
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1980

Program Restructuring in Segmenting Environments Program Restructuring in Segmenting Environments

Jehan-François Päris

Report Number:
80-344

Päris, Jehan-François, "Program Restructuring in Segmenting Environments" (1980). Department of
Computer Science Technical Reports. Paper 274.
https://docs.lib.purdue.edu/cstech/274

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

,

•

,:~""dl:lCntal cocput"r Porfo"""'",,u and j'vaJu",ion
D. }""rNd ""d H. s""donl (c..J~.)

(') Sl)GeSTIo, 1981
Nonh-HoJldnd' pub1J!:Mnq CMp.>Il~

PROGRA~ RESTRUCTURING IN SEGMENTING ENVIRONMENTS

Jchan-Fran~ois P§ris

Department of Computer Sciences
Purdue University

West Lafayette, Indianil 47907
U.S.A.

We present here a family of program restructuring algo
rithms aimed at programs to be executed in segmented vir
tual memory systems. These algorithms attempt to minimize
the space-time product of restructured programs and Can be
tailored to various memory management policies like Time
Window Working Set and Segment Fault Frequency. Prelim
inary'experiments with the trace of execution of a PASCAL
compiler seem to indicate that the algorithm may signifi
cantly improve the behavior of programs in segmenting
environments wlth a disk-like secondary storage and a tim~

window worklng set policy.

1. INTRODUCTION

One of the major problems facing the designer of virtual memo,,,
systems is achieving a reason~ble level of perform~nce in the
system's memory h.ierarchy. To a very large extent, this problem c~n
be attributed to t:he presence In the syStem's workload of progr,'m,;
exhibiting scattered reference patterns. Virtual memory sy,;tcm~,
indeed, run efficiently when their workload is composed of 50-called
"local" programs, i. e. programs that, at any given time, <lCCO:;S
only a small, slowly varying, subset of their total addressing
space. At the limit, the presence in the workload of one program
accessing in ~ purely random way all portions of its address space
would slow down the average access time of the virtual memory to
that of its slowest component.

Improving the behavior of p(ogr~ms has been recognized quite
early as being one of the most efficient w~ys of enhancing the per
formance of virtual r;\cmory systems ,I]. The most obvious w~y to
achleve this goal would be to teach program~ers to writ:e more 10c,,1
code. This approach, however, has two drawbackS: It complic~t"s
signifIcantly the task of programmers ~nd cannot be applied to
existing programs.

2. THE RESTRUCTURING APPROACH

Progr~m restructuring constitutes an attempt to overcome these
Ilmitatlons [2-7]. It deals with progr~ms already written and
operates by rearranglng the various blocks of code or data of a

ThIs rese~rch h05 baen cortied while thc author was Bt the
Depa[tme~t of Electrical EngIneering Bnd Computer ScIences,
Un1veraity oE Callfornla, Berkeley. He was then supported by
a travel grant from the "Pends National de la Recherche Scien
tlflque," Drussels, Belgium,

'"

J .-F. P,1RIS

program ''I Its vlrt~al address space. This process is absolutely
trilnsparent to the system's USerS. Considerable experimental evi
dence hils been accumulated proving that program restructuring can
c.ubstilntially improve the behavior of programs in paged virtual
memory systems [3J. On the other hand, very few efforts have been
devoted to the extension of this approach to segmented v.irtual
mpmory systems and the results obtained so far have been rather
di:;,'ppointing [81.

The {easons for this situation are quite simple. In a paging
environment, the linear output of complIers is often a block-to-page
mapping that destroys the locality naturally present in the block
reference string. Since nothing similar happens in segmenting
environments, there is not the same need for a corrective action.
Also, existing program restructuring algorithms rely heavily on the
ract that, in paged 'virtual memory systems, all exchanges of infor
mation between the main memory and the secondary store involve only
fIxed size pages. Therefore, the problem of finding a better
arrangement of blockS in the program's address space is essentially
a matter of finding a better block-to-page mapping. This can be
done by constructing first a restructuring~ --or coSt matrix-
expressing the costs of keeping each pair of blocks i and j in
r:eparatl' pagl's <lnd then applying a clustering algorithm to this
matrix. The result of the clustering algorithm will be a new
hlock-to-page mapping that will group together blockS having the
highest Interblock costs and, therefore, minim;;:e the sum of costs
corresponding to blocks actually stored in distinct pages.

The various restructuring algorithms differ essentially from
each other in the way they define these interblock·costs. The most
<1ophlSticated of them, the so-called "strategy-oriented" algorithms
13], take into ilccount the page replacement strategy of the system
in which the restructured programs will eventually be executed 'and
express Interbloek costs in terms of some index measurinOJ the
p[ogr~m's perform~nce in this peculiar environ~ent. In all cases;
there is never any penalty associated to the stori~g of two blockS
in the same page; thu~, interblock costs are essentially positive
quantities.

]. SPECIFIC PROBLEMS OF SEGMENTING ENVIRONMENTS

The same basic assumptions cannot be ~ade for segmented v(rtual
memory systems. Segment sizes, and their number, can arbitrarily
v~ry. Therefore, the decision of storing two blocks In the same
segment is bound to affect the seOJment size; this will.in tUIn have
an Influence on the costs of bringing the segment in main memory and
keepIng it there. Thcre will thus be CaSes where merging two blockS
will actually decrease the program perform~nce. As a first conse
quence, interblock costs cannot be any more considered as being
es~entially positive. Any program rcstructuring algorIthm neglect
inOJ this fact will produce unacceptable block-to-segment mappings.

Consider, for instance, the case of a restructuring algorIthm
havIng as objective to minimize the number of segment faults occur- ~

ring during the execution of the program; This algorithm would be
a segment-oriented version of the so-called nCrLtieal Algorithms,"
which are among the best known restructuring algorithms for paging
environments. Applied to a program being executed in a segmenting
environment, this algorithm will lead to the trivial solution of
gathering all blOCks constituting the program into a single segment.

,

,

pr;rx;RMI flF.5Tm:CTUf/TNr. III Sf;(;IlEIITfN,; ENVf"'II/Hf:N'f.~

On the other hand. any algorithm attempting to minim1zc the
memory occupancy of the restructured pro9ra~ will lead to the
mentation of the program into as many segments a5 feasible.

m,l j n
r r 'I<J-

The failure of the two approaches we have just sketched can h~
explained by the fact that, in both CdS';-,-, \ole attempted to optimize
only one indic<ltor of the program's performance. While being quite
successful in that regard, we achieved an unacceptable overall
result hecause of the drastic deterioration of other program perfor
mance i"ndicators. ~ possible solution could be to introduce some
additional constraint on the new block-ta-segment mapping obtained
by the clustering algorithm that will enSure that no unacceptable
mapping will ever be produced by the restructuring algorithm. Thi~
was indeed the solution adopted by Chen and Gallo [8J. Their algo
rithm attempts to minimize the total number of cross-reference~
between segments While enforcing the condition -that the total number
of segments must remain constant. This condition ensures that none
of the pathological block-to-segment mappings we have discussed
above will ever occur. On the other hand, it interoduces also an
artificial constraint on the block ordering produced by the restruc
turing algorithm. It is intuitively clear that this constraint will
lead to the .rejection of otherwIse perfectly acceptable block order
ings and, thUS, may significantly degrade the algorithm's perfor

manCe.

A more sensible approach to the problem of program restructur
ing in segmenting environments would be to base the definition of
interblock costs on some global indell: of the program's. performance.
A well known example of such performance indell: is the Space-Time
Product criterion proposed by Belady and Kuehner [91. This cri
terIon has been already used for constructing various program reS
tructurIng algorithms tailored to different paging environments [6
1]. For all memory management policies investigated, these 50
called "Balanced AIgorithms W have been found to perform signifi
cantly better than the other existing strategy-oriented restructur
ing algorithms. We want to shoW here how the same approach can he
extended to segmenting environments and hoW efficient strilte'lY
oriented restructuring algorithms can be derived from the space-timc
product criterion and tailored to various segment replacement poli

cies.

4. BALANCED ALGORITHMS AND ~ ~-TIME PRODUCT

Balanced Algorithms differ essentially from other program rcS
tructuring algorithms in the way the elements of the restructuring
matrix A are computed. Each element a., of the restructuring matrix
will represent the increase of thel~pace-time product that would
result from the decision of keeping bloc~s i and j in separate seg
ments; a negative entry in the rnatrill: will then correspond to the
situation where steoring the two blocks in the same segment woul~
have a detrimental effect on the space-time produLt of the restruc
tured program. The procedure used to evaluate these a.· will essen
tially consist of using a trace of memory references, ~allected dur
ing a previous run of the program, in order to simulate, as closroly
as possIble, block betoavior during the program's execution. This
wIll enable us to predict under which circumstances the storing of
two blockS in the same _segm.ent could have beneficial or detrimental
effects on the space-time product of the restructured program; the
algebraic sum of these effects for each pair of blockS will be, hy
definition, the entry of the restructuring matrix corresponding to

·" •. ! J.-F. I'M"'.'>

that p"ir of blocks.

[n terms of space-tim~ product, the main difference between
paging and segmenting environments lies in the fact that, in a seg
menting environment, the average time required to service a segment
fault is a linear function of the size of the segment causing the
fault. More precisely, if s. is the size of that segment, the aver
aye time 1'10' required to service the faUlt will be given by

1''..1 Tl+Tt·S i

where 1'1 is the mean access time of the secondary store and Tt the
mean time to transfer one unit of data.

.(T.+Tt·S)
l lC j

of segment faults occurring duting (0,
segment fallll: and x j the segment causing

where r is the total number
t), t· the time of the j-th
that ~ault.

Let now stu) denote the memory occupancy of a program at a
given time u. The space-time product characterizing the behavior of
the program being execUl:ed in a segmenting environment during a vir
tual I:ime interval (0, 1:) is given by--- , ,

c" Jo S(u) du + j~l S(t j }

AS we said before, the decision of sl:oring two blocks in the
same segment can have both beneficial and detrimental effects on the
performance of the program. These effects will be directly
reflected by corresponding variations of its space-time prpducl:.
The resultanl: of these variations can be evaluated for each pair of
blockS i and j by examining the program's reference patterns. That
value will be, by definition, the element a. _ of the resl:Cucturing
matrilC. 1)

Suppose, for instance, that block j is referenced after a long
interval of inacl:ivity. Suppose also that block j is stored in a
segment contaIning only blocks that have also been inactIve for a
whIle. Then, the segment containIng block j will probably not be
present in memory and a segment fault will occur. On the other
hand, shOUld block j have been stored in a segment containing at
least one block currently referenced al: the time considered, the
segment would have been present in memory and the potential segment
fault avoided. This would be reflected in the space-time product of
the restructured program as a saving of

set} • (1'1 + Tt·S j)

space-time unil:s, where S(1:) is the current memory occupancy of the
program and Sj the size of block j.

Suppose now that block i has been stored in a segment k con
taIning other blo~ks and that some of these blockS are aCl:ive during
iI time interval ilt during which block i is inactive. Then, block i
will be resident in memory,along with segment k, during that time
interval although its presence in memory is not necessary. This
will be reflected il). I:he space-time product of the program as a
waSl:e of

•

_". I

space-time units_ Similat"ly, each time that the seqment will be
bt"ought in rnemot"y because some block of that seqment, different from
>t., is t"eferenced_ after having been inactive for a while, th(!re wi It
b~ a need for transferring s. data units and this will r(!sult in ~n
increase of the program's spate-time product by

additional space-time units. However, when the secondary storage is
a disk-like device, i. e. a device characterized by a significant
access time and a high transfer rate l/Tt , this increase remain~

Umi ted.

So far, we have carried our discussion assuming that a segment
containing only blocks that have been inactive -for a while- will be
no mot"e t"esident in memory To be more specific, we have to take
into account the memory policy of the system in which the restruc
tured program wIll be executed and introduce the concept of the
Resident Set of Blocks [3,4]. By definition, the t"esident set of
blocks R~(~of~p~ at a given time t of its e>tecutian in a
well derined environment is the set of all blocks that will be
present in mernot"y at time t t"eqardless of the block-to-segment map
ping. As a corollary of this definition, any segment containing i1t
least one block member of that resident set at time t will be neces
sarily present in memory at that time. By analogy with the concept
of segment fault, we will say that a block~ occurs at time t
when the referenced block at time t is not a member of Rb(t-IJ.

Evaluating the resident set of blocks of a progrilln at time t i"
a more or less difficult task depending on the system memory policy.
The Time-W'in,!~ Working Set memory policy (TWWS1. for in"tance.
re",oves a segnent when i':. has been unreferenced for T time unit,>; it.
is quite similar to the original paged working set policy with ,1

window size C; =T+I [IO,II}. Under the ~i5 policy, the resident
set of blocks Rb{t} will be simply the set of all blocks that have
been referenced durin~ the last T tiille units.

One of the variants of the ~~~S policy is the so-called Space
Time Working Set policy (STWS1. under which a segment i is rc~oved

·..hen it has not been referenced for T' / s. time units [Ill. Sup
pose now that S is the maximum segmen~ Size. then Rh(tl will con
tain only the ~~8~ks that have been referenced during rhe T' / S
last tiree units, where 5 is the maximum segment size. TW~~
expression represents obviouW~~ a worst case estimate and, there
fore, does not provide a relia~le estimator of the set of blOCks
tha~ will probably be present in ne~ory at any given time.

Another memory policy that has been applied to segmentin~

environments is the Segment Fault Frequency policy (SFF) which is
essentially a segmented version of t.he Page Fault Frequency poli~y

developed by Chu and Opderbeck for paging---.;jW1"ronl:lents (l2.]. The
SFF policy removes segments from me;nory at segment fault time, if
and only i~ an interval of more than T time units has elapsed since
the last segment fault; the segments rcmoved are those that werl'
unreferenced during that interval. One can therefore assume {7]
than R (tl will contain at least all blocks that have been refer
enced bduring the time interval (tlf-T,t.l ,,;,ere t lf is the time of
the last block fault before the current. reference.

J.-F'. T'IlRIS

To each of these memory policies one can associate a par~icular
balanced restructuring algorithm that will be tailored to that pol
icy. Therefore one can speak of a Balanced Time-Window Workin9 Set
fl.l<]orithm (BTWWS), a Balanced Space-Time WorkIng Set fl.lgorlthm
(BSTWS), a Balanced Segment Fault Frequency Algorithm (BSFF), and so
forth. All these algorithms share the same structure and differ
only in the way their resident sets of blocks Rb{t) are defined.

6. FORMAL DEFINITION OF BALANCED ALGORITHMS

run of
(r l ,r

2
, ••• ,r n) be a reference string collected

the progral:\ to be restructlHed,

bIt) the block containing the t-th reference,

duri.ng 00'

Sj the size of block i,

SIt) the memory space occupied by the program while pro
cessing the t-th reference,

Rb{t) the resident set of blocks at time t, i. e. while
processing the t-th reference (we assume Rb(l)~{r'll),

Tm ", mean i nte r-re ference time,

T, ", mean access time of ,he secondary store!

T, ", mean time eo transfer 00' data uni t,

The restructuring matrix A ~ (a .. j has all zero entries ini
tially and Is constructed In the foliJwlng way'

(a) .or all t from 1 to n do

if bIt) ~ Rb(t-l) then (. block faul t 'J

Increment by o!''''S(tj.(Tt+Tt.sblt») ,11 a lj' s such
that I (Rb(t) and j""b();

decrement by o o<S(t) .Tt·S, ,11 a ij 's such that
i ~ Rb(t) 'od j~b(t) 1

0,

decrement by ()~si.Tm all alj's such -that i~Rb(t) and
j E. Rb(t)

(b) For all i and all j<l do

od.

In other words,

[a] each time a block fault occurs, the "lgorithm

attempts to avoid the occurrence of a segment fault by
incrementing all the entries of A th"t correspond to the
pairs of blocks containing a bl~ck already in memory and
the block causing the block fault, and

attempts to avoid any increase in the size of the sC9men~

to be brought in memory by decrementing all the entries of
A that correspond to the pairs of blocks containin9 a
block not residing in memory and the block causinq the
block fault;

[b) at each reference, the algorithm decrements all the entries of
A that correspond to th" cases "'here one block resides in
memory and the other does not.

Note that the algorithm we have described can be applied to all
memory policies for which it is possible to construct the resident
set of blocks R (t) and to determine the memory space Set) occupied
by the prograB at time t. To obtain the restructuring .~lgorithm
tailored to a sp"cific memory policy, like the Balanced Time Window
working Set for the TWWS policy or the Balanced Segment F~ult Fre
quency for the SFF policy, one has only to specify the proper
expressions for Rb<tJ and S(tl.

7. IMPLEMENTATION CONSIDERATIONS

A few problems arise with the above scheme when the implementa
tion of a specific balanced restructuring algorithm is attempted.
First, it will be generally impossible to evaluate SIt) at restruc
turing time as the program me"'ory occupancy depends on the fin.11
block-to-segment mapping produced by the restructuring alqorithm.
The simplest solution is then to replace Set) by a constant value s
that will be some estImate of the program mean memory occupancy ~.

This approKimation is essentially the sa~e as the one adopted uy
Prieve and Fabry in their optimal variable-space page replacement
algorithm VMIN [13].

Another problem concerns the cost of running the algorithm.
One can expect, from any reasonable memory strategy, that the number
of block faults will be considerably lower than the total number of
references. One can therefore neglect, as a first approximation,
the contribution of the faUlt handling routine to the running time
of the algorithm. The critical part of the scheme is then the One
that requires that, at each reference, all the clements a .. 's of th"
restructuring matrix corresponding to a block i f R~~t), ilnd a
block j E Rb(t), be decremented by s .Tm"

Let rn represent the number of blocks constituting the program
being restructured. Then, the processing of each re~erence of the
program's execution trace will essentially ~equire O(m) operations
and one can assume a running time of O(n.m) for the algorithm. In
order to reduce this cost, one can resort to a sampling technique
and perfo~m the aforementioned routine each K memory reference~. In
this case, the running time of the algorithm ~ill become O(n.m I K)
"nd the quantity byhich the i ntcrblock cost of the two block,; will
be decremented becomes K.T times the size of the block not IncluderJ
in Rb(t). The approximat'I'on re",ains acceptilble as long as the s.~m
pIing inter~al K.Tm is relatively small co",pared to the average stay

,"or, ,'.-1'. I'MII8

ryt ~ s~gm~nt in memory.

A third modification ~an be made ~henever the secondary store
is a disk-like device. These dllvices are essentiilily characterized
hy il significant access time T and a high transfer rate liT. One
can thus neglect, as a first approximiltion, the contributionE of the
segment sizes to the costS of segmen~ faults.

>;ecping the Silme notiltions "s in the last section, the ne·... ver
sion of ouI algorithm will then be:

I" '0 , ,11 , from 1 cO " do

if b (t) 1 R
b

(t-l) then I' block [iJul t "
increment by c< ~S.Tl ,11 a ij " such that ~ a

b
(t)

eod j"b (t) ;

f i ;

if t mod K " 0 then (. sampling time *)

decrement by ~ "si.K.Tm all aij's such that
and j (Rb(t)

fi

ad;

(b) For all i and all j<i do

od.

a j i :." "ij + a ji

8. EXPERIMENTAL RESULTS

In order to eVilluate the performance of balanced algorithms
lmder two different memory polIcies, we developed trilce-driven pro
~rilm behavior simuliltors for time-window working set i1nd segment
filult frequency policies. The trilce used in our experiments was a
block reference string thilt had been obtained from an instrumented
PASCAL compiler by Ferrari and Lau [5].

The PASCAL compiler from which the traces were obtained is run
ning on a CDC 6~00 at the University of California, Berkeley. It is
17,945 60-bit words large i1nd counts 139 procedures. Assuming that
il 60-bit word corresponds roughly to eight bytes, Its size,
expressed in bytes, would then be 143,560 bytes. Sizes of the pro
cedures vary between a maximu", of 665 words (5,320 bytes) and a
minimum of 18 words (l~~ bytes) with an i1verage of 129 words (1,0)2
bytes) .

The reference string we used in our experiments was collected
While the compiler was compIling parts of its source code. Total
.. xeClltion time, including instrumentiltion ove"rhead, was 163.508 s,
Which corresponds to a run time of 9.3185 for the standard, non
instrumented version of the compiler. aecause of the instrumenting
procedure utilized, only instruction references were collected. The
liJck of datil references is not, however, a major drawback since the

.".;

instruction and the dat,l porl:ions o~ " !lrogtam can be restr,"~tLlH'oI

independently provided thilt instructions ccnd data ,He stored in di [
ferent seg"'ent". Besides, working-sct environments have the pro
perty that the presence o~ one segment :n m"mory at any time do,,"
not de;:>and on the behavior of other segmenl:s and, t.herefor'), tl'"
block-to-seqm"nt mappings and the perform'lnee impro"vements obtai"f'd
by restruepJring the inSl:ruetion portion o[iI program do not rJepL'nd
on the referene" patterns and on the orgc:nization of its rJatd r"'
tion.

In order to reduce the coSt o[our simlll"tions, we decided ,.)
use a compressed version of the original trilca for driving "ur two
simulators. The trilce reduction algoritht:l utili7.ed to produce tl,.·
compre"sed trace has been described by LilU (14] and is essentially.,
variant o[Smith's "Sna,",s!lot Method" [151. II; replaced the original
r"ference sl;ring by il sequence of J2, 702 ~referenee sel;s", eil"h ""n
tilining the insl:ruCl:ion blocks referenced during a 5 mS int"rv~l;
because of the insl:rumenting overhead, each of these sampling inter
val corresponds on the average to 0.28494 ms of execution I:im~ for
the non-instr~mentea-vcrsionof the program.

'"e performed our sim~lations of a Balanced T:mC'-\"indow l,'orkin'j
Set (BTWWS) algorithm for four windo sizes tlctween 20 and 150 ms.
For each simulation, the resident set of tllocks R (t) at time t

before processing the t-th referenc~ WilS thus defiRed as thC' set at
all blocks I:hat have been referenced at least once durin~ resp""
tively the last 20, :'0, 100 or 150 m5. The a190r11:hm'5 s,lrnplin"
intervill [or evaluating the neg,1tivC' co,"p"rtents of interhlock e,,:ote:
--K.T __ wali set to 18 reference sets, i. ~. ilpproxir.1ately ;; me;.
Sincemthe restructuring process primarily involves the graduill merg
ing of I:he program's original segl':1ents into larger unIts, we "'er"
interested in r.1easuring the illgorithm's performancC' at variou,;
stages of this merging pro"ess. Therefor~, '",e decided not to us,'
One fixed segment fault cost S.T in our experimC'nts but rath"r to
repeilt

7
"ileh simulation for selec!ed fault costs Volrying bl!twcen 500[)

and 10 bytes. sampling int"rvals, 1. e. 1.445 and 2.8,,\94 bytes '
seconds.

For each "dndo... · size and for each segment fault co"t "elected,
we sir.1ulated the olpplication of a BTT\~S algorithr.1 to the PASCAL com
piler and evaluated the performance of the restructured pr<>grar.1
under the same set of inputs. Being primari ty interested in the
phase of the restruct~ring process ...here the restructuring matrix
''''as built, 1' decided to use a simple, but efficient, cluliterinq
ollgorithlil i1nalogous ;:0 the one descdbed by ~errari in 13]. Th"
only significant adjustl':1cnt that ""C made to the algorithm consi5t,.,rJ
of removing any limitation related to cluster sizes. Former experi
ments ith 'restruct'Hing algorith"''' in paging environments [7J hiHI
convinced us thilt more sophistical:ed el1l5tering al<]orithm5 would n<>1
necessarily p"rforr.1 .better,

For each run, e me,lsured the number of ,,"gment [i1ul tli, th"
total number of bytes brought in r:cemory ilnd the meall memory oCClI
paney of the progrilffi before and after re~trucl:uring. Figures I ... nrl
II summa~ize these re"ults. On both figures, the curve labeled
~NR" corresponds to the non-restructured version of the program and
eilch individual point of the curve represents a different ~indow

size. Each of the four other curves on eilch figure corresponds to a
given ~indo'" size and varying segment f.1Ult CoSts. The uppermost
,",oint of eilch curve corr<~sponds to the limit case of il !>e'jment fa"lt

:J. -F. P,1RIS

PASCAL j TNNS
=.-,---r--_~=::"::::---':":'::-:'::"-_----'

_.

•;1=.
•

1-
o

i=

.AA
X~ '2OKS
0() ~ SOlIS
X WS=100K5
)(~ISOII5

Flguce I

cost equal to zero. Foc that pilcticulilc value, the stcuctuce of the
pcogram remillns unchanged during the restructuring pcocess.

Looking ilt Figure I, one can See that the restructuring process
can decrease the number of segment faults observed during iln execu
tion of the program by at least 50'1. wIthout causing any significant
incceilse of Its memory occupilncy; thIs increase becomes ilppreciable
only w~en the segment filult cost parameter becomes superior or equal
to 10 bytes" reference set, i. e. 26,494 bytes" ms. Figure II,
on the other hilnd, shows clearly that the total numbec of bytes
~wilpped In decrcilses much more slowly than the number of segment
faults. 1'hls observation is easy to expl"in if one remembers that
the restructurin9 process consists essentially of merging the

PflDGlUlH flESTflUC11JRIUG TN SEGI':t:I<T;Rr. E,VIITRONXE/JTS .'S'J

PASCAL! un,s
.=,---,----~:::::.:::..:.-~=----~

+'"
X 115:: 2O'lS
eo IlS:: 5OI'S
X 115::11»':5
)(16=16J11(;

Figure II

program's original segments into larger units.
expect to have, for a given memory occupancy,
.but a higher byte traffic between the memory
store.

Therefore one can
less segment faults
and the secondaly

The global effect of this reductIon in the number of :.:;cqment,
faults and this· increase of the byte tlansfer rate fOl .~ 'livl'n
memory occupancy can be evaluated by computing the swapping load L~
of the program. By definition, thIs swapping load L is the sum ot
all delays occurring at segment fault times and ~aused by the
secondary store latency.or the segment tlansfer times. Keeping the.
same notations as in section 6 and representing by Nb I the total
numbel of bytes brought in memory during the efe2ution of the

.",0

rro~r~m, one c~n ~hus write

J.-F. PN/15

Ls = r • T i + Nb,in T~

where r Is i1gilin the tutal number of segment f~ul~s occurring durin']
the time lntervill considered.

-

PR5CRLI TWW5

.'"X WS= 2CKS
o WS= 50IIS
X HS=100l'.S
-x \lS::15Ol1S

Figure III

'0<

dary
load

FIgure III displays the villues of this sWilpping_6 load computed
a latency tIme TI=IOms and a transfer time Tt=IO s/byte.

For these values, which correspond to a reasonably fast secon
s~ore, the contribution of the latency times to the swappIng

is so preponderant that one could almost neglect the influence

.'"J

oE ~he segment transEer times and assume a swapping load ~ propor
tional to the number of scgment fault,> r. Since ~his pRenolnerlOfl
will only grow srronger ~hen th~ ~atency time increases, one can
safely as"ume that the beneEicial eff"cts oE the restrLlcturin'J pro
cess will remain as i~portant Eor a wide range of secondary stores.

.~.

~RSCRLl SFF

+NR
X ~"" 10...05
o ~"" 20.''1S
Z I&. SUMS

Figure !V

The same experiments were repeated for a Segment Fault Frl'
quency memory policy using the same PASCAL compiler. We ran our
simulations of a Balanced Segmcn~ Fault Frequency restructuring
algorIthm (8SFFj for var.ious values o[the segment faul~ cost and
three values of the SFt" T pardt:leter, namely 10, ZO and 50 ms.

In this case, however, the results were quite differen~, As

./.-."'. I'MIIS

PRSCRL! SFF

+ NR
X ~S" IOKS
OilS: 20MS
:& lIS::. 50i'1S

o •.~

",igure V

.,~ .mo .,~

Fi~ure IV shows, ~he number of segment faults achieved by ~he vari
ous restructured versions of ~he program Were neVer much better than
~he ones obtained, for the same memory occupancy, by ~he non
rcstructured program. These results are even more disappointing if
~e compute the various swapping loads --See Figure V--. In conclu
~ion, one can safely affirm that the restructuring process has no
beneficial effects on ,the overall behavior of the program.

The Page Fault Frequency algorithm is known to exhibit some
anomalies [,17]. In this case, however, we think tha~ a much simpler
explanation exists. Since the Segment Fault Frequency algori~hm

expels idle segment only at segment fault times [12J, any decrease
of the segment fault frequency belo~ liT ~ill result in an increase

!

PROG!lA~ RESTRUC'WflTiJG 111 SF.r.!'!F.NT.I.W; f:;:VTR()NMe,.,rH

of the progr~m's memory occ~pancy.

ConclusIon

.'("

The limited experime~tal evidence we have gathered seems to
indicate that program restructuring can significantly improve the
performance oE programs executed in a segmented environment charac
teri~ed by a time~window working set policy and a disk-like secon
dary store. Further investigations in the field of restructurinq
algorithms for segmenting environments should basically involve:

the gathering of more experimental evidence;

the study of possible modifications in the definItion of Inter~

block costs;

investIgations on the influence of the clustering algorithm on
the performance of restructured programs;

investigations on the portability of restructuring algorithms
(wbat would happen if some parameters of the system's memory
policy ~ere to change?) and on their data dependence (to which
extent will the behavior of the restructured program he influ
enced by its input data?).

Acknowledgements

The author w<lnts to thank here Professors D. Ferrari and A. J.
SmIth from the University of California, Berkeley for their numerOU5
suggestions and enColJragements as well as his frIends, inside and
outside tho PROGRES group, for their support. He would also like ro
express his thankS to Professor P. J. Denning whose comments helped
to make the p~per cle~rer.

References

[1) Brawn, B. and Gustavson, F.
vironment, ,.,FIPS Conf. Proc.

Prograr;'l Beh~vior in a
Vol. 33 (1968 FJCC) ,

Pagin') En
1019~I032.

[21 Hatfield, O. J. and Gerald, J. Program Restructuring for Vir
tual Memory, IBM Sys. J. 10 , 11 (Nov 1974),]9-47.

[3] Ferrari, D. "Improving Localities by Critical Working Sot",
Comm. ACM 17 , 11 (NoV. 1974j, 614-620.

{41 Ferrari, O. The Improvement of Program Behavior, Computer 9,
11 (Nov. 1976), 3'J-~7.

_",.1 J.-F'. PAi/IS

IS] Felrari,D. and Lau, r.. An Experiment in Program Restructuring
for Performance Enhancement, Proc. 2nd Int. Conf. on Software
Engineering, San Francisco, CA (Oct. 1976), pp.20)-206.

[(,] Paris, J.-F. ~pplication of the Space-Time Product Criterion
to the Definition of a New Family of Program Restructuring
Algorithms, R. P. 4/78, InstItut d'Informatique, Facultes
Universitaires de Namur (1978).

I

171 Parls, J.-F. Improving the Behavior of Programs
Memory Systems" Ph. D. Dissertation, University
nia, Berkeley (in pr-eparation).

'0
of

Virtual
Califor-

[B] Chen, P. S. and Gallo,~. Optimization of Segment Packing in
Virtual Memory, in computer Architecture and Networks (E.
Gl!lenbe and R. Mahl Eds.), North Holland Publ., 1974.

[91 Belady, L. A. and Kuehner, C. J.
Computer Systems, Comm. ACM 12 ,

Dynamic Space Sharing
5 (May 1969), 282-288.

'0
[10] Denning, P-. J. The Working Set Model for Program Behavior,

Comm. ACM 11 , 5 (May 1968),)23-333.

[11] Denning,
Segment
759.

P. J. and Slutz, D. R. Generalized Working Sets for
Reference Strings, Comm. ACM 21 , 9 (Sept. 1978), 750-

[12J Chu, w. W.
Algorithm,
609.

and Opderbeck, H. The Pagl!
AFIPS ConE. Proc. Vol. 33

F<lul t
(1972

Frequency
FJCC), Pt.

Pag ing
1, 597-

[13) Prieve, B. G. and
Page Repl<lcement
297.

Fabry, R. S.
Algor i thm,

VMIN--An Optimal Variabll! Sp<lce
Comm. ACM 20, 5 (May 1976), 295-

[141 Masuda, 1'.,
of Program
cessing 74,

Shiota, H., Noquchi, K. and Ohki, T. Optimization
Performance by Cluster Analysis, Information Pro

Proc. IFIP 1974 Congress, 226-270.

!l5) Lau, E. Performance Improvement of V[rtual Memory Systems by
Restructuring <lnd Prefetching, Ph. D. Dissertation, Department
of EECS, University of Caiifornia, Berkeley (19'9).

[16J smith,
Trace
101.

A. J. Two Methods for Efficient AnalysIs
Data, IEEE Trans. Softw. Engrg. 5£-3, 1 (Jan.

of Memory
1977), 94-

{l7] Franklin, M. fl., Graham, G. 5. and Gupta, R. K. Anomalies with
Variable Partition Paging Algorithms, Comm. ACM, 21, 3 (March
1978), 232-236.

	Program Restructuring in Segmenting Environments
	Report Number:
	

	tmp.1307986960.pdf.tD12w

