There is one Memory FE, ConLrol PE pair for cach tape square. The

Memory PF: l<ecps Ll'iJ,ck of thc currenl symbol written on its corrcspond-

ing tape square and lhe symbol is lransfercd back and forth between the

two PEs, enabling lhe ConLrol PE Lo read and branch on its value. The fsa

Memory Memory

PEl PE2

:-"ontrol Controlf--
PEl PE2 -

• • •

Memory Memory

PE
p

_
1 PE

r

ontrol Control
PE PEpr-1

Figure 4.

IC system configuration for simulating an lba.

for the Memory PEs is shown in Figure 5. We use a two symbol alphabet (0

and 1) and t.he appropriate initial state is determined by the initial value

of the lape square.

The Control PEs, in addition to rending thc current tape symbol from

t.heir' corresponding Mcmory PEs, also read Lwo tokens from their adja-

eenL neighbors: one indicules whether t.he lape square corresponding to

this Control FE will have the read head on the next. state and the other is

the index of lhe nexl st.ale. As indicated in Figure 6, all Control PEs

except for the PE at tIw square where the head initally resides, have the

same starting slaLe and lhe initial state for the PE with the head depends

on lhe injtial slale of the Iba.

The ConLroJ PEs read from the Memory PEs (the third level of nodes

- 22-

initial state:
o cell

Ws'O

initial state:
1 cell

Figure 5.

Finite state machine for Memory PE.

- 23-

.-... .. 1-<: 1-<:

;u ;. :< -.'

,-.
~ ... I.., 1-<:;u ;. :~:.

_0,
,.

-,'

.-
:'

-­•,;"

O ..OO...OI.~ ~~

;u ;~ :u :•

•,

•;

1-<: '"" "" "";u ;> :u :>

Figure 6. Finite state machine for Control PEs.

- 24-

in Figure G) and then write a value back (the fourth level of nodes). If the

PE does TIel have the head, the input value is echoed back. If the PE does

have Lhe head, the new value, determined from the transition function of

the lba, is written (al denotes the value writ.ten for stale j and symbol i).

On Lhe next step (the fifth level of nodes), the Control PEs simultane­

ously write and read to their east. and west neighbors, indicating the head

movemenL; hand h represent the messages "head" and "no head"

respecLively.

At Lhis point, the Control PE that has the head is on the null state at

the seventh level of the figure, Lhe FE that is about to receive the head is

either ilL Lhe slate labelled *~ or the sLate labelled """0« (depending on

whether the head is to be passed from Lhe cast or the. west), and the

rcmoindqr of Lhe PEs are at the state labelled "'. In the next step, the new

stule information is passed to the PE receiving the head and the cycle

repeals.

The Ie system continues simulating the behavior of the lba until a

hdt i~j reached. The hal/; is passed La the control PE with the head

ins lead of a nexl sLale, causing that PE to repeat the rend which in Lurn

CQllSCS a coordination error. II

Discussion

Although the complexity theory results indicate that coordination

lcstill~; is n very complex Lask. it is important to notice that many

l'ccenlly devcloped parallel algoriLlulls are covered by Theorem 2. The

LesUng algoriLllllls presenled here at'e currently being implemenled and

we expect that they will be of significanl assistance to programmers

-.25 -

working on parallel algorithms. In addition, as libraries of well under­

~~Loocl lind weB Le:rLcd paraUel modules become available, we expect that

-these same LcsUng algorithms can be used La check fluLomntically the

interface compalibiliLies of modules.

Acknowledgements

We owe a <fcbt or graULude to Dennis Gannon for useful discussIons

concerninG coordination ilnd to Cathy Colc who implemented an initial

version oJ these algoriUu1l3.

Street-vender's stall, Chengtu, Szechwan, 1918 A.D.

- 26-

Ilcfcrcncc3

[IJ H. T. Kung and C. E. Lciscrson, Systolic Arrays (for VLSI), In Carver
Mead and LYllll Conway, Introduction to VLSI Systems, Addison Wes­
ley, 19UO, pp. 271-292

[2J D.D. Gannon and L. Snyder, Linear Recurrence Algorithms for VLSI:
TIle ConIlgul'ablc Highly Parallel Approach, Inlernational Conference
un Parallel Processing, pp. 259-200.

[~3J 1,..1. Guibns, I-LT. Kung and C.D. Thompson, Direct. VLSI Implementa­
Lion of Combinatorial Algorithnls, Caltech Conference all VLSI, Cali­
Iornia IllSliLuLc of Technology, 1979.

r'IJ ,Innif'c Ji;, ('lillY I\nd L.awl'cnc(' Snyder, Conversion from Datu-li'low Lo
:;yuel!f"l.lllOlIS 1':XC(~11Lioll Mode in Loop Pl'ogranls, Technical HCj)orL
G'J)-TE-:.Hll, Purdue UlllversiLy, IH02.

[::jJ ,klllkc K Cunv lllH.l LuWI'f'llCe Snyder, A Model for Analyzing Gencrlll­
j/:r~d 'ilt.crlJr()CCS~oOl· CommunicaLion SysLems, 'l'eclmical l\cporL
C;j'V-'l'E-'l-OU, }Ju!'dut-: UnivcrsiLy, (in preparation).

[6] :,jicllQc] R Garey nnrl David S. Johnson, Comp1dcTs and IntTaci'abil­
-;,Ly, W. H. li'rccrmm and Co., p. 271 (1978).

	Testing the Coordination Predicate
	Report Number:
	

	tmp.1307986960.pdf.y5nlp

