Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1980

Program Restructuring in Segmenting Environments
Jehan-Francois Paris

Report Number:
80-344

Paris, Jehan-Frangois, "Program Restructuring in Segmenting Environments" (1980). Department of
Computer Science Technical Reports. Paper 274.
https://docs.lib.purdue.edu/cstech/274

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

TR ®a1y

Frpurinental Cooputer Performipce and dlvalustion
p. Yerrari and M. Spadoni {edzs.)

© S0GESTA, 1981

North-Holland Publishing Co=pany

PROGRAM RESTRUCTURING IN SEGMENTING ENVIAONMENTS
Jehan-Frangels Paris

Department of Computer Sciences .
Purdue University
West Lafayette, Indiana 47907
U.5.A.)

we present here a family of program restructuring alge-
rithms aimed at programs to be executed in sagmented vwle-
tual memory systems. These algorithms attempt to minimize
the space-time product of restructured programs and can be
tailored to varieus memory management policies like Time-
Window Working Sert and Segment Fault Frequency. Prelim-
inary experliments with the trace of execution of a PASCAL
compiler seem to indicate that the algorithm may signifi-
cantly improve the behavior of programs in segmenting
environments wlth a disk-like secondary sterage and a time
window worklng set policy.

1. INTRODUCTION

ope of the major problems facing the designetr of virtual memory
systems is achieving a reasonable lavel of performance 1in rhe
system's memory hierarchy. To a very large extent, this problem can
be attributed to the presence ln the system’'s workload of programs:
cxhibitlng scattered reference patterns. Virtual memory systems,
indeed, run efficiently when their workload is composcd of so-callad
"local®™ programs, i. e. programs that, at any glven time, access
only a small, slowly varying, subset of their total addressing
space. At the 1imit, the presence in the worklecad of one program
accessing in a purely random way all portions of its address space
would slow down the average access time of the vlrtuval memory bro
that of its slowest component. .

. Improving the behavior of pregrams has been recognized guite
early as being one of the most efficient ways of enhancing the per-
formance of virtual memory systems (1]. The most obvious way Eo
achieve Ehis geal would be to teach preogrammers to write movre local
coda. This appreoach, however, has two dravwbacks: it complicares
significantly the task of pregrammers and cannet be applied to
existing programs.

2. THE RESTRUCTURING APPROACH

Program restructuring constitutes an attempt te overcome these
1imitatlens [2-7). . It deals with programs already written and
operates by rearranglng the various blocks of code or data of a

Th1s tesearch has been cartied while the author was at the
Department of Electrical Englnearing and Computer Sciences,
Univeraity of Callfernla, Berkeley. He wasa then supported by
a travel grant Erom the "Fonds National de la Rechercha Sclen-—
tifique," Brussels, Belglum,

249

thil J.=F. PARIS

program tn its virtwal address space. This process is absolutely
transparent to the system's users. Considerable experimental evi-
dence has been accumulated proving that program restructuring can
substantially improve the behavior of programs in paged virtual
memery systems [3]. On the other hand, very few efforts have been
devoted to the extensicon of this approach to segmented wirtuval
memory systems and the resulks abtained so far have been rather
disappointing [B].

The reasons for this sitvation are quite simple. In a paging
environment, the linear cutput of compilers is often a block-to-page
mapping that destroys the lecality naturally present in the bleck
reference string. Since nothing similar happens in segmenting
environments, there is not the same need for a corrective action.
Alsn, existing program restructuring algorithms rely heavily on the
fact that, in paged virtual memery systems, all exchanges of infor-
mation between the main memory and the secondary stere invelve only
Eixed size pages. Therefore, the problem of Ffinding a better
arrangement of blecks in the program's address space is essentially
a matter of Einding a better block-to-page mapping. This can be
done by constructing first a restructuring matrix --or cost makrpix--
expressing the costs of keeping each pair of blecks 1 and 3 in
neparate pages and then applying a clustering algorithm to this
matrix. The result of the clustering algorithm will be a new
block-to-page mapping that will group together blocks having the
highest interblock costs and, therefore, minimize the sum of costs
corrasponding to blocks actually stored in distinct pages.

The various restructuring algorithms differ essentially from
cach other in the way they define these interblock costs. The most
sophisticated of them, the so-called "strateqy-oriented" algarithms
[31, take into account the page replacement strategy of the system
in which the restructured programs will eventually be executed -and
express Interblock costs in terms of some index measuring the
program's petformance in this peculiar environmenk. In all cases;
there is never any penalty associated to the storing of two blocks
in the same page; thus, interblock costs are essentially positive
quantities.

1. SPECIFIC PROBLEMS QOF SEGMENTING ENVIRONMENTS

The same basic assumptions cannot be made for segmented virtual
memory systems. Segment sizes, and their number, can arbitrarily
vary. Therefore, the decision of storing two blocks In the same
segment is bound ro affect the segment size; this will.in kEurn have
an Influence on the costs of bringing the segment in main memory and
keeplng it there. There will thus be cases where merging two blocks
will actually decrease the program performance. As a first conse-
quence, interblock costs cannot be any more considered as being
essentially positive. Any program restructuring algerlthm neglect-
ing this fact will produce unacceptable block-to-segment mappings.

Consider, for instance, the case of a restructuring algorlthm
having as cbjective to minimize the number of segment faults occur-
ting during the execution of the program: This algorithm would be
a segment-eriented verslien of the so-called "Crltical Algorithms,”
which are among the best known restructuring algoerithms Efor paging
environments. Applied to a program being executed in a segmenting
environment, this algorithm will lead to the «trlvial solution of
gathering all blocks constituring the program into a single segment.

-

PROGRAM RFESTRUCTURING TN SEGMENTING ENVRUNMENTS 2

On the other hand, any algorithm artempting to minimize the main
memory occupancy of the restructured program will lead to the [rag-
mentation of the program into as many sSegments as feasible.

The failure of the two approaches we have just sketched can be
explained by the Fact that, in bokth cases, we attempted to optimize
only one indicator of the ptogram's performance. while being quite
successful in that regard, we achieved an unacceptable overall
result because of the drastic deterioration of other program perfor-
mance Indicators. A possible solution could be to introduce some
addltional constralnt on the new block-to-segment mapping obtained
by the clustering algorithm that will ensure that no vnacceptable
mapping will ever be produced by the restructuring algorithm. This
was indeed the solution adopted by Chen and Galle [8]. Their algo-
rithm attempts to minimize the total number of cross-references
between segments while enforcing the condition that the total numbher
¢f segments must tremain constant. This cendition ensures that nonc
of the pathological block-to-segment mappings we have discussed
above will ever occur. On the other hand, it introduces alsos an
artiFicial constraint on the block ordering preduced by the rescruc—
turing algorithm. It 1is jntuitively clear that this constzaint will
lead to the rejection of otherwlse perfectly acceptable block order-
ings and, thus, may significantly degrade the algorithm's perfor-
mance.

. A more sensible approach to the problem of program resktructur-
ing in segmenting environments would be to base the definiticn of
interblock costs on some global index of the program's _performance.
A well known example of such performance index is the Space-Time
Product criterion proposed by Belady and Kuehner [91. This cri-
terlon has been already used for constructing various program res-
tructurlng algorithms taileored to different paging environments [L&-
71. For all memory management policies investigated, thesc 5o0-
called "Balanced Algorithms"™ have been found to perform signifi-
cantly better than the other existing strategy-oriented restructur-
ing algorithms. We want ko show here how the same approach can he
extended to segmenting environments and how efficient strateqy-
oriented restructuring algorithms can be derived from the space-time
product criterion and tailored to various segment replacement poli-
cies.

4. BALANCED ALGORITHMS AND THE SPACE-TIME PRODUCT

Balanced Algorithms differ essentially from other program res-
tructuring algorithms in the way the elements of the restructuring
matrix A are computed. Each element a.. of the restructuring matrix
will represent the increase of theldpace-time product that would
result from the decision of keeping blocks t and j In separate =seg-
ments; a negative entry in the makrix will then correspond te the
situation where storing the two blecks in the same segment would
have a detrimental effect on the space-time product of Ehe restruc-
tured program. The procedure used to evaluate these a,. will essen-
tially consist of using a trace of memory references, Ldi1lected duc-
ing a previcus run of the program, in order to simulate, as closely
as posslble, block behavier during the program's execution. This
wlll enable us to predict under which circumstances the storing of
two blocks in the same -segment could have beneficial or detrimental
effects on the space-time product of the restructured program; the
algebraic sum of these effects for each pair of blocks will be, hy
definition, the entry of the restructuring matrix corresponding to

St J.=F. PARIS

Lhat pair of blecks.

In terms of space-time product, the main difference between
paging and segmenting environments lies in the fact that, ipn a seg-
menting environment, the average time reguired te service a segment
fault is a linear Function of the size of the segment causing the
fault. More precisely, if s, is the size of that segmenk, the aver-
age time T, required to service the Eault will be given by

Tw = Tl + Tt' S5 ‘
where T. is the mean access time of the secondary store and T, the
mean time to transfer one unit of dara.

Ler now 5{u} denote the memory occupancy of a program at a
given time wu. The space-time product characterizing the behavier of
the program belng executed in a segmenting environment during a vir-
twoal time interva% {C, t) is gigen by)

) c = SG S{u)l du + §=1 S(tj) '{T1+Tt'5xj)
where ¢ is the total number of segment faulks ocecurcing ducing (O,
t), t. the time of the j-th segment fault and x. the segment causing
that fault. J

As we said before, the decision of storing two blocks in the
same segment can have both beneficial and detrimental effects on the
perEormance of the program. These effecks will be direckly
raflected by corresponding variariens of its space-time preduct.
The resultant of these variations can be evaluated for each pair of
blecks i and j by examining the program's reference patterns. That
value will be, by definition, the element aij af the restructuring
matrix.

Suppose, for instance, that block j is referenced after a long
interval of inactivity. Suppose also that bleck j is stored in a
segment contalning only blocks that have alse been inactlve for a
whlle, Then, the segment containlng block j will probably not be
present in memory and a segment Eault will occur. On the other
hand, should block j have been stared in a segment containing at
least one block currently referenced at the time considered, the
segment would have been present in memory and the potential segment
fault avoided. This would be reflected in the space-time product of
the restructured program as a saving of

s5{c} . (Tl + Tt']

S,

3
space-time cnits, where S{(t} is the current memory occupancy of the
program ang sj the size of bleck j.

Suppose now that block i has been stored in a segment k con-
talning other blocks and that seme of these blocks are active during
2 time interval At during which block i is inactive. Then, block i
will be resident in memory,along with segment k, during that time
interval although its presence in memory 1is not necessSary. This
wlll be reflected in the space-tlme product of the program as a
waste of

s - At

PROCRAY RESTRUCTURING TN SEGMENTING ENVIRONMET: EL N

space-time units. Similarly, each time that the segment will be
brought in memory because some block of that segment, different from
#., is referenced after having been inactive for a while, therec will
be a need for transferring s, data units and this will result in an
increase of the program's space-time product by

S{tf).Tt.si

additional space-time units. However, when the secondary storage is
a disk-like device, 1i. e. a device characterized by a significant
access time and a high transfer rate 1/Tt, this increase remains
limited.

5. INFLUENCE OF THE SYSTEM'S MEMGRY POLICY

So far, we have carried our discussion assuming that a segment
containing only blocks that have been inactive "for a while® will be
na more resident in memory To be more specific, we have to take
inte account the memory pelicy of the system in which the restruc-
tured program will be executed and introduce the concept of the
Resident Set of Blocks [3,4]. By definition, the resident set of
blocks R,_(t] of a program at a glven time t of its execution in a
well de?ined environment is the set of all blocks that will be
present in menory at time t regardless of the block-to-segment map-
ping. As a corcllary of this definition, any segment cantaining at
least one block member of that resident set at time t will be neces-
sarily present in memory at that time. By analegy with the concept
of segment Fault, we will say that a block fault occurs at Eime
when the referenced block at time t is not a member of Rb(t—ll.

Evaluating the resident set of blocks of a program at time bt is
a more or less difficult task depending on the system memory policy.
The Time-Window Working Set memary policy (TWwWS), for instance,
removes a scgnent when it has been unreferenced for T time unilsy It
is quite similar to the original paged working ser policy with a
window size T =T+1 [10,11}. Under the TWWS policy, the resident
set of blocks R,_{t} will be simply the szt of all blocks Ethat have
been referenced during the last T time uvnits.

One of the variants of the TWWS policy is the so-called 5Space-
Time Working Ser policy (STWS), vnder which a segment 1 is repoved
when it has not boen referenced For T' / s. time units [11]. Sup-

pose now that S is the maximum Segment Lize, then R _(r} will con-
tain enly the 5T88ks that have been referenced during Ehe T / ‘::_n
last time wunits, where 5 is the maximum segment size. TRi#

expression represents obviouEf§ a worst case estimate and, there-
fore, does not provide a reliable estimator of the set of Dblocks
that will probably be present in nemory at anv given time.

Another memory policy Lthat has been applied to segmenting
environments is the Segment Fault Freguency policy (SFF) which is
essentially a scgmented version of the Page Fault Frequency policy
developed by Chu and Opderbeck for paging environments [12]. The
SFF policy removes scgmenks from memory at segment [ault time, if
and only if an interval of more than T time units has elapsed since
the last segment faulbt; the seaments removed are those that were
unceferenced during that Interwval. Dne can therefore assume [7]
than R, (t) will centain at least all blocks that have been refer-
enced during the time interval {t .-T,t) vhere t,. is the time of
the last bleck Fault before the currént reference.

0 J.-F. PARIS

Te each of these memory policies one can associate a parcicular
balanced restructuring algorithm that will be tailored te that pol-
icy. Therefore one can speak of a Balanced Time-Window Working Set
Algorithm (BTWWS), a Balanced Space-Time Working Set Algorithm
{BSTWS), a Balanced Segment Fault Freguency Algorithm (BSFF), and so
forkth. All these algorithms share the same structure and differ
only in the way their resident sets of blocks Rb(t] are defined.

6. FORMAL DEFINITION OF BALANCED ALGORITHMS

Lec

(rl,r yaa:,r) be a veference string cellected during onc
run of the program to be restructured,

b{t)} the bloack containing the t-th raference,
54 the size of block i,

Sit) the memory space occupied 5y the program while pro-
cessing the t-th reference,

R, {t} the resident set of blocks at time &, i. e. while
processing the t-th reference (we assume Rb(1)={r1}),

Tm the mean inter-reference time,
T, the mean access time of the sécondary store,
Tt the mean time to transfar one data unit,

The restructuring matrix A = (a,.} has all zero entries 1ini-
tially and is constructed In the folldwing way:

(a) For all t from 1 to n do

if b(t) gnb(t—lj then {(* block fault *}
Increment by of=5{t).(T,+T_.5 Y all a;-'s such
that 1 € R (t) and j=bity;© PF 13

all a;.'s such that

decrement by J =S{t).T..s; 13

i & Ryir) and j=b(t)
£i;

c_lecrement by {3=5i.1‘m all alj's such - that iéRb(t) and
i€ Ry it)

od; .
{b) For all { and all j¢l do
aij:= aji:= alj + aji
od.

In other words,

PROINGRAM RESTRUCTHRING TN SECMENTING KNS fRORMENTS M

[a] each time a bleck fault peccurs, the algorithm

-— attempts to aveid the accurrence of a segment fault by
incrementing all the entries af A that correspond to the
pairs of blocks containing a block already in memory and
the block causing the block faultk, and

- attemots to avoid any increase in the size of the segment
to be brought in memory by decrementing all the enkrics of
A that correspond to the pairs of blocks containing a
block not residing in memory and the block causing the
block fault:

[B] at each reference, the algorithm decrements all the entriecs of
A that correspond to the cases where one block resides in
memory and the other does not.

Note that the algorithm we have described can be applied to all
memory pelicies For which it is possible to ceonstruct the resident
set of bleocks R _({t) and to determine the memory space 5(t} occupied
by the prograa at time t. To cbtain the restructuring algerilhm
tailored to a specific memory policy, like the Balanced Time Window
Working Set for the TWWS policy or the Balanced Segment Fault Fre-
quency for the SFF policy, one has only te specify the proper
expressions for Rb{t) and S{t}.

7. IMPLEHMENTATICON CONSIDERATIONS

A few problems arise with the above scheme when the implementa—
tion o©f a specific balanced restructuring algorithm is attempred.
First, it will be generally impossible to evaluate 5(t) at restruc-
turing time as the program memoty occupancy depends oan the Final
block-to-segment mapping produced by the restructuring algorithm.
The simplest solution is then to replace S(t) by a constant value &
that will be some estlmate of the program mean memory occupancy S.
This approximation 1is essentially the same as the one adopted by
Prieve and Fabry in their optimal wvariable-space page replacement
algorithm VMIN [13].

Another problem concerns the cost of running the algeorithm.
One can expect, from any reasonable memory strategy, that the number
of block fauwlts will be considerably lower than the total number of
references, One can therefore neglect, as a first approximation,
the contribution of the Fault handling routine to the running time
of the algorithm. The critical part of the scheme is then the one
that requires thar, at each reference, all the elements a..'s of the
restructuring matrix correspoending to a bleock i ﬁ R;?t], and a
block 3 €& Rb(t), be decremented by si.Tm.

Let m represent the number of bleocks constiktuting the preogram
being restructured. Then, the pracessing of cach reference of the
pregram™s execution trace will essentially Eequire 0O(m™} woperatians
and one can assume a running time of ©(n.m®) For the algorithm. In
order to reduce this cost, one can resort to a sampling technique
and perform the aforementioned routine ecach K memory referencei. In
thls case, the running time of the algorithm will become O(n.m" / K}
and the quantity by which the interblock cost of the two block:s wll)

be decremented becomes K.T times the size of the hlock net lncluded

in R, {t). The approximatTon remains acceptable as long as the sam—
pling interval R.Tm is relatively small conmpared to the average stay

M Ja=r. PARDS

nt a spqgment In memory.

A third modification can be made whenever the secondary store
is a disk-like device. These devices are essentially characterized
by a significant access time T, and a high transfer rate /T One

can thus neglect, as a first approximation, the contributionE of the
scgment sizes to the costs of segment faults,

Xecping the same notations as in the last section, the new ver-—
siop of our algorithm will then be:

{a) For all t from 1 to n do
if b(r) § Ry(t-1} then {* block Eaulk *)

increment by © =é.Tl all ai.'s such that i £ Rb(t)
and j=blt);]

£1;
if t mod K = 0 thnen (* sampling time *)

dacrement by/.’) =si.K.Tm all aij's such that igﬂb(t)
and j £ Ry (L) '

od;
(b} For all i and all j<i de

a5§7T 25417 A3y +oagg

od.

8. EXPERIMENTAL RESULTS

In order to evaluate the performance of balanced algorithms
under two different memory policies, we developed trace-driven pro-
gram behavior simulators for time-window working set and segment
fault Frequency policies. The trace used im our experiments was a
block reference string that had been obtained from an instrumented
PASCAL compiler by Ferrari and Lau [5].

The PASCAL compiler from which the traces were obtained is run-
ning on a CDC 6400 at the University of California, Berkeley. It is
17,945 60-bit words large and counts 139 procedures. Assuming Ethat
a 60-bit word corresponds roughly to eight bytes, lts size,
expressed in bytes, would then be 143,560 bytes. Sizes of the pro-
cedures vary between a maximum of 665 words {5,320 bytes) and a
minimum of 18 words (144 bytes) with an average of 129 words (1,032
bytes}.,

The reference string we used in our experiments was collected
while the compiler was compiling parcs of its source code. Total
execution time, including instrumentation overhcad, was 163.508 s,
which corresponds te a vtun time of 9.318s for the standard, non-
instrumented version of the compiler. BRecause of the instrumentlng
procedure utilized, only instruction references were collected. The
lack of data references Is neot, however, a major drawback since the

W

FEOGRAN RESTRUITORTNG IN EZCUENTING LNV IRONM,

instruction and the data portions ol & progrzam can be restruckburdd
independently provided that instructions and data are stored in dif-
ferent sggnents. Besides, working-set environments have the pro-
perty that the presence o one segment in memory at any time does
not depend on the behavior of other segments and, thereforo, Ehin
block-to-segment mappings and the performance improvements obtained
by restrucruring the instruction peortion ol a program do not depend
on the referance patterns and on the organization of iks data po:-
Eion. -

In order to reduce the cost of our simulations, we decided 14
use a compressed version of the original trace for driving our twn
simulators. Tne trace reduction algorithm utilized ro produce the
compressed trace has been described by Lau [14] and is essentially o
variant of Smith's "Snasshot Methed"” [15). It replaced the original
reference string by a sequence of 32,702 "referonce sets", rach can-
taining the instructidgn blocks referenced during a 5 mnms interval;
because of the instrumenting overhead, each of these sampling inter-
val corresponds on the average to 0.28494 ms of axecution time for
the non—instrumented version of the program.

we performed our simulations of a Balanced Time-Window Warking
Set {BTWWS) algorithm for four window sizes hetween 20 and 150 ms,
For each simulation, the resident set of blocks R () at time ¥
hefore processing the t-th referencez was thus defined as the set of
all blocks that have been reoferenced at least once during respoc-
rively the tlast 20, 30, 100 or 150 ms. The algorithm's sampling
interval for evaluating the negative components of interblock cosks
——X.T -- was set to 18 reference sets, 1. =. approximately 5 ms,
SinceMthe restructuring process primarily involves the gradual merg-
ing of the program's original segments Inte largar unlbs, wo were
interested in measuring the algorithm's performance at various
stages of this merging process. Therefore, we decided not to use
one EFixed segment fault cost 5.7, ir our experiments but rather Lo
rapeat,zach simulation for selec%ed fault casts varying between 5000
and 10' bytes * sampling intervals, i. e. 1.445% and 28,494 bytes *
seconds.

For each window size and for each segment fault cost selected,
we simulated the application of a BTTWS algorithm to the PASCAL com-
piler and evaluated the performance of the restructured program
under the same set of inputs. Being primarily interested in the
phase of the restructuring vrocess where the rescructuring matriy
was builr, we docided to use a simple, but efficient, clustering

algerithm analogous to the one described by Ferrari in [3]. The
only significant adjustment that we made to the algerithm consisterl
of removing any limitation related to cluster sizes. Former expoeri-

ments with ‘restructuring algorithms in paging environments 1?71 hado
convinced us that more sophisticated clustering algorithms would net
necessarily perfoerm better.

For each run, we measured the number of segmenc [aulks, Ehe
total number of bytes brought in nemory and the mean memory ocrii-
pancy of the program before and after restructuring. Figures I anid
I1 summarize these results. on both figures, the curve labeled
“NR" corresponds to the non-restructured version of the program and
each individual peint of the curve represents a different window
size. FEach of the four other curves on each flgure corresponds to a
given window =slze and varying segmant fault costs. The uppermost
noint of each curve corresponds to the limit case of a seyment faulr

Shd J.-F. PARIS

PASCALT - THWHS

oo,
+ MR
", - X HS= 20M3
& WS= SOMS
. E W5=100K5
w1, i H5=150MS
xm,

g

g

HUHBER OF SEGMEMT FRLLTS
1

{ 1 13 1 L) T 1
. -] . - .
Shenory Trm eyt e 6o 0 e

Flgure I

cost equal to zero. For that particular wvalue, the structure of the
program remains unchanged during the restructuring process.

Looking at Figure I, one can see that the restructuring process
can decrease the number of segment faults observed during an execu-
tlon of the program by at least 50% without causing any significant
increase of [ts memoty occupancy; thils increase becomes appreciable
only when the segment faulb cost parameter becomes superior or egual
o 10 bytes * reference set, i. e. 28,494 bytes * ms. Figure II,
on the other hand, shows clearly that the total number of bytes
swapped In decreases much more slowly than the number of segment
faults. This observation is easy to explain if one remembers that
the restructuring process consists essentially of merging the

PROGRAM RESTRUCTURING IN SEGMEKTING ENVTRONHENTH LAY

PASCAL1 - THHWS

250

TOTRL NUMBER OF BYTES SHARPPED IN (30 7)

-3

L1 1 T LI L] T T
o mm o om R e e S N W

Pigure TII

program's original segments into larger unijits. Therefore one can
expect Lto have, for a glven memory occupancy, less segment Eaults
‘but a higher byte traffic between the memory and the secondacy

store.

The global effect of this reduction in the number of sSeqment
faults and thils- increase of the byte transfer rate for a given
memory occupancy can be evaluated by computing the swapping load L _

of the program. By deflnition, this swapping load L_ is the sum of *

all delays occurring at segment fault times and aused by the

secondary store latency or the segment transfer times. Keeping the.

same notatlons as in section 6 and cepresentlng by N, the total
number of bytes brought in memory during the giecution of the

Al J.=F. PARIS

program, nne can thus write

L= T« T) + Ny g o Te

where ¢ s again the total number of segment faults occurring during
the time lnterval considered.

PASCAL1 ~ TWWS

]
+ KR
Yy = X HWi= 20HS
@ M5= 50mS
X H3=10083
weero X H3=150H3
50
— T
2
Em-
Z
§ -
16000
10000
B0~
)
] _-.-_——__‘__‘_‘-—l--_-ih-ﬂ
Ll T

L 13 L 1] 1 T T
l Do -1 1000 A3 AP
Emmm S SR B eaeY (BYTES] (K10 %) !
Figure III

Figure TII displays the values of this swapping_ﬁload computed
for a latency time T1=10ms and a transfer time Tt=10 s/byte.

For these values, whlch correspond to a reasonably Fast secon-
dary store, Ethe contribution of the latency times to the swapplng
lead is so preponderant that one could almost neglect the influence

PROGRAM RESTRUCTURING TN SECGHENTING ENVIRONMERTS Al

of the segment transfer times and assume a swapping load L_ propoer-
tional to the number nf segment faults r. Since this pﬁenomenon
will only grow stronger when the _atency time increases, one can
safely assume that the beneficial effects of the restructuring Ppro-
cess will remain as important for a wide range of secondary stores.

"ASCALL - SFF

=L, |
!
+ IR
=, X 5= 1625
© H5= 20MS
T HS= SOHS
. -
=0,
i
=
é aAXh. -
w
§ m.-
7]
B
5 por s R,
2
190 < -
10R. —
En‘—
mnﬁn 0 n D ! ot : o 1o (—
R . T I =1 . -
T e T A AN SR w0

Figure IV

The same experiments were repeated for a Segment Fault Fre-
quency memory policy using the same PASCAL compiler. We ran our
simulations of a Balanced Segment Fault Frequency restructuring
algorithm (B5FF} for various values of the segment fault cost and
three values of the SFF T parameter, namely 10, 20 and 50 ms.

In this case, however, the results were guite different, As

RIS Jo=EL PARIN

PRSCALL1 - SFF

:

LD (M5
i

T

SHARF THL
d

{ I T 1] 1 T 1
a0 Lo e . . -
. Npuory T aviEsT txap o R ue A

Figure V

Figure 1V shows, the number of segment faults achieved by the wari-
ous restructured versions of the program were never much better than
the ones obtained, for the same memory occupancy, by the non-
restructured program. These results are even more disappointing iE
we compute the various swapping loads --see Figure ¥--. 1In conclu-
sion, one can safely affirm that the restructuring process has neo
beneficial effects on 'the overall behavior of the program,

The Page Fault Frequency algorithm is known to exhibit some
anomalies [17]. In this case, however, we think that a much simpler
cxplanation exlsts. Since the Segment Fault Freguency algorithm
expels idle segment only at segment fault times [12], any decrease
of the segment Fault frequency below 1/T will result in an Increase

PROGRAM RESTRUCTURING IN SEGMENTING ENVIRONMENTS i

of the program's memory oCCUPancy.

Concluslen

The llmited experimental evidence we have gathered seems to
indicate that program restructuring can significantly improve the
performance of programs executed in a segmented environment charac—
terized by a time-window working set policy and a disk-like secon-
dary store. Further investigations in the Ffield of restructuring
algorithms for segmenting environments should basically invelve:

-- the gathering of more experimental evidence;

- the study of possible modiflcatlons in the definltion of Inter-
block costs;

- investigations on the influence of the clustering algorithm on
the pertormance of restructured programs;

- investigations on the portabillty of restructuring algorlthms
{what would happen L!f some parameters of the system's memory
policy were to change?) and on their data dependence (Lo which
extent will the behavior of the restructured pregram be influ-
enced by its input data?).

Acknowledgements

The auther wants ta thank here Professors D. Ferrari and &. J.
Smith From the University of Californla, Berkeley for thelr numerous
suggestions and encouragements as well as his frlends, inside and
outside the PROGRES group, for their support. He would also like to
express his thanks to Professor P. J. Denning whose comments helped
to make the paper clearer.

References

{1l Brawn, B. and Gustavson, F. Program Behavior In a Paging En-
vironment, AFIPS Conf. Proc. Vel. 33 (1968 FJCC), 1019-10632.

[2] Hatfleid, D. J. and Gerald, J. Program Restructuring for Vie-
tual Memory, IBM Sys. J. 10 , 11 (Nov 1974), 39-47.

(3] FPerrari, D. Improving Locallties by Critical Working Sets,
Comm. ACM 17 , 11 (Hov, 1974}, 614-620.

(4] Ferrari, D. The Improvement of Program Behavior, Computer 9,
11 {Nov. 1376), 39-47.

Sl

5]

[6]

£71]

[8})

[21]

110}

i11]

(12]

[13]

(4]

115)

(18]

f17]

J.-F, PARIS

Ferrari,D. and Lau, . An Experiment in Program Restructuring
for Pertormance Enhancement, Proc. 2nd Int. Conf. on Software
Engineering, San Francisce, CA (Oct. 1376}, pp.203-206.

Piris, J.-F. Application of the Space-Time Product ‘Criterion
to the Definition af a New Family of Program Restructurlng
Algorithms, R. P, 4778, Inskitut d'Informatique, Facultés
Universltaires de Namur (1978).

Pdris, J.-F. TImproving the Behavior of Pregrams In Virtual
Hemory Systems,, Ph. D. Dissertation, University of Califor-
nia, Berkeley {in preparation).

Chen, P. 5. and Gallo, A. optimization of Segment Packing in
Virtual Memory, in Computer Architecture and HNetworks (E.
Galenbe and R. Mahl Eds.), Neorth Halland Publ., 1974.

Belady, L. A. and Kuehner, C. J. Dynami¢ Space Sharing in-

Computer Systems, Comm. ACM 12 , 5 (Hay 1969), 282-2B8.

Denning, P. J. The Working Set Model for Program Behavior,
Comm. ACM 11 , 5 {(May 1968), 323-333.

Denning, P?. J. and Slutz, D. R. Generalized Working Sets for
Segment Reference Strings, Comm. ACM 21 , 9 (Sept. 1978), 750-
759.

Chu, W. W. and Opderbeck, H. The Page Fault Frequency Paging
Algorithm, AFIPS Conf. Proc. Vel. 33 (1972 FICC), PE. 1, 5%7-
609.

pPrieve, B. G. and Fabry, R. S. VMIN--An Optimal Variable Bpace
page Replacement Algorlthm, Comm. ACM 20, 5 {May 1976), 295-
297.

Masuda, T., Shiota, H., Noguchl, K. and Ohki, T. Optimization
of Program Performance by Cluster Analysis, Informatlon Pro-
cesslng 74, Proc. IFIP 1974 Congress, 226-270.

Lau, E. Performance Improvement of Vlrtual Memory Systems by
Restructuring and Prefetching, Ph. D. Dissertation, Department
of EECS, University of California, Berkeley (19¥9).

Smith, A. J. Two Methods Ffor EEficient hAnalysis of Memory
Trace Data, IEEE Trans. Softw. Engrg. SE-3, 1 (Jan. 1977), 94-
101.

Franklin, M. A., Graham, G. 5. and Gupta, R. K. mnomalies with
Variable Partition Paging Algorithms, Comm. ACM, 21, 3 ({March
1978), 232-2136. :

	Program Restructuring in Segmenting Environments
	Report Number:
	

	tmp.1307986960.pdf.tD12w

