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ABSTRACT 

Recent studies of computational complexity have focused on "axioms" 

which characterize the "difficul ty of a computation" (Blum ,  1967a) or the 

measure of the "size of a program ," (Blum 1967b and Pager 1969).  In this 

paper we wish to carefully examine the consequences of hypothesizing a 

relation which connects measures of size and of difficul ty of computat ion .  

The relation is mot ivated by the fact that computations are performed "a 

few instructions at a time" so that if one has a bound on the difficul ty 

of a computat ion ,  one also has a bound on the "number of executed 

instruct ions" .  This relation enables one to easi ly show that algorithms 

exist for finding the most efficient programs for computing finite funct ions.  

This resul t ,  which has been obtained independent ly for certain Turing 

machine measures by David Pager ,  contrasts sharply wi th resul ts for measures 

of size ,  where i t is known that no algorithm can exist for going from a 

finite function to the shortest program for computing i t ,  (Blum ,  1969b) 

(Pager,  1969).  In a concluding sect ion ,  which can be read independent ly 

of the above-ment ioned resul ts,  some remarks are made about the desirabi l i ty 

of using a program for computing an infinite function when one is interested 

in the function only on some finite domain .  There is nothing deep in this 

paper ,  and we hope that a reader fami l iar wi th the rudiments of recursion 

theory wi l l find this paper a simple intorduction to the "axiomat ic" theory 

of computat ional complexi ty .  Such a reader might do wel l to begin wi th 

the concluding remarks after reading the basic defini t ions.  



We let be a standard enumeration of all part ial recursive 

funct ions.  For exposi tory purposes it wi l l be convenient to assume that 

wi th each i we have effectively associated some program P^ which computes 

exactly the function Because we can pass back and forth effectively 

between programs P^ and indices i ,  we ident ify P^ wi th i and may ,  e .g . ,  

speak of "program i" .  Following Blum (1967a),  we call a sequence of 

part ial recursive functions a measure if it satisfies 

Axiom 1 .  For all i ,  the domain of <t.  = the domain of <P-.  y

i 1 

and Axiom 2 .  There is an algorithm for deciding ,  given i ,  x ,  and y 

whether <_ y .  

For example ,  ^ ( x ) might be the number of exectued instructions if the 

i algol program or Turing machine is operated on input argument x ,  

or it might be the amount of tape or storage space used if the program 

hal ts .  

Vie follow Blum (1967b) in saying that a function |  |  measures 

the size of programs if it satisfies 

Axiom 3 .  There is an effective procedure for l ist ing ,  given n ,  

the entire finite set of programs ,  P^ sat isfying = n ,  and 

for knowing when the listing is completed.  We sometimes write jj |  

for I P ^ .  

(The reader should be warned that the finiteness condition rules ou t ,  e .g .  

measuring the  of a "FORTRAN-like" program by the number of its 

instructions.  This follows by observing that there are infinitely many 



simple instructions of the form; WRITE 0 ,  WRITE 1 ,  WRITE 2 ,  A 

suitable measure of size would be the total number of characters or even 

the total number of cards in a punched program ,) 

In this paper ,  we shall call a quadruple of the form j |  

where ^ is a standard indexing of the part ial recursive funct ions,  4> is 

a measure of computat ional complexity satisfying Axioms 1 and 2 ,  |  |  

is a measure of size satisfying Axiom 3 ,  and P is a mapping from integers 

to programs such that P^ computes a measured programming system .  

The programs P^ are included primarily as an aid to exposi t ion .  Since it 

is possible to always pass effectively back and forth between i and P^ ,  

one can always dispense with the programs P^ in favor of working directly 

wi th the indexing Xi<J>̂ .  

From Blum (1967b) and Pager (1969),  we know that for any programming 

system ( P , |  |)>,  there is no algorithm which ,  given a finite function 

g ,  produces a program P for which the size lil is minimal whi le the program 
l 

computes the function g for all arguments in the domain of g.(In fact ,  in 

Pager (1969),  this is proven wi th no assumptions about the computabi l i ty 

of the function |  J1) We now ask whether we can find a program P^ such 

that < K(X) = g(x) for all x E domain g = D and for which (x) is 
a finite function 

minimal .  Given/g (e.g . ,  by being given its table) we can certainly find 

some program P.  for which <j>.  = g ,  so suppose 

• i
=

I V
5 0 = M 



Suppose for the moment that is a measure of how much t ime i t takes for 

program i to operate.  Now if there is some program P^ such that 

-/D = g/D and (x) < M then there must be such a program P.j wi th 
 X £ D J J 

|Pj, |  < M .  The intuitive reason for this is that programs execute one 

instruction at a t ime.  Thus if we eliminate from P^ all instructions not 

actually executed in calculating 'J'j/D,  we obtain a program P_.
 t
 such that 

l
p

j ' l - x b V
x ) < M 

whi le =  j /D = g/D .  

The si tuation if measures the amount of storage used by program 

P^ is only sl ight ly more compl icated .  Suppose $ j (x) < i>l,  Consider 

any computation by P .  for argument xeD ,  The requirement E
n
 ®.(x) < M j xeij j 

bounds the amount of storage which program P^ may actually use .  Therefore 

if an excessively laTge number of instructions are exectued by Pj in 

computing ^ ( x ) ,  the contents of storage must be repeated .  But the 

instuctiOTIS which were executed between times when the storage contents 

were repeated could all have been bypassed .  In short ,  if we have a bound 

on the storage which can be used ,  we can compute a bound on the number of 

instructions which need be executed ,  and hence can compute a bound on the 

size of the programs which need be considered in looking for programs 

which require less storage.  



Vie would like to summarize the preceding discussion as a new 

principle which relates measures of size and complexi ty .  !Ve do this with 

Principle R below .  Unfortunately ,  wi thin the Blum theory we cannot talk 

about "program instruct ions" ,  so we must formalize the preceding discussion 

by formalizing the conclusion rather than directly formalizing the reasons 

for the conclusion .  — 

5>Although the principle may appear to have a complicated statement ,  

it is a fairly direct translation of the conclusions in the final sentence 

of the preceding paragraph .  We let XyD^,  denote a canonical one-one 

enumeration of all finite sets: given y ,  we can list Dy and know when 

the listing is completed .  

Principle R .  A measured programming system < P,<|>,<&,  j |) satisfies Principle 
total 

R if there is a/computable function c(z,y, i) such that ,  if is defined 

on Dy and if there exists some program P_.  satisfying 

C D ^ / D y = ^ / D y 

wi th (2) J * (X) <
 X
Z

D
 4 .CX),  

y y 

then there exists some j sat isfying (1),  (2) and 

(3) |P.  |  l c C
x
|

D
 * .(x),  y ,  i) .

2 



Theorem 1 .  Let "CP ,<J) |  J ̂  be any measured programming system ,  

let Fy,  be an enumeration of all tables for defining functions mapping 

fini te sets of integers into integers,  and let D^ ,  denote the domain 

of F .  Then Principle R holds if and only if there is an effective 

procedure,  given the table F^.,  for finding a program P^ which computes 

most efficient ly (i .e. ,  $. /D ,  = F and $.(x) is as small as possible),  
j y y xe j 

Proof.  We let ?
f f

 .  be some program which computes the function F ,  e .g .  j 

by encoding its table.  

Suppose that Principle R holds .  Then ,  since
 = F

 ,  

we may ,  given y ,  compute 

ZL ,  fx) = ,  - M ,  
xeD

y
,  f(y)

L

 def .  

We may next list all programs P such that 

(4) | P
5
|  < c(M ,  y ' ,  f(y)).  

(There are only finitely many such programs.) Of these ,  we can effectively 

find those programs P^ for which 

(5)
 x

|
D y t

 y x ) < M .  

Finally for those programs P^ satisfying (4) and (5),  (x) is defined 

for all xeDy* so for such j we may actually decide whether 

(6) W = Fy .  



Thus to find a most efficient program for calculating F ,  we simply 

choose a program P_.  sat isfying (4),  (5),  and (6) for which the sum 

in (5) is minimal .  If there is no program P^ satisfying (4),  (5),  

and (6),  program must i tself be a most efficient way of calculating 

F ,  so that i teration of this process must yield a most efficient program 

for calculat ing F ,  

Conversely ,  if we can ,  given F ,  find a most efficient way of 

calculating F ,  then Principle R holds because we may define c(z,y, i) 

simply by 

/

the size of a most efficient program for 
computing the table for (f^/Dy if

 x
|

D
 ^ ( x ) <_ z ,  

V °
i f

 x l D
y

V
X

^
Z

-

We are indebted to John Berenberg for first point ing out to us 

the validi ty of the first part of the preceding proof for Turing 

machine models.  A simi lar proof for Turing machine models may be found 

in Pager (1970).  Pager also defines efficiency of programs over infinite 

sets and shows for his Turing machine models that an algorithm for 

finding the most efficient algorithm exists only if the domain set is 

fini te.  (Pager also uses an effective probabi l i ty function which accounts 

for the probabi l i ty that a given argument wi l l be cal led ,  but for our 

purposes this is easily made part of the measure ,  4>.) 

Theorem 2 .  Axioms 1-3 do not imply Principle R .  



Proof.  We first start wi th any measured programming system \ P,$>,<&,  11}
1

.  

Let K be any infinite set of integers which can be effectively generated ,  

but which has no algorithm for deciding given n ,  whether or not neK .  Let 

k be any 1-1 total recursive function which enumerates K ,  (so K = 

(k(0),  k(l) ,  k(2), . . .  }).  We now define a new measured programming system 

<P* ,  11 as fol lows: 

p '
2i
 = p..  *'

2i
cy) = cy)

 +

 i,  |p'
2i
l '  = Ip

±
I » (so r

2 i
 = •j),  

whi le
 p i

2 i + i ^ y program P^ which wri tes k(i) on input 0 ,  and fails to 
3 

hal t on inputs y 4 0 ,  

$
,

2 i + 1
( 0 ) = 0 bu t * ' 2i+iCy)

 i s

 undefined if y f 0 ,  

and \
p

'
2
i+ l \ '

 = 2 i + 1

* 

Verificat ion that Axioms (1),  (2),  and (3) hold is straightforward .  

But now the most efficient program P
1

^ for computing the finite function,  

{<0 ,n>} has 4*^(0) = 0 if neK whi le 4 ^ ( 0 ) > 0 if n£k .  Thus if we could ,  

given n ,  find a most efficient program for computing {<0,n>} ,  we could 

decide whether neK by finding a most efficient program P
1

 for 
J (n) 

computing {<0,n>} and then testing whether 4 '  .
 f
 > (0) <_ 0 .  



8.  

Theorem 1 says that if we are to be able ,  given a finite funct ion ,  

to find the most efficient algorithm for computing i t ,  we can do so 

assuming Principle R .  On the other hand Theorem 2 assures us that some 

such principle is really necessary .  Al though we feel that Principle R 

is really more basic than the ability to find the most efficient algorithm 

for computing finite funct ions,  Theorem 1 ,  suggests that these are perhaps 

really equivalent principles.  That this is not in fact the case follows 

by showing that under a weakening of Axiom 3 ,  Principle R no longer 

implies the existence of algorithms for finding the most efficient means 

for computing finite functions.  Thus Principle R has (in our opinion) 

not only the advantage of being the more intui t ively appealing of the two 

principles,  but also the advantage of being the logically weaker principle.  

We show this next .  

We say that a function |  J'  is a pseudo-measure of size if i t 

satisfies 

Axiom 3 ' .  j |
1

 is a finite-one total recursive funct ion.  

Clearly Axiom 3 implies Axiom 3 ' ,  for if |  |  satisfies 3 it is by 

definition finite-one and to compute | i |  one stimply lists all j such 

that | j
Q
|  = 0 ,  all jj such that | jj |  = 1 , . . .  unt i l eventually one lists 

i among those j for which | j
n
|  = n .  

Theorem 3 .  A .  In any measured programming system satisfying Axioms 1 ,  

2 ,  and 3 ' ,  if there is an algorithm which enables one to pass effectively 

from a finite function to a most efficient program for computing the 

funct ion ,  then Principle R holds .  



B .  There is a system sat isfying Axioms 1 ,  2 ,  and 3 '  in 

which Principle R holds but no such algorithm exists .  

Proof of A .  This is ident ical wi th the corresponding proof in Theorem 1 .  

We did not use the full force of Axiom 3 there.  

Proof of B .  We assume that (P,<f>,4>,  j |y is any measured programming system 

satisfying Axioms 1 ,  2 ,  and 3 ,  and Principle R .  We modify <̂ P,<Ji,<5,  j j y to 

obtain a new measured programming system <(P* ,4>' ,  |  much as in the 

proof of Theorem 2 .  Namely ,  we take
 p

*2 i
= P

i > 2 i ^
= < t

i
 +

 ^ '  ^ ^ 

] P
r

 2 1
1 =

 However we now take
 t 0

 be the program which writes 

k(i) (the ith member of a nonrecursive but enumerab l e set K) on input 

0 and is obtained by the use of Theorem 1 so that computes the 

function (<^0,k(i)
/
) > as efficient ly as possible in the system 11 y .  

We obtain 2i+l ^ introducing new symbols not in the language of the 

system P̂,<j>,<j>,  1 a n d adding these to
 t 0

 guarantee that P ^ + i 

does not hal t on inputs other than 0 .  Formally we have: (0)=k(i),  

and tf^i+iM undefined if x £ 0 ,  but we now define 4 > ' ^ ^ 

l
P ,

2 i
+
l l '  = l

P

x(i) '  '  

The reader may easi ly verify that Axioms 1 ,  2 ,  and 3
1

 hold in 

< P ' , I I ' } • Furthermore,  n e K iff the most efficient program 

P '  for computing the function { <0,n)-} has 4 ' .j(0)=0,  so no algori thm 

for finding the most efficient program P V can exist .  
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To complete the proof we must verify the existence of a function 

c '  which wi tnesses the fact that Principle R holds i
n
 the system 

^P* ,<)>'  ,4>' ,  11 ' ) .  To calculate e ' (m,y, i) we proceed as follows: Given 

m ,y , i ,  we first test whether 

(7) Z * (x) < m 
xeD 

y 

If the answer is no ,  we do not care about the value of c ' On.y. i) so we 

define 

c '  0 , y , i ) = 0 

If the answer is yes and if D^ 4 {0} ,  the most efficient program for 

computing <J>*.  /D in the two systems -( P '  ,  11 and <^>4 ,0 ,  |  are 

ident ical; because inequal i ty (7) holds we may actually find ({iV/D^,  

and by Theorem 1 we can effectively find the most efficient such program ,  

call i t P^, in the system ^ P,<)>,  4>,  [ |  ,  so we may simply define 

c ' (m,y, i) = [P '
2 q

| '  (= \P
q
\).  

If the answer is yes and D = {0} ,  since again 4.(0) < m ,  we may again 

actually find <J>̂ (0) and the most efficient program P^ in the system 

computing the funct ion^O .^^CO) In this case,  if 

^(O i eK ,  P* need not be the most efficient program for compu t ing^0 

in the system "(P
1

 »<J>* > I I '  ^ ,  but it is clear from the construction that 

the size of the most efficient program for computing f^O j^CO) /} in the 

system (P* ,  (J>* ,0 ' ,  j |  '  ) wi l l be |  P • j '  (= |P |).  In this case we may there-

fore again define 

c ' (m,y, i) = |P '  



11.  

Concluding Remarks 

Part of the purpose of Theorems 1 and 2 is to convince the reader 

that it may be worthwhi le to consider the possibi l i ty that axioms 1-3 

are st i l l not an adequate basis for a fully developed theory of "abstract" 

computational complexi ty .  (See also IlcCreight-Meyer (1968) and Young (1969).) 

Al though we think that ,  upon reflect ion ,  the reader wi l l find Principle R 

very reasonable and its consequences interest ing ,  the results we have 

obtained are not deep .  The justification for Axioms 1-3 is that they 

are not only intui t ively appealing but that they have deep consequences,  

and any new axioms should also meet this test .  .  

We do bel ieve that investigations of the computational complexity 

of finite functions should be further pursued because all functions in 

real computational problems are in fact fini te.  In any computational 

system <fP,<}>,it,  |  one can ,  given a finite function F^effect ively find 

f(y) such that Since the most obvious method for doing this 

might be to encode the entire table for F^ into the program P ^ ^ ,  one 

might say that program P f ^ computes by table look up .  In Young 

(1968) we proved that there exist 0-1 valued total recursive funct ions,  

,  which are so difficult to compute that on almost all finite domains D, 

<J /D (the restriction of ^ to D ) is much more efficient ly computed by 

table look-up than by any general program P^ for which = < .  Actually,  

as Albert Meyer pointed out to us ,  this holds whenever ^ is a sufficient ly 

difficult to compute 0-1 valued total recursive funct ion.  To see this ,  

we now let Ayfy be an enumeration wi thout repetitions of all finite 0-1 

valued funct ions,  and ,  as before we let f be a computable function for 



12.  

which Fy = and we denote the domain of F by D^ .  Vie say that 

Pf^yj computes F^ by table look-up .  

Lemma .  For any Blum measure there exists a total recursive function g 

such that for all 0-1 valued fini te functions F ,  g bounds the difficul ty 

of comput ing F
y
.  Specifical ly ,

 x
|

D
 ^ * f (

y
) M 1

 X
|

D f
 g(

x

) .  

Proof.  Vie define g by 

g(n) = max { J
D
 (x) [n e (0 ,1 ,2 , . .  .n}} .  

Clearly for any fini te 0-1 valued function F^ ,  if ny denotes the largest 

element of D , ,  then 
y 

x
|

D y >
 E(x) > s t *

y
) >

 x
|

D y
. *

f ( y )
C x ) .  

It should be pointed out that the preceding Lemma and the fol lowing 

theorem do not hold when tyF^ is al lowed to range over all finite functions,  

This follows from the observation in McCreight-Meyer (1969) that for any 

Blum measure of complexi ty there is a total recursive function g(y ,x) 

such that for all i ,  <K (X) £G(*
i
(x) , x) for all bu t fini tely many x .  

Our next theorem is an immediate corol lary of the preceding lemma.  
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Theorem 4 .  (Meyer) There exists a fixed total recursive function g 

such that whenever t is a 0-1 valued total recursive function for which 

^ = t implies > g a .e . ,  then ,  on almost all finite domains D ,  

t/D is more efficient ly computed by table look-up than by any general 

program P^ for which <Ju = t .  Specifical ly ,  if ^ = t then for all but 

finitely many finite domains D ,  if F^ = t /D ,  then "frf^
 =

 t /D and 

E
n
 .  (x) < E ( x ) .  xeD f(y)

 J

 xeD l 

Clearly ,  by requiring that t be more difficul t to compute than 

some g '  which is much greater than g ,  we may force table look-up to 

almost always be a much bet ter method for computing t/D than is any 

general program for computing t .  

Much recent work in complexi ty theory has considered only programs 

for infini te functions which are "sufficiently" difficult to compute.  

Theorem 4 suggests that ,  if one is interested in only finite segments 

of these funct ions,  then these are just those programs which in practice 

should be used only for a few except ional arguments in their domain .  

I.e. ,  if an infinite function is sufficient ly difficult to compute and 
on finite domains 

one is interested in minimizing computational complexity/ , then one should 

seldom use a program capable of computing the entire function because 

such a program wi l l be unnecessarily inefficient .  The situation is 

qui te different if we are concerned wi th the size of programs: 
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Theorem 5 .  For any infini te function t ,  if ^ = t ,  then for all but 

fini tely many fini te domains D ,  if = t/D (so ^ y ) = t /D) ,  then 

|p
4
l < | p

f W
i .  

Proof .  There are only fini tely many programs P .  for which |P. |  _< |P.  j .  
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FOOTNOTES 

1 .  Supported by NSF Grant GP 6120 

2 .  The preceding discussion in fact suggests that an even stronger 

principle should hold: namely c should be a function of the single variable 

£
n
 (x).  However,  the weaker principle is adequate for our purposes and 
y

 1 

in any case in many models is not really weaker .  In many models ,  P,4,4, | |  ,  

one must both read the input x and wri te the output t |^(x).  In such a 

si tuat ion ,  from a knowledge of (x) one can effectively bound both x 

and <J>̂ (x).  But in this case ,  (assuming both the notat ion and results of 

Theorem 1) ,  if we are given the function Azyic(z,y, i) of Principle R ,  

we may reduce it to a suitable function c* of a single variable as follows: 

Given z find d and r such that w d implies 4.  (w) > z and such that 
Z Z

 1

 2 1 

w >_ r
z
 and (x) = w implies <^(x)

 >

 z.  Next set 

c ' (z) = max{ |PjJ is a most efficient program for computing 

F where D ,  _ {0,1, . . .d and max F (x) < r .  7 y Z

 x
e
P / ~

 Z 

y 

5 .  It has been pointed out by the referee that this definition 

of
 p ,

2 i + i violates our initially stated requirement that the indexing 

of programs by one-to-one.  This objection is easi ly overcome either by 

dropping the referencing to programs P and P* altogether or by enlarging 

the language of the programs P* to allow symbols not in the language of 

the programs P^ and then using these new symbols indefining
 P

2 i+1 by 

adding to P a set of unexecutable instructions using these new symbols 

and letting the set depend on i .  
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