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1. Introduction

Models of protection in computer systems usually possess two com­

ponents: a finite, labeled, directed two color graph representing the

protection state of an operating system and a finite set of graph

transformation rules with which the protection state may be changed.

Harrison, Ruzzo and Ullman demonstrated [1] that the safety problem

for a very general protection model is undecidable, i.e., no algorithm

could decide, given a protection graph and a set of transformation rules,

whether an edge with a particular label is ever added to the graph. The

Take-Grant Model [2,3,4] has been developed in response to this negative

result in order to study such questions for a particuZar set of transit­

ion rules. Linear-time algorithms to test safety-like problems have been

found [2,3] for the Take-Grant transition rules. Although the model is

simple enough to permit linear time decision procedures, it is rich enough

to implement many sharing relationships [4]. Here we concentrate on the

formal development supporting the motivational and interpretive treatments

given in [4,5].

First, we characterize the class of graphs that can be created with

the Take-Grant rules. Next, the can·steaL predicate, first introduced in

a limited form [41, is developed in full generality making it applicable

to the common situation of "stealing files."

Another main topic is that of quantifying the amount of "cooperation"

required to share or steal rights. By the amount of "cooperation" we mean

the number of users (i.e., subject vertices in the model) required to­

initiate rules in order for a particular edge to be added to a graph. This

concept has been called "conspiracy" in (2). Exact conspiracy measurements
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for arbitrary protection graphs are derived and an algorithm for dis-

covering minimum conspiracy is presented.

2. The. Take-Grant Model,

The definitions for the Take-Grant model follow earlier

treatments [2,3,4] differing in only inessential ways.*

Fix a finite alphabet of labels R = {r1, ••• ,rm}U{t,g} called rights

containing two distinguished elements; lit" is mnemonic for "take" and "g"

is mnemonic for "grant." A protection graph is a finite, directed,

loop-free, two color graph with edges labeled by nonempty subsets of R.

(Braces around subsets are elided.) Solid vertices, ., are called subjects,

empty vertices, 0, are called "objects; vertices of either type are denoted

by •.

Four rewriting rules ~re defined to enable a protection graph to

change:

Take: Let x, y, and z be distinct vertices in a protection
graph G such that x is a sUbject. Let there be an edge
from x to y labeled y such that "t" E Y, an edge from y
to z labeled a and a~ 6. Then the take rule defines a
new gr~ph G' by adding an edge to the protection graph from
x to z labeled Q. Graphically,

• t
~0

S 10 ~=x y z x y z

The rule can be read: "x takes (0 to z) from y."

Grant: Let x, y, and z be distinct vertices in a protection
graph G such that x is a subject. Let there be an edge
from x to y labeled y such that "g" E y, an edge from x
to z labeled S, and a ~a. The grant rule defines a new
graph G' by adding an edge from y to z labeled Q. Graph­
ically,

~
x y z
~
x y z

The rule can be read: "x grants (a to z) to y."

*Specifically, the "call" rule of [2J has been dropped, r and w labels
(used in [2J), are replaced by t and g, respectively, and "inert" rights
[5,6J are permitted.
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Create: Let x be any subject vertex in a protection graph
G and let a be a nonernpty subset of R. Create defines
a new graph G' by adding a new vertex n to the graph
and an edge from x to n labeled a. Graphically,

•x •x
o

10
n

The rule can be read: " X creates (0 to) {
Subject} "

new b' t n,o Jec

Remove: Let x and y be any distinct vertices in a protection
graph G such that x is a subject. Let there be an edge
from x to y labeled S, and let a be any subset of rights.
Then remove defines a new graph G' by deleting the a
labels from.B. If a becomes empty as a result, the edge
itself is deleted. Graphically,

B
'.~--"-~10
X Y •x

B-0
10
y

The rule can be read: "x removes (0 to) y."

In these rules, x is called the initiator.

Application of rule p to graph G is denoted by G~ G'. The reflective
p

*transitive closure of this relation is denoted G~ G'. The notation

x.....s:..... y abbreviates "there exists an edge from x to y in G labeled y and
G

ct ~ y." Figure 1 illustrates* the use of the rules. Although there are

additional concepts to be introduced, the development thus far is adequate

for proving a characterization result.

3. Take-Grant Definabl.e Graphs

It has been argued [4] that the protection graphs actually used in

an operating system will be generated by a fixed set of rule- protocols,

e.g., by the operating system supervisor, editors ( compliers, etc.

Hence, it is important to know what class of graphs can be generated by

*Dashed lines are used in illustrations as a visual aid. Also, even
though there is only one directed edge from any vertex a to any vertex
h, we occasionally draw two to emphasize changes in labelling.
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Icreate

Igrant

Igrant

rSJ
b

a 9

Ig :_--- c
d - 9

~
~

a g\
tg 9 c}

9 /d -/g

~----- b,-,

I lake
,

a
tg 9

d 9 9

Figure 1: Vertex a acquires g rights to b. i.e., g is added to the
label on the a to b edge. The rule applications may be read:

a creates (tg to) new object d,

a grants (g to d) to c.

c grants (g to b) to d.

a takes (g to b) from d.
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the Take-Grant rules. Since all of the rule applications require that

the initiator be a subject, we consider the graphs reachable from a single

subject. Notice that an "all object" graph is impossible since vertices

cannot be deleted. A complete characterization is presented in the next

theorem.

Theorem 3.1: Let Go be a protection graph containing exactly

•one subject vertex and no edges. Then Go ~ G if and only

if G is a finite, directed, loop-free, two color graph
with edges labeled from nonempty subsets of R such that
at least one subject has no incoming edges •

•Proof: Let v be the initial subject, and Go ~ G. After reviewing the

rule definition, one sees that G is obviously finite, directed, loop-free

and two colored with the indicated labelling. since vertices cannot be

destroyed, v persists in any graph derived from Go' Inspection of the

rules indicates that edges cannot be directed to a vertex that has no in-

coming edges so none can be assigned to v. conversely, let G satisfy the

requirements. Identify v with some subject xl with no incoming edges and

let G have vertices x
I

,x
2

, ••• ,x
n

• Follow these steps:

(3.1) Perform "v creates (a U {g} to) new x. II for all x. (2.::.i::.n)
1 1

where a is the union of all edge labels incoming to x. in G;
1

(3.2) For all x x such that x. ~Ga x. perform "v grants
i' j ~ J

«(1. to x
j

) to xi";

(3.3) If S is the (possibly empty) set of edges from Xl to Xi in G,

then execute "v removes (((1. U{g})-S) to x. "
1

for 2<i<n.

This sequence of operations applied to a single subject vertex yields G. 0

In the next corollary, "component" means connected component.

CoroZZary 3.2: A k component, n edge protection graph can be
constructed from a single subject in t rule applications,
where 2 (k-l)+n ~ t < 2(k-I)+3n.
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~oof: W~ consider the lower limit first. Every component must

have at least one vertex forcing at least one Create operation to be charged

to each component but one, since we are given one component. Furthermore,

since connectivity is maintained with Create, Take and Grant at least one

Remove. operation must be charged to each component but one to perform the

disconnection. Together, these give 2(k-l). since the edge that was

created as an artificat of creating one of vertices of the conponent was

then removed when separating the components, there has not been an aCCQunt-

ing for any of the edges of G. These can be added to the graph at the rate

of one per rule application, giving the lower bound.

To see the upper limit note that rules (3.1) and (3.3) are sufficient

to form one vertex in each component. For each edge charge. one application

of (3.1) to create its target vertex, one application of (3.2) to assign

the edge to the source, and, possibly, one application of (3.3) to delete

the edge from v.

Clearly, the bounds are both achievable as the example in Figure 2

illustrates.
v• creafe

v
• g '.

v
• I

create
~ gr '0

Icreale ~
Icreale ~

I gf:
r----,-

vgr
create granf

~

Iremove~
I 7remove

• v
I • Iremove

'r;gure 2, Illustration of the
bounds of Corollory 3.2
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4. Predicates and earlier results

Several properties of paths will be extremely important in our

later development. A sequence of vertices x "",X is a path in G ifo . n

ent of di~ectionality.

G )- x
i

+
1

or x
i
+

1
-~G'---~> xi' O~i<n. Thus paths are defined independ­

Vertices p and q of G are tg-conneeted if there

X
i

+
1

contains t or g.

only subgraph of G.

q and the label n on the edge between x. and,
An island of G is a maximal, tg-connected subject-

++++
The edge alphabet is composed of four letters {t,9,t,9}' If

x _C~~~) y (resp. x
9 -+ -+ • d) y) then the letter t (resp. g). is aSBOC'l-ate
G

with the edge. Words are associated with paths in the obvious way"; for

example,
t tg .. g ~ ~

associated with• "" • has the words ttg and tgg it.

A path x O,·,· IX
n

is an initial span if it has an associated word in

+*+ a terminal
+'

{t g}, it is span if n>O and it has an associated word in {t },

and it is a bridge if (a) n>l and x and x are subjects, (b) an associated,o n
+* +* -+*-t+* +*+-+-*word is in {t , t , t gt , t gt }, and (c) the x, are objects (O<i<n). Note,

that the initial and terminal spans have an orientation, i.e., Xo is the

source of the spans. We say x
o

initially or terminally spans to xn "

In order to share information in the protection system, an edge pointing

from the recipient to the information being shared must be added to the

protection graph by means of a sequence of rule transformations of the

graph. Accordingly, we may define for a set of rights a and distinct vertices

p and q of .a protection graph GO' the predicate

~ there are protection graphs G , ... ,G
1 ncan.share(a,p,q,Go )

*such that GO~ Gn "and p ~ q.
n

When interest is restricted to protection graphs containing only subjects,

we have
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Theorem 4.1 [2]: For a subject only protection graph GO'

can o share (a,p,q,G
o

) is true if and only if the following

two conditions hold.

condition 1, There exist vertices s , ..• 5 such that for

Yi
1 u

each i, l::.i.::..u; s. -.;. q and • = Y, U·· ·U Y ;,
GO u

Condition 2: pis tg-connected to each si' l<i<u.

The conditions under which can "share holds for general protection graphs

are somewhat more complicated. In particular, Condition 1 must be augmented

by Condition 3.

Gondi tion 3:
. that

(al
(bl

There exist subject vertices p' and si" .. 's~ such

p = p' or p' initially spans to p'
s. = s~ or s~ terminally spans to S,i

J. J. J. J.

and Condition 2 must be recast in terms of bridges and islands:

Condition 4: For each (p',s~) pair (l~i::,u) there exist islands,
II'.'. ,Iv (v.::.l) such that p' E II' si E Iv and there is a

bridge from I. to I. 1 (12j<v).
J J+

Clearly, Condition 2 is simply Condition 4 for the case v = 1. The counter

part to Theorem 4.1 for general protection graphs is

Theorem 4.2 [3]: The predicate CQ7l'8hare(~,p,q,Go) is true if

and only if Conditions 1, 3, and 4 hold.

As corollaries, it is known that there are algorithms operating in linear

time in the size (V+E) of the graph to test both predicates.

5. Theft

The can'share predicate presumes perfect cooperation from all users

(i.e., subjects). The ~'steal predicate must capture the notion that

a subject vertex acquires a new right without any cooperation from an
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original owner. Formally, for two distinct vertices p and q in a pro-

tection graph GO' and right a, define

Go
that

can 'stea~ (a,p ,q, Go> <=> ...... P

graphs G ,_._, G such
1 n

a , q and there exist protection

(5.11 GO f::- G, f::- Ip G ,
P, P2 n

n

(5.2)
a

andp , q,
G

n

(5.3) if s
a

q then no has the form, P.
GO )

"s grants (a to q) to x. " for any x. E G 1<'<, , j-l' _J n.

Clearly, p, q and s must be distinct since these are protection graphs.

Although a motivational discussion of can·steat appears elsewhere

[4], a few additional remarks are in order. Notice that can'steaL(o,p,q,G)

does not hold when p already "owns" ~ rights to q. This is more realistic

although it is somewhat inconvenient, technically. Also an "owner" s of a

right a cannot grant the right away since to do so and to claim later that

a theft occurred would strain credibility. But s can participate in a

theft in other ways. In particular for the protection graph of Figure 3,

s would be involved in any theft of a rights to q, because it must grant

(t to r) to p. It is reasonable for the definition to allow this since s

could be duped into participating, but alternate definitions, e.g. where

right owners are required to be completely inactive, is also reasonable.

Thus, the present definition analyzes thefts where the only limit to full

. cooperation of all users is that "owners" cannot grant their rights away.
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r

1/'-
,,,,

9 a , 9 a
I
grantp s q

t

t

a9I *
take \~... 1 ,,'',--- .-,'

" ------6
Subject s ~articipatas in a theft.Figure 3:

Theorem 5.1: For distinct vertices p and q in a protection graph
Go and right-a, canosteal(Q,p,q,Go) if and only if the

conjunction of the following conditions holds:

(5.4) -- p -,,"---» q,
GO

(5.5) there is a subject p' such that p = p' or p'
initially spans to p,

(506) there is a vertex s such that s _C"~.,> q and
GO

Proof:

can.share(t,p,s,G
o

) •

Suppose can osteal (a,p,q,G
o

) is true. Condition (5.4)

of the theorem holds by definition. Condition (5.5) is satisfied since

p~ q implies by definition that canOShare(N,p,q,GO) holds which by
n

Condition 3 of Theorem 4.2 implies p' exists. Also, Condition I of

Theorem 4.2 guarantees existence of the vertex s required in condition (5.6).

To see that the remainder of that condition is satisfied, let

G be a minimal length derivation sequence and let
n

i be the least index such that G. lb-1- p
1

but- x " ,
G. 11-

q.

That is, G. is the first graph where an a labeled edge to q is added.
1

Clearly, Pi is not a Create or Remove operation o It cannot be a Grant by

condition (5.3) since by our choice of i all vertices with a rights to q

in G
i

are also in GOo
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Thus, Pi must be a Take of the form

•x
t ..

s
a ..

q

- -- ...... a..-. t a '~4 .. •
x s q

Now, by Condition 3, there is a subject $' such that s'=s or $' terminally

spans to s and by Condition 4 there "exist islands II, ••. I v such that p'E II

ands'EI
v

Now, if s#s', i.e. s is an object, then either it suffices to

let x=s' since s' is in the same island and terminally spans to x or else

s' is in a different island and the derivation is not of minimal length.

Thus, the conditions of Theorem 4.2 are satisfied leading to the truth of

If s=s', i.e. s is a subject, then x is in island I ,v

and the conditions for Theorem 4.2 are satisfied provided x E GO. If x ~ GO

then because s tG
O

and new labels on incoming edges cannot be added to ex-

tant vertices, there must be some subject y in one of the islands such that

canoshare(t,y,s,Go) is true. Thus, we have can.share(t,p,s,Go ) established

and the theorem proved if we can show that s does not have to grant away a

to accomplish the sharing. But it is immediate that every instance of

(5.7) s grants (a to q) to Y

can be replaced by

(5.8) x takes (a to q) from s
x takes (g to y) from s
x grants (a to q) to Y

with the same effect as long as x and yare distinct. But if they are not

distinct, line (5.8) alone can replace (5.7) with the same effect. o
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(¢=) Suppose the three conditions hold. Then if p is a subject, the

theorem is immediately satisfied since p can take (a to q) from s once it

gets the t right to s. If P is an object then aanoshare(t,p,s,G ) implies
o

there is some subject p' initially spanning to p and canoshare(t,p',SrGo)·

If ...... p' q then p' ·can take the right (a to q) from s and grant it to

If p'p. a ) q then the following sequence enables p r to form a
Go

surrogate vertex n to transmit the right (a to q) to p given that

p' t ) sand p'
GO

p' creates (g to) a new subject ni

p' grants (t to 5J to n,

p' grants (g to p) to n.

(These steps are legal even if a=t o)

Then n completes the task with operations:

n takes (a to q) from s;

n grants (a to q) to p.

This is a witness for can.steal(a,p,q,Go ) proving the theorem. o

6. Conspiracy

In this section we are concerned with the amount of "cooperation" re-

quired to effect the sharing or stealing. This cooperation has been called

"conspiracy" [2] and for a given sequence of legal rule applications

Pl' .... 'Pn it is simply I{xlx initiates Pill. Our concern in this section

is determining for a given true predicate aanoshare(a,p,q,Go) the minimum

conspiracy required to produce a G that is a witness to its truth. We
n

will be able ~o find the exact value for arbitrary protection graphs.
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(Conspiracy has been studied [6J and a lower bound has been established.

The bound is based on edge incidence and is not ti~ht. For example, the

class of graphs of the form shown in Figure 4 require n+2 conspirators for

P to acquire the a edge to q, but the previous lower bound for these graphs

is O. The present formulation uses the more flexible notion of "spans" to

assess protection graphs.)

Let G be a protection graph and y a subject vertex, then the

access-set with focus Y

A(y) = def {y} U {xly initially spans or terminally spans to x}.

Clearly, for a given focus y in G, A(y) is unique. Access sets will be

used to measure the size of the conspiracy.

For the remainder of the section, we restrict our attention to a

protection graph G with distinct vertices p ~ xO"·,,xn = s, xn+l q.

An edge in G either forms a direct tg-connection between x. 1 and x 'l~i_<n) orJ.- i-

ais s ~q. We suppose that oan'share(a;p,q,G) holds.

Say that a vertex is a tg-sink if

(6.1) the vertex is X
o

and the only letter associated with the

(6.2) the vertex has exactly two incident edges, both are incoming

and either both are labeled with t or both are labeled with g.

or

(6.3) the vertex is x and the only letter associated with the
n

. +
xn_l,xn edge J.S g.

The motivation for this definition will become evident in the claim

of Theorem 6.1.

An aocess set cover-for G with foci Yl~".~Yu is a family of sets

A(y ), .•. ,A(y ) such that for each i (l_<i~n) vertices {x. l'x.} C A(Y.)
1 u J.- J. - J

for some j, l~j~u. Note that the subject requirement of access-sets
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might prevent certain tg-connected paths from having a cover. It will

become clear from the subsequent theorems, however, that a tg-path has

-an access-set cover if and only if can.share(a,p,q,G
O

) is true. Finally,

an access set cover is said to be minimal if it minimizes u over all access

set covers.

First, we establish a lower bound.

Theorem 6.1: Let GO be G - {q}, i.e. G without. vertex q. Let k

be toe number of access sets in a minimal cover of GO' and

£ be the number of tg-sinks. Then k+£ initiaters are

necessary.

Proof: Let Pl"."P
v

be a minimal set of rules required for a

minimal set of initiators Yl""'Y
u

to implement canoshare(a,p,q,G). Let

"the access sets A(yl), •.• ,A(Y
u

) with initiator foci Y1'."'Yu be defined

over Go. To see that they cover GO' note that x ¢ A(Yi ) for all i implies

that no initiator can take from or grant to x, so x and its incident edges

can be removed without affecting rules P1"",Pv • But this violates the

connectedness Condition 4 of can·share. Thus, the access sets A{yl),···,A{yu}

at least covers GO'

Claim: Every vertex x. that is a tg-sink must be an initiator.
1

Proof of Claim: First note that each such x. must be a subject by
1

Condition 4. Suppose --x. fails to satisfy the claim and tt is associated
1

wi th x. I s incident edges. Then no rule P. of the form "z takes (a to y)
1 J

from x." is ever executed since x. has no out edges and it cannot be
1 1

assigned any. Furthermore, since v, the number of rules, is minimal, no

rules of the form lIZ takes (t to x;) from x "or "x. grants (t to x.)
~ i-I ~-l ~

to Z·' are ever executed since no use could be made of the t right thus

assigned; a similar situation holds for x. 1 transmitting its t right to1+ .

Thus x. and its incident edges can be deleted violating the connected­
1

ness Condition 4.
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y

n

t

~

As with the tt case there

o

Figure 4. A graph requiring n+2 conspirators.

~

If gg is associated with x. 's incident edges, no rule p. of the, ]

form lIZ grants (13 to y) to x. II is ever executed since that right cannot,
be transmitted by Xi and v is assumed minimal.

is no need for any P
j

to transmit the g right, so Xi can be eliminated and

thus the connectedness condition is violated. The situation for the end

points is analogous. The claim follows.

LetYI' •. "Y.tbe the tg-sink initiators. Then A(yl), ..• ,A(Y.t) are

singleton sets. Moreover, each of these vertices is a member of its

adjacent access-sets. Thus, the other access-sets, A(y i +l ) , ••• ,A(Y i +k )

(i+k = u) constitute a cover for GO' The theorem follows.

Some discussion is in order. Basically, edges can be .transmitted by

an initiator to any vertex in its access set. Edges are passed "along the

path" because access sets will overlap. If one initiator can take from the

common element and the other can grant to it, then edges can move from one

access set to the next. But if the common vertex is a tg-sink, then it

must aid in the communication.

Next we establish a matching upper bound, but first a lemma will

simplify matters.

Lemma 6.2: Let GO = G - {q} and let A(YI), •• ·,A(yk ) be a

minimal access-set cover

increasing indices of x .•,
sequence for GO ordered by

a

exists G' such that Y
i

a
G') q and all rules in
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•G~ G' are initiated by y., y'+I' and perhaps, their
1 1 .

common element, A{y.) n A(y. ,1.
1 1+

Proof: Let z "" A(y.) n A(y. ,1.
1 1+

Consider the spans to z from

•Yi and Y
i
+

l
' The notation "take r" means "perform enough takes to

acquire" right r. Table I presents constructive means for passing the

a right in each of the four cases.

Except for Ia and IVe the vertices initiating the rules are

o
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Table I:

Rules for passing a'between access sets.

span from
y. to z,

span

Yi+l

from
to z' rule sequence

I.
+* +*

terrninal(t ) terminal(t ) z is necessarily a subject, since
isn't a bridge.

(a) z creates (tg to) new n,

Ib)

Ie)

Id)

II. +' H'terminal (t ) initial(gt ) la)

Ib)

Ie)

-+ ..
III. initial( t g) terminal (t ) la)

Ib)

Ie)

Id)

y. 1 takes* (g to n) from z via,+
elements of the span,

Y
i

+
l

grants (a to q) to n

y. takes* (a to q) from n.,
y. 1 takes* (g to z) from elements,+
of' the span,

Yi+l grants (a to q) to z,

y. takes (a to q) from z.,
Yi creates (tg to) new n,

Yi takes* (g to z) from elements of

the span,

y. grants (g to n) to z,,
y. 1 takes* (g to n) from-z. via elements,+
of the span,

IV.

Ie) Yi +l
grants 10 to q) to n,

If) Yi takes 10 to q) from n.

+'+ ++' ""''''-++-0(-*initial.(t g) initial( gt ) z is necessarily a subject since t ggt isn't a bridge

(a) Yi creates (tg to) new n,

(b) Y
i

takes* (g to z) from elements of

span,

(c) y. grants (g to n) to z,,
(d) Y

i
+

l
grants (a to q) to z via elements

of span,

y. takes (a to,
Ie)

If)

z grants (a to q)

q)

to n,

from n.
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Co:polZ.aPy 6.3: For adjacent access sets A(y.) and A(y. 11. a, ,+

rights to q can be transferred from y. 1 to y. with no>+ ,

other initiators unless there are consecutive edges with their--only associated word in {tt, gg}. In this case, one additional

operation initiated by z = A(Yi) n A(Yi+l) is sufficient.

Let can-shaPe (a,p,q,G) hold via the tg-connected path GO' (p =

xO,.,.,x
n

= s) and let A(yl), .•. ,A(y
k

) be a minimal access-set cover

for GO. Let.9. be the number of tg-sinks.

Theorem 6.4: For p to acquire a rights to q, k+.9. initiators

suffice.

a
G >. q.
o

elements

Proof: Clearly, p E ACYl)' s E A(y
k
)· If s = Yk then Yk

If Yk terminally spans to s, then Y
k

takes* (a to q) from s via

of the span. If Y
k

initially spans to s, then s is necessarily a subject

by the conditions of can-share. Rules IIa-b of Table I (with s =

Yk = z) suffice to transfer (n to q) to Y
k

• In all three cases

Yi+l and

a
Yk ------)0 q,

and we have a basis step. Lemma 6.2 can now be inductively applied, and

a
Y

l
)0 q. If Y

l
= P we are done. If Y

l
initially spans to p then Y

l

takes* (g to p) from elements of the span and it grants (n to q) to p.

If Y
l

terminally spans to p then p is necessarily a subject by conditions

on can·share and rules (la-c) with p = z, i=O suffice to transfer (a to q)

to p. (Note, use of Ia implies the addition of another initiator, namely

P, but this is counted in the definition of tg-sink. The case is similar

for use of IIa-b by above.)

7. Conspiracy in generaZ graphs

Although the theorems of the last section give an exact measurement

of the number of initiators required for sharing, they only apply to paths.
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In general, extending these results to graphs cannot be done simply by

looking for paths. For example, if G is the graph of Figure 5 the only

•• t o·

I'
t

'0 '. .0
p s q

Figure 5. A three island protectIon graph.

path from p to s does not qualify as a legal path for canoshare(a,p,q,G)

to hold, even though the predicate is true. working from the development of

section 6 we now present a finer analysis applicable to general graphs.

Recall that if vE A(xl, the access set with focus x, there are three

possible conditions any subset of which v can satisfy: v is the focus of

A(xl (i.e., v = x), x initially spans to v or x te~nally spans to v.

Each of these properties is said to be a reason for v E A(x).

Given a protection graph G with subject vertices xl, .•. ,xn ' we will

define a new graph, the conspiracy graph, H, determined by G•. R has

vertices Y,' ••• 'Y and each y. has associated with it the access-set
n 1

A(x,).
1

There is an undirected edge between Y
i

and Yj provided 6(x.,x.) # ~
1 J

where 6 is called the deletion operation and is defined by:

o(x,x') =. all elements in A(x) n A(x') except those z for which
either (al the only reason for z EA(xl is that x initially
spans to z and the only reason for z E A(x') is that x'
initially spans to z or (b) the only reason z EA(X) is x
terminally spans to z and the only reason z EA(x') is x'
terminally spans to z.

The graph thus constructed is the conspiracy graph for G. See the example

in Figure 6.

Let H be constructed from G as just described. Define the sets
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t t 10
2 t

9

t
9

t 9
6

5 9
3 t II a

8 7
\ q

9 t 5

9 t
9 protection graph G

10
2

II

conspiracy graph 11

Figure 6: A protection graph and its induced conspiracy
graph.



-21-

Y
s

= {y. Ix. = s or
1 1

for some s such that s

x. terminally spans to s},
1

a------+ q. Then we will argue that the nwnber of

vertices on a shortest path from an element

in H is the number of conspirators necessary and sufficient to produce a

witness to aanoshare(a,p,q,G). Let Is.p. I denote the length of a shortest-

path between Yu and Yv.

First we must establish that the conspiracy graph captures the notion

of sharing.

Lemma 7.1: Can·share(a,p,q,G) is
y E y is connected so some

u p

true if and only if some
y E y •

v s

Proof: If the vertex z mentioned in the definition of 0 is restricted

easily proved fromto being an object element of A(x.) n A(x.) the lemma is
1 J

Theorem 4.2 by observing that the islands of G form connected components

of y's in H and the edges between these components correspond to bridges.

(Deletion of object elements is obviously necessary in order to.remove

~"'+* ~*++-+-false bridges of the form t t and t ggt.) Also, note that even with sub-

ject deletions, if Yu and Yv are connected aan·share(a,p,q,G) is true. So

the remaining case is when aanoshare(a,p,q,G) is true but removal (by 0) of

z from A(x.) n A(x.) prevents y and y from being connected. Let z be
1. J U v

associated with y. Note that since z is a focus it has reason to be in
z

A(X
i

) n A(z) and in A(z) n A(X
j
). Thus there are edges in H between Y

i
and yz

and between y and y .• Thus, the absence of an edge between y. and y. cannot
z ) 1. J

prevent Yu and Yv from being connected, since there is a path between Yi and

oYj in any case.

Notice from the proof that the effect of deleting a subject via 0 is to

prevent two foci, y. and y. from being directly connected when their only
, J

connecting spans contain a tg-sink. By deleting such vertices, we force
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y. and y. to be connected by a path of two edges -- a means of easily, ]

counting the tg-sinks as a conspirator.

~eorem 7.2: To produce a witness to can·8hare(~,p,q,G) Is.p. I
conspirators are sufficient.

Proof: A simple induction on the spans corresponding to the edges

of the s.p. using Lemma 6.2 proves the result provided we observe the

following point. Since p,q,s are distinct and the y. on the s.p. are,
distinct, all rules given in Lemma 6.2 can be performed provided the foci

of the access-sets are different from their common element(s). By in-

spection of the rules of Lemma 6.2, whenever a focus and common element

coincide the rule whose application is prevented (by distinctness of

vertices for rule applications, Sec. 2) provides a right that is already

possessed (e.g., rule lIe, y. = z) or it provides a right used in the,
subsequent rule to acquire a right already possessed (e.g., rule IIa and

lIb, Y
i

+
l

= z). In these cases the rule whose application is prevented

is not needed. 0

Theorem 7.3: To produce a witness to can'share(~,p,q,G) Is·pl
conspirators are necessary.

Proof: Let Y = Zl""'z = Y be vertices along a shortest path
u w v

from Yu to Yv' If there exist only tg-connected paths in G from zi to zi+l

(12i <w) then the z. are foci of an access-set cover for the path. By con­,
struction there are no tg-sinks and if y is not associated with p (resp.

u

y is not associated with s) then the subject associated with y (y.)
" u "

initially (terminally) spans to P (5) and so it need not conspire. By

theorem 6.1, w conspirators are necessary.

The remaining case is for an induced path in H that is not a path in

G. Although redundant rule applications may arise, it is clear the-duplicated

vertices along a span are not harmful to the lemma unless they reduce the
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of required conspirators. Suppose that conspirators zl,···,zi_l,zi+l'···'zu

can produce a witness. Then there is are: A(zi_l) n ACz i +l )· But by

choice of the z. vertices on a shortest path there is no edge between
1

Thus, r i z. l' r i z. 1 and r J o(z. l'z, 1)'
1- 1+ F 1- 1+

But this

implies (if r is an object) that there is no bridge between zi_l and zi+l

(contradicting by Lemma 7.1 the assumption that the zl,.··,zi_l,zi+l,···,zn

are sufficient) or it implies (if r is a subject) the presence of a tg-sink.

By Theorem 6.1 r must be counted as a conspirator.

8. Concluding Remarks

o

The development of the conspiracy results provides a reasonably clear

picture of how sharing is accomplished in the Take-Grant Model. In

particular, the notion of access-set describes that portion of a protection

graph under direct "control" of the subject which is its focus. Communication

outside of this region of influence requires the cooperation of other subjects.

This information will doubtless be useful for designers of specific protection

systems as previously explained [4].

Several problems remain open. First, there is the question of algorithmic

complexity of determining the minimum number of conspirators required for a

right to be shared. In Section 7 this is determined by finding a shortest

path in a conspiracy graph. That question is obviously a linear time process,

but the construction of a conspiracy graph (as described) requires n
2

operations for an n subject graph just to fill in the edges. A simpler scheme

that does not depend on the explicit construction of the conspiracy graph

could be envisaged.

Another issue is to determine for a given graph what set of conspirators.

must have participated in the sharing of a right after the fact. The test is

complicated by the fact that certain rights could have been removed in order
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to hide the conspiracy. One might be able to infer from the structure of the

graph that even though a subject has deleted the conspiratorial rights, they

once existed.
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