Purdue e-Pubs

A New Ordering Scheme for the Hermite Bicubic Collocation Equations

Wayne R. Dyksen

Report Number:
80-364

Dyksen, Wayne R., "A New Ordering Scheme for the Hermite Bicubic Collocation Equations" (1981). Department of Computer Science Technical Reports. Paper 294.
https://docs.lib.purdue.edu/cstech/294

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

A NEW ORDERING SCHEME

FOR THE

HERMITE BICUBIC COLLOCATION EQUATIONS

Wayne R. Dyksen
Department of Mathemattes
Purdue University
Fest Lafayette, Indiana 47908

CSD-TR 364, May 1. 1981

Abstract

ABSITRACT We present a new ordering scheme for the linear equations obtained from the Hermile blcubic collocation approximation to the solution of aecond order, Ilnear, elliptic partial differential equations on rectangular domains. The resulting matrix has a non-zero diagonal and is a band matrix with band width 4($N_{x}-1$) where N_{z} is the number of vertical grid lines. The matrix is block symmetric in that it consiste of 4×4 blocks which if $B_{i j} \neq 0$ then $B_{j i} \neq 0$. There are at most 16 non-zero entries per row occurring in 4 blocks. All of the symmetric pairs of off-diagonal blocks can be stored in their natural order within one 4×4 block.

Keywords: elliptic partial dlferential equations, Hermite bicublc collocation, ordering scheme, non-zero diagonal

A New Ordering Scheme for the Hermite Btcubic Collocation Equations

Wayne R. Dyksen ${ }^{\dagger}$

1. Introduction

Iterative teohniques have been shown to be very effective for solving large, sparas systems of equations. Such syatems are obtained from the Hermite blcubic collocation approximation to the solution of second order, linear, elliptic partial differential equations on rectangular domains. Thus, one would naturally like to solve the collocation equations by some type of iterative technique. In order to use an iterative technique, it is necessary that the system of equations has a non-zero diagonal. The usual ordering for the collocation matrix ylelds a systern which has many zeros on the diagonal. With this motivation in mind, we present a new ordering scheme for the collocation matrix so that the resulting band matrix has a nice structure which includes a non-zero diagonal.

The ordering of the collocation points (equations, rows) is discussed In Section 2. The orderlag of the Hermite bicubic basis functions (unknowns, columns) is discussed in Section 3. The reordering of the boundary basis functions is discussed in Section 4. An implementation within the ELLPACK system is discussed In Section 5. Appendix A contalns a complete set of tables describing the boundary basis function reordering. Appendix B contains computer generated pictures of the structure of the collocation equations both using a standard finite element ordering and using the scheme described here.

Note: To insure a non-zero diagonal, we assume that the coeffictent functions in the partial differential equation and the boundary conditions do not vanish. Also, the boundary condition on any side of the rectangular domain may include only values of the unknown function u and/or its normal derivative.

[^0]
2. The Ordering of the Collocation Points

In the usual way, a rectangular grid is imposed on the domain. The grid points (equations, rows) are then numbered in a natural way from west to east, south to north. The collocation pointa are associated with the nearest grid point and are numbered in groups of four in the order of thair corresponding grid point. For example, with four vertical and four horizontal grid lines, there are 84 collocation points whose ordering is given in Figure 1.

Figure 1: The Ordering of the Collocation Polnts
for a 4×4 Grid with 84 Unknowns

The important idea in the above ordering is that the grid points are first numbered in a natural way and then the collocation points are numbered in the order of their corresponding grid point. We could number the grid points south to north, west to east as long as we suitably modify the rest of the ordering scheme described in the following sections. Similarly, the four collocation points associated with any grid point may be locally ordered in any manner.

3. The Ordering of the Hermite Bicubic Baria Functions

To the $i^{\text {th }}\left[j^{\text {th }}\right] x[y]$ grid coordinate there are associated two Hermite cubio functions: $\left.f_{i}^{x}[f\rangle\right]$ which takes on function values and $d_{l}^{x}[d y]$ which takes on derivative values. The Hermite bicublc basls functions (unknowns, columns) are then ordered corresponding to their support in a natural way from west to east, south to north. For example, with four vertical and four horizontal grid lines there are 64 bloubic basis functions whose ordering is given in Figure 2.

$49 f_{1}^{x} f$	$53 f$ 砬	$57 f^{5} 5$	$61 f^{\text {a }}$ 身
$50{ }_{5} 5 d y$	$54 f$ f ${ }^{\frac{7}{2} d y}$	58 f ¢ ${ }_{\text {d }} \mathrm{d}$	$62 f$
$51 d^{\text {c }}$ ¢ ${ }^{\text {\% }}$	$55 d{ }^{5}$		
$52 d_{1}^{x} d{ }^{\text {¢ }}$	$56 d_{2}^{x} d y$		$64 d_{4}^{x} d y$
$33 \mathrm{f} \ddagger{ }^{\text {\% }}$		$41 f$ ff	$45 \mathrm{f}_{4} \mathrm{f}$ ¢
$34 f^{\text {f }}$ [dy	38 f ¢ ${ }^{\text {d }}$	$42 f^{5} d \underline{ }$	
$35 d_{1} f$ \#	$39 d_{2}^{x} f \frac{1}{3}$	43 d	$47 d_{4}^{x} f$ g
$36{ }^{\text {dif }}$ dy		44 d d $\mathrm{S}_{\text {d }}$	$48 d_{4}^{\text {d }} d \underline{d}$
	$21 f{ }^{\frac{x}{2}}$		$29 f \frac{x}{4}$
18 f 1d			30 f ${ }^{5} d y$
	$23 d^{\frac{2}{2} f}{ }^{\text {d }}$	$278 \mathrm{daj}_{\text {d }}$	$31 d_{4}^{7} f{ }^{\frac{1}{2}}$
$20 d_{1}^{x} d \underline{1}$	$24 d^{5} \alpha^{4}$	2B $\mathrm{d}_{\text {¢ }}$ dy	$32 d_{4}^{x} d \underline{ }$
	5 fix ${ }^{\text {a }}$		13 f
$2 f i d y$		$10 \int^{2} d Y$	$14 \int{ }_{4}^{5} d Y$
$3 d^{5} f Y$	7 dff	$11 d^{\frac{T}{J} f} \ddagger$	$15 d_{4}^{\frac{1}{4}} \mathrm{f} Y$
$4 d_{1}^{7} d \underline{4}$	$B d{ }_{2} d Y$	$12 d{ }^{5} d Y$	$18 d_{4}^{\chi} d y$

Figure 2: The Ordering of the Basls Functions for a 4×4 Grid with 84 Unknowns

The ordering of the collocation points described in Section 2 combined with the ordering of the basis functions described in this section yield an intermediate collocation matrix which exhibits a nice structure. It is a band matrix with band width $4\left(N_{x}-1\right)$ where N_{x} is the number of vertical grid lines. The matrix is block symmetric in that it consists of 4×4 blocks which if $B_{i j} \neq 0$ then $B_{j i} \neq 0$.

There are at most 16 non-zero entries per row oncurring in 4 blocks. All of the symmetric palrs of off-diagonal blocks can be stored in their natural order within one 4×4 block.

For example, in the case of a Polsion equation with Dirichlet boundary condittons and four grid lines in each direction, the structure of the collocation matrix is pictured below in Figure 3 where $x=$ "non-zero entry' and '='"zero' .

Figure 3: The Intermediate Collocation Matrix
for a 4×4 Grid with 64 Unknowms
We see from Figure 3 that the above matrix does not quite have a non-zero diagonal. However, unlike the usual collocation matrix structure (see Section 5), the intermediate collocation matrix resulting from the ordering discussed thus far is tri-banded with the center band going down the diagonal. This structure gives rise to the hope that perhaps by reordering some of columns of this matrix we can indeed obtain a non-zero diagonal. In the next section we discuss how to do Just that.

4. The Reordering of the Boundary Barls Functions

The linear system resulting from the ordering discussed in Sections 2 and 3 consists of 4×4 blocks which can be identifled with the grid points. Clearly, the non-zeros on the dlagonal of the collocation matrix will occur only in the dagonal blockg corresponding to the boundary grid points. There are eight different types of boundary points which we label as follows:

North West	North	North East
West		East
South West	South	South East

Again we consider the case of a Poisson equation with Dirichiet boundary condithons and four grid lines in each direction. From Figure 3 we see that the 4×4 block in the upper laft is associated with the south-west grid point and has the following format:

\mathbf{X}	$\mathbf{0}$	0	0
\mathbf{X}	0	\mathbf{X}	0
\mathbf{X}	\mathbf{X}	0	0
\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}

We see that by permuting the second and third basis functions (columns 2 and 3), we obtain a non-zero diagonal in this block:

\mathbf{X}	0	0	0
\mathbf{X}	\mathbf{X}	0	0
\mathbf{X}	0	\mathbf{X}	0
\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}

By considering all nine possible boundary conditions which may occur at the south-west corner, one can show that it is aways possible to reorder the columns to obtain a non-zero diagonal in this diagonal block. The possible boundary conditions at the south-west corner with the corresponding permutations are given below in Table 1.

South Went Corner				
Boundary Condition		Hlook Before	Colums Permutation	Block After
West	South			
Dirichlet	Diriohlet	$\begin{aligned} & \hline \text { X000 } \\ & \text { X0X0 } \\ & \text { XX00 } \\ & \mathrm{XXXX} \end{aligned}$	$\begin{aligned} & 2 \rightarrow 3 \\ & 3 \rightarrow 2 \end{aligned}$	$\begin{aligned} & \hline \mathrm{X} 000 \\ & \mathrm{XXCO} \\ & \mathrm{XOXO} \\ & \mathrm{XXXX} \\ & \hline \end{aligned}$
Neumam	Diriohlet	$\begin{aligned} & \text { X000 } \\ & \text { XOXO } \\ & \text { OOXX } \\ & \text { XXXX } \\ & \hline \end{aligned}$	$\begin{aligned} & 2+4 \\ & 3 \rightarrow 2 \\ & 4 \rightarrow 3 \end{aligned}$	$\begin{aligned} & \mathrm{X} 000 \\ & \text { XXOO } \\ & \text { OXXO } \\ & \text { XXXX } \\ & \hline \end{aligned}$
Hired	Dirichlet	$\begin{aligned} & \mathrm{X} 000 \\ & \text { X0X0 } \\ & \text { XXXX } \\ & \text { XXXX } \end{aligned}$	$\begin{aligned} & 2 \rightarrow 3 \\ & 3 \rightarrow 2 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathbf{X O O O} \\ \text { XXOO } \\ \text { XXXX } \\ \text { XXXX } \\ \hline \end{array}$
Dirichlet	Newnann	OXOO 0XOX XXOO XXXXX	$\begin{aligned} & 1 \rightarrow 3 \\ & 2 \rightarrow 1 \\ & 3 \rightarrow 4 \\ & 4 \rightarrow 2 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{XOOO} \\ \text { XX00 } \\ \text { XOXO } \\ \text { XXXX } \\ \hline \end{array}$
Noumann	Neumann	$\begin{aligned} & \text { OX00 } \\ & \text { OXOX } \\ & \text { 00XX } \\ & \text { XXXX } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \rightarrow 4 \\ & 2 \rightarrow 1 \\ & 4 \rightarrow 2 \end{aligned}$	$\begin{aligned} & \mathrm{X000} \\ & \text { XX00 } \\ & \text { OXXO } \\ & \text { XXXX } \end{aligned}$
Mired	Neumann	$\begin{aligned} & \text { OXOO } \\ & \text { OXOX } \\ & \text { XXXX } \\ & \text { XXXX } \end{aligned}$	$\begin{aligned} & 1+4 \\ & 2+1 \\ & 4 \rightarrow 2 \end{aligned}$	$\begin{aligned} & \text { X000 } \\ & \text { XXOO } \\ & \text { XXXX } \\ & \text { XXXX } \end{aligned}$
Dirschlet	Hixed	$\begin{aligned} & \text { XXXOO } \\ & \text { XXXX } \\ & \text { XXOO } \\ & \text { XXXX } \end{aligned}$	$\begin{aligned} & 2 \rightarrow 3 \\ & 3 \rightarrow 2 \end{aligned}$	$\begin{aligned} & \text { XOXO } \\ & \text { XXXX } \\ & \text { XOXO } \\ & \text { XXXX } \end{aligned}$
Neumann	Mixed	$\begin{aligned} & \mathrm{XXOO} \\ & \mathrm{XXXX} \\ & 00 \mathrm{XX} \\ & \mathrm{XXXX} \end{aligned}$	поде	$\begin{aligned} & \mathrm{XXOO} \\ & \mathrm{XXXX} \\ & 00 \mathrm{XX} \\ & \mathrm{XXXX} \end{aligned}$
Mred	Mixed	$\begin{aligned} & \mathrm{XXOO} \\ & \mathrm{XXXX} \\ & \mathrm{XXXX} \\ & \mathrm{XXXX} \end{aligned}$	поле	$\begin{aligned} & X X 00 \\ & X X X X \\ & X X X X \\ & X X X X X \end{aligned}$

Table 1: Column Permutations at the South-West Corner

By considering all possible boundary conditions at every type of boundary grid point, one can show that it is always possible to reorder the basis functions to obtain a non-zero diagonal in the corresponding diagonal block. A complete set of tables describing the reordering of the boundary basis functions is contalped in Appendix A.

Recall that the ordering described in Sections 2-3 yields the intermediate collocation matrix glven in Figure 3. After performing all of the boundary basis function permutations as described in the tables in Appendix B, the pattern of non-zero elements is as shown in Figure 4.

Figure 4: The Reordered Collocation Matrix
for a 4×4 Grid with 64 Unknowns

The matrix indeed has a non-zero diagonal.

5. Implementation

The ordering scheme described in Sections 2-4 has been implemented by the author as the indexing module, P3C1COLLORDER, within the ELLPACK system [Rice, 1977]. The ELLPACK module P3-C1 COLLOCATION generates the Hermite bicubic collocation linear system using a standard finlte element ordering described in Appendix B. P3C1COLLORDER reorders the linear system generated by P3-C1 COLLOCATION so that the reordered system has a non-zero diagonal.

For example, th the case of a Poisson equation with Dirlchlet boundary conditions and four grid lines in each direction, the structure of the P5-C1 COLLOCATION matrix is pictured in Figure 5.

Figure 5: The P3-C1 COLLOCATION Matrix for a 4×4 Grid with 84 Unknowns

The atructure of the corresponding PBC1COLLORDER matrix is given in Figura 4. A complete set of computer generated pictures of the P3-C1 COLLOCATION and the P3C1COLLORDER matrices including all possible combinations of boundary conditions is given in Appendix B.

P3C1COLLORDER implemente the cases of Appendices A and B. The program has 2023 lines of code, 544 of which are executable Fortran statements.

B. Conclusion

In the Introduction we stated that the motivation for developing this ordering scheme for the collocation equations was the desire to use an iterative technique to solve the linear system. However, the collocation matrix resulting from this ordering is not symmetric, positive definite. In fact, we have seen computationally that it has complex eigenvalues some with rather large imaginary components. Hence, standard iterative techniques do not apply. The problem thus arises of developing an iterative technique which will solve the collocation equations in this form. Thus, we present this new ordering scheme as a first step towards the solution of this problem,

Acknowledgements

I thank Professor John R. Rice for suggesting the ordering described in Sections 2-3 and for encouraging me to continue this work to its present form.

REFPREENCES

J. R. Rice, (1977), ELLPACK: A Research Tool for Elliptic Partial Differential Equations Software, in Mathematical Software III (J. Rice, ed.), Academic Press, pp. 319-342.

APPEHNDIX A

The tables in this appendix contain the basis function (unknown, column) permutations to be performed on the diagonal blocks which correspond to the boundary grid points. There are elght different types of boundary boundary points which we label as follows:

North West West	North	North East
South West	South	East
South East		

A table for each type of boundary grid point follows.
Note: The column permutations given in the tables are local in the sense that they refer to the column number within the diagonal block. Hence, switching columns 2 and 3 within a given diagonal block may actually involve switching columns 45 and 46 in the intermediate collocation matrix.

The boundary condition labels given in the tables have the following manings:

Label	Boundary Condition
Dirichlet	$u=g$
Neumann	$\frac{\partial u}{\partial n}=g$
Mixed	$\alpha u+\beta \frac{\partial u}{\partial n}=g$

$$
A-2
$$

South Weat Corner				
Boundary Condition		Block Before	Column Permutation	Block After
West	South			
Dirichlet	Dirichlet	$\begin{aligned} & \hline \mathrm{XOOD} \\ & \mathrm{XOXO} \\ & \mathrm{XXOO} \\ & \mathrm{XXXX} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \rightarrow 3 \\ & 3 \rightarrow 2 \end{aligned}$	$\begin{aligned} & \hline \times 000 \\ & \text { XX00 } \\ & \text { X0XO } \\ & \text { XXXX } \\ & \hline \end{aligned}$
Neumann	Dirichlet	$\begin{aligned} & \text { XOOO } \\ & \text { X0XO } \\ & \text { 00XX } \\ & \text { XXXX } \end{aligned}$	$\begin{aligned} & 2 \rightarrow 4 \\ & 3 \rightarrow 2 \\ & 4 \rightarrow 3 \end{aligned}$	$\begin{aligned} & \times 000 \\ & \times \times 00 \\ & 0 \times X 0 \\ & \text { XXXX } \\ & \hline \end{aligned}$
Mixed	Dirichlet	$\begin{aligned} & \text { XOOO } \\ & \text { XOXO } \\ & \text { XXXX } \\ & \text { XXXXX } \end{aligned}$	$\begin{aligned} & 2 \rightarrow 3 \\ & 3 \rightarrow 2 \end{aligned}$	$\begin{aligned} & \text { X000 } \\ & \text { XXXO } \\ & \text { XXXX } \\ & \text { XXXX } \\ & \hline \end{aligned}$
Dirichlet	Neumann	$\begin{aligned} & \text { OXOD } \\ & \text { OXOX } \\ & \text { XX00 } \\ & \text { XXXX } \end{aligned}$	$\begin{aligned} & 1 \rightarrow 3 \\ & 2 \rightarrow 1 \\ & 3 \rightarrow 4 \\ & 4 \rightarrow 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { X000 } \\ & \text { XXOO } \\ & \text { XOXO } \\ & \text { XXXX } \end{aligned}$
Neumann	Neumann	0×00 0X0X 00XX XXXX	$\begin{aligned} & 1 \rightarrow 4 \\ & 2 \rightarrow 1 \\ & 4 \rightarrow 2 \end{aligned}$	$\begin{array}{r} \times \times 00 \\ \text { XXOO } \\ \text { OXXO } \\ \text { XXXX } \end{array}$
Mixed	Neumann	$\begin{aligned} & \text { 0XOD } \\ & \text { OXOX } \\ & \text { XXXX } \\ & \mathrm{XXXXX} \end{aligned}$	$\begin{aligned} & 1 \rightarrow 4 \\ & 2 \rightarrow 1 \\ & 4 \rightarrow 2 \end{aligned}$	$\begin{aligned} & \text { XOOO } \\ & \text { XXOO } \\ & \text { XXXXX } \\ & \text { XXXX. } \end{aligned}$
Dirichlet	Mixed	$\begin{aligned} & \text { XXOO } \\ & \text { XXXX } \\ & \text { XXOO } \\ & \text { XXXX } \end{aligned}$	$\begin{aligned} & 2 \rightarrow 3 \\ & 3 \rightarrow 2 \end{aligned}$	$\begin{aligned} & \text { XOXO } \\ & \text { XXXX } \\ & \text { XOXO } \\ & \text { XXXX } \end{aligned}$
Neumann	Mixed	$\begin{aligned} & \text { XXXOO } \\ & \text { XXXX } \\ & \text { OXXX } \\ & \text { XXXX } \end{aligned}$	none	$\begin{aligned} & \text { XXXOO } \\ & \text { XXXX } \\ & \text { OXXX } \\ & \text { XXXX } \end{aligned}$
Mixed	Mixed	$\begin{aligned} & \text { XXXXX } \\ & \text { XXXX } \\ & \text { XXXX } \\ & \text { XXXX } \end{aligned}$	none	$\begin{aligned} & \text { XXXOO } \\ & \text { XXXX } \\ & \text { XXXX } \\ & \text { XXXX } \end{aligned}$

Table A-1: Column Permutations at the South-West Corner

A-3

South East Corner				
Boundary Condition		Block Before	Column Permutation	Block After
South	East.			
Dirichlet	Dirichlet	$\begin{aligned} & \hline \hline \mathrm{XOXO} \\ & \mathrm{XOOO} \\ & \mathrm{XXXX} \\ & \mathrm{XXOO} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \rightarrow 2 \\ & 2 \rightarrow 4 \\ & 3 \rightarrow 1 \\ & 4 \rightarrow 3 \end{aligned}$	$\begin{aligned} & \hline \hline \text { XXOO } \\ & \text { OXOO } \\ & \text { XXXX } \\ & \text { OXOX } \\ & \hline \end{aligned}$
Dirichlet	Neumann	$\begin{aligned} & \text { XOXO } \\ & \text { X000 } \\ & \text { XXXX } \\ & \text { 00XX } \end{aligned}$	$\begin{aligned} & 1 \rightarrow 2 \\ & 2 \rightarrow 3 \\ & 3 \rightarrow 1 \end{aligned}$	$\begin{aligned} & \text { XXOO } \\ & \text { OXOO } \\ & \text { XXXX } \\ & \text { XOOX } \\ & \hline \end{aligned}$
Dirichlet	Mixed	$\begin{aligned} & \text { XOXO } \\ & \text { XOOO } \\ & \text { XXXX } \\ & \text { XXXX } \end{aligned}$	$\begin{aligned} & 1 \rightarrow 2 \\ & 2 \rightarrow 3 \\ & 3 \rightarrow 1 \end{aligned}$	$\begin{aligned} & \text { XXOO } \\ & \text { OXOO } \\ & \text { XXXX } \\ & \text { XXXX } \end{aligned}$
Neumann	Dirichlet	$\begin{aligned} & \text { OXOX } \\ & \text { OXOO } \\ & \text { XXXX } \\ & \text { XXOO } \end{aligned}$	$\begin{aligned} & 1 \rightarrow 4 \\ & 4 \rightarrow 1 \end{aligned}$	$\begin{aligned} & \text { XXOO } \\ & \text { OXOO } \\ & \text { XXXX } \\ & \text { OXOX } \\ & \hline \end{aligned}$
Neumann	Neumann	$\begin{aligned} & \text { OXOX } \\ & \text { OXOD } \\ & \text { XXXX } \\ & \text { OOXX } \end{aligned}$	$\begin{aligned} & 1 \rightarrow 3 \\ & 3 \rightarrow 4 \\ & 4 \rightarrow 1 \end{aligned}$	$\begin{aligned} & \mathrm{XXOO} \\ & \text { OX00 } \\ & \text { XXXX } \\ & \text { X00X } \\ & \hline \end{aligned}$
Neumann	Mixed	$\begin{aligned} & \text { OXOX } \\ & \text { OXOO } \\ & \text { XXXX } \\ & \text { XXXX } \end{aligned}$	$\begin{aligned} & 1 \rightarrow 4 \\ & 4 \rightarrow 1 \end{aligned}$	$\begin{array}{r} \text { XXXOO } \\ 0 \times 00 \\ \text { XXXX } \\ \text { XXXX } \\ \hline \end{array}$
Mixed	Dirichlet	$\begin{aligned} & \text { XXXX } \\ & \text { XXOD } \\ & \text { XXXX } \\ & \text { XXOO } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \rightarrow 4 \\ & 4 \rightarrow 1 \end{aligned}$	$\begin{array}{\|l} \hline \text { XXXX } \\ \text { OXOX } \\ \text { XXXX } \\ \text { OXOX } \\ \hline \end{array}$
Mixed	Neumann	$\begin{aligned} & \text { XXXX } \\ & \text { XXXO } \\ & \text { XXXX } \\ & 00 X X \end{aligned}$	none	$\begin{array}{\|l} \hline \text { XXXXX } \\ \text { XXXOO } \\ \text { XXXX } \\ \text { OOXX } \\ \hline \end{array}$
Mixed	Mixed	$\begin{aligned} & \text { XXXX } \\ & \text { XXXO } \\ & \text { XXXX } \\ & \text { XXXX } \\ & \hline \end{aligned}$	none	$\begin{aligned} & \text { XXXXX } \\ & \text { XXXOD } \\ & \text { XXXX } \\ & \text { XXXX } \end{aligned}$

Table A-2: Column Permutations at the South-East Corner
A-4

North West Corner				
Boundary Condition		Block Before	Column Permutation	Block After
Weat	North			
Dirichlet	Dirichlet	$\begin{aligned} & \hline \mathrm{XXOO} \\ & \text { XXXX } \\ & \text { XOOO } \\ & \text { XOXO } \end{aligned}$	$\begin{aligned} & 1 \rightarrow 3 \\ & 2 \rightarrow 1 \\ & 3 \rightarrow 4 \\ & 4 \rightarrow 2 \end{aligned}$	$\begin{aligned} & \hline \hline \text { XOXX } \\ & \text { XXXX } \\ & \text { 00X0 } \\ & \text { 00XX } \end{aligned}$
Neumann	Dirichlet	$\begin{aligned} & \hline \text { OOXX } \\ & \text { XXXX } \\ & 00 \times 0 \\ & \text { XOXO } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \rightarrow 4 \\ & 4 \rightarrow 1 \end{aligned}$	$\begin{aligned} & \text { XOXO } \\ & \text { XXXX } \\ & \text { OOXO } \\ & 00 X X \\ & \hline \end{aligned}$
Mixed	Dirichlet	$\begin{aligned} & \text { XXXX } \\ & \text { XXXX } \\ & \text { XOXO } \\ & \text { XOXO } \end{aligned}$	$1 \rightarrow 4$ $4 \rightarrow 1$	XXXX XXXXX 00XX 00XX
Dirichlet	Neumann	$\begin{aligned} & \text { XXOO } \\ & \text { XXXX } \\ & \text { XOOO } \\ & \text { OXOX } \end{aligned}$	$1 \rightarrow 3$ $2 \rightarrow 1$ $3 \rightarrow 2$	X0X0 XXXX 00X0 X00X
Neumann	Neumann	$\begin{aligned} & \text { 00XX } \\ & \text { XXXX } \\ & \text { 00X0 } \\ & \text { 0X0X } \end{aligned}$	$1 \rightarrow 2$ $2 \rightarrow 4$ $4 \rightarrow 1$	$\begin{aligned} & \text { XOXO } \\ & \text { XXXX } \\ & \text { 00XO } \\ & \text { XOOX } \end{aligned}$
Mixed	Neumann	$\begin{aligned} & \text { XXXX } \\ & \text { XXXX } \\ & \text { XOXO } \\ & \text { OXOX } \\ & \hline \end{aligned}$	none	$\begin{aligned} & \text { XXXX } \\ & \text { XXXX } \\ & \text { XOXO } \\ & \text { OXOX } \\ & \hline \end{aligned}$
Dirichlet	Mixed	$\begin{aligned} & \text { XXXO } \\ & \text { XXXX } \\ & \text { XOOO } \\ & \text { XXXX } \end{aligned}$	$\begin{aligned} & 1 \rightarrow 3 \\ & 2 \rightarrow 1 \\ & 3 \rightarrow 2 \end{aligned}$	$\begin{aligned} & \text { XOXO } \\ & \text { XXXX } \\ & \text { 00X0 } \\ & \text { XXXX } \\ & \hline \end{aligned}$
Neumann	Mixed	$\begin{aligned} & \text { OOXX } \\ & \text { XXXXX } \\ & \text { 00X0 } \\ & \text { XXXX } \end{aligned}$	$\begin{aligned} & 1 \rightarrow 4 \\ & 4 \rightarrow 1 \end{aligned}$	$\begin{aligned} & \text { XOXO } \\ & \text { XXXX } \\ & 00 \mathrm{XO} \\ & \text { XXXXX } \end{aligned}$
Mixed	Mixed	XXXXX XXXX XOX0 XXXX	none	XXXXX XXXXX XOXO XXXXX

Table A-3: Column Permutations at the North-West Corner

$$
A-Б
$$

North East Corner				
Boundary Condition		Block Before	Column Permutation	Block After
North	East			
Dirichlet	Dirichlet	$\begin{aligned} & \hline \mathrm{XXXX} \\ & \text { XXOO } \\ & \text { XOXO } \\ & \text { XOOO } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \rightarrow 4 \\ & 4 \rightarrow 1 \end{aligned}$	$\begin{aligned} & \hline \hline \text { XXXX } \\ & \text { OXOX } \\ & \text { 00XX } \\ & \text { OOOX } \\ & \hline \end{aligned}$
Dirichlet	Neumann	$\begin{aligned} & \text { XXXX } \\ & \text { 00XX } \\ & \text { X0X0 } \\ & \text { 00X0 } \end{aligned}$	$\begin{aligned} & 1 \rightarrow 3 \\ & 2 \rightarrow 1 \\ & 3 \rightarrow 4 \\ & 4 \rightarrow 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { XXXX } \\ & \text { 0XOX } \\ & \text { 00XX } \\ & \text { 000X } \\ & \hline \end{aligned}$
Dirichlet	Mixed	$\begin{aligned} & \mathrm{XXXX} \\ & \mathrm{XXXX} \\ & \mathrm{XOXO} \\ & \mathrm{XOXO} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \rightarrow 4 \\ & 4 \rightarrow 1 \end{aligned}$	$\begin{aligned} & \text { XXXXX } \\ & \text { XXXX } \\ & \text { OOXX } \\ & 00 X X \end{aligned}$
Neumann	Dirichlet	$\begin{aligned} & \text { XXXX } \\ & \text { XXXO } \\ & \text { OXOX } \\ & \text { XOOO } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \rightarrow 4 \\ & 3 \rightarrow 1 \\ & 4 \rightarrow 3 \end{aligned}$	$\begin{aligned} & \text { XXXX } \\ & \text { 0XOX } \\ & \text { oXXO } \\ & \text { OOOX } \end{aligned}$
Neumann	Neumann	XXXX 00XX 0XOX 00×0	$\begin{aligned} & 2 \rightarrow 3 \\ & 3 \rightarrow 4 \\ & 4 \rightarrow 2 \end{aligned}$	$\begin{aligned} & \text { XXXX } \\ & \text { OXOX } \\ & \text { OXXO } \\ & 000 \mathrm{X} \\ & \hline \end{aligned}$
Neumann	Mixed	$\begin{aligned} & \text { XXXX } \\ & \text { XXXX } \\ & \text { OXOX } \\ & \text { XOXO } \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \rightarrow 4 \\ & 4 \rightarrow 3 \end{aligned}$	$\begin{aligned} & \mathrm{XXXXX} \\ & \text { XXXXX } \\ & \text { OXXO } \\ & \mathrm{XXOOX} \\ & \hline \end{aligned}$
Mixed	Dirichlet	$\begin{aligned} & \mathrm{XXXXX} \\ & \mathrm{XXOO} \\ & \mathrm{XXXXX} \\ & \mathrm{XXOOD} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \rightarrow 4 \\ & 4 \rightarrow 1 \end{aligned}$	$\begin{aligned} & \text { XXXX } \\ & \text { OXXX } \\ & \text { XXXX } \\ & \text { OOOX } \end{aligned}$
Mixed	Neumann	$\begin{aligned} & \text { XXXX } \\ & \text { OOXX } \\ & \text { XXXX } \\ & \text { OOXO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \rightarrow 3 \\ & 3 \rightarrow 4 \\ & 4 \rightarrow 2 \end{aligned}$	$\begin{aligned} & \text { XXXX } \\ & \text { OXXX } \\ & \text { XXXX } \\ & 000 \mathrm{X} \end{aligned}$
Mixed	Mixed	$\begin{aligned} & \text { XXXXX } \\ & \text { XXXXX } \\ & \text { XXXX } \\ & \text { XOXO } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \rightarrow 4 \\ & 4 \rightarrow 1 \end{aligned}$	$\begin{aligned} & \mathrm{XXXXX} \\ & \mathrm{XXXXX} \\ & \mathrm{XXXX} \\ & \mathrm{OOXX} \end{aligned}$

Table A-4: Column Permutations at the North-East Corner

$$
A-8
$$

North Boundary			
Boundary Condition	Block Before	Column Switching	Block After
Dirichlet	$\begin{aligned} & \text { XXXX } \\ & \text { XXXX } \\ & \text { XOXO } \\ & \text { XOXO } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \rightarrow 4 \\ & 4 \rightarrow 1 \end{aligned}$	$\begin{aligned} & \text { XXXX } \\ & \text { XXXX } \\ & \text { 0OXX } \\ & \text { OOXX } \end{aligned}$
Neumann	$\begin{aligned} & \text { XXXX } \\ & \text { XXXX } \\ & \text { OXOX } \\ & \text { OXOX } \end{aligned}$	$\begin{aligned} & 2 \rightarrow 3 \\ & 3 \rightarrow 2 \end{aligned}$	$\begin{aligned} & \text { XXXX } \\ & \text { XXXX } \\ & 00 X X \\ & 00 X X \end{aligned}$
Mixed	$\begin{aligned} & \text { XXXXX } \\ & \text { XXXX } \\ & \text { XXXX } \\ & \text { XXXX } \end{aligned}$	none	$\begin{aligned} & \text { XXXXX } \\ & \text { XXXX } \\ & X X X X \\ & X X X X \\ & \hline \end{aligned}$

Table A-5: Column Permutations on the North Boundary

South Boundary			
Boundary Condition	Block Before	Column Switching	Block After
Dirichlet	$\begin{aligned} & \hline \hline \text { XOXO } \\ & \text { XOXO } \\ & \text { XXXX } \\ & \text { XXXX } \\ & \hline \end{aligned}$	$2 \rightarrow 3$ $3 \rightarrow 2$	$\begin{aligned} & \text { XXXOO } \\ & \text { XXXOO } \\ & \text { XXXX } \\ & \text { XXXX } \end{aligned}$
Neumann	0X0X OXOX XXXX XXXX	L $4 \rightarrow 4$	$\begin{aligned} & \mathrm{XXOO} \\ & \mathrm{XXOO} \\ & \text { XXXX } \\ & \text { XXXX } \end{aligned}$
Mixed	XXXXX XXXX XXXX XXXX	none	$\begin{aligned} & \text { XXXXX } \\ & \text { XXXXX } \\ & \text { XXXX } \end{aligned}$

Table A-6: Column Permutations on the South Boundary

$$
A-7
$$

West Boundary			
Boundary Condition	Block Before	Column Switching	Block After
Dirichlet	$\begin{aligned} & \hline \mathrm{XXOO} \\ & \mathrm{XXXX} \\ & \mathrm{XXXO} \\ & \mathrm{XXXX} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \rightarrow 3 \\ & 3 \rightarrow 2 \end{aligned}$	$\begin{aligned} & \text { XOXO } \\ & \text { XXXX } \\ & \text { XOXO } \\ & \text { XXXX } \\ & \hline \end{aligned}$
Neumann	$\begin{aligned} & \text { OOXX } \\ & \text { XXXX } \\ & \text { OOXX } \\ & \text { XXXX } \end{aligned}$	$\begin{aligned} & 1 \rightarrow 4 \\ & 4 \rightarrow 1 \end{aligned}$	$\begin{aligned} & \text { XOXO } \\ & \text { XXXX } \\ & \text { XOXO } \\ & \text { XXXX } \\ & \hline \end{aligned}$
Mixed	$\begin{aligned} & X X X X X \\ & X X X X \\ & X X X X \\ & X X X X \end{aligned}$	none	XXXXX XXXXX XXXX XXXXX

Table A-7: Column Permutations on the West Boundary

East Boundary			
Boundary Condition	Block Before	Column Switching	Block After
Dirichlet	$\begin{aligned} & \hline \hline \mathrm{XXXX} \\ & \mathrm{XXOO} \\ & \mathrm{XXXX} \\ & \mathrm{XXXOO} \end{aligned}$	$\begin{aligned} & \hline 1 \rightarrow 4 \\ & 4 \rightarrow 1 \end{aligned}$	$\begin{aligned} & \text { XXXX } \\ & \text { OXOX } \\ & \text { XXXX } \\ & \text { OXOX } \end{aligned}$
Neumann	$\begin{aligned} & \text { XXXX } \\ & 00 X X \\ & \text { XXXX } \\ & 00 X X \end{aligned}$	$\begin{aligned} & 2 \rightarrow 3 \\ & 3 \rightarrow 2 \end{aligned}$	$\begin{aligned} & \text { XXXXX } \\ & \text { OXXX } \\ & \text { XXXX } \\ & \text { OXOX } \end{aligned}$
Mixed	$\begin{aligned} & \text { XXXXX } \\ & \text { XXXXX } \\ & \text { XXXX } \\ & \text { XXXX } \end{aligned}$	none	$\begin{aligned} & \text { XXXXX } \\ & \text { XXXX } \\ & \text { XXXX } \\ & \text { XXXX } \end{aligned}$

Table A-8: Column Permutations on the Elast Boundary

APPENDIX B

This appendix contains computer generated pictures of the structure of the matrices produced by the ELLPACK routines PB-C1 COLLOCATION and P3CICOLLORDER.

P3-C1 COLLOCATION numbers the grid rectangles from south to north, west to east. The collocation points are then numbered in a way corresponding to the ordering of the grid rectangles. For example, with four vertical and four horizontal grid lines there are 64 collocation points which P3-C1 COLLOCATION numbers as follows:

P3-C1 COLLOCATION orders the Hermite bicubic basis functions in a natural way from south to north, west to east similar to the ordering in Figure 2.

P3C1COLLORDER is an ELLPACK indexing module which reorders the linear system generated by P3-C1 COLLOCATION using the ordering scheme discussed in Sections 2-4.

The matrices pictured on the following pages were generated using the Laplace operator with four grid lines in each direction and with varied boundary conditions. The type of condition (see Appendix A) on each boundary is given at the top of each page in its respective location.

B-2

Dirichlet | Dirichlet |
| :---: |
| + |
| |
| |
| Dirichlet |\quad Dirichlet

P3-C1 COLLOCATION matrix

Neumann	Dirlchlet
$\stackrel{+}{+}$	
Dirichlet	\quad Neumann

P3-C1 COLLOCATION matrix

Mixed | Dirichlet |
| :---: |
| + |
| Dirichlet | Mixed

P3-C1 COLLOCATION matrix

Dirichlat | $\stackrel{\text { Neumann }}{+}$ |
| :---: |
| Neumann | Dirichlet

P3-C1 COLLOCATION matrix

Neumann | Neumann |
| :---: |
| $\stackrel{+}{+}$ |
| Neumann | Neumann

P3-C1 COLLOCATION matrix

$$
B-7
$$

Mixed | Neumann |
| :---: |
| + |
| |
| |
| Neumann |\quad Mixed

P3-C1 COLLOCATION matrix

B-B

Dirichlet | Mlxed |
| :---: |
| Mixed | Dirichlet

P3-C1 COLLOCATION matrix

Neumann | Mixed |
| :---: |
| + |
| Mixed | Noumann

P3-C1 COLLOCATION matrix

Mixed | Mixed | |
| :---: | :---: |
| + | |
| | Mixed |\quad Mixed

PB-C1 COLLOCATION matrix

[^0]: \dagger This work supported in part by NSF grant MCS 78-20784.

