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Introduction

Suppose that we wish to estimate n, the mean number of jobs

present at a single-server queue during a given observation

period. Let N denote the maximum number of jobs observed in the

system. If we estimate Y(n), the rate of arrivals that find n

jobs already in the system, and S(n), the mean time between

completions when n jobs are in the system, we can estimate p(n),

the proportion of time n jobs are present, by calculating the

normalized solution of the birth-death iteration:

pen) "" p(n-I) yen-I) Sen) n:::::I, ... ,N. ( 1)

N
Then we can calculate n from L np(n). The quantity p(N) denotes

0:::::0

the proportion of time the queue is full.

This analysis can be simplified greatly if we approximate

the true arrival function by a constant (i.e., assume Y(n) = Y,

the overall arrival rate), if we approximate the true service

function by a constant (i.e., assume Sen) = 5, the overall mean

service time), and if peN) is negligible. In this case 'is ::::: U,

the utilization, and

pen) ::::: pen-I) U , n::::: l, ••• ,N. (2 )

Moreover, the estimator for mean queue length now has the

familiar closed form:

n = U / (l-U) ( 3)

The two paragraphs above summarize operational birth-death
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analysis, which is analogous to stochastic M/M/l analysis but

applies to a different set of behavior sequences [BUZE76,

BUZEBO]. It has been an open question whether there is an

operational analog for the Pollaczek-Khintchin formula for the

mean length of an M/G/l queue [e.g., COFF73, KLEI75]. One result

of this paper is just such a formula:

n = U + (4)

where U is the observed utilization, cv2 = a2 / 52 is the squared

coefficient of service times of jobs observed in the queueing

system, and peN) is neglected. This estimate of n is exact for

any flow-balanced behavior sequence satisfying four homogeneity

assumptions to be discussed below.

We conducted an experimental study to test the robustness of

this estimator and compare it with other estimators for n derived

under different operational assumptions. For open queueing

systems, we found that the estimator is generally more accurate

if p(N) is known. We also found that an estimator based on the

mean and variance of interarrival times is consistently more

accurate than estimators based on the mean and variance of

service times. For closed queueing systems, we found that open-

queue estimators generally were not robust except at bottlenecks.
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Notation

Table 1 lists the operational measures of a queue for an

observation period of length T. (See [BUZEBOj.) Two important

identities that follow immediately from these definitions are the

utilization law, U = Xs, and Little's law, n = XR. Two

identities pertaining to arrivers are

PAIn) = pin) Yin) / YO

and

(5 )

Y/YO = l/ (l-pIN») if T(N)<T. ( 6)

We will consider only behavior sequences that are both

single-step and flow balanced. Single step behavior means that

arrivals and completions occur one at a time and no arrival

coincides with a completion. Flow balanced behavior means that

A = C; this is equivalent to nCO) = n(T), to X = YO' and, for

single-step behaviors, to A(n-l) = C(n). For such behavior

sequences PA,n) = pc,n). These restrictions do not constitute

important sources of error.

Since we are interested in relations among mean queue length

. (n), throughput (X), mean service time (5), and the coefficient

of variation of service time (CV), we need operational notation

for these quantities. A service period is an interval during

which a job occupies the server; it is not the same as an

intercompletion interval, in which the server can be idle. The

service periods are indexed i = I, ••• ,C and s1 is the length of
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TABLE 1. Standard operational quantities of a queue.

symbol

N

n ( t)

A (n)

C (n)

T (n)

Definition Description

Maximum observed queue length

Queue length at time t (O~t~T)

Number of arrivals who -find n(t)=n

Number of completers who leave when n(t)=n

Total time during which n(t)=n

-----------------------------------------------------------------
A

B

C

T

w

N-l
~ A(n)

n::::O

N
~ T (n)

n=1

N
:> C(n)

n=1

N
:> T(n)

n=O

N
:> nT (n)

n=1

Total number of arrivals

Total busy time (excludes idle time, T(O»)

Total number of completions

Total observation time

Accumulated waiting time
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TABLE 1 (continued). Standard operational quantities of a queue.

Symbol Definition

n WIT

R W/C

SIn) T(n)/C(n)

5 B/C

U BIT

X CIT

Y (n) A(n) /T(n)

Y AlT0

y AI (T-T(N»

P (n) T(n)/T

P
A

(n) A(n)/A

Pc (n) C (0+1) Ie

N-l
~ nP

A
(0)

0=1

Description

Mean queue length

Mean response time per completed job

Mean time between completions given n(t)=n

Mean service time

utilization

output rate

Arrival rate given nCt)=n
(0 = 0, 1, • '0' N-!)

Overall arrival rate

Restricted arrival rate

Overall queue distribution
(n=O,l, ••• ,N)

Arriver's queue distribution
(n = 0, 1, ••. , N-l)

Completer's queue distribution
(n = 0, 1, •.. , N-ll

Mean queue seen by arrivers

nC Mean queue left behind by completers
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Since B =the i-th period.
C
I s., the mean time between

1=1 1

completions is also the mean service time, s. The second moment

of service time is

2
5

1 C 2
= ;i s.

C 1=1 1
(7 )

and the squared coefficient of variation is

(B)

For convenience we will assume that the observation period

is "aligned with service completions; i.e., there is a completion

just before times 0 and T. This strengthens the flow balance

assumption slightly.

~rrivals can be grouped by service period. We let a
1

denote

the number of arrivals during the i-th service period. We let

the binary variable b
i

be 1 if the i-th service period begins

with an arrival (because the arrival ended an idle period) and 0

otherwise. These quantities are related to the total number of

completions by

c
C = ::i (a i + b i )

i=l
(9 )

from which it follows that

(10)

We let n i denote the state net) just after the i-th service

period; nO denotes the state just after t=O. The average value
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of 0i is the mean queue left behind by completers (and seen by

aerivers) :

nc
1 C

= c :i "I
1=1

(11 )

Note that n. lb. = 0 and that
1- 1

Let K(n,s) denote the number of occurrences of the pattern

(12 )

(n. l's.) = (o,s) and let pen,s) = K(n,sl/C denote the1- 1

distribution of such patterns. Similarly, let K(n) denote the

number of occurrences of n. 1 = 0; because flow is balanced,
1-

K(n) = C(n+l) and Peen) = K(n)/C.

Corresponding to A(n), the number of arrivals that find

net) = 0, we define A(s) to be the number of arrivals that come

during service periods of length exactly s. We also define K(s),

the number of service periods of length exactly 5; pes) = K{s)/C

is the proportion of services of length s. The total time

spanned by service periods of length exactly s is T(s) = SK(S);

the arrival rate measured during such periods is A(s)/T(s); and

the proportion of busy time covered by such periods is T(S)/B.

Let j = l, ..• ,e index the arrivals. Associate with arrival

j the forward residual, r., which either is the time remaining in
J

the service period in which j arrives, or is 0 if arrival j

begins a service period. The mean is

_ 1 C
r=-:Ir.

C j=1 J



- B -

Similarly define the backward residual, r j
l

, which either is the

time since the beginning of the service period in which j

arrives, or is 0 if arrival j begins a service period. The mean

backward residual is r l • If arrival j occurs within service

period i, r
j

l + r
j

= 5
i

; if arrival j begins a service period,

r. '
J

It follows that

c
I (r.·

j=l J
=~sA(S).

s
( 13)

The above notations are summarized in Table 2. Figure 1

illustrates the major quantities for a single-step, flow balanced

behavior sequence.

The Mean Queue Lang th

The mean queue length is defined to be

n =
Area under n (t)

T
for O<t<T

As shown in Figure 2, the area under net) has two parts: a

component depending on queue lengths at the starts of service,

weighted by the lengths of service (shaded areas); and a

component depending on arrivals during service periods, weighted

by forward residuals of service. Since the queue length at the

start of the i-th service is n. l+b., the first component is the
1- 1

sum of products (n. l+b.) s.. Since the j-th arrival is present
1- 1 1
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TABLE 2. Service-period oriented operational quantities.

Symbol Definition Description

s.
1 Length of i-th service period (i=l, .•• ,e)

Number of arrivals during i-th service

Queue length just after i-th service

if ni_l=o

otherwise

Binary indicator of service periods

begun by an arrival

First and second moments of a
i

First and second moments of si

Squared coefficient of variation of si

First and second moments of b.
1

Number of occurrences of pattern
(n. l's.) = (n,s) for i=l, •.• ,C1- 1

Number of occurrences of n
i

_
l

= n

Number of occurrences of s. = s
1

of (n. l'S.)
1- 1

Proportion of occurrences
having value (n,s)

2 -2 -2(s -s >/s

K(n,s)/c

s, s2

CV2

., .2

b, b 2

K (n,s)

pen,s)

K (n)

K (s)

K(n)/c Proportion of occurrences of n. having
value n (completer's distri~ution)

p(s)

A (5)

K(s)/C Proportion of services of length s

Number of arrivals within a service period
of length s

Forward residual of service seen by
j-th arrival

r. '
] Backward residual of service seen by

j-th arrival

r, r' Mean forward and backward residuals



n (t)

4

3

2

a 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 T '" 20

service
periods:

( ](

,. 3 7,

n. (0) 3,

b. a,

a. 3,

]( ](

2

a

a

]( ]( ] c ~ 6

, ~ 3
4 2

CV2 = 11
27

- ~ 1.2 a n C 2

- 1a a a b ~ "6

a a a ~ t

n A(n) T(n) , A(,) K(,) Arri val # , . , ,.
J J

a 1 2 1 a 2 1 a a1 2 5 2 a 1 2 1 22 2 6 3 1 1 3 2 53 1 4 4 1 1 4 3 4
4 a 3 7 3 1 5 4 3

6 2 26 20 5 6

12 16
n ~ LnT(n)/T ~ 41/20

L(,·'+,.) L,A(,) ~ 28
. J J ,J

FIGURE 1. A behavior sequence and its measures.
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for time r. before the next service completion, the second
)

component is the sum of terms r .• Therefore,
)

1
C C

n = ( ~ (n. l+b.)s. + ~ r. (14)
T i=l 1- 1 1 j=l )

It is of course possible to take measurements of a queueing

system (only at arrival and completion times) and determine n
exactly. It is often desirable, however, to estimate n from the

quantities S, CV2 , and U, which can be estimated easily without

measuring the queueing system. Further assumptions about

behavior sequences are therefore needed.

Homogeneity Assumptions

The definitions impose three constraints on behavior

sequences: one-step transitions, flow balance, and alignment of

observation period with service completions. None of these

assumptions is a significant source of error for behavior

sequences of most queueing systems. This section introduces four

new assumptions that are sufficient to permit expressing n in

2terms of U, cv , N, and p(N). A homogeneity assumption replaces

a function by a constant whose value is the mean of the function

over its domain.

An important principle underlying these homogeneity

assumptions is that the measurements required to determine if
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they are true need be taken only at arrival and departure times.

They do not depend on any assumptions of finer granularity (e.g.,

Poisson arrivals).

The first assumption, Homogeneity £! Queueing and Service

(HQS), permits expressing the first component of mean queue

length in Equation 14 in terms of the means nc ' a, and s. The

other three assumptions permit expressing the second component of

Equation 14 in terms of these means and CV 2 without knowing the

details of arrivals. Homogeneity of Arrivals (HA) and

Homogeneity of Arrivals and Service. (HAS) ignore the possible

dependence of arrival rate on queue and service period lengths,

respectively. Homogeneity of Residuals (HR) states that there is

no overall bias toward forward or backward residuals -- i.e., no

overall tendency for arrivals to be bunched at the beginnings or

ends of service periods.

Assumption HQS: Homogenei ty .£! Queueing and Service. The

queue length at the start of a service period, n. ,+b., is
1- 1

independent of the length of that service period, si'

Let Pe(nls) denote the proportion of completions leaving behind

n. 1 = n given that s. = s. The definitions imply that
1- 1

Pe(nls) = K(n,s)/K(s). Independence means that PC(n) = Pe(nls)

-- i.e., that K(n,s) = K{n)K(s)/C. Then,

1 C
C ~

1=1
1= C ~

n,S
n s K(n,s)

= -l 1 n s K(n) K(S)2C n,s
[by HQS]
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= :>:
K (n)

:>: s
K (s)

n--
C Cn s

-
= n

C
s

A similar argument shows that

1 C
- ~ b.g. = b 5
C 1=1 1 1

Hence HQS implies that

(l5)

Assumption HA: Homogeneity of Arrivals. The conditional

arrival rate yen) ::: A(n)/T(n) is a constant independent of 0,

namely Yen) = Y = Cj(T-T(N» for n = O,l, ••• ,N-l.

This is the homogeneous arrival assumption used by Buzen and

Denning [BUZgeD]. The given value of constant Y follows from the

N-1
operational law 2 Y(n)p(n) = YO' This assumption implies two

n=O
useful relations among n

C
' fl, a, p(O), and p(N). By flow

balance, C(n+l) = A(n), whence n
e

= NIl n A~n) Assumption HA
0=1

implies A(n)/C = T(n)/(T-T(N» ::: p(n)/(!-p(N), where peN) is the

proportion of time net) = N; thus

so that

N-1
:>: n

0:::1 1

pin)
pIN)

N
~ n

10=1

pin)
pIN)

N piN)
l-p(N)
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(l~ )

IE p(N) = 0 then ne = n; Equation 16 is analogous to the

stochastic theorem that arrivers, completers, and outside

observers see the same mean queue in an M/G/l system [BUZE80,

COOP72, KLEI75].

Now, the number of occurrences of b
i

= 1 is the number of

arrivals which found the queue empty; therefore, PACO) = b.
Equation 10 implies that a = 1-0. Applying the operational laws

given by Equations 5 and 6,

a • 1 - b

• 1 - PAlO)

• 1 - P (0)
Y (0)

YO

1 P (0) Y
[by HAl• -

YO

so that

a • 1 - prO)
(17)i-p(N)

If p(N) = a then a = U; Equation 17 is analogous to the

stochastic theorem that the mean number of arrivals in service

periods of an M/G/l queue is the same as the utilization (COFF73,

KLEI75] •

Assumption HAS: Homogeneity of Arrivals and Service. The

arrival rate in service periods of size s, A(s)/T(s), is a

constant independent of s, namely a / s.
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This assumption extends the concept of homogeneous arrivals to

service periods. The constant a / s follows from the operational

law,

:i A{s) T(s) = a / 5
T(s) -a-

s

which states that the arrival rate for service periods of size 5,

averaged over the proportion of busy time occupied by such

services, is the ratio a I s.

Assumption HR: Homogeneity of Residuals. The total of

e
forward residuals ( ~ r.) equals the total of backward

j=l )
e

residuals ( ::i r. I) •
j=l )

This assumption assumes that arrivals have no tendency to bunch

either toward the start or finish of service periods. It implies

in particular that r' = r.

Assumptions HAS and HR imply a useful relation among r, cv2 •

5, and a. Applying assumption HR to Equation 13 gives

imply that T(s)/e = sK(s)/e = spes) Therefore

1 5
A( 5)

= 1 52 P (5) a I s
5

e 5

= 52 a I 5
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By definition, cv2 = 52 /52 - 1. Therefore,

r = a 5
CV 2+1

2 (18)

This is analogous to the expression for mean forward recurrence

time in a stochastic renewal process [COFF?3, KLEI75].

The four assumptions (HOS, HA, HAS, and HR) are independent

of each other. It is possible to contrive behavior sequences

having any three of these properties, but not the fourth. Figure

3, which will be discussed shortly, is an example of a behavior

sequence satisfying all the assumptions of this paper.

Equations 15-18, the consequences of the four homogeneity

assumptions, will be used next to derive an expression for n.

-The Formula for n

Noting that throughput X = Yo = CiT, Equation 14 can be

rewritten in the form

_ 1 C
n = X C ~

i=1
(n. l+b.)s. + X r

1- 1 1

Applying Equations 15 and 18, this reduces to

n = X (nc + b) '5 + X a '5

Recalling that U = Xs, this reduces to
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n = U (ric + b + a

On substituting the expressions for n
c

(Equation 16) and a

(Equation 17), and solving for n,

n = U 1-U-Np (N)
1-U p (N)

U(U peN»~ (CV
2
+1)

+ 2(1-U-p(N» (19)

This estimator of n is exact if the behavior sequence is flow

balanced, one-step, service aligned, and satisfies the four

homogeneity assumptions.

If the proportion of time the queue attains its maximum

observed value is negligible, we can assume p(N) = 0 and simplify

the estimator. If peN) = 0,

n = U + (20 )

This equation is an operational counterpart of the Pollaczek-

Khintchin (PK) formula (COFF73, KLEI75].

If cv2
= 1, Equation 19 reduces to

n = U
1-U p (N) (21 )

which is identical to the formula for a behavior sequence with

homogeneous arrivals (HA) and homogeneous service times (RST __

Le., Sen) = s) [BUZEBO]. However, any HA!HST behavior sequence

will satisfy this formula even if cv2 ~ 1. It is unknown whether

a behavior sequence having cv2 = 1 and satisfying all the

assumptions of this paper must also have HST.

Figure 3 shows a behavior sequence satisfying all the



- 17 -

assumptions of this pape~. All the service times are the same,

so that cv2
= 0 and assumption HAS is automa-rtcally satisfied.

Since A(nl/T(n) = 1/5 for n = O, ••. ,N-I, assumption HA is

satisfied. The sums of .forward and backward residuals are 6

each, so HR is satisfied.
4

The sum ~

1=1
(n. l+b.)s. is the same as

1- 1 1

(nc+b)s, so HQS is satisfied. In this case Equation 19 for n

evaluates to the true value of the mean queue length (n = 34/21).

The behavior sequence of Figure 3 can be extended by

repeating the pattern indefinitely. The resulting behavior

sequence, being periodic, has no steady-state limit; and, being

deterministic, it will fail any statistical goodness-aE-fit test

for exponential interarrival times at any given level of

confidence. In other words, the extended replication of Figure 3

is a non-steady-state, non-Poisson-arrival behavior sequence for

which the operational estimator of h is exact. There would be no

reason to believe that the stochastic PK formula would apply to

this case.

The extended replication of Figure 3 is contrived to make

the point that the operational assumptions for the n formula are

weaker that their stochastic counterparts. It is easy to imagine

a deterministic system with the prescribed behavior; given the

knowledge that the system is deterministic, no reasonable

observer could explain the extended replication by postulating an

M/G/l stochastic process. Nevertheless, the formulae derived in,
stochastic queueing theory can be applied in this case because

they are valid under operational assumptions that are satisfied.



n (t)

t

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 T = 21

service
( ]( ]( ]( ]pe ri ods C = 4

, = 4,. 4 4 4 4,
CV2

0

n. 3 2 0 nc = 1.,
2

b. 0 0 0 1,
b = "

a. 3 0 0 0 3, a = lj"

, A(,) T (,) n A(n) T (n) Arrival # , . , ,.
J I

4 3 16 0 1 5 1 0 0
1 1 5 2 1 3
2 1 5 3 2 2

HAS satisfied 3 1 5 4 3 1
4 0 1

HR satisfied
HA satisfied

1 4 4+12+8+4 28

}lj"~(n. ,+b.),. = q =" = 7i=l I - I I

HQS satisfied

(nC+b)s = (1.+.1.)"4-l4-72 4 - 4 -

FIGURE 3. Behavior sequence satisfying the four assumptions.
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We note that sufficiently long behavior sequences from a

steady-state poisson-arrival queue will satisfy the assumptions

of this paper. In such cases both the operational and stochastic

formulae for n will give the same (correct) answer for mean queue

length.

We note also that the foregoing analysis works for multi-

server queues if the nservice period" is interpreted as the busy

period preceding a departure. In this case,s is the mean time

between departures, not the mean job service time, and may be

difficult to estimate.

Granularity of Analysis

-The operational estimator for n depends altogether on seven

assumptions: single-step, flow balance, service alignment, and

the four homogeneity assumptions (HQS, HA, HAS, and HR). In

contrast, the stochastic estimator for n, the PK formula for an

MIGll queue, is conceptually simpler because it depends on three

assumptions: steady-state, Poisson arrivals, and independence of

number of arrivals and queue length {SAAT61].

There are two essential differences between the operational

and stochastic approaches. The first difference is that

operational formulae relate parameters of individual behavior

sequences whereas stochastic formulae relate parameters of
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ensembles of behavior sequences. Operational analysis shows that

many properties associated with ensembles are in fact properties

of behavior sequences separately.

The second difference is in the granularity of time. The

four operational homogeneity assumptions are constraints on

aggregate measures conditioned on either queue length or service

period: measurements to verify (or refute) them can be

completely specified as actions to be taken at arrival or

completion events. These assumptions do not constrain the

behavior of the system between arrival or completion events. In

contrast, the postulates of the poisson process constrain the

behavior of the system in every infinitesimal interval of time.

In fact, the Poisson postulates at the infinitesimal level

imply the operational homogeneity assumptions at the

arrival/completion level (for sufficiently long behavior

sequences). The converse is not true.

Robustness

The formula for n may perform poorly when applied to a

server embedded in a closed system. The reason is that the

feedback inherent in a closed system can destroy one or more of

the homogeneity assumptions. The formula for n works best in

open systems.
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Consider the case of a high-CV server in a closed network

where other servers have low ev. When a very long job occupies

the given server, the queue will build up to its maximum of N;

after the long job leaves, the queue will empty as the backlog of

short jobs completes. This behavior will tend to associate the

large values of 0i_l with small 5 i , and the small values of 0i_l

with the large s. -- violating HQS. Almost all arrivals will be
1

observed while the long job holds the server violating HAS.

If the delay through the rest of the network is short, arrivals

will tend to be bunched at the beginning of the long job's

service period -- violating HR.

For these reasons, we looked for alternate estimators of n

that depend on less restrictive homogeneity assumptions. We also

undertook an experimental study of the robustness of various

estimators for n.

Alternate Formulae for Mean Queue Length

Altecnate decivations foe mean queue length focmulae ace

based on the cecucsion n i = n i _
1

+ a
i

+ b
i

- 1 (Equation 12);

they ace analogous to Saaty's acgument [SAAT~ll. They lead to

mean queue length estimatocs relying on fewec homogeneity

assumptions than the pcevious estimatoc.

Squacing both sides of Equation 12 and then applying the
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1- 1

o and
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= b i , we have

= (n. 1
1-

2= n
i

_
1

b. _ 1)2
1

b
i

+ 1 + 2a i (n i _
1

+b i ) - 2n i _ l - 2a i .

Summing both sides over i = l, ... ,e, dividing by C, invoking flow

balance, and applying a = 1-0 (Equation 10) gives

- a + 1.c
c
~ a. (n. l+b.)

i=l 1 1- 1
{221

Equation 22 is exact for one-step, service aligned, flow balanced

behavior sequences. To convert this to a more convenient

estimator, we introduce a new assumption:

Assumption HAQ: Homogeneity ~ Arrivals and Queueing. The

number of arrivals during a service period, a., is independent
1

of the queue length at the beginning of that service period,

n. l+b ..
1- 1

An argument analogous to that used at Equation 15 shows that HAQ

implies

Applying this result in Equation 22 and solving for n C'

nc = a +
2{1-a)

( 23)

This estimator of n
C

' which depends on the first two moments of
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ai' requires just one homogeneity assumption. (Our previous

estimator for "c depends on four homogeneity assumptions.)

Under the assumptions of homogeneous arrivals (HA),

Equations 16 and 23 yield a solution for n. If p(N) = 0, then

n = "c (Equation 16) and a = U (Equation 17); Equation 23

becomes

.2 U
n = U + ~..-=,.¥

2 (1 U) (24)

This agrees with the previous estimate only if

a
2

= u
2

(CV
2

+1) + U. We know of no assumptions that force this

to be true. We can, however, force this to be approximately true

under this assumption:

Assumption LA: Linear Arrivals. The number of arrivals

within a service period is directly proportional to that

period's length; that is, there is a constant H such that

(Obviously, H = a / s.)

2 2 2' -2 2 .It is easy to see that a = H s = a (CV +1) accordIng to

assumption L~. In this case Equation 23 reduces to

nc (25)

The homogeneous arrivals (HA) assumption, with p{N) = 0, reduces

Equation 25 to

n = U +
2(1-U)

U
(2 fi)
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which is similar to Equation 20 but relies on three homogeneity

assumptions (HAQ, LA, and HA).

-Another estimator for n arises from a modified linear

arrivals assumption:

Assumption MLA: Modified Linear Arrivals. The number of

arrivals associated with a service period is directly

prop~rtional to that period's length; that is, there is a

constant H' such that ai+b
i

=

H'=1/5.)

H's.
1

for all i. (Obviously,

If we write a i = sil s - b
i

, square both sides, and take the

mean, we obtain

a2 = ev2 + 1 _ 2sb + 0
-s

Assumption HQS implies sb = 5 b, whereupon this expression

simplifies to

With this, Equation 23 simplifies to

ne = a +
2(1-a)

( 27)

The homogeneous arrivals assumption (HA), with peN) = 0,

simplifies this to

cv2
n=U+~~~

2(1-U)
(28)
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Table 3 summarizes the estimators discussed above. All these

formulae rest on the basic assumptions that behavior sequences

are one-step, service aligned, and flow balanced.

Empirical Results

We constructed a program to simulate a single queue in

isolation. Inputs to the simulator were the number of service

periods to be generated, the desired mean and coefficient of

variation of the interarrival times, and the desired mean and

coefficient of variation of service times. Interarrival times

and service period lengths were drawn from an Erlang,

exponential, or hyperexponential distribution, depending on the

specified coefficient of variation. The output of the simulator

was a one-step, service aligned, and flow balanced behavior

sequence.

Another program measured each behavior sequence. It

calculated the actual value of n
C

as well as the parameters

required to estimate this quantity using five of the formulas

listed in Table 3: the Pollaczek-Khintchin formula (PK), its

operational counterpart (OP-PR), and the three alternate

estimators (ALT 1, ALT 2, and ALT 3). The relative errors

between the actual value of nc and each estimate were calculated.

Two sets of experiments were performed using these tools.

Table 4 summarizes the results of the first experimental set, in



Assumptions I Estimator I Estimator assuming HA
and p(N)=O

2 _ _ u2 (CV2+1)
HQS, HA, HAS, HR I n = u 1-U-Np(N) + U(U-p(N» (CV +1) [OP-PK) [PKI1 U-p(N) 2(1-U-p(N» n-U+ 2(1-U)

a 2 _ a 2
HAQ I [ALT 11

- a - U [ALT 1 1 Jn = a + n=u+ 2 (lU)
C 2(1-a)

HAQ, LA I
a2 (CV 2+1l - a [ALT 21

_ u 2 (CV 2+1) - U [ALT 2'1n = a + n=U+ 2{l-U)
C 2(1-a)

2 _ cv 2
HAQ, MLA, HQS I n = a + CV [ALT 31 [ALT 3 1

]

C 2(1-a)
n = U + 2 (l U)

TABLE 3: operationally derived mean queue length estimators.
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which the simulator generated behavior sequences corresponding to

an M/G/l queue. Behavior sQquences comprising 50, 500, and 2000

service periods were studied. For each number of service

periods, SO behavior sequences were generated, approximately

one-third of which had service times drawn from Erlang, another

third exponential, and a final third hyperexponential

distributions. As the length of a behavior sequence increases,

the observed mean queue length will converge to that predicted by

the PK formula. Each row of Table 4 shows the results of a group

of 50 behavior sequences: the frequency with which the estimator

appeared at various ranks, its mean rank, and its mean relative

error.

Table 4 shows that none of the estimators is good for short

behavior sequences. Behavior sequences of length 1000 were

needed to get the errors of the best estimators below 20%; at

length 2000, the best errors were still near 18%.

The operational P-K formula gave smaller relative errors

than the stochastic analog for 36 of the SO sequences of length

SO, for 35 of the SO sequences of length 500, and for 32 of the

50 sequences of length 2000. The rate of convergence of the OP­

PK estimator to the PK estimator is slow. It depends on the rate

at which p{N) approaches 0 (where N increases with sequence

length) •

The ALT 1 estimator, which relies only on one homogeneity

assumption (HAQ), performed as well as or better than the OP-PK

estimator. However, its ranking was more variable, a sign of
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TABLE 4. Experiment set #1: M/G/l queue in isolation.

Behavior sequence lengths: 50, 500, and 2000 customers

Interarrival times: Exponential with mean of 1.0

Service times: Equal number of Erlang (0.2 < CV < 0.9),
exponential (CV = 1.0), and hyperexponential
(2.0 < CV < 5.0), all with mean of 0.8

Behavior Estimator Frequency with which Mean Mean
sequence of nc the estimator ranked Rank Relative

Length 1 2 3 4 5 Error

50 P-K 3 6 9 16 u; :L72 7..492
OP P-K 7 10 11 15 7 3.10 2.292
ALT 1 16 8 12 4 10 2.68 1. 261
ALT 2 17 11 5 5 12 2.68 1.013
ALT 3 7 15 13 10 5 2.82 1.645

500 P-K 5 12 15 14 4 3.00 0.328
OP P-K 4 22 21 3 0 2.4fi 0.296
ALT 1 16 13 8 9 4 2.44 0.288
ALT 2 13 1 4 1 31 3.72 0.489
ALT 3 12 2 2 23 11 3.38 0.575

2000 P-K 7 21 17 5 0 2.40 0.176
OP P-K 14 19 14 3 0 2.12 0.175
ALT 1 14 9 19 8 0 2.42 0.176
ALT 2 ~ 1 0 7 36 4.32 0.505
ALT 3 9 0 0 27 14 3.74 0.414
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less robustness. All three alternate estimators performed better

than the PK estimators on short sequences, probably because they

require fewer assumptions.

Table 5 summarizes the results of the second experimental

set, in which the simulator generated behavior sequences

corresponding to a G/M/I queue. Each behavior sequence comprised

1000 service periods. Interarrival times had coefficients of

variation ranging from 0.2 (Erlang) to 6.0 (hyperexponential)

When the coefficient of variation of the interarrival times

differed signiEicantly from 1.0, both PK and OP P-K performed

poorly.

Formula ALT 3 gave consistently the best performance over

all types of arrivals. However, when the coefficient of

variation of the service times differs significantly from 1.0 (as

in Table 4), ALT 3 may not perform well either.

The overall conclusions from these two sets of experiment

are that the OP-PK formula is more accurate than the PK formula

(because it takes p(N) into account), that neither of the PK

formulas is robust if the arrival coefficient of variation

differs much from 1.0, and that ALT 3 works well for any arrival

coefficient of variation as long as the service time coefficient

of variation is not too different from 1.0. If both arrival and

service time coefficients of variation differ significantly from

1.0, none of the formulas works well.

Because the most common cases in which both arrival and
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TABLE 5. Experiment set #2: G/M/l in isolation.

Behavior sequence length: 1000 customers

Interarrival times: Erlang, exponential, and hyperexponential
with mean of 1.0

Service times: Exponential with mean of 0.8

Inter- Estima tor Frequency with which Mean Mean
Arrival of n

C
the estimator ranked Rank Relative

CV 1 2 3 4 5 Error

0.2-0.8 P-K 2 2 2 7 37 4.50 0.808
OP P-K 2 5 5 36 2 3.62 0.790
ALT 1 18 25 3 4 0 1.86 0.180
ALT 2 0 1 37 1 11 3.44 0.499
ALT 3 28 17 3 2 0 1. 58 0.11)4

1.0 P-K 16 7 I' 7 6 2.60 0.165
OP P-K 4 26 17 3 0 2.38 0.160
ACT 1 6 11 18 13 2 2.88 0.176
ALT 2 0 3 1 4 42 4.70 0.443
ACT 3 24 3 0 23 0 2.44 0.161

2.0-6.0 P-K 1 0 31 18 0 3.32 0.737
OP P-K 0 1 0 31 18 4.32 0.767
ALT 1 6 4 8 0 32 3.96 1. 072
ALT 2 6 33 11 0 0 2.10 0.329
ALT 3 37 12 0 1 0 1. 30 0.262
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service time coefficients of variation differ from 1.0 occur in

closed queueing networks, we conducted a third study of our

estimators. For this purpose we used Balbo's data [BALB791,

which included exact solutions for 24 three-station closed

networks with different combinations of service time coefficients

of variation at the stations. -This data included values for n

(not nc ) and contained nothing about a 2 hence, among the

alternate forms, we could compare only ALT 2' and ALT 3' against

exact values.

Table 6 summarizes the results. Balbo's 24 networks contain

a total of 72 service stations. The number of stations having

each of the five values of service time coefficient of variation

used in the experiment is shown in Table 6. The mean relative

error for each estimator is tabulated according to the service

time coefficient of variation of the station at which it is

measured. It is clear that only the QP-PK formula gives

tolerable approximation, and even then only for service stations

whose service time coefficient of variation is less than 2.0.

Table 7 compares the OP-PK estimates with the results of two

iterative approximations for closed networks studied by Balbo:

Marie's method [MARI79] and the Modified Extended Product Form

(MEPF) method [SHUM77]. Both iterative methods produced

significantly smaller errors than the open-queue formula OP-PK.



- 30 -

TABLE Fl. Experiment set #3: 3-station closed networks [BALB79].

Topologies: 15 central server and 9 fully connected networks

Number of customers: 6

Input parameters: Service time CV, U, N, and p(N)

CV of service time: 0.6, 1.0, 2.0, 5.0, or 10.0

Service Number Relative error in estimate of n
Time of

cv Stations P-K OP P-K ALT 2' ALT 3 '

0.6 8 7.491 0.278 2.270 2.068
1.0 40 2.483 0.205 1.447 1.781
2.0 10 2.323 0.362 1. 795 4.648
5.0 4 8.403 3.183 7.916 17.984

10.0 10 33.902 10.453 33.423 80.226

ALL 72 7.710 1.824 6.388 14.006

TABLE 7. Comparison of OP-PK with closed network estimators.

Relative error in estimate of nService
Time

cv

0.6
1.0
2.0
5.0

10.0

OP-PK

0.278
0.205
0.362
3.183

10.453

MEPF Approx

0.046
0.027
0.095
0.142
0.078

Marie's Approx

0.039
0.030
0.069
0.028
o .Oi1
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Conclusion

We have derived an operational counterpart of the

traditional Pollaczek-Khintchin (PK) formula for the mean queue

length at an MIGII queue. Our formula (OP-PK) is exact for

flow-balanced behavior sequences that satisfy four homogeneity

assumt>tions. It takes into account P(N), the proportion of time

the queue is at its maximum observed length. If peN) can be

neglected (as it may for a very long behavior sequence), our

formula has the same form as the stochastic Pollaczek-Khintchin

formula for an MIGII queue (although the symbols have different

interpretations). Experimental studies reveal that the

operational formula tends to be more accurate than the stochastic

formula. The operational formula extends to multiserver queues

if the statistics 5 and CV are measured for the busy period

preceding each completion.

The operational formulas relate parameters measurable in any

given behavior sequence; their homogeneity assumptions constrain

the behavior at the same granularity of time as measurements of

parameters are taken. In contrast, the stochastic formulas

relate parameters of ensembles of behavior sequences; their

Markovian assumptions constrain the behavior in every

infinitesimal interval of time.

~hree alternate estimators for mean queue length were

derived. Each is based on different homogeneity assumptions.

One of the alternates, which is based on the mean interarrival

time and the coefficient of variation of service times, was found
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experimentally to be more robust than any of the others over a

wide range of arrival coefficients of variation as long as the

service coefficient of variation was not too much different from

1.0. The experimental study showed that none of the formulas

worked well for very short behavior sequences typically 1000

service periods needed to be observed to get the estimation

errors below 20%. We are not aware of stochastic counterparts of

these alternate formulas.

When applied to data for queues in closed networks, all the

estimators produced large errors whereas iterative algorithms

intended for closed networks were considerably more accurate.

The operational PK formula performed best. Even in its best

case, however, its error was larger than 20% while the closed­

network approximations yielded errors less than 3%. These

experiments confirm that the assumptions on which open queue

analysis depend may be seriously violated in closed networks.
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