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Abstract

We discuss three classes of models which interpret a

natural proof system for Propositional Dynamic Logic. We

compare their usefulness as models for verification and show

that each of the three classes satisfy the same set of for­

mulae. One of these classes can be used to give a simple

proof of completeness of a natural proof system for proposi­

tional Dynamic Logic. By the equivalence of their theodes,

this implies the completeness of each of the three classes

of models.

Introduction

Propositional Dynamic Logic (PDL) is a formal language

for reasoning about programs. As with flowchart schemes,

programming constructs such as assignment are suppressed and

programs in POL are represented in a streamlined fo["m as

regular expressions with tests. Hence the language provides

a description of the flow of control of a program. PDL also

acts as an assertion language in which we can represent ter­

mination, partial correctness, failure conditions and loop

invariance.

In this paper, we begin by describing the syntax and a

proof system ID for POL. This proof system is natural in the

sense that it characterizes the program operators u, ;, *

and ? as representations of the program operations (non­

deterministic) branching, sequential execution, iteration
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"and test. (This is analogous to the way that boolean opera­

tors - (not) and v (or) are characterized axiomatically in

Propositional Calculus) We then describe three classes of

interpretations (models) for PDL.

The first of the classes is called D-sound and is sim­

ply defined as the set of models in which a set of formulae

D is valid. The second and third classes semantically res­

trict the program operators U, ; and? to correspond to

(nondeterministic) branching, sequential execution and

tests.

In the class of LOOp Invariant models, the program con­

struct * represents both finite sequences of iterations and

infinite halting sequences of iterations. This represen­

tation ensures the correct interpretation of loop invariant

assertions.

In the class of Standard models, we restrict further

and assume the construct * represents only finite sequences

of iterations, i.e. we interpret * as the Kleene star

(r"etlexive and transitive closure). For D = lD, the class of

ID-sound models is properly contained in the the class of

Loop Invariant models which is propertly contained in the

class of Standard models (in order of increasing semantic

restr"iction) .

Although the D-sound models seem the most general class

of interpretations, we show that for the proof system ID, all
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three classes of models satisfy precisely the same set of

formulae. Moreover, we prove a stronger result: we show

that anYID-sound model can be extended to a Loop Invariant

model without changing the truth-value of any PDL formula at

any of the original states. This somewhat surprising result

shows that the axiom schemas lD characterize correctly the

intended behavior of the programming constructs for branch­

ing, sequencing, tests and (finite and infinite) iteration._

Section 1 of this paper provides a syntactic definition

of Propositional Dynamic Logic and describes the proof sys­

tem 10 mentioned above. Section 2 introduces the three

classes of semantics for PDL: D-sound modelS, Loop Invariant

models and Standard models. In Section 3, we show the com­

pleteness of a proof system (wi th axiom schemas 0) for· the

class of D-sound models. Section 4 concludes the technical

part of the paper by showing that each,o-sound model can be

extended to a Loop Invariant model and vice versa. Using

the completeness result in Section 3, we obtain the com­

pleteness of the natural proof system 10 with respect to each

of the classes of Loop Invariant and Standard models as a

corollary. In Section 5, we draw conclusions.

Section 1: POL and the Proof System I~

Propositional Dynamic Logic was fi~st introduced by M.

Fische~ and R. Ladner in (F&Ll}. The language is a simple
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and elegant example of the set of languages for reasoning

about programs loosely based on Floyd-Hoare triples [Apt].

Many of these languages combine program descriptions wi th

program assertions through the use of variants of the clas­

sical modal operators [] and <>. Among these languages are

Pratt's Dynamic Logic «(prattl], [Harel ]), Salwicki, Mir­

kowska et aI's Algorithmic Logic ([Sal]), Pnueli's Temporal

Logic ([pnueli]) and Manna's Modal Logic ([M ijP]).

In PDL (and pr"opositional Algorithmic Logic), details

of the program structure are suppressed and programs are

represented as regular expressions with tests. The simplest

formulae in PDL are propositional assertions. By using Pro­

positional Calculus rather than Predicate Calculus for the

underlying assertion language, the inherent decidability of

the satisfiability of such formulae can be used to build a

decision procedure to determine satisfiability of arbitrary

tor"mulae of POL ([F&L2]). As a consequence, decision pro­

cedures for POL may be used to partially automate verifiers

in richer languages [Pratt2].

We begin by introducing the language (syntax) of POL.

We finish this section by giving a natural proof system ID

fo r PDL.
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Syntax

The basic objects of PDL are two sets of primitives:

~o the basic formulae (primitive assertions)

~o the basic programs.

Both formulae and programs in the

structed recursively from the basic

basic programs 2
0

as follows

language are con­

formulae ilia and the

1) Basic programs (elements of 2
0

) are programs.

2) Basic formulae (elements of PO) are formulae.

3) If P and q are formulae then -p and p v q are for­

mul ae.

4) If a and b are programs and p is a formula then

a;b, aUb, a* and p? are programs.

5) If a is a program and p is a formula then <a>p and

[alp are formulae.

The notation was chosen for the natural association

with operations on regular expressions, hence

aUb is intended to mean " nondeterministically execute a

or b n

a;b is intended to mean "execute a then execute bTl
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a* is intended to mean "execute a some nondeterministi­

cally chosen number of times" and

p? is intended to mean "test p and fail if false."

Expressions in PDL can be used to describe the basic

statements in a simple structured programming language. In

particular" ,

BEGIN a ; bEND

can be represented as a;b,

IF P THEN a ELSE b

can be represented as p?;a U -p?;b,

WHILE P DO a

can be represented as (p?;a)*:-p?

Formulae in PDL are intended to represent program

assertions. Formulae which combine programs and assertions

in one of the forms (blp or <b>p can be used as program

specifications. The modalities [b] and <b> are intended to

represent the change from an initial state to a final state

upon termination of a computation of program b. The box

([b]) and diamond «b» forms differentiate between every

tcrmlnatillg computation of b and some terminating compu-

totion of b (the same when program b is deterministic) so

that
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is intended to mean "Whenever program a ter­

minates, assertion p is true."

is intended to mean "program a can terminate

with assertion p true."

(Note that [J and <> are duals of each other, i.e. we intend

(] to represent -<>-) .

In PDL, we can express several important properties of

programs.

PARTIAL CORRECTNESS

Using Floyd-Hoare triples, we can represent partial

correctness and the weakest liberal precondition

([Dij]) of a program a: The triple p{a}Q corresponds to

the PDL formula p-to[a]Q; the weakest liberal precondi­

tion wlp(a,Q) is the PDL formula {a]Q.

TERMINATION

PDL formulae can express both the possibility and

impossibility of termination, i.e.

{a] false

and

represents "program a never terminates."
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represents "some computation of program a

terminates." (When a is deterministic, this

says " a always terminates").

In POL, we can represent both program iterations and

invariant assertions. Hence loop invariance can be

represented by the formula [a*]p, i.e. p is true before

or after any number of iterations of program a.

A PI"oof System

In order to use PDL as a language for proofs of

correctness, we give the proof system lD, first introduced by

Segerberg [Seql] and Parikh [par]. This proof system is

natural in the sense that the programming constructs U, ;, *

and ? are axiomatically characterized as (nondeterministic)

branching, sequential execution, (Hoi te and io£ioi tel

iteration and tests in the same way that v and - are charac­

terized as disjunction and negation in proof systems for

Pt'opositional Calculus.

We take as axioms for the proof system ID all

of the following set of schemas

instances

D <aib>p H<a><b>p
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DU (aUb>p <f-'lo <a>p v <b>p

D? <p?>q~p"q

P ~ <a*>p

<a>p40(a*>p

D* <a*><a*>p~<a*>p

<a*>p~(pv<a*> (-pA <a>p»

( induction)

<a>(p v q)H <a>p v <a>q

DO [a] (P .... q) ...... ([aJp .... [alq)

Substitution instances of propositional tautologies.

We take as rules of inference

Modus Ponens:

and

From A and A.... B, infer B.

Necessitation: From A, infer [alA.

(We will refer to both the set of formulae and the proof

system described here as to when the context is clear) •

It is interesting to note that the provable formulae of

this system give a Her-brand interpretation ([Greil) to PDL

formulae with respect to the intended decomposition of the

programming constructs.



- 11 -

Section 2: g-sound, Loop Invariant ~ Standard Models

In this section, we introduce three classes of models

for POL.

We first describe the class of D-sQund models. The

class of D-sound models is simply the set of models of PDL

in which a given set of formulae D is valid and in which I

v, <> and [] retain their intended (usual) interpretations.

This class provides a general interpretation in which the

theorems represent the set of correct formulae which would

be produced by a PDL verifier with the formulae D acting as

pr'ogram specifications. Other than preserving the correct­

ness of these specifications, D-sQund models have no other

semantic restrictions on programs. (Although these con­

straints seem weak, we will show that for an appropriate set

of fO['ffiulae D (for example, ID), the validity of such formu-

lae induce strong semantic restrictions).

The second class of models is the class of Loop Invari­

ant (g> models. In Loop Invariant models, programs are

inter-preted as r-egular expr-essions (with tests) with one

important exception: the pr-ogr-amming construct * in LI

models represents both finite iteration (as with regular

expressions) and infinite halting iteration. Roughly, this

means that a for-mula [b*]p will expr-ess the loop invariance

of assertion p but the program b* represents terminating

computations which may include more than the set of all fin­

ite iterations of program b. In particular, the programs b*
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and b in Loop Invariant models are related but not in the

obvious way (with * as reflexive and transitive closure).

LI models have stronger semantic constraints than D-sound

models but are less constrained than Standard models.

The third class is the class of Standard models. In

Standard models, the programming constructs U, ;, ? and *

are interpreted as operations over regular sets (where p?

would be interpreted as a single symbol, the associated set

representing the diagonal of pairs of states at which p was

true). In particular, * operates as reflexive and transi­

tive closure so that the program b* represents all finite

iterations of program b. The class of Standard models are

the most semantically constrained of the three classes but

also provides the intended interpretation of programs given

in Section 1 (The class of Standard models is the class

most widely associated with POL in the literature for pre­

cisely this reason).

In spite of their apparant differences, we show in Sec­

tions 3 and 4 that all three classes are closely related.

Definition: A model M of PDL is a triple M = (W, TI, p) in

which

W is a set of states,

II is a valuation which assigns to each basic assertion

a set of states (at which that assertion is true)
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P is a valuation which assigns to each program a set of

pairs (w1,w
Z

) of states

(where (wI,WZ) assigned to program b means that

starting in state wI' b may terminate in state W
Z
).

We extend II to interpret all formulae as follows:

II(-p) = W - II(p)

II(p v q) = II( p) U II( q)

IIC<a>p) = {wi 3 v( Cw.v) E pCa) 1\ v.,II(p) )}.

Note that in general, a model only restricts the way in

which the logical connectives and modal operators may be

interpreted. An interpretation is given to every program

and formula but in some models this may be completely arbi-

trary with ["espect to the way component parts of programs

may inte["act.

,

Let M = (W, II, p) be a model. We let the notation

M,wI==A denote the statement "w is in TICA) n.

Let M be a model. Then Th (M) is the set of PDL formu-

lae {AI for all w, M,wJ=AJ, denoted the theory of M. CIf A

is in Th(M), we also say MI=-=A). Given a class of models M,

let TheM) denote n Th(M) •
... R

Let M be a model and let wand Wi be states in M. We

say that wand wt are indistinguishable in M if for all PDL
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formulae p, M,WFP iff M,w' !=p. (When the model is clear,

we simply say that wand Wi are indistinguishable)

Definition: A Loop Invariant (11) model is a model in which

the program valuation function is constrained as follows:

pla;b) = pla)"p(b)

plaUb) = pIa) U p(b)

pep?) = {(w,w·) I wand Wi are indistinguishable and

wisinI1(p»)

pCtrue?)sp(a*)

pIa) s p(a<)

p la<) op(a<),;; p la<)

III<a>p->lp v <a<>(-p.<a>p)) = w.

LOOp Invariant models were called nonstandard models in

[par] and Parikh models in [Bel]. They were first intro­

duced by R. Parikh in [Par].

Definition: A Standard model is a model in which the pro­

gram valuation function is constrained as follows:

p(a;b) = pla)"plb)

plaUb) = p(a) U p(b)
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P (p?) = {(w,w') I wand Wi are indistinguishable and

w is in II(p»)

pla') = U plan)
0'0

(where aD = true?)

Standard models were first introduced by M. Fischer and R.

Ladner in [F&Lll and later in [F&L2].

Note that the class of Standard models is a proper sub-

class of the class of Loop Invariant models. However, these

classes are closely related. By definition, star-free £or-

mulae are interpreted precisely the same way in LI and Stan-

dar"d models. In addition, since no single POL formula can

distinguish the representation of finite and infinite halt-

iog iteration from (unbounded) finite iteration, the classes

at Loop Invariant and Standard models satisfy precisely the

same theories. We note this in the following

Let S be the class of Standard models and LI be the class of

Loop Invariant models of PDL. Then Th(S) = Th(LI).

Pr"oof

Let M be a Standard model. Then M is an LI model since

it is straightfor"ward to show that the induction schema

<a*>p~(p v <a*> (-pl\ <a>p»
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is V a1 id in M.

That Th(S)~ Th(LI) was shown in [Par}. So

For D = 10, it is also true that ThqO-sound) = Th(LI)

We demonstrate this two ways at the end of Section 4.

Section 3: Compl eteness

In defining the proof system ~ in Section 1, we claimed

that the axiom schemas provided a natural and useful set of

program specifications with which to construct portions ot

an automatic verifier. In interpreting input and output

specifications for such a verifier, it is important that our

notion of a verification is reasonable (soundness) and that

correct programs are verifiable (completeness).

The weakness of the semantic restrictions on D-sound

models makes it seem plausible that a proof system based on

axiom schemas D would be sound and complete with respect to

the class of D-sound models. This is indeed the case as we

show in this section.

We begin with some definitions. Let D be a set of for­

mulae. Let P
D

denote the proof system wi th axiom schemas 0

and rules of inference Modus Ponens and Necessitation (see

Section 1). A proof in Po is a sequence of formulae, each
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of which is an axiom or derived from previous formulae in

the sequence by appl ication of a rule of inference. The

lasl: tormula in a proof is provable. Let the notation \-A

denote the statement nA is provable". A set of formulae S

is inconsistent iff there is a finite subset {SI' ••• ,Sn}

of S and a formula A with ~(Slh ... "Sn)-;'(A"-A). A set of

formulae is consistent iff it is not inconsistent. Let

Pr (D) denote the set of provable formulae of P
D

" (Recall

that we denote the valid formulae of a class of models M by

Th (M» •

Let D be a consistent set of formulae. Let M
O

be the

class of D-sound models. We will show that P
OUD

is sound
o

and complete with respect to MD, i.e. pr(D U DO) = Th(~).

(We include the schemas DO as axioms in the proof system to

ensure the usual behavior of v, <> and []. It is

straightforward to show that all models are DO-sound

models). The proof of completeness uses a classical Henkin

construction and is a generalization to this system of the

modal techniques found in [Seg2]. As a corollary of this

l"esult and the theorems in Section 4, we will also show

soundness and completeness of ~ with respect to the classes

of LI and Standard models.

Theol-em 2 (Soundness)

Let D be a consistent set of formulae. Let MD be the class

ot D-sound models. Then pr(DUDO) £Th(MD).
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PrOD f

It is sufficient to show that the formulae D U DO are

valid in MD and the rules of inference preserve validity.

By definition of model, DO~Th(~). By definition of D­

sound, D.5Th(MD). It is straightforward to show that Modus

Ponens and Necessitation preserve validity. '5

Theorem 3 (Completeness)

Let 0 be a consistent set of formulae. Let M
D

be the class

of D-sound models. Then Th(MD)~pr(D U DO).

Proof

We prove the contrapositive: If a formula A is not

provable then there is some D-sQund model in which -A is

satisfiable (so A is not val id) • In fact, we prove a

slightly stronger result; There is a model NO in which the

negation of every unprovable formula is satisfiable. We

construct ND given a consistent set of formulae 0 U DO as

follows:

Let No = (W, IT, p) where

w = {w {all formulae} I

i) For all formulae A, A is in w or -A is in w but not

both.
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i i) For all formulae A and B, if A~B and A are in w

then B is in w.

ii i) Pr (0 U DO) 5. w.

(i.e. W is the set of all consistent complete extensions of

II(p) = {wi p is in wj for p in (lO

pea) = {(w,v) I 'VA, [alA in w ~ A is in v}

fa r any prog ram a.

Ex tend n to an interpretation of all fa ["roul ae in the usual

way (see Section 1) so that NO is a model of POL. Notice

that NO is essentially a modal version of the model con-

structed in th~ classical Henkin proof of the compi eteness

of Predicate Calculus. Our proof will be analogous to this

construction in that we will show that

a) NO is a O-sound model.

b) The negation of every unprovable formula A is

satisfiable in NO"

To show a) and b) r we first prove the following

Lemma 1

For" all formulae A, and for all states w in W,
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NO,WF=A iff A is in w.

Proof (After Segerberg [Seg2])

Proceed by structural induction on the formula A.

If A is a basic formula then by definition, w is in

rICA) iff A is in w.

It is straightforward from the definitions to show that

the result is true for formulae of the form A = B v C and

A = -B. Let A = [ajB.

We wish to show that No,wp..[a]B implies that [alB is in

w. Assume towards a contradiction that this is not the

case. Consider the set S = {el [ale is in w}. We wish to

show that S is consistent.

Assume S is inconsistent. Then there exist formulae

CI , 'Cn in S and a formula E with

by definition.

But then

Ha] (CI " ••• " Cn ) -ora] (81\-8) and

Hal (8" -8)-->[a]B

Hence

Ha]c l " ... " [alC n --> [alB.

by Necessitation and DO.

Since each state w contains all the provable formulae and
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[ale. is in w for each i, {alB must be in w.
1

This contradicts our assumption that S was inconsistent.

Now consider the set T = S U {-B}. We would like to

show that the addition of -B preserves the consistency of s.

The proof is analogous to the previous argument: Towards a

contradiction, the only reasonable candidates for an incon-

sistent subset of S are sets including -8. We can apply the

same procedure as before to derive the contradiction that

[alB is in w. Hence T is consistent.

Since T is consistent with respect to D U DO' D U DO U

T is consistent. Extend this set to a state v in W in the

classical way, i.e. let PI' P2' be an enumeration of the

for-mulae of POL. Let Vo = D U DO U T. Recursively define

v
n+1

to be v U (Pn) if this set is consi stent and v
n

U (-p )
n n

0 t h c r w s e. Let v = U v n' Then it is straightfo rward to
n:i!:D

show that v is a complete consistent set of formulae and

hence a state in NO"

Since T is a subset of V r (wrv) is in p(a) by defini-

tion. Recall that by hypothesis we had No,wp.[alB. Hence

(wrv) in pCa) implies that v is in nCB). But this provides

the desired contradiction since by induction, ND,VF=-B.

We have shown that No,wF=[alB implies that [alB is in

w. For the other direction, let [alB be in w, and assume

towards a contradiction the NorwF-[a]B. Let (w,v) be an

input-output pair in pCa) and v a state at which -B is true.
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By definition, (w,v) in pea) implies that for all fo["mulae

c, [ale is in w only if C is in v. In particular, [alB in w

impl ies that 8 is in v. Contrad iction.

Hence for all formulae A, NO,wI==A iff A is in w. 'SI

We can use Lemma 1 to prove both a) and b) • Since the

fa cmul ae 0 are in every state w in NO' ND,wl=D for all w.

Hence each formula of 0 is val id in NO and NO is a D-sQund

model (proving a). To show b), let A be an unprovable fOI"­

mul a. Then {-A} is cansi stent wi th respec t to D U DO.

Extend D U DO U {-A} to a state w in NO by the procedure

given in Lemma 1. Also by Lemma 1, -1\ in w implies that

NO,WF=-A. Hence -1\ is satisfiable in NO" \'8]

Corollary 1

A particularly nice property of NO is that if any of

the schemas in lD are inclUded in D, the corresponding seman­

tic restriction on program interaction holds for the acces-

sibility relation p in ND" Recall that in the construction

ot NO' program interaction was not explicitly specified by

semantic constraints on p (ieee for an arbitrary [l-sounJ
fho:t

model M,lIthe schema <aUb> p <a>p v <b>p ·,oS in IJ docs not
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necessarily imply that p (aUb) p (aJ u P (b) holds M
IBe2]). We show this property for one implication of the

in the next proposition.schema D (for sequencing) for NO

(Note that in particular, if D =~,

model) •

Proposition 1

~O is a Loop Invariant

Contradiction, hence u'

Let 0 be a consistent set of formulae which inludes all

instances of the schema

<a;b>p~<a><b>p.

Then p(a;b) ~ p(a)op(b) in NO"

Proof

Let (w,v) be an input-output state pair in p(8;b). Let

u' = [<b>pl p in v) U (pi [alp in w)"

We wish to show that u' is consistent. Towards a con­

tradiction, the only reasonable candidate for an incon­

sistent subset is {<b>p1 , <b>P2' ••• , <b>Pn , Ql'··· ,qk}

where PI' ••• 'Pn are in v and [a]ql' ••• ,[a]qk are in w.

Since <a;b> (PI A···" Pn)~<a><b> (P1" ••• "Pn ) is in pr(D U DO)

and No,wl=:::r<a;b> (PI" ••• /\ Pn ) then by Lemma 1, there is a

state x wi th (w,x) in p (a) and NO'x I=s<b> (PIli. ••• " Pn ). x is

a complete and consistent set which includes the formulae

<b> (PI J\ ••• " Pn ' " ql'" ....... qk and

-«b>PIA ••• A<b>Pn " ql" ••• Aqk)·
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is consistent.

Extend u· U D U DO to a complete consistent extension

u. By construction, u is in N
D

" We claim that (w,u) is in

p(a) and (u/v) is in p(b). To see this, note that for all

formulae p,

(alp in w implies p in u

and

p in v implies <b>p in u.

Hence (w,v) is in p(a)op(b). B1

Section 4: Semantic Constraints in ~D

By completeness, for D = 10, the class of IO-sound models

satisfies all and only the correct formulae given by the

natural set of program specifications )0. The semantic con­

straints implied by the validity of these schemas seem weak:

If we represent a model of POL by a directed graph in which

nodes represent states and edges represent programs, a 10­

sound model cannot even guarantee for example that given the

input-output state pair (w,v) for a branching program aUb,

that (w,v) is an input-output state pair for component pro­

grams a or b. In an LI model, such a constraint is

guaranteed by the semantic restriction pCaUb) = p(a) U pCb).
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It is somewhat surprising then, that every lo-sound

model can be extended to a Loop Invariant model. Further­

more, we can construct such an extension so as not to change

the truth value of any POL formula at any state of the ori-

ginal ~D-sound) model. We exhibit this construction in

Theorems 5 - 9 and prove the result in Theorem 10.

Conversely, we would like to show that every Loop

Invariant model is a 10-sound model. This is trivial and

demonstrates our contention that the semantic restrictions

·of Loop Invariant models are at least as strong as the

axioms which induce them. As a corollary of these results,

we will show that Th(~) = Th(LI). This, together with the

general completeness proof of Section 3 will show that the

proof system 10 is complete with respect to the classes of

Loop Invarlant and Standard models.

Theorem 4

Let M be a Loop Invariant model. Then M is a lo-sound model.

Proof

Let M be a Loop Invariant model. It is sufficient to

show that each of the schema in 10 hold in M. This is

straightforward and left to the reader. ~

We are aiming at the following result:
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Theorem 10

Let M be a ~-50und model. Then there is an extension M' of

M such that HI is a Loop Invariant model and for all formu-

lae A and all states w in M,

M,wI=A iff H' ,W~A.

In fact, an even stronger version of this result is true.

If we separate the axiom schemas of ID according to their

manipulation of the programming constructs U, ;, * and ?,

the theorem is true for each group of 5chemas independently.

These results are given in the following set of theorems.

Theorem 5

Let M be a D;l-soun~ model

<a;b>p~<a><b>p. Then there is

1J p' (a;b)E-p' (al.p· (b)

where DiIi 5

an extension MI

the schema

of M with

2) For all states w in M and all PDL formulae P,

M,WFP iff HI,WFP.

Proof

Let M = (W, II, p) and let (wrv) be an input-output

state pair in p(a;b) - p(aJep(b). For each such pair, we

will construct a new state z suchw,v that is in
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(We will also add other newp' (a) and (z ,v) is in pi (b).w,v
states and edges to p~eserve satisfiability at w) • M' will

["esult from applying this construction to each such (w,v) in

p(a;b) - p(al.p(b) •

Vol

~wv•

For convenience, let Th{M,x) denote {pI M,xJ=p} for any

state x in M-. Consider Th(M,w), Th(M,v) for the states w, v

given above. Note that each of these sets of formulae are

complete and consistent (in the sense of Section 3). In

particular, we can assosciate with each state x in M, the

state Th(M,x) in N
D

(Note that this mapping may not be
,1

one-ta-one because of indistinguishable states in M. For

this reason, we will graft the parts we need from NO onto
,1

M to create the extension MI ,. In addition, if x and yare

states in M with (x,y) in p(c) then (Th(M,x) ,Th(M,y» is in

in

wi th

is

(Th(M,w) ,Th(M,v» is also in

Hence (Th(M,w) ,Th(M,v))

Hence there is a state zw,v in ND
,1

PN
O

(a) and (Zwv,Th(M,v» inPN (b).
, 0

ass~e by the construction given ih1 the

(b) •

By propo si tion 1,

In addition, we can

PN (c) for any program c.

0'1
PN ' (ai b ).

0'1
PN • (a)oPN

o 0
(Tht~,w),Z i1- inw,v

proof of Proposition 1 that {pi [alp is in w} U {<b>pl pis

in v} is a subset of

What we've done so far is exhibited an appropriate

state zw,v in NO so that (Th(M,w) ,Th(M,v))
,1

is in
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PN (a;b) n PN (a)oPN (b). Clearly, we want to add
D' l D., D.,

zw,~ to M' for eli~h such pair (w,v) in p(a;b) - p(a)Dp(bj so

ND
; 1

each

However for each zw,v' we need

To be precise, we should denotenames.same

of the formulae in the set z to be true at z in
w,v w,v

(Note that we have denoted both states in M' and

the

that pi (Bib)G pi (a)op' (b)

all

M' •

by

state x in ND by another name in MI but the introduction
, 1

of additional notation seems worse!) To create MI , we must

graft an appropriate submodel

This is easiest to see if we

of No onto M at each
,1

consider the models M and

z •W,v

as graphs.

and edges

directed

of G in

thei.e

of No
; 1

5ubgraphLet G be thew,v

Let G be the graph described by NO '
;1

in which nodes correspond to states

correspond to programs.

graph

which every node 1 ies on a path wi th source z
W,v (Note

that G = (V , Ew,v) where for each state xw,v w,v

there is a program c with (z ,x)
w,v

be helpful in the proof of Theorem

inPN (e).
D

10). ,1

w This will

Let M' = (W U (x in Vw,vl (w,v) in p(a;b) - p(a)op(b)},

II', P U U[Ew,v' (w,v) in p(a;b) - p(a)"p(b»). Let II' (p) =

II(p) U U(x in Vw,vl (w,v) is in p(a,b) - p(a)'p(b». By

Proposition 1 and construction, pi (a;b)!: pi (a)Dp' (b). It is

left to show that for all formulae p, M,WFP iff MI ,WFP.

We proceed by structural induction. If P is a proposi-

tional variable then M,wl=p iff M' ,WFP since our constr"uc-

tion left the truth value of the propositional variables
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unchanged at states in M. Similarly, if p is -q, or q v r,

it is straightforward to show that M,w~p iff MI,w!=p by

Induction.

Let p = (c>q. If c 1- a then M,W!=<c>q iff MI,w!=-<c>q

by induction (and since pee) = pi (e) for C F a). Let c = a.

Clearly, M,wl=<a>q implies M',w!=<a>q. Assume M' ,wp..:<a>q.

The nontrivial case is when (w,zw,v) is in pi (a) with

M',z I=q. Assume towards a contradiction that M,wF-<a>q.w,v

Then -q is in {ql M,wl=[a]q}. By construction, -q is in

se t 0 f fo rmulae.

Therefore, -q is in z w,v

(z ,v) inw,v
M' does not add formulae inconsistent with z ).w,v

This provides a contradiction,

in

Z (Note that (z ,Th(M,v» is already an edge in Gw,v w,v

labelled by program b and that z is a complete consistentw,v

Hence the addition of the edge

p' (b)

since by hypothesis, MI,z j=aq. ISJw,v

Theorem 6

Let M be a D
j
2-sound model

<a><b>p-Hajb>p. Then there is

where D
j2

is the schema

an extension HI of M with

1) pi (a)"pl (b) So pI (a~b)

2) For all states w in M and all PDL formulae p,

M,WFP iff MI,wl=p.
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Proof

We construct M' from M by connecting the graph of M as

follows:
ct~b------

"

Clearly pi (a)op' (b) ~JOI (a;b), showing 1).

For 2), we proceed by structural induction on p. If P

is a propositional variable then M,WFP iff MI ,wl=p since

the construction did not alter the truth value of any pro po-

sitional variable. The proof is straightforward by induc-

ticn for p = -q and p = q v r.

Let p = <c>q. Clearly M,wl=<c>q implies MI,wt=<c>q

since no edges were deleted during the construction. Let

(w,v) be an edge added to the graph of M. Then (w,v) is in

p' (a;b) for some programs a and b and there is a state u in

M with (w,u) in pea) and (u,v) in p (b) • By induction,

M' ,vf:-.q implies M,vpq. By D; 2' M,wF<a><b>q implies

M,wp.:<aib>q. Hence M,wF=(c>q. BI

TheoI"em 7

Let M be a Du-sound model where D
U

is the schema <aUb>p ~~

<a>p v <b>p. Then there exists a model MI which extends M

and in which
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1) p' (aUb) = p' (a) U p' (b)

2) For all w in M and all POL formulae p, M,wJ=zp iff

M',wl=p.

PI"OO f

We construct MI from M by connecting the graph of M as

follows:

If (w,v) is in p(a) U p(b) - p(aUb) then add the state

pail" (w,v) to pi (aUb) •

w~", ;'", ,----'
If Iw,v) is in p(aUb) - p(a) U plb) then

,
add the state pai r (w,v) to P (a)

if M,wt={a]p implies M,vJ=p for all formulae p

a.vb

w~v
.... 0.. " ....... _----

and

add the state pair (w,v) to pI (b)

if M,wl=[b]p implies M,vl-p for all formulae p

a.ub

w~v-
...... b /,"----
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We first show 2) a Proceed by structural induction on

p. Let p be a propositional variable. By construction,

only edges were added to the graph of M. Hence the truth

value of propositional variables at any state in M' remains

the same. It is straightforward to show that if p is _q or

g v r then 2) holds.

Let p = <a>q. Since we have not deleted edges from the

graph of M , clearly M,w!==<a>p implies HI,w!=<a>p. Con­

versely, let MI ,wt-= <a>p. Then there is an edge (w,v) in

pi (a) with MI,vpq. By induction, M,vJ=g. If (w,v) is also

in pea) then M,wp::<a>q. If not, then (w,v) must have been

added during the construction. But recall that we only

added edges (w,v) for which M,wF=[aJ r implied M,vf=r for all

POL formulae r. So in particUlar, M,vl=q implies M,wF<a>q.

Hence M,wl=<a>q iff MI,wf=(a>q. Similarly, if W,wi=<aUb>q

then M,wl=<a>q v <b>q by construction. By D
U

' M,w!-<a>q v

<b>q implies M,wp<aUb>q.

To prove 1), we wish to show that pi (aub) = p' (a) U

pi (b). CleaE"ly pi (a) U p' (b) ~ pi (aUb). Towards a con­

tradiction, assume that (w,v) is in p' (aUb) - pi (a) U p' (b) •

Then it must be the case that there are formulae C and D

with M,wF-[a]C" [b]D and M,vF==-C I\-D. But then by schemas

Du and DO' M,w!=[a]C"[b]D implies M,w!=[aUb] (CI\D). This

provides a contradiction since we also must have

M,Vp(c v D). Hence pi (aUb) = pi (a) U pi (b). B.
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Theorem B

Let M be D.-sound model where is the schema

(p v <a>p v <a*><a*>p) .... <a*>p.

which extends M and in which

Then there is a model MI

1) pi Ca) U pi (aO) U pi (a*)op' (a*) s;. pi (a*)

2) For all w in M and PDL formulae p, M,w!=-p iff

MI,wpp.

Proof

Construct M' from M by connecting the graph of M as

follows:

If (w,v) is in p(a O) - p{a.) then add the state pair

(w,v) to pi (a*).

It (w,v) is in pea) - p(a*) then add the state pair

(w,v) to pi (a*).

If (w,v) is in p(a*)Dp(a*) - p(a.) then add the state

pair (w,v) to pi (a*) •

w~.... 0..'" ",... - - -"



where (w,v) was added to p' (b)

Then b = a' for Some a and

hypothesis, (w,v) is in p (a) U

M,wl=(a>q v <a>q v <a*><a*>q.
M,wp(b>q. ~
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Clearly pi (a) U pi (aD) U pi (a*)op' Ca*)!: pi (a*). Property 2)

is also straightforward: Since the construction adds only

edges, M,WF-p iff H' ,wl=p for all propositional variables p.

By induction, 2) holds for p = -q and p = q v r.

Let p = <b>q. Since we have not deleted edges f["om the

graph, clearly M,wl==<b>q implies M' ,wl="<b>q. Let M' ,w!=<b>q

during the construction.

by induction, M,vJ::-q. By

p(a
O

) U p(a*'''p(a*), so

By D*, M,wJ:=:<a*>q. Hence

Theorem 9

Let M be a D?-sound model where D? is the schema <p?>qf-.)

p "q. Then there is a model M' which extends M and in which

1) pCP?) = {(w,w') I w is in IT(p) and wand w' are

indistinguishable} for all POL formulae p.

(Note that if all states in M are distinguishable

by POL formulae then pCp?) = {(w,w) I w is in

!Hpj)) •

2) For all win M and POL formulae q, M,wl=q ift

M' ,wl=q.
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Proof

Let wand w' be indistinguishable states, with w in

lI(p) . Then add the state pairs (w,w') and w',w) to p'ep?).

p?--,- ,, ,
w , '\I '

"=' /w
~

Clearly 2) holds. For 1), let M be a D?-sound model.

Let (w,w') be in p(p?). Then if wand w' are distinguish-

able, there exists a formula A with M,WFA and M,W' 1=-1\.

Hence M,wl=<p?>-A. Contradiction.

Hence wand w' are indistinguishable. By another applica-

ticn of D?, if (w,w') is in p(p?) then w is in IT(p). Hence

pCP?) Go {(w,w') I w is in II(p) and wand w' are indistinguish­

able}. The reverse containment holds by construction. 1:81

Theorems 5 - 9 can be combined in the proof of

Theorem 10

Let M be a !O-sound model. Then there is an extension MI of

M such that M' is a Loop Invariant model and for all formu-

lae p and all states w in M,

M,wl:=p iff .NlI,wl=p.
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Proof

Let M be a IO-sound model. We construct the extension

model MI of M as follows:

Let MO = M. Repeatedly apply Theorems 5 - 9 in order

generating an infinite sequence of models M
O

' M
I

, ••• In

each instance, construct model Mi +
1

from M
i

by applying one

of the theorems. Let MI = UM., i.e. MI = (W, IT, p) where
·,eo 1

w = UW.
i~o 1

TICP) = {wi there is an i with w in TIICP)}

for all formulae p

pCa) = {{w,v) 1 there exists an i with (w,v) in Pi (a)}

for all programs a

We will show that M' is a Loop Invariant model and M,wpp

iff M' ,wpp for all formulae p and all states w in M.

First note that M' is a model since II satisfies the

usual properties:

II!p v q) = TI!p) U [Ieq)

The state w is in IICp v q) iff there is an i with w in

IIi (p v q), iff there is an i with w in Il
i

(p) or IIi (q) (since

Mi is a model). Hence, w is in IHp) U IHq).
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The state w is in TI{p) U II(q) iff there is an i with w

in 11· (p) or there is an i with w in II. (p). Hence there is
1 1

an i with w in TIi (p v q) and w is in TICP v q).

Il(-p) - W - Il( p)

The state 'iN is in Tl(-p) iff there exists an i with w in

IT i (-p). Assume towards a contradiction that there exists a

j with w in~(p). Then let k = max{i,j}. By construction

and Theorems 5 - 9, Mi,wl=-p implies Mk,wl==-p and similarly,

Mj ,WFP impl ies Mk ,WFP. Contradiction. Hence for all i, 'iN

is not in IIi (p). Therefore w cannot be in nCp) •

Assume that w is in W - nCp). Then for all i, w is in

IIi (-p) since each Mi is a model. Hence w is in TIC-p) •

IH<a>p) - {wi there is a v with (w,v) in pCa) and v in nee)}

Let w be in n«a>p). Then there exists an i with w in

IIi «,>pl •

v ioIIi(p).

n< pi •

Hence there is a v in Mi with (w,v) in PiCa) and

By construction, (w,v) is in p(a) and v is in

Conversely, assume that (w,v) is in p(a) and v is in

n(p). Then there exist i and j with (w,v) in Pi (a) and v in

nj(p). Let k = max{i,j}. Then by construction and Theorems

5 9, (w,v) is in Pk(a) and v is in IIk(P). Hence w is in

Ilk «a>p) and consequently, w is in II«a>p).
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We have just shown that MI is a model. To show that MI

is a Loop Invariant model, we must show that the appropriate

semantic constraints on p hold in MI and that the induction

schema is valid in MI.

pla,bl = plal"pCb)

Let (w,v) be an input-output state pair in p(a;b).

Then there exists an i with (wrv) in Pi(a;b). By construc­

tion, (w,v) is in Pi+n(a;b) for all n> O. Hence after the

P i+n+m (a)op i+n+m (b)

plal"pCb) •

for some m.

next application of Theorem 5,

Hence

(w,v)

(w,v)

is

is

in

in

Conversely, assume that (w,u) is in pCa) and (urv) is

in pI bl • Then there exist i and j with (w, uJ in Pi I a) and

(u , v) in Pjlbl • Let k = max{ i r j} . Then by construction,

(w,u) is in Pk Ca) and ( u ,v) is in PkCb). By the next appli-

cation of Theorem 6, (w,v) will be in p{a;b).

pCaUb) = pCal U plb)

The proof is similar to the previous case and left to

the reader.

Again, the proof is straightforward and left to the

reader.
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pCP?) = {(w,W') I w is in ITee) and W, w' are indistinguish-

able}.

The proof is left to the reader.

Clearly, MI is an extension of M. Rende HI will be a

Loop Invariant model once we show that the induction schema

I holds in MI (Le. MI F=<a*>p-iIJ(p v <a*> (-PI\ <a>p»). First

we show that for all states w in H, M,w~p iff MI,WFP.

Let p be a fo ["mula.

MI,WFP.

Since

Now suppose MI ,wl=p.

M = MO'

Then there

M,wl=-p implies

exists an i with

Mi ,wl-p. Assume towards a contradiction that MO,wl=-p.

Then by construction and Theorems 5 - 9, MiiWFz-P. Contrad­

iction since Hi is a model. Hence HI,wl=p and M,wl=p iff

M',w!=:p.

In particular for all states w in M, M' ,wl==r (where I

is the induction schema) • We would like to show that M I J=:: I.

Let x be a state in M' but not in M. Then x was added dur-

ing some appl ication of Theorem 5 to a model M. to form
1

model
Mi +1 •

Hence for some states w and v in Mi and some

program c, (zw,v'X) is in Pi+l(C). In particular, (w,x) is

in Pi+l (a;c) for some program a. If w is in M' - M, we can

find some descending sequence of M.'s such that eventually,1

there is a state u in M and programs c, c 1 ' ... ,c k '
a, aI' ... ,a k such that (u ,x) is in PO(al;cl;···;a;c) •
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Since the cho ice of x was arbitrary and

MI ,u!=[a1;c1; ••• ;a;c]I, W \:-1. Hence MI is a Loop Invariant

extension of M. 3

Corollary 2

Let ~D be the class of tD-sound models and LI be the class of

Loop Invariant models. Then Th(~D} = Th(LI).

Proof

By Theorem 4, everylD-sound model is a Loop Invariant

model. Hence Th(LI).S:.Th(Mld.

By Theorem 10, every ID-sound model M can be embedded in

a Loop Invariant model MI. Hence, Th(M') s:;; Th(M). In addi-

ticn, if MFA then for all w in M, M,wf=.A; so, for all

states w in M, M' ,wf:o;.A. We wish to show MI,WFA for all w

in M' - M. Since M is a model and A is in Th(M), [alA is in

Th(M) for all programs a. Let w be a state in MI
- M. By

the techniques used to show M' 1==1 in the proof of Theorem

10, there exists a program c and a state u in M with (u,w)

inp'(c). Since M!=A implies M,u!=[c]A, W,ul=[clA by

Theorem 10. Hence M' ,wf=.A. Since w was arbitrary, M' ,wl=A

for all states in M'. Hence M' F="A. Therefore Th(M) =

Th (M') and Th (1'\IJ~h (LI). ll!I
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Cot"ollary 3

1DUD
O

is a sound and complete proof system with respect

the classes of Standard and Loop Invariant models.

to

By Corollary 2, Th<,O) = Th(LI). By TheOl"em 1, Th(S) =

Th(L1). By Corollary 1, PrOD U Dol = Th('lD)· I!!I

section 5: Conclusion

The main focus of this paper has been to develop alter-

native classes of models for PDL and their relationship to

the class of Standard models for PDL. Parikh first

described a nonstandard class of models for PDL in order to

pI"OVe completeness for 10 with respect to the Standard models

in [Pat-] • Most recently, Pratt discusses the use of 000-

standard models for verification in Dynamic Logic [pratt2J.

But to our knowledge, this work is the first to focus on the

semantic constraints induced by the regular program opera-

tOt"S U, ;, * and? in POL and to focus on the relationship

between the class of Standard models and alternative classes

of models for POL. We also present a new class of inter pre-

tations for POL, the class of D-sound models.

The results presented here show a flexibility in

interpretations for PDL. The class of Standard models
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reflects most strongly our intuitive perception of how to

represent flowchart schemes but the representation of

unbounded finite iteration (the construct represented by *)

makes decision procedures for the language unwieldy ([F&L21)

and completeness results difficult to prove ([pat"l,

[Pratt3]). The class of Loop Invariant intet"pretations

would probably simpl ify decision procedures and satisfies

the same set of true formulae as the class of Standard

models. The natural proof system ID can also be shown to be

complete with respect to the class of Loop Invariant models

without the aid of a small model theorem [par].

The class of D-sQund models presented here yields a

general completeness technique tor any set ot consistent

formulae which would characteri ze the behavior of progt"am­

ming constructs (as the schemas ID characterize the intended

behavior of U, i, * and ?). This is applied to the schemas

10 to derive completeness of the class of lo-sound models in

Section 3 and of the classes of Standard and Loop Invariant

models in Section 4. Al though completeness of the classes

of Standard and Loop Invariant models is not new ([par},

{K&P], [pratt3}, etc.), our method of proof can be easily

expanded to include new programming constructs such as II

(shuffle) for parallel programs, -1 (reverse), n (intet"sec­

tion), etc. In addition, the construction in the proofs of

Theorems 5 - 9 sheds light on the nature of the constt"aints

induced by schemas 10 on the graphs of models ot POL.
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Theorems 5 - 10 show the close relationship between 10­

sound and Loop Invariant models. Given that semantic con­

straints on state-to-state transitions cannot be completely

specified in the language of PDL, Theorem 10 shows that we

can nonetheless come quite close to describing these transi­

tions. Tn addition, when such models fail to satisfy these

constraints, they do so by leaving out state-to-state tran­

sitions rather than by including inappropriate ones. Such

t'esults also support the naturalness of the set of axiom

schemas 10.

The development and study of nonstandard classes of

models is motivated by their natural interpretation of POL

formulae and by their simple description and ease of techn­

ical manipulation. We hope to have co.ntributed to that

study here.
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