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ABSTRACT

Recent studies of computational complexity have focused on “axioms"
vhich characterize the '"“difficulty of a computation'" (Blum, 1967a} or the
measure of the "size of a program,” (Blum 1967b and Pager 1969). In this
paper we wish to carefully examine the consequences of hypothesizing a
relation which connects measures of size and of difficulty of computatiaon.
The relation is motivated by the fact that computations are performed 'a
few instructions at a time"” so that if one has a bound on the difficulty
of a computation, one also has a bound on the “number of executed
instructions”. This relation enables one to easily show that algorithms
exist for finding the most efficient prograns for computing finite functions.
This result, which has been obtained independently for certain Turing
machine measures by David Pager, contrasts sharply with results for measures
of size, where it is known that no algorithm can exist for going from a
finite finction to the shortest program for computing it, (Blum, 1969b)
(Pager, 1969). In a concluding section, which can be read independently
of the above-mentioned results, some remarks are made about the desirability
of using a program for computing an infinite fumnction when ane is interested
in the function only on some finite domain, There is nothing deep in this
paper, and we hope that a reader familiar with the rudiments of recursion
theory will find this paper a simple intorduction to the "axiomatic" theory
of computational complexity. Such a reader might do well to begin with

the concluding remarks after reading the basic definitions.




We let Ai¢i be 2 standard enumeration of all partial recursive
functions. For expository purposes it will be convenient to assume that
with each i we have effectively associated some program Pi which computes
exactly the function $;+ Because we can pass back and forth effectively
between programs Pi and indices i, we identify Pi with i and may, e.g.,
speak of "program i", Following Blum (1967a), we call a sequence Aioi of
partial recursive functions a measure if it satisfies

Axiom 1. For all i, the domain of ¢; = the domain of -
and Axiom 2. There is an algorithm for deciding, given i, x, and y

vhether °i(x).§ Ye

For example, ¢i[x} might be the number of exectued instructions if the
ith alpol program or Turing machine is operated on input argument x,
or it might be the amount of tape or storage space used if the program
halts.

e follow Bluwm (1267b) in saying that a function | ! measures

the size of programs if it satisfies

Axiom 3. There is an effective procedure for listing, given n,
the entire finite set of programs, P; satisfying |Pj] =n, and
for knowing when the listing is completed. We sometimes write Ijl

for IPj|.

(The reader should be warned that the finiteness condition rules out, e.g.,
measuring the size of a '"FORTRAN-1like' program by the number of its

instructions. This follows by observing that there are infinitely many
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simple instructions of the form: WRITE O, WRITE 1, WRITE 2,.... . A
suitable measure of size would be the total number of characters or even
the total number of cards in a punched program. )

In this paper, we shall call a quadruple of the form <P,$,%,| | D,
where ¢ is a standard indexing of the partial recursive functions, @ is
a measure of computational complexity satisfying Axioms 1 and 2, | |
is a measure of size satisfying Axiom 3, and P is a mapping from integers

to programs such that P, computes ¢,,a measured programming system.

The programs Pi are included primarily as an aid to exposition. Since it
is possible to always pass effectively back and forth between i and Pi"
one can always dispense with the programs Pi in favor of working directly
with the indexing Ai¢i.

From Blum (1967b) and Pager (1969), we know that for any programming
system (P,$,%,||>, there is no 2lgorithm which, given a finite function
g, produces a program Pi for which the size |i| is minimal while the program
computes the function g for all arguments in the domain of g. (In fact, in
Pager (1969), this is proven with no assumptions about the computability
of the function | [1) We now ask whether we can find a program P, such
that ¢i(x) = g(x) f?r.all X € gomain g = D and for which xED ¢i(x) is

a fipite function

minimal. Given/g (e.g., by being given its table) we can certainly find

some program P, for which ¢, = g, SO suppose

4 g Fh () b
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Suppose for the moment that ¢, is a measure of how much time it takes for
program i to operate, Now if there is some program Pj such that

¢j/D = g/D and xgoéj(x) < M then there must be such a program Pj‘ with
IPj,| <M, The iptuitive reason for this is that programs execute one
instruction at a time. Thus if we eliminate from Pj all instructions not

actually executed in calculating ¢j/D, we cbtain a program Pj' such that

ijrl E-ng ¢j[x) <M

while ¢j|/D= ¢j/D= g/D'
The situation if . measures the amount of storage used by program

P; is only slightly more complicated. Suppose ¢j(x) < i, Consider

xED
any computation by PJ. for argument xzD, The requirement xED tbj (x) <M
bounds the amount of storage which program Pj may actually use. Therefore
if an excessively large number of instructions are exectued by Pj in
computing ¢j(x), the contents of storage must be repeated. But the
instuctions which were executed betweep times when the storage contents
were repeated could al) have been bypassed. In short, if we have a bound
on the storage which can be used, we can compute a bound on the number of
instructions which need be executed, and hence can compute a bound on the

size of the programs which need be considered in looking for programs

which require less storage.



e would like to summarize the preceding discussion as a new
principle which relates measures of size and complexity. We do this with
Principle R below, Unfortunately, within the Blum theory we cannot talk
about "program instructions', so we must formalize the preceding discussion
by formalizing the conclusion rather than directly formalizing the reasons

for the conclusion ™

g

S

(:;Although the principle may appear to have a complicated statement,
it is a fairly direct translation of the conclusions in the final sentence
of the preceding paragraph. We let AyDy denote a canonical one-one
enumeration of all finite sets: given y, we can list Dy and know when

the listing is completed.

Principle R. A measured programming system<{P,¢,¢,j|> satisfies Principle
total
R if there is a/ computable function c(z,y,i} such that, if ¢ is defined

on Dy and if there exists some program Pj satisfying

ey 0;/D, = 650, :
with (2) xE::D Qj(x) < XED Qi (x),
b4 y

then there exists some j satisfying (1)}, (2) and

)
(3) IPJ-I < C(xgnytbi(:c). ¥, i},



Theorem 1. Let (P,¢,¢,]|) be any measured programming systenm,

let Fy be an enumeration of all tables for defining functions mapping
finite sets of integers into integers, and let Dy, denote the domain
of Fy. Then Principle R holds if and only if there is an effective

procedure, given the table Fy, for finding a program Pj which computes FY

most efficiently (i.e., ¢j/Dy, = Fy and xéDy wj(x) is as small as possible).

Proof. We let Pf(y) be some program which computes the function Fy, €,8e)
by encoding its table.
Suppose that Principle R holds. Then, since ¢f{y) N Fy'

we may, given y, compute

xgny,"f(y) (x) = geg, M-
We may next list all programs Pj such that
(4 [P} < e, ¥, £0).

(There are only finitely many such programs,) Of these, we can effectively

find those programs Pj for which

(5) xéoy. 8. (x) <M,

Finally for those programs Pj satisfying (4) and (S}, ¢j(x) is defined

for all xeDy' so for such j we may actually decide whether

(6) ¢j/Dy' = F),'
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Thus to find a most efficient program for calculating Fy, we simply
choose a program Pj satisfying (4), (5), and (6) for which the sum
in (5) is minimal. If there is no program P:i satisfying (4}, (5),
and (6), program Pf(y) must itself be a most efficient way of calculating
Fy, so that iteration of this process must yield a most efficient program
for calculating Fy'

Conversely, if we can, given F, find a most efficient way of
calculating F, then Principle R holds because we may define c(z,y,i)
simply by

computing the table for ¢i/Dy if ng @i(xJ_i z,

~ the size of a most efficient program for
/{ Y

e(z,y,1) = <\

\\\ 0 if ngy @i(x) £ z.

We are indebted to John Berenberg for first pointing out to us
the validity of the first part of the preceding proof for Turing
machine models., A similar preof for Turing machine models may be found
in Pager (1970). Pager also defines efficiency of programs over infinite
sets and shows for his Turing machine models that an algorithm for
finding the most efficient algorithm exists only if the domain set is
finite. (Pager also uses an effective probability function which accounts
for the probability that a given argument will be called, but for our

purposes this is easily made part of the measure, ¢.}

Theorem 2. Axioms 1-3 do not imply Principle R.



Proof. We first start with any measured programming System <'P,¢,¢,|!>.
Let K be any infinite set of integers which can be effectively generated,
but which has no algorithm for deciding given n, whether or not nek, Let
k be any 1-1 total recursive function which enumerates K, {so K =

{k(0}), x(1), k(2)5..» }). "e now define a new measured programming system

<P',¢',¢',}|'> zs follows:

P'Zi = Pi' 0.21()') = QI(Y) + 1' lp'zil' = Ipil ] (SO ¢'2i = ¢i)!

while P! is any program Px which writes k(i) on input 0, and fails to

3

2i+1
halt on inputs y # 0,

', . (0) = 0 but ¢',. .(y) is undefined if y # O,
2i+] 2i+]

and [Pty |t = 2isl.

Verification that Axioms (1), (2), and (3) hold is straightforward.
But now the most efficient program P'j for computing the finite function
{<0,n>} has ¢',(0) = 0 if neK while 9'500) > 0 if ngk. Thus if we could,
given n, find a most efficient program for computing {<0,n>} , we could
decide whether neK by finding a most efficient program P'. for

j(n)
computing {<0,n>} and then testing whether Q'j(n) (0) <0.



Theorem 1 says that if we are to be able, given a finite function,
to find the most efficient algorithm for computing it, we can do so
assuming Principle R. On the other hand Theorem 2 assures us that some
such principle is really necessary. Although we feel that Principle R
is really more basic than the ability to find the most efficient algorithm
for computing finite functions, Theorem 1, sugpgests that these are perhaps
really equivalent principles. That this is not in fact the case follows
by showing that under a weakening of Axiom 3, Principle R no longer
implies the existence of algorithms for finding the most efficient means
for computing finite functions, Thus Principle R has (in our opinion)
not only the advantage of being the more intuitively appealing of the two
principles, but also the advantage of being the logically weaker principle.

lle show this next.

e say that a function | |'is a pseudo-measure of size if it

satisfies
Axiom 3", | |' is a finite-one total recursive function,
Clearly Axiom 3 implies Axiom 3', for if | | satisfies 3 it is by

definition finite-one and to compute |i| one stimply lists all j, such
that |j°| =0, all j1 such that |j1] = 1,... until eventually one lists

i among those j for which ljnl = n.

Theorem 3. A. In any measured programming system satisfying Axioms 1,
2, and 3', if there is an algorithm which enables one to pass effectively
from a finite function to a most efficient program for computing the

function, then Principle R holds.
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B, There is a system satisfying Axioms 1, 2, and 3' in
which Principle R holds but no such algorithm exists.
Proof of A, This is identical with the corresponding proof in Theorem 1.
We did not use the full force of Axiom 3 there.
Proof of B, !e assume that {(P,$,¢,||) is any measured programming system
satisfying Axioms 1, 2, and 3, and Principle R. Ve modify (P,$,®,]]| > to
obtain a new measured programming system <P',¢',0',|[') much as in the
proof of Theorem 2. Namely, we take P'2i=Pi, Q'Zi(x)=¢i(x)+1, and
Pl = 17y

» However we now take Px(i) to be the program which writes
k(i) (the ith member of a nonrecursive but enum’erable set K) on input

0 and is obtained by the use of Theorem 1 so that Px[i} computes the
function {<0,k(i)) } as efficiently as possible in the system (P,4,3,||) .

e obtain P'Zi+l by introducing new symbols not in the language of the

system<fP,¢,¢,||> and adding these to P to guarantee that P°

x(1) 2i+1

does not halt on inputs other than 0. Formaliy we have: ¢'zi+1(0)=k(i),

and ¢' (x) is undefined if x ¢ 0, but we now define ¢'Zi+1(0)=0 and

2i+1
|P

' [ -
2541 Ipx(iJl .

The reader may easily verify that Axioms 1, 2, and 3' hold in
(fP',¢',¢',||‘> . Furthermore n ¢ K iff the most efficient program
P'j for computing the function {<0,n}} has @'j(0)=0, s0 no algorithm

for finding the most efficient program P'j can exist.
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To complete the proof we must verify the existence of a function
c' which witnesses the fact that‘Principle R holds in the system
(P',qt»',@’,fl') . To calculate ¢'(m,y,i) we proceed as follows: Given
msY,i, we first test whether

(7 I (x) <m

xeD
Uy

If the answer is no, we do not care about the value of ¢'(m,y,i) so we

define

¢’ (my,i) =0

If the answer is yes and if Dy + {0}, the most efficient program for
computing ¢'i/Dy in the two systems {P',¢',¢',||'> and <P,¢,%,|]) are
identical; because inequality (7) holds we may actually find ¢‘i/Dy,
and by Theorem 1 we can effectively find the most efficient such program,

call it Pq,in the system <P,$,%,[|>, sowe may simply define
1 3 = ' T -
¢’ (m,y,i) IP 2q| (= Ipql)‘

If the answer is yes and Dy = {0}, since again &5 (0) < m, we may again
actually find ¢, (0) and the most efficient program Pq in the system

{P,¢,¢,| |> for computing the fmction{(0,¢i(03 >} In this case, if
¢i(0)el(, P'zq need not be the most efficient program for computing{(O,¢i (0))}
in the system <P',¢',8',||*'> , but it is clear from the construction that
the size of the most efficient program for computing { <0,¢i (0)>}in the
system (P‘,4>',¢',| | ') will be |I"2q|' (=qu]). In this case we may there-
fore again define

|t

1 $Y = '
cf(m,y,i) = |P 2q
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Concluding Remarks

Part of the purpose of Theorems 1 and Z is to convince the reader
that it may be worthwhile to consider the possibility that axioms 1-3
are still not an adequate basis for a fully developed theory of "abstract'
computational complexity. (See also llcCreight-lieyer (1968) and Young (1969).)
Although we think that, upon reflection, the reader will find Principle R
very reasonable and its consequences interesting, the results we have
obtained are not deep. The justification for Axioms 1-3 is that they
are not only intuitively appealing but that they have deep consequences,
and any new axioms should also meet this test,

fe do believe that investigations of the computational complexity
of finite functions should be further pursued because 211 functions in
real computational problems are in fact finite. In any computational
system <P,¢,¢,||>, one can, given a finite function Fy,effectively find
£(y) such that ¢f(y)=Fy' Since the most obvious method for doing this
might be to encode the entire table for Fy into the program Pf(y), one

might say that program Pf(y) computes ¢f(y) by table look up., In Young

(1968) we proved that there exist 0-1 valued total recursive functions,

& which are so difficult to compute that on almost all finite domains D,
¢i/D (the restriction of ¢; to D) is much more efficiently computed-by
table look-up than by any general program Pj for which ¢j = ¢i. Actually,
as Albert Meyer nointed out to us, this holds whenever ¢i is a sufficiently

difficult to compute 0-1 valued total recursive function. To see this,

we now let AyFy be an enumeration without repetitions of all finite 0-1

vajlued functions, and, as before we let f be a computable function for
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which Fy = ¢f(y)’ and we denote the domain of Fy by Dy. Ye say that

Pf(y] computes Fy by table look-up.

Lemma. For any Blum measure ¢, there exists a total recursive function g
such that for a2ll1 0-1 valued finite functions Fy’ g bounds the difficulty

of computing Fy. Specifically, ngy' ¢f(y)(x) :-ngy, g(x).

Proof. We define g by
g(n) = max {ngy,®f(y)(x)In E Dy,f§{0,1,2,...n]}.

Clearly for any finite 0-1 valued function Fy, if my denotes the largest

element of Dy,, then

ngy'g(x) 2 g(m) > ngy’Qf(y) (x).

It should be pointed out that the preceding Lemma and the following
theorem do not hold when hyFy is allowed to range over all finite functions.
This follows from the observation in McCreight-tleyer (1969) that for any
Blum measure of complexity ¢, there is a total recursive function g(y,X)
such that for all i, ¢i(x) j_g(@i(x),x) for all but finitely many x.

Our next theorem is an immediate corollary of the preceding lemma,
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Theorem 4. (Meyer) There exists a fixed total recursive function g
such that whenever t is a 0-1 valued total recursive function for which
$; = ¢ implies 6; > £ a.e., then, on almost all finite domains D,

t/D is more efficiently computed by table look-up than by any general
program P, for which ¢; = t. Specifically, if $; =t then for all but

finitely many finite domains D, if Fy = t/D, then ¢f(y) = t/D and

2D P£(yy () < (Ep% ().

Clearly, by requiring that t be more difficult to compute than
some g' which is much greater than g, we may force table look-up to
almost always be a much better method for computing t/D than is any

general program for computing t.

Much recent work in complexity theory has considered only programs
for infinite functions which are "sufficiently'" difficult to compute.
Theorem 4 suggests that, if one is interested in only finite segments
of these functions, then these are just those programs which in practice
should be used only for a few exceptional arguments in their domain.

I.e., if an infinite function is sufficiently difficult to compute and

on finite domains
one is interested in minimizing computational complexity/,then cne should
seldom use a program capable of computing the entire fumction because

such a program will be unnecessarily inefficient. The situation is

quite different if we are concemed with the size of programs:
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Theorem S,

For any infinite function t, if ¢; = t, then for all but

finitely many finite domains D, if F

y = t/D (50 by = t/D), then
|p.[ <[P

£(v)

Proof. There are only finitely many programs Pj for which |Pj| 5_|PiJ.
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FOOTNOTES
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2. The preceding discussion in fact suggests that an even sthnger
principle should hold: namely c should be a function of the single variablie

xED ¢i(x). However, the weaker principle is adequate for our purposes and
b4

in any case in many models is not really weaker. In many models, P,4,4,]| ,
one must both read the input x and write the output ¢i(x). In such a
situation, from a knowledge of Qi(xJ one can effectively bound both x

and ¢i(x). But in this case, (assuming both the notation and results of
Theorem 1), if we are given the function Azyic(z,y,i) of Principie R,

we may reduce it to a suitable function c' of a single variable as follows:
Given z find dz and r, such that w i.dz implies @i(w] > z and such that

W 3_rz and ¢i[x] = w implies ¢i(x) > z. Next set

c¢'(z) = max{|P,| |P; is a most efficient program for computing
F. where Dy, _ {0,1,...clz and max Fy(x) <r.,.

Y
Xgpy'

zZ

3. It has been pointed out by the referee that this definition

of P! viclates our initially stated requirement that the indexing

2i+]
of programs by one-to-one. This objection is easily overcome either by

dropping the referencing to programs P and P' altogether or by enlarging
the language of the programs P'i to allow symbols not in the language of

the programs Pi and then using these new symbols indefining P2i+1 by

adding to Px a set of unexecutable instructions using these new symbhols

and letting the set depend on i.
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