
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1980

A Note on the Semantics of Looping Programs in Propositional A Note on the Semantics of Looping Programs in Propositional

Dynamic Logic Dynamic Logic

Francine Berman

Report Number:
80-346

Berman, Francine, "A Note on the Semantics of Looping Programs in Propositional Dynamic Logic" (1980).
Department of Computer Science Technical Reports. Paper 276.
https://docs.lib.purdue.edu/cstech/276

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

-,

A Note on the Semantics of Looping Programs

in Propositional UYnamic Logic

By

Francine Berrmn

Purdue University

CSD-TR 346

A Note on the Semantics of Looping Programs

in Propositional.nynamic,Logic

by

Francine Berman

Purdue University

The research reported here was supported in part by NSF
Grant MCS77-02474. Most of the results in this paper
are from the dissertation of F. Berman written at the
University of Washington under the direction of R. W.
Ritchie. The model in Figure 4 was included in the pa­
per "A Completeness Technique for D-axiomatizable Se­
mantics" presented at the 11th Annual ACM Symposium on
the Theory of Computing in May, 1979.

July 14, 1980

- 2 -

Abstract

We discuss the representation of

Propositional Dynamic Logic (POL).

looping programs in

We show that PDL is not

expressive enough to distinguish between models in which

loops are interpreted as the set of all finite sequences of

iterations and models in which loops are interpreted as a

set of computations which preserve loop invariants. We note

that for distinguishable models of finite domain, both

interpretations of loops coincide.

Introduction

Propositional Dynamic Logic (PDL) is a formal language

for reasoning about programs. As with flowchart schemes,

programs in PDL are represented by regular expressions with

tests. Such programs, when combined with a simple assertion

language can be used to describe such properties as termina­

tion, correctness, loop invariance and failure conditions.

In this paper, we describe two sets of models which

interpret looping programs in PDL: the class of Standard

models and the class of Loop Invariant models. The class of

Standard models interprets the looping program a* as the set

of all finite iterations of program a. The class of Loop

Invariant models interprets a* as a set of computations

which preserve the invariant assertions of program a. In

Section 1, we define these classes of models and review pre-

semantic constraints, we

vious results. Although

- 3 -

both classes satisfy different

note that PDL is too weak to dis-

tinguish between the two differing interpretations of itera­

tion. In Section 2 we note that the class of Standard

models is contained within the class of Loop Invariant

models and show that this containment is proper. In addi­

tion, we note that distinguishable Loop Invariant models of

finite domain are also Standard models.

Section 1: Semantics

Propositional Dynamic Logic was introduced by M.

Fischer and R. Ladner in (F&L l. Programs are represented

in the language by regular expressions with tests and formu­

lae are represented by boolean combinations of propositional

expressions and formulae with modalities. For an introduc­

tion to the syntax of PDL, see [Bel], [F&L] or [Hal.

definition: A model of POL is a triple (W, IT, p) where

W is a set of states,

IT is a formula valuation function which assigns to

each basic formula a set of states (at which that

formula is true),

- 4 -

P is a program valuation function which assigns to

each program b a set of pairs (w,v) of states

(where w corresponds to the initial state and v

corresponds to a final state in a computation of

prog ram b).

We extend IT to evaluate all formulae as follows:

ll(p v q) = ll(p) U ll(q)

ll(-p) = w - ll(p)

ll«a>p) = [w13 v((w,v)Ep(a) A vEll(p)) J.

Note that a model preserves the intended interpretation

of PDL formulae through restrictions on the interpretation

of the boolean connectives - (not) and v (or) and on the

modal operator <>. However, a model may arbitrarily assign

an interpretation to POL programs. In particular, component

subprograms may be interpreted with no relation to the

interpretation of their larger program.

definition: Let M = (W, IT, p) be a model. We say that

states wand Wi in Ware indistinguishable in M if for all

PDL formulae p w is in II(p) iff Wi is in II(p). When the

model referred to is clear, we say that wand Wi are indis­

tinguishable. A model in which no two states are indistin­

guishable is called distinguishable.

- 4 -

P is a program valuation function which assigns to

each program b a set of pairs (w,v) of states

(where w corresponds to the initial state and v

corresponds to a final state in a computation of

prog ram b).

We extend IT to evaluate all formulae as follows:

IT(p v q) = ITCp) u IT(q)

ITC-p) = w - ITCp)

ITC<a>p) = (wi:! v(Cw,v)Ep(a) 1\ vEII(p)) I.

Note that a model preserves the intended interpretation

of POL formulae through restrictions on the interpretation

of the boolean connectives - (not) and v (or) and on the

modal operator <>. However, a model may arbitrarily assign

an interpretation to PDL programs. In particular, component

subprograms may be interpreted with no relation to the

interpretation of their larger program.

definition: Let M = (W, IT, p) be a model. We say that

states wand Wi in Ware indistinguishable in M if for all

POL formulae p w is in II(p) iff Wi is in II(p) ~ When the

model referred to is clear, we say that wand Wi are indis­

tinguishable~ A model in which no two states are indistin­

guishable is called distinguishable.

- 5 -

We use the notation M,wl=p to denote the statement " W

is in II(p) for M = (W, II, p)". If M,WFP for all w in W, we

say M Fp.

We now define two classes of models which differ in

their interpretation of the iteration operator *

defintion: A Standard model is a model in which the program

valuation function is constrained as follows:

p(aUb) = pta) U p (b)

P (a; b) = p(a)op(b)

p(p?) = {(w,w) I w>IHp) }

p(a') = U plan) (where
0

is (pv-p)?) •a
l'\~O

Standard models were first introduced by M. Fischer and R.

Ladner in [F&L]. Note that the program a* is interpreted

as the reflexive and transitive closure of the interpreta-

tion of program a, i.e. the set of finite sequences of

iterations of a. Note also that the interpretation of a

program c in a Standard model corresponds to the language

defined by c as a regular expression where tests p? are

interpreted as single symbols.

definition: A Loop Invariant (~) model is a model in which

the program valuation function is constrained as follows:

- 6 -

plaUb) = pea) U plb)

pla,b) = pla)op(b)

pIp?) = (w,w) I wH!lp)}

p(a
D
),: pla*)

pla)c pla*)

p(a*).pla*)s p(a*)

III<a*>p 7(P v <a*> (-p 1\ <a>p))) = w.

Loop Invariant models were introduced in [Par] (as Nonstan-

dard models) and developed in [Be2]. Note that the

interpretation of the program a* may properly contain the

set of interpretations of all finite sequences of iterations

of program a.

What do the other state-pairs in this set represent?

The requirement that the induction schema I

«a*>p (p v <a*> (-p <a>p») is valid forces all state-

pairs to preserve the invariant assertions of program a.

The extra state-pairs correspond to infinite halting compu-

tations. In addition, the induction schema constrains these

computations to have tails composed of finite sequences of

iterations. 0...*

Figure 1

The propositional simplicity which permitted a

- 7 -

straightforward decision procedure for satisfiability in PDL

([F&L]) renders the language too weak to express the

difference between the infinite halting computation of Fig­

ure 1 and the set of finite halting iterations. Conse­

quently, the theories of the class of Loop Invariant models

and the class of Standard models are precisely the same set

of formulae {(Par], [Be2]). Not surprisingly, in distin­

guishable models of finite domain, the Loop Invariant

interpretation given in Figure 1 reduces to the Standard

interpretation in Figure 2.

0.:"

Figure 2

Section 2: Not all Loop Invariant models are Standard

Since any finite sequence of iterations of a program b

preserves the invariants of b, one would expect the class of

Standard models to be contained in the class of Loop Invari­

ant models. This containment is in fact proper, i.e. there

are Loop Invariant models which are not Standard. This is

trivial to see if we consider models with indistinguishable

states. In particular, the model described by Figure 3 is a

Loop Invariant model but not a Standard model if wand w'

are indistinguishable.

- 8 -

Figure 3

If we consider distinguishable models, it becomes non-

trivial to find an LI model which is not Standard. In

Theorem 2, we show that for distinguishable models of finite

domain, every Loop Invariant model is a Standard model,

hence we are forced to seek our counterexample among LI

models of infinite domain. Such a counterexample is given

in Figure 4. The description of the model follows.

- 9 -

a. 0..'*
)

•
•..•

•
•

•
••

•••

a. o.."1t
)

Figure 4

- 10 -

We define the model M given by Figure 4.

be the set of finite subsets of positive integers according

to some fixed enumeration. Let {Pi}i>O be the set of basic

assertions of PDL and let a be a basic program. Let M = (W,

II, p) wher-e

w = {xili>O u {YiJi>O

xi is in II(Pj) iff j is in Qi

Yi is in II (Pj) iff j is not in Qi

and

pre) = , for c a basic program I a

Extend II, p according to the definition given in Section 1

and let

p (e*) for e I- a

p(a*) = wxw.

Note that the model is basically two Standard models (the x

side and the y side of the figure) strung together by a*

edges. To show that the induction schema holds (and conse-

quently that the model is Loop Invariant), we will show in

the proof of Theorem 1 that no PDL formula can distinguish

the x side of the figure from the y side of the figure.

Note that the x side and the y side can be distinguished by

- 11 -

,
modal formulae in L~,w'

<a> (PI" P2 " ... A Pn " ...) .

i . e • each)'i. but no "j satisfies

Theorem 1

M is a distinguishable Loop Invariant model which is not

Standard.

Proof

By construction, M is not a Standard model. To see

need only notice that for all i and j, (x.,y.) is
1 J

M is distinguish-

each other state on at

It is also clear that

wethis,

in p(a*) - U p(an).
. n,:o

able since each state differs from

least one basic assertion. To show that M is a Loop Invari-

ant model, we must show that for all programs c and d and

for all formulae P,

p (eUd) ~ pee) U p (d)

p(e,d) ~ p (e) p (d)

pcP?) ~ { (w, w)I w in II(p)}

p(eO)~ p(e*)

p(e)sp(e*)

p(e*)op(e*) S p(e*)

IH<e*>p (p v <e*>(-p~<e>p») = II(I) ~ w.

It is straightforward from the definition to show that all

semantic constraints except the last hold. Hence to show

that M is Loop Invariant, it is enough to show that the

- 12 -

induction schema I is valid in Me Note that the only non-

trivial instance of I is when c is the basic program a.

(Otherwise, by definition p(c*) = U peen»~. We show that
O1?'O

for any formula p, MF=-<a*>p~(p v <a*>(-pl\<a>p» with the

aid of the following construction.

Let p be a formula.

assertions occuring in p.

Let ~p be

Define a

the set of all basic

relation on W as £01--p

lows: For w, v in W, let w_
p

v iff for all formulae q in ~p'

M,wF"q iff M,v pq. It is straightforward to show that is
p

an equivalence relation on W of finite index. Note that

each equivalence class contains members from both {xi}i>O

and {YiJi>O· Denote the equivalence class of a state w by

Wp • Note that ((wp,vp) I (w,v) is in p (a) J = ((wp,v p) I (w,v)

is in p(a')) = WpxWp for all formulae p.

Note the following properties of the model M;

Let w be a state in wp and v be a state in vp . Let c be a

test-free program. Then for each WI in wp ' there is a state

VI in v p such that

1) (w,v) is in p (c) iff (WI ,Vi) is in p (c) •

Let wand Wi be states in w
p

• Let q be a formula all of

whose basic assertions occur in ~p. Then

2) M,wl=oq iff M,w l Fq.

- 13 -

Assume for a moment that we have shown properties 1)

and 2) • Let p be a formula in PDL. Assume that

M,XiF=<a*>p. Then there is a state v with M,v~p. If

M'X i I=p then M'X i t=!. Otherwise, M,x i 1=-p. By defini ticn,

(xi,x i) is in p(a*). By property 2), M,vF=p iff M,v' FP for

all v'

(Xi ,v')

in v p •

is in p(a).

Let Vi be a state in v p {\ {Xk}k>O' Then

Hence M'X i 1=1 for all i. By symmetry,

depending on c, V is (w} iff v'

{ykl k>O} and w iff Vi is w.

This set is nonempty and there

from w' to v' • Hence

M'Yi pI for all i.

To show property 1), note that precisely the same set

of states is accessible via c from each of the Xi and from

each of the Yi" Hence if wand w' are both on the x side or

both on the y side, 1) holds with v = VI. Assume without

loss of generality that w is Xi and w' is Yj" Let V = {vi

(xi,v) is in pee)} and VI = {v'l (Yj'v') is in pee)}. Then

is {Wi}, {x
k

' k)O} iff VI is

Let Vi be a state in V'n v
p'

is a path labelled with c

(w,v) in p(c) iff (w' ,v') is in p(c)"

By symmetry, 1) holds for w = Yi"

To show property 2), we proceed by induction on q:

If q is a basic assertion then clearly, M,wF=q iff

M,w't=q for all w, Wi in wp "

- 14 -

In addition, if q = r v 5 or q = -r then by induction,

property 2) holds.

Let q = <c>r. Then M,wt=<c>J:" iff there is a state v

with (w,v) in pee) and M,vl=r. By induction, for all Vi in

in v with (wl,v') in p{e).
p

Vp ' M,v'l=r.

there is a

M,w' p<c>r.

Let c be

state v'

test-free. Then by property 1) ,

Hence

Assume that c contains one or more tests. Then the

path from w to v is a path in

P(tl?;Cl;···tn?iCn;tn+l?)SP(c) where each c i is test-free

and either t 1 ? or t n+1? may be equivalent to (pv-p)? Then

there exist states w1' ••• 'wn _! with (w,w) in p(tl ?),

(Wn_I,V) in peen) and (v,v) in p(tn+1 ?). Note that for all

< Iql hence by induction, M'Wi Ft
j

iff M'W
i

I

in (wi)p. Also by induction and property 1)

F=t
j

for

(recall

that the c i are test-free), there are states , "w
1

, ••• ,wn ,v

with w1 ' in (W1)p' •••

(Wi ,WI) is in P(t
1
?),

w ', n v' in such that

is in

(Wn- 1 ' ,Vi) is in

and (Vi ,v') is in p(t n+1 ?). Hence M,w l F<c>r. The

other direction is analogous.

We have shown that MI=r. Since M satisfies the other

semantic constraints, M is a Loop Invariant model. 181

- 15 -

As it turns out, no finite distinguishable model will

serve as a counterexample for Theorem 1. Distinguishable

Loop Invariant models of finite domain are in fact Standard

models. This is straightforward to show by a slight modifi-

cation of Lemma 5 in [Par]. The proof is essentially an

application of the pigeon-hole principle.

Theorem 2 (After Parikh)

Let M be a distinguishable Loop Invariant model of finite

domain. Then M is a Standard model.

Proof

We present a sketch of the proof. For further details

see Lemma 5 in [Par] or Proposition 6 in [Bel].

Let M = (W, IT, p) be a distinguishable Loop Invariant

model of finite domain and let (w,v) be a state-pair in

n
p{a*) - U p(a). Then by repeated applications of the

0'0

induction schema, for any positive integer n there is a path

between wand v with a tail composed of a sequence of n

iterations of program a (see Figure 1). Since M has only

a finite number of distinguishable states, for each state x,

there is a formula which distinguishes x from any other

state in M. We can use such distinguishing formulae and the

induction schema to show the existence of a loop-free path

between wand v with a tail of Iwl iterations of program a.

- 16 -

This provides a contradiction since some state must be

repeated.

Acknowledgements

We would like to thank Mike Fischer and Bob Ritchie for

their support. We would also like to thank Mike O'Donnell

for his constructive comments on and careful reading of this

paper.

Bibliography

[Bel]

[B02]

[F&L]

Berman, F., "Syntactic and Semantic Structure in
Propositional Dynamic Logic," PhiD. Dissertation,
University of Washington, Seattle, Washington, 1979.

Berman, F., llModels for Verifiers," T.R. 343, Purdue
University, July, 1980.

Fischer, M.J. and R.E. Ladner, "Propositional Modal
Logic of Programs," 9th Symposium on the Theory of
Computing, 1977.

[Ha] Harel, D., First-Order
in Computer Science
York/Berlin, 1979.

Dynamic Logic, Lecture Notes
No. 68, Springer-Verlag, New

EPa r] Parikh,
Dynamic
dations

R., "A Completeness Result for Propositional
Logic,1I Symposium on the Mathematical Foun­

af Computer Science, Zakopane, Poland, 1978.

	A Note on the Semantics of Looping Programs in Propositional Dynamic Logic
	Report Number:
	

	tmp.1307986960.pdf.1pXo8

