
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1970

A Note on "Axioms" for Computational Complexity and A Note on "Axioms" for Computational Complexity and

Computation of Finite Functions Computation of Finite Functions

Paul R. Young

Report Number:
69-039

Young, Paul R., "A Note on "Axioms" for Computational Complexity and Computation of Finite Functions"
(1970). Department of Computer Science Technical Reports. Paper 315.
https://docs.lib.purdue.edu/cstech/315

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Purdue E-Pubs

https://core.ac.uk/display/4951477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A NOTE ON "AXIOMS"
FOR COMPUTATIONAL COMPLEXITY

AND COMPUTATION OF FINITE FUNCTIONS

Paul R . Young
April 1970
CSD TR 39

(Revised version)

Computer Sciences Department
Purdue University

Lafayette, Indiana 47907

Short title: ON THE COMPUTATION OF FINITE FUNCTIONS

List of Symbols

Greek: \

Math: L *
z , i,

ABSTRACT

Recent studies of computational complexity have focused on "axioms"

which characterize the "difficul ty of a computation" (Blum , 1967a) or the

measure of the "size of a program ," (Blum 1967b and Pager 1969). In this

paper we wish to carefully examine the consequences of hypothesizing a

relation which connects measures of size and of difficul ty of computat ion .

The relation is mot ivated by the fact that computations are performed "a

few instructions at a time" so that if one has a bound on the difficul ty

of a computat ion , one also has a bound on the "number of executed

instruct ions" . This relation enables one to easi ly show that algorithms

exist for finding the most efficient programs for computing finite funct ions.

This resul t , which has been obtained independent ly for certain Turing

machine measures by David Pager , contrasts sharply wi th resul ts for measures

of size , where i t is known that no algorithm can exist for going from a

finite function to the shortest program for computing i t , (Blum , 1969b)

(Pager, 1969). In a concluding sect ion , which can be read independent ly

of the above-ment ioned resul ts, some remarks are made about the desirabi l i ty

of using a program for computing an infinite function when one is interested

in the function only on some finite domain . There is nothing deep in this

paper , and we hope that a reader fami l iar wi th the rudiments of recursion

theory wi l l find this paper a simple intorduction to the "axiomat ic" theory

of computat ional complexi ty . Such a reader might do wel l to begin wi th

the concluding remarks after reading the basic defini t ions.

We let be a standard enumeration of all part ial recursive

funct ions. For exposi tory purposes it wi l l be convenient to assume that

wi th each i we have effectively associated some program P^ which computes

exactly the function Because we can pass back and forth effectively

between programs P^ and indices i , we ident ify P^ wi th i and may , e .g . ,

speak of "program i" . Following Blum (1967a), we call a sequence of

part ial recursive functions a measure if it satisfies

Axiom 1 . For all i , the domain of <t. = the domain of <P-. y

i 1

and Axiom 2 . There is an algorithm for deciding , given i , x , and y

whether <_ y .

For example , ^ (x) might be the number of exectued instructions if the

i algol program or Turing machine is operated on input argument x ,

or it might be the amount of tape or storage space used if the program

hal ts .

Vie follow Blum (1967b) in saying that a function | | measures

the size of programs if it satisfies

Axiom 3 . There is an effective procedure for l ist ing , given n ,

the entire finite set of programs , P^ sat isfying = n , and

for knowing when the listing is completed. We sometimes write jj |

for I P ^ .

(The reader should be warned that the finiteness condition rules ou t , e .g .

measuring the of a "FORTRAN-like" program by the number of its

instructions. This follows by observing that there are infinitely many

simple instructions of the form; WRITE 0 , WRITE 1 , WRITE 2 , A

suitable measure of size would be the total number of characters or even

the total number of cards in a punched program ,)

In this paper , we shall call a quadruple of the form j |

where ^ is a standard indexing of the part ial recursive funct ions, 4> is

a measure of computat ional complexity satisfying Axioms 1 and 2 , | |

is a measure of size satisfying Axiom 3 , and P is a mapping from integers

to programs such that P^ computes a measured programming system .

The programs P^ are included primarily as an aid to exposi t ion . Since it

is possible to always pass effectively back and forth between i and P^ ,

one can always dispense with the programs P^ in favor of working directly

wi th the indexing Xi<J>̂ .

From Blum (1967b) and Pager (1969), we know that for any programming

system (P , | |)>, there is no algorithm which , given a finite function

g , produces a program P for which the size lil is minimal whi le the program
l

computes the function g for all arguments in the domain of g.(In fact , in

Pager (1969), this is proven wi th no assumptions about the computabi l i ty

of the function | J1) We now ask whether we can find a program P^ such

that < K(X) = g(x) for all x E domain g = D and for which (x) is
a finite function

minimal . Given/g (e.g . , by being given its table) we can certainly find

some program P. for which <j>. = g , so suppose

• i
=

I V
5 0 = M

Suppose for the moment that is a measure of how much t ime i t takes for

program i to operate. Now if there is some program P^ such that

-/D = g/D and (x) < M then there must be such a program P.j wi th
 X £ D J J

|Pj, | < M . The intuitive reason for this is that programs execute one

instruction at a t ime. Thus if we eliminate from P^ all instructions not

actually executed in calculating 'J'j/D, we obtain a program P_.
 t
 such that

l
p

j ' l - x b V
x) < M

whi le = j /D = g/D .

The si tuation if measures the amount of storage used by program

P^ is only sl ight ly more compl icated . Suppose $ j (x) < i>l, Consider

any computation by P . for argument xeD , The requirement E
n
 ®.(x) < M j xeij j

bounds the amount of storage which program P^ may actually use . Therefore

if an excessively laTge number of instructions are exectued by Pj in

computing ^ (x) , the contents of storage must be repeated . But the

instuctiOTIS which were executed between times when the storage contents

were repeated could all have been bypassed . In short , if we have a bound

on the storage which can be used , we can compute a bound on the number of

instructions which need be executed , and hence can compute a bound on the

size of the programs which need be considered in looking for programs

which require less storage.

Vie would like to summarize the preceding discussion as a new

principle which relates measures of size and complexi ty . !Ve do this with

Principle R below . Unfortunately , wi thin the Blum theory we cannot talk

about "program instruct ions" , so we must formalize the preceding discussion

by formalizing the conclusion rather than directly formalizing the reasons

for the conclusion . —

5>Although the principle may appear to have a complicated statement ,

it is a fairly direct translation of the conclusions in the final sentence

of the preceding paragraph . We let XyD^, denote a canonical one-one

enumeration of all finite sets: given y , we can list Dy and know when

the listing is completed .

Principle R . A measured programming system < P,<|>,<&, j |) satisfies Principle
total

R if there is a/computable function c(z,y, i) such that , if is defined

on Dy and if there exists some program P_. satisfying

C D ^ / D y = ^ / D y

wi th (2) J * (X) <
 X
Z

D
 4 .CX),

y y

then there exists some j sat isfying (1), (2) and

(3) |P. | l c C
x
|

D
 * .(x), y , i) .

2

Theorem 1 . Let "CP ,<J) | J ̂ be any measured programming system ,

let Fy, be an enumeration of all tables for defining functions mapping

fini te sets of integers into integers, and let D^ , denote the domain

of F . Then Principle R holds if and only if there is an effective

procedure, given the table F^., for finding a program P^ which computes

most efficient ly (i .e. , $. /D , = F and $.(x) is as small as possible),
j y y xe j

Proof. We let ?
f f

 . be some program which computes the function F , e .g . j

by encoding its table.

Suppose that Principle R holds . Then , since
 = F

 ,

we may , given y , compute

ZL , fx) = , - M ,
xeD

y
, f(y)

L

 def .

We may next list all programs P such that

(4) | P
5
| < c(M , y ' , f(y)).

(There are only finitely many such programs.) Of these , we can effectively

find those programs P^ for which

(5)
 x

|
D y t

 y x) < M .

Finally for those programs P^ satisfying (4) and (5), (x) is defined

for all xeDy* so for such j we may actually decide whether

(6) W = Fy .

Thus to find a most efficient program for calculating F , we simply

choose a program P_. sat isfying (4), (5), and (6) for which the sum

in (5) is minimal . If there is no program P^ satisfying (4), (5),

and (6), program must i tself be a most efficient way of calculating

F , so that i teration of this process must yield a most efficient program

for calculat ing F ,

Conversely , if we can , given F , find a most efficient way of

calculating F , then Principle R holds because we may define c(z,y, i)

simply by

/

the size of a most efficient program for
computing the table for (f^/Dy if

 x
|

D
 ^ (x) <_ z ,

V °
i f

 x l D
y

V
X

^
Z

-

We are indebted to John Berenberg for first point ing out to us

the validi ty of the first part of the preceding proof for Turing

machine models. A simi lar proof for Turing machine models may be found

in Pager (1970). Pager also defines efficiency of programs over infinite

sets and shows for his Turing machine models that an algorithm for

finding the most efficient algorithm exists only if the domain set is

fini te. (Pager also uses an effective probabi l i ty function which accounts

for the probabi l i ty that a given argument wi l l be cal led , but for our

purposes this is easily made part of the measure , 4>.)

Theorem 2 . Axioms 1-3 do not imply Principle R .

Proof. We first start wi th any measured programming system \ P,$>,<&, 11}
1

.

Let K be any infinite set of integers which can be effectively generated ,

but which has no algorithm for deciding given n , whether or not neK . Let

k be any 1-1 total recursive function which enumerates K , (so K =

(k(0), k(l) , k(2), . . . }). We now define a new measured programming system

<P* , 11 as fol lows:

p '
2i
 = p.. *'

2i
cy) = cy)

 +

 i, |p'
2i
l ' = Ip

±
I » (so r

2 i
 = •j),

whi le
 p i

2 i + i ^ y program P^ which wri tes k(i) on input 0 , and fails to
3

hal t on inputs y 4 0 ,

$
,

2 i + 1
(0) = 0 bu t * ' 2i+iCy)

 i s

 undefined if y f 0 ,

and \
p

'
2
i+ l \ '

 = 2 i + 1

*

Verificat ion that Axioms (1), (2), and (3) hold is straightforward .

But now the most efficient program P
1

^ for computing the finite function,

{<0 ,n>} has 4*^(0) = 0 if neK whi le 4 ^ (0) > 0 if n£k . Thus if we could ,

given n , find a most efficient program for computing {<0,n>} , we could

decide whether neK by finding a most efficient program P
1

 for
J (n)

computing {<0,n>} and then testing whether 4 ' .
 f
 > (0) <_ 0 .

8.

Theorem 1 says that if we are to be able , given a finite funct ion ,

to find the most efficient algorithm for computing i t , we can do so

assuming Principle R . On the other hand Theorem 2 assures us that some

such principle is really necessary . Al though we feel that Principle R

is really more basic than the ability to find the most efficient algorithm

for computing finite funct ions, Theorem 1 , suggests that these are perhaps

really equivalent principles. That this is not in fact the case follows

by showing that under a weakening of Axiom 3 , Principle R no longer

implies the existence of algorithms for finding the most efficient means

for computing finite functions. Thus Principle R has (in our opinion)

not only the advantage of being the more intui t ively appealing of the two

principles, but also the advantage of being the logically weaker principle.

We show this next .

We say that a function | J' is a pseudo-measure of size if i t

satisfies

Axiom 3 ' . j |
1

 is a finite-one total recursive funct ion.

Clearly Axiom 3 implies Axiom 3 ' , for if | | satisfies 3 it is by

definition finite-one and to compute | i | one stimply lists all j such

that | j
Q
| = 0 , all jj such that | jj | = 1 , . . . unt i l eventually one lists

i among those j for which | j
n
| = n .

Theorem 3 . A . In any measured programming system satisfying Axioms 1 ,

2 , and 3 ' , if there is an algorithm which enables one to pass effectively

from a finite function to a most efficient program for computing the

funct ion , then Principle R holds .

B . There is a system sat isfying Axioms 1 , 2 , and 3 ' in

which Principle R holds but no such algorithm exists .

Proof of A . This is ident ical wi th the corresponding proof in Theorem 1 .

We did not use the full force of Axiom 3 there.

Proof of B . We assume that (P,<f>,4>, j |y is any measured programming system

satisfying Axioms 1 , 2 , and 3 , and Principle R . We modify <̂ P,<Ji,<5, j j y to

obtain a new measured programming system <(P* ,4>' , | much as in the

proof of Theorem 2 . Namely , we take
 p

*2 i
= P

i > 2 i ^
= < t

i
 +

 ^ ' ^ ^

] P
r

 2 1
1 =

 However we now take
 t 0

 be the program which writes

k(i) (the ith member of a nonrecursive but enumerab l e set K) on input

0 and is obtained by the use of Theorem 1 so that computes the

function (<^0,k(i)
/
) > as efficient ly as possible in the system 11 y .

We obtain 2i+l ^ introducing new symbols not in the language of the

system P̂,<j>,<j>, 1 a n d adding these to
 t 0

 guarantee that P ^ + i

does not hal t on inputs other than 0 . Formally we have: (0)=k(i),

and tf^i+iM undefined if x £ 0 , but we now define 4 > ' ^ ^

l
P ,

2 i
+
l l ' = l

P

x(i) ' '

The reader may easi ly verify that Axioms 1 , 2 , and 3
1

 hold in

< P ' , I I ' } • Furthermore, n e K iff the most efficient program

P ' for computing the function { <0,n)-} has 4 ' .j(0)=0, so no algori thm

for finding the most efficient program P V can exist .

10,

To complete the proof we must verify the existence of a function

c ' which wi tnesses the fact that Principle R holds i
n
 the system

^P* ,<)>' ,4>' , 11 ') . To calculate e ' (m,y, i) we proceed as follows: Given

m ,y , i , we first test whether

(7) Z * (x) < m
xeD

y

If the answer is no , we do not care about the value of c ' On.y. i) so we

define

c ' 0 , y , i) = 0

If the answer is yes and if D^ 4 {0} , the most efficient program for

computing <J>*. /D in the two systems -(P ' , 11 and <^>4 ,0 , | are

ident ical; because inequal i ty (7) holds we may actually find ({iV/D^,

and by Theorem 1 we can effectively find the most efficient such program ,

call i t P^, in the system ^ P,<)>, 4>, [| , so we may simply define

c ' (m,y, i) = [P '
2 q

| ' (= \P
q
\).

If the answer is yes and D = {0} , since again 4.(0) < m , we may again

actually find <J>̂ (0) and the most efficient program P^ in the system

computing the funct ion^O .^^CO) In this case, if

^(O i eK , P* need not be the most efficient program for compu t ing^0

in the system "(P
1

 »<J>* > I I ' ^ , but it is clear from the construction that

the size of the most efficient program for computing f^O j^CO) /} in the

system (P* , (J>* ,0 ' , j | ') wi l l be | P • j ' (= |P |). In this case we may there-

fore again define

c ' (m,y, i) = |P '

11.

Concluding Remarks

Part of the purpose of Theorems 1 and 2 is to convince the reader

that it may be worthwhi le to consider the possibi l i ty that axioms 1-3

are st i l l not an adequate basis for a fully developed theory of "abstract"

computational complexi ty . (See also IlcCreight-Meyer (1968) and Young (1969).)

Al though we think that , upon reflect ion , the reader wi l l find Principle R

very reasonable and its consequences interest ing , the results we have

obtained are not deep . The justification for Axioms 1-3 is that they

are not only intui t ively appealing but that they have deep consequences,

and any new axioms should also meet this test . .

We do bel ieve that investigations of the computational complexity

of finite functions should be further pursued because all functions in

real computational problems are in fact fini te. In any computational

system <fP,<}>,it, | one can , given a finite function F^effect ively find

f(y) such that Since the most obvious method for doing this

might be to encode the entire table for F^ into the program P ^ ^ , one

might say that program P f ^ computes by table look up . In Young

(1968) we proved that there exist 0-1 valued total recursive funct ions,

, which are so difficult to compute that on almost all finite domains D,

<J /D (the restriction of ^ to D) is much more efficient ly computed by

table look-up than by any general program P^ for which = < . Actually,

as Albert Meyer pointed out to us , this holds whenever ^ is a sufficient ly

difficult to compute 0-1 valued total recursive funct ion. To see this ,

we now let Ayfy be an enumeration wi thout repetitions of all finite 0-1

valued funct ions, and , as before we let f be a computable function for

12.

which Fy = and we denote the domain of F by D^ . Vie say that

Pf^yj computes F^ by table look-up .

Lemma . For any Blum measure there exists a total recursive function g

such that for all 0-1 valued fini te functions F , g bounds the difficul ty

of comput ing F
y
. Specifical ly ,

 x
|

D
 ^ * f (

y
) M 1

 X
|

D f
 g(

x

) .

Proof. Vie define g by

g(n) = max { J
D
 (x) [n e (0 ,1 ,2 , . . .n}} .

Clearly for any fini te 0-1 valued function F^ , if ny denotes the largest

element of D , , then
y

x
|

D y >
 E(x) > s t *

y
) >

 x
|

D y
. *

f (y)
C x) .

It should be pointed out that the preceding Lemma and the fol lowing

theorem do not hold when tyF^ is al lowed to range over all finite functions,

This follows from the observation in McCreight-Meyer (1969) that for any

Blum measure of complexi ty there is a total recursive function g(y ,x)

such that for all i , <K (X) £G(*
i
(x) , x) for all bu t fini tely many x .

Our next theorem is an immediate corol lary of the preceding lemma.

13.

Theorem 4 . (Meyer) There exists a fixed total recursive function g

such that whenever t is a 0-1 valued total recursive function for which

^ = t implies > g a .e . , then , on almost all finite domains D ,

t/D is more efficient ly computed by table look-up than by any general

program P^ for which <Ju = t . Specifical ly , if ^ = t then for all but

finitely many finite domains D , if F^ = t /D , then "frf^
 =

 t /D and

E
n
 . (x) < E (x) . xeD f(y)

 J

 xeD l

Clearly , by requiring that t be more difficul t to compute than

some g ' which is much greater than g , we may force table look-up to

almost always be a much bet ter method for computing t/D than is any

general program for computing t .

Much recent work in complexi ty theory has considered only programs

for infini te functions which are "sufficiently" difficult to compute.

Theorem 4 suggests that , if one is interested in only finite segments

of these funct ions, then these are just those programs which in practice

should be used only for a few except ional arguments in their domain .

I.e. , if an infinite function is sufficient ly difficult to compute and
on finite domains

one is interested in minimizing computational complexity/ , then one should

seldom use a program capable of computing the entire function because

such a program wi l l be unnecessarily inefficient . The situation is

qui te different if we are concerned wi th the size of programs:

14.

Theorem 5 . For any infini te function t , if ^ = t , then for all but

fini tely many fini te domains D , if = t/D (so ^ y) = t /D) , then

|p
4
l < | p

f W
i .

Proof . There are only fini tely many programs P . for which |P. | _< |P. j .

Acknowledgements

This paper is a revision of an earl ier paper , Young(1968) , which

included al l resul ts of this paper , except that Theorem 4 was given in

a much weaker form . We are very greatful to Robert Ri tchie and Albert

Meyer , each of whom suppl ied an unusual ly large number of construct ive

cri t icisms and helpful suggest ions for changes.

15.

REFERENCES

(Extensive bibl iographies of earl ier work in computational complexity

may be found in Blum(1967a) and of related work in pure recursion

theory in Young(1969). For a more extensive bibl iography of very

recent work in "axiomatic" complexity theory , see [].)

Blum , Manuel , 1967a, A machine independent theory of the complexi ty

 recursive funct ions, J . Assoc. Comp . Mach . , 14 , 322-336,

Blum , Manuel , 1967b , On the size of machines, Inf. and Control , 11 ,

257-265 .

McCreight , E . M . $ Meyer , A . R . , 1969 , Classes of computable functions

defined by bounds on computation: Preliminary report , ACM

Symposium on Theory of Comput ing , Assoc . Comp . Mach . , New York ,

79-88.

Pager, David , 1969 , On finding programs of minimal length , In for. and

Control , 15, 550-554 .

Pager , David , On the efficiency of algori thms, to appear

Rabin , M . 0 . , 1963 , Real time computat ion , Israel J . Math . , 1 ,

203-211 .

Young , P.. R . , 1969 , Toward a theory of enumerat ions, J . Assoc . Comp .

Mach . , 16 , 328-348.

Young , P . R . , 1968 , Computat ional speed-up by table look-ups, Purdue

University Computer Sciences Dept . Tech . Report No . 30 , 1-19 .

16.

FOOTNOTES

1 . Supported by NSF Grant GP 6120

2 . The preceding discussion in fact suggests that an even stronger

principle should hold: namely c should be a function of the single variable

£
n
 (x). However, the weaker principle is adequate for our purposes and
y

 1

in any case in many models is not really weaker . In many models , P,4,4, | | ,

one must both read the input x and wri te the output t |^(x). In such a

si tuat ion , from a knowledge of (x) one can effectively bound both x

and <J>̂ (x). But in this case , (assuming both the notat ion and results of

Theorem 1) , if we are given the function Azyic(z,y, i) of Principle R ,

we may reduce it to a suitable function c* of a single variable as follows:

Given z find d and r such that w d implies 4. (w) > z and such that
Z Z

 1

 2 1

w >_ r
z
 and (x) = w implies <^(x)

 >

 z. Next set

c ' (z) = max{ |PjJ is a most efficient program for computing

F where D , _ {0,1, . . .d and max F (x) < r . 7 y Z

 x
e
P / ~

 Z

y

5 . It has been pointed out by the referee that this definition

of
 p ,

2 i + i violates our initially stated requirement that the indexing

of programs by one-to-one. This objection is easi ly overcome either by

dropping the referencing to programs P and P* altogether or by enlarging

the language of the programs P* to allow symbols not in the language of

the programs P^ and then using these new symbols indefining
 P

2 i+1 by

adding to P a set of unexecutable instructions using these new symbols

and letting the set depend on i .

	A Note on "Axioms" for Computational Complexity and Computation of Finite Functions
	Report Number:
	

	tmp.1307986960.pdf.HeaNz

