Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1980

Models for Verifiers
Francine Berman

Report Number:
80-343

Berman, Francine, "Models for Verifiers" (1980). Department of Computer Science Technical Reports.
Paper 273.
https://docs.lib.purdue.edu/cstech/273

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

MODELS FOR VERIFIERS

by

PFrancine Berman

Dept. of Computer Science -
Purdue University
W. Lafayette, IN 47907

CSD-TR 343

MODELS FOR VERIFIERS

by

Francine Berman

Purdue University

The research repotted here was supported in part by NSF
Grant MCS77-02474. Most of the results of this paper
are from the dissertation of F. Berman written at the
University of Washington under the direction of R. W.
Ritchie, Some of the results were presented at the
11th Annual ACM Symposium on the Thecry of Computing,
May 1979, under the title "A Completeness Technique for

D-axiomatizable Semantics.”

Abstract

We discuss three classes of models which interpret a
natural proof system for Propositional Dynamic Logic. We
compare their usefulness as models for verification and show
that each of the three classes satisfy the same set of for-
mulae. One of these classes can be used to give a simple
proof of completeness of a natural proof system for Proposi-
tional Dynamic Logic. By the equivalence of their theories,
this implies the completeness of each of the three classes

of models.

Introduction

Propositional Dynamic Logic (PDL) is a formal 1language
for reasoning about programs. As with flowchart schemes,
programming constructs such as assignment are suppressed and
programs in PDL are represented in a streamlined form as
regular expressions with tests. Hence the language provides
a description of the flow of control of a program. PDL also
acts as an assertion language in which we can represent ter-
mination, partial correctness, failure conditions and loop

invariance.

In this paper, we begin by describing the syntax and a
proof system D for PDL. This proof system is natural in the
sense that it characterizes the program operators U, ;, *,
and ? as representations of the program operations (non-

deterministic) branching, sequential execution, iteration

and test, (This is analogous to the way that boolean opera-
tors - {(not) and v (or) are characterized axicmatically in
Propositional Calculus)., We then describe three classes of

interpretations (models) for PDL.

The tirst of the classes is called D-sound and is sim-
ply defined as the set of models in which a set of formulae
D is valid. The second and third classes semantically res-
trict the program operators U, ; and ? to correspond to
(nondetgrministic) branching, sequential execution and

tests.

In the class of Loop Invariant models, the program con-—

struct * represents both finite sequences ¢f iterations and
infinite halting sequences of iterations. This represen-
tation ensures the correct interpretation of loop invariant

assertions.

In the class of Standard models, we restrict further
and assume the construct * represents only finite sequences
of iterations, i.e, we interpret * as the Kleene star
{(reflexive and transitive closure}. For D =D, the class of
{D~sound models is properly contained in the the <class of
Loop Invariant models which is propertly contained in the
class of Standard models (in order of 1increasing semantic

restrictkion).

Although the D-socund models seem the most general class

of interpretations, we show that for the proof system |D, all

three classes of models satisfy precisely the same set of
formulae, Moreover, we prove a stronger result: we show
that any |D-sound model can be extended to a Loop Invariant
model without changing the truth-value of any PDL formula at
any of the original states, This somewhat surprising result
shows that the axiom schemas |ID characterize correctly the
intended behavior of the programming constructs for branch-

ing, sequencing, tests and (finite and infinite) iteration..

Section 1 of this paper provides a syntactic definition
of Propositional Dynamic Logic and describes the proof sys-
tem [D mentioned above. Section 2 introduces the three
classes of semantics for PDL: D-sound models, Loop Invariant
models and Standard models, In Section 3, we show the com-
Pleteness of a proof system (with axiom schemas D) for the
class of D-sound models. Section 4 concludes the technical
part of the paper by showing that each {D-scund model can be
extended to a Loop Invariant model and vice versa. Using
the completeness result in Section 3, we obtain the com-
Pleteness of the natural proof system |D with respect to each
of the <c¢lasses of Loop Invariant and Standard models as a

corollary. In Section 5, we draw conclusions.

Section 1: PDL and the Proof System D

Propositional Dynamic Logic was first introduced by M.

Fischer and R. Ladner in [F&Ll}. The language is a simple

and elegant example of the set of languages for reasoning
about programs loosely based on Floyd-Hoare triples [Apt].
Many of these languages combine program descriptions with
ptogram assertions through the use of variants of the clas-—
sical modal operators [] and <>, Among these languages are
Pratt's Dynamic Logic ([Prattl], [Harel]), Salwicki, Mir-
kowska et al's Algofithmic Logic ([Sal]), Pnueli's Temporal

Logic ([Pnueli])} and Manna's Modal Logic ([M & P]).

In PDL (and Propositional Algorithmic Logic), details
of the program structure are suppressed and programs are
represented as regular expressions with tests, The simplest
formulae in PDL are propositional assertions. By using Pro-
positional Calculus rather than Predicate Calculus for the
underlying assertion language, the inherent decidability of
the satisfiability of such formulae can be used te build a
decision procedure to determine satisfiability of arbitrary
formulae of PDL ([F&L2]). As a conseguence, decision pro-
cedures for PDL may be used to partially automate verifiers

in richer languages [Pratt2].

We begin by introducing the language (syntax) of PDL.

We finish this section by giving a natural proof system ID

tor PDL.

Szntax

The basic objects of PDL are two sets of primitives:
@0 the basic formulae (primitive assertions)

3

0 the basic programs.

Both formulae and programs in the language are con-
structed recursively from the basic formulae @0 and the
basic programs EO as follows

1) Basic programs (elements of EO) are programs.

2) Basic formulae (elements of QO) are formulae.

3) If p and q are formulae then -p and p v q are for-

mul ae.

4) If a and b are programs and p is a formula then

a;b, aub, a* and p? are programs.

5) If a is a program and p is a formula then <a>p and

[a]l]p are formulae,

The notation was chosen for the natural association

with operations on regular expressions, hence

aub is intended to mean "nondeterministically execute a
or b"
a:b is intended to mean "execute a then execute b"

a* is intended to mean "execute a some nondeterministi-

cally chosen number of times" and
p? is intended to mean "test p and fail if false.”

Expressions in PDL can be used to describe the basic
statements Iin a simple structured programming language. In

particular,

BEGIN a ; b END

can be represented as a;b,

IF p THEN a ELSE b

can be represented as p?;a U -p?:;b,

WHILE p DO a

can be represented as (p?;a)*;-p?.

Formulae in PDL are intended to represent program
assertions. Formulae which combine programs and assertions
in one of the forms [b]lp or p can be used as program
specifications. The modalities [b] and are intended to
represent the change from an initial state fo a final state

upon termination of a computation of program b. The box

([bl) and diamond () forms differentiate between every
terninating computation of b and some terminating compu-
tation of b (the same when program b is deterministic) so
that

[alp is intended to mean "Whenever program a ter-

minates, assertion p is true."

and

<a>p is intended to mean "Program a can terminate

with assertion p true."

(Note that [] and <> are duals of each other, i.e. we intend

{1 to represent -<>»-).

In PDL, we can express several important properties of

programs.
PARTIAL CORRECTNESS

Using Floyd-Hoare triples, we can represent partial
cerrectness and the weakest 1liberal precondition
([Dij]) of a program a: The triple P{a}Q corresponds to
the PDL formula P—[a)Q; the weakest 1iBeral precondi-

tion wlp(a,Q) is the PDL formula [a]Q.
TERMINATION

PDL formulae can express both the possibility and

impossibility of termination, i.e.
[a] £alse represents "program a nhever terminates.”

and

<a»true represents "some computation of program a
terminates." (When a is deterministic, this

says "a always terminates").

LCOP INVARIANCE

In PDL, we can represent both program iterations and
invariant assertions. Hence 1loop invariance can be
represented by the formula [a*]p, i.e. p is true before

or after any number of iterations of program a.

A Proof System

In order to wuse PDL as a language for proofs of
correctness, we give the proof system ID, first introduced by
Segerberg [Segl] and Parikh [Par]. This proof system is
natural in the sense that the programming constructs u, ;, *
and ? are axiomatically characterized as (nondeterministic)
branching, sequential execution, (finite and infinite)
iteration and tests in the same way that v and - are charac-

terized as disjunction and negation in proof systems for

Propositional Calculus.

We take as axioms for the proof system ID all instances

of the following set of schemas

D <a;b>p e2<a>p

- 10 -

DU <aUb>p «» <a>p v p
D? P?>gE& pAag
P = <a*>p
<{a>p—3<a*>p
D, <a*><a*>p-3<a*>p

<a*>p-+(pv<a*>(—p»n<a>p))

{induction)
<a>(p v gjed <adp v <a>q
Dy [al (P—a)—([alp—fa)q)

Substitution instances of pPropositional tautologies.

We take as rules of inference

Modus Ponens: From A and A-B, infer B.

and
Necessitation: From A, infer [a]A.

(We will refer to both the set of formulae and the proof

system described here as b when the context is clear).

It is interesting to note that the provable formulae of
this system give a Herbrand interpretation ([Grei]) to PDL
formulae with respect to the intended decomposition of the

pProgramming constructs.

- 11 -

Section 2: D-sound, Loop Invariant and Standard Models

In this section, we introduce three classes of models

for PDL.

We first describe the class of D-sound models. The
" class of D-sound models is simply the set of models of PDL
in which a given set of formulae D is valid and in which -,
v, <> and [] retain their intended (usual) interpretations.
This class provides a general interpretation iﬁ which the
theorems represent the set of correct formulae which would
be produced by a PDL verifier with the formulae D acting as
program specifications. Other than preserving the correct-
ness of these specifications, D-sound models have no other
semantic restrictions on programs. (Although these con-
straints seem weak, we will show that for an appropriate set
ot formulae D (for example, |D), the validity of such formu-

lae induce strong semantic restrictions).

The second class of models is the c¢lass of Loop Invari-

ant (LI) models. In Loop Invariant models, programs are
interpreted as regular expressions (with tests) with one
important exception: the programming construct * in LI
models represents both finite iteration (as with regular
expressions) and infinite halting iteration. Roughly, this
means that a formula [b*]p will express the loop invariance
of assertion p but the program b* represents terminating

computations which may include more than the set of all fin-

ite iterations of program b, In particular, the programs b*

- 12 -

and b in Loop Invariant models are related but not in the
obvious way (with * as reflexive and transitive closure).
LI models have stronger semantic constraints than D-sound

models but are less constrained than Standard models.

The third class is the class of Standard models. In
Standard models, the programming constructs U, ;, ? and *
are interpreted as operations over regular sets (where p?
would be interpreted as a single symbol, the assoclated set
representing the diagonal of pairs of states at which p was
true). In particular, * operates as reflexive and transi-
tive closure so that the program b* represents all finite
iterations of program b. The class of Standard models are
the most semantically constrained of the three c¢lasses but
also provides the intended interpretation of programs given
in Section 1 . (The class of Standard models is the class
most widely associated with PDL in the literature for pre-

cisely this reason).

In spite of their apparant differences, we show in Sec-

tiens 3 and 4 that all three classes are closely related.
Definition: A model M of PDL is a triple M = (W, TI, p) in
which

W is a set of states,

I is a valuation which assigns to each basic assertion

a set of states (at which that assertion is true)

- 13 -

P is a valuation which assigns to each program a set of
pairs (wl,wz) of states
(where (wl,wz} assigned to program b means that
starting in state Wi b may terminate in state w

2) -

We extend TI to interpret all formulae as follows:
II-p) = W - IO(p)
I[I{p v q) =T1I(p) U [I(q)

O(<a>p) = {wl Jv({ (w,v)ep(a) A vell(P))}.

Note that in general, a model only restricts the way in
which the 1logical connectives and modal operators may be
interpreted. An interpretation is given to every program
and formula but in some models this may be completely arbi-
trary with respect to the way component parts of programs

may interact.

Let M = (W, [T, p) be a model, We 1let the notation

M,wk=A denote the statement "w is in II{A)".

Let M be a model. Then Th(M) is the set of PDL formu-—
lae {A| for all w, M,wk=A}, denoted the theory of M. (If A
is in Th(M), we also say Mi=A). Given a class of models M,

let Th(M) denote {\ Th(M).
rMe M

Let M be a model and let w and w' be states in M. We

say that w and w' are indistinguishable in M if for all PDL

- 14 -

formulae p, M,wk=p iff M,w'F=p. (When the model 1is clear,

we simply say that w and w' are indistinguishable).

Definition: A Loop Invariant (LI) model is a model in which

the program valuation function is constrained as follows:

pla;b) = pl{a)ep(b)
p(aub) = p{a) U p(b}
p(p?) = {(w,w")] w and w' are indistinguishable and

w is in II(p)}
p(true?)c p(a*)
pla)spla*)
p(a*)op{a*) s pla*)
[(<a>p-3(p v <a*>(-paca>p})) = W.

Loop Invariant models were called nonstandard models in
[Par] and Parikh models in [Bel]. They were first intro-

duced by R, Parikh in [Par].

Definition: & Standard model is a model in which the pro-

gram valuation function is constrained as follows:

p{a;b) = p(ajep(b)

plalb) = p(a) U p(b)

- 15 -

p(p?) = {{w,w')| w and w' are indistinguishable and
w is in TI(p) }

. p(a*) =0 p(an) {where a0 = true?)

Lo b1 -]
Standard models were first introduced by M. Fischer and R.

Ladner in [F&Ll] and later in [FsL2].

Note that the class of Standard models is a proper sub-
class of the class of Loop Invariant models. However, these
classes are closely related. By definition, star-free for-
mulae are interpreted precisely the same way in LI and Stan-
dard models. In addition, since no single PDL formula can
distinguish the representation of finite and infinite halt-
ing iteration from (unbounded) finite iteration, the classes
ot Loop Invariant and Standard models satisfy precisely the

same theories. We note this in the following

Theorem 1

Let S be the class of Standard models and LI be the class of

Loop Invariant models of PDL. Then Th(S) = Th(LI).
Proof

Let M be a Standard model. Then M is an LI model since

it is straightforward to show that the induction schema

<a*>p—=2(p v <a*>(-pA<a>p))

- 16 -
is valid in M.

That Th($)<& Th({LI) was shown in [Par]. ™

For D =D, it is also true that Th{(b-sound) = Th(LI).

We demonstrate this two ways at the end of Section 4.

Section 3: Completeness

In defining the proof system |ID in Section 1, we claimed
that the axiom schemas provided a natural and useful set of
program specifications with which to construct portions of
an automatic verifier. In interpreting input and output
specifications for such a verifier, it is important that our
notion of a verification is reasonable (soundness) and that

correct programs are verifiable (completeness).

The weakness of the semantic restrictions on D-sound
models makes it seem plausible that a proof system based on
axiom schemas D would be sound and complete with respect to
the c¢lass of D-sound models. This is indeed the case as we

show in this section.

We begin with some definitions. Let D be a set of for-
mulae. . Let PD denote the proof system with axiom schemas D
and rules of inference Modus Ponens and Necessitation (see

Section 1). A proof in Py is a sequence of formulae, each

- 17 -

of which is an axiom or derived from previous formulae in
the sequence by application of a rule of inference. The
last formula in a proof is provable. Let the notation }a
denote the statement "A is provable". A set of formulae 5

is inconsistent iff there is a finite subset {Sl, ‘oo ,Sn}

of 5 and a formula A with F(Sla.unsn}—a(A A=-A). A set of
formulae is consistent iff it 1is not inconsistent. Let
Pr (D) denote the set of provable formulae of PD. (Recall
that we denote the valid formulae of a class of models M by

Th({M)) .

Let D be a consistent set of formulae. Let MD be the

class of D-sound models. We will show that PDUD is sound

and complete with respect to MD, i.e. Pr(D U DO} = Th(MD).

o

{We include the schemas D0 as axioms in the proof system to
ensure the usual behavier of -, v, <> and I[1]. It is
straightforward to show that all models are Do—sound
models), The proof of completeness uses a classical Henkin
construction and 1is a generalization to this system of the
modal techniques found in [Seg2]. As a corollary of this
result and the theorems in Section 4, we will also show

soundness and completeness of [D with respect to the classes

of LI and Standard models.

Theorem 2 (Soundness)

Let D be a consistent set of formulae., Let MD be the c¢lass

of D-sound models. Then Pr(DUDO)EETh(MD).

18.
Proof

It is sufficient to show that the formulae D U D0 are
valid in MD and the rules of inference preserve validity.
By definition of model, DOE-Th(MD) . By definition of D-~

sound, D=Thi{M It is straightforward to show that Modus

D *
Ponens and Necessitation preserve validity. B

Theorem 3 (Completeness)

Let D be a consistent set of formulae. Let MD be the c¢class

of D-sound models. Then Th(MD)gPr(D U DO) .

Proof

We prove the contrapositive: If a formula A 1s not
provable then there 1is some D-sound model in which -A is
satisfiable (so A is not wvalid). In fact, we prove a
slightly stronger result: There is a model Ny in which the
negation of every unprovable formula 1is satisfiable. We
construct ND given a consistent set of formulae D U D0 as

follows:
Let ND = (W, T, p) where
W= {w {all formulae}]|

i) For all formulae A, A is in wor -A is in w but not

both.

- 19 -

ii) For all formulae A and B, if A—B and A are in w

then B is in w.

iii) Pr(D U Dy)g w.

(i.e. W is the set of all consistent complete extensions of

DU DO}.
I(py = {wl p is in w} for p in %,
p(a) = {(w,v)1 VYA, [alA in w = A is in v}

for any program a.

Extend [I to an interpretation of all formulae in the wusual
way (see Section 1) so that ND is a model of PDL. Notice
that ND is essentially a modal version of the model con-
structed in the classical Henkin proof of the completeness

of Predicate Calculus. Our proof will be analogous to this

construction in that we will show that

a) ND is a bD—-sound model. (ND is in MD).

b) The negation of every unprovable formula A is

satisfiable in ND.

To show a) and b), we first prove the following
Lemma l

For all formulae A, and for all states w in W,

ND,wI==A iIff A is in w.
Proof (After Segerberg [Seg2])
Proceed by structural induction on the formula A.

If A is a basic formula then by definition, w is in

TI(a) 1ff A is in w.

It is straightforward from the definitions to show that
the result is true for formulae of the form A = B v C and

A = -B. Let A = [a]B.

We wish teo show that ND,wb=[a]B implies that [a)B is in
w; Assume towards a contradiction that this is not the
case. Consider the set 5 = {C| [a]C is in w}. We wish to

show that 5 is consistent.

Assume S is inconsistent. Then there exist formulae

Cl' e ,Cn in S and a formula E with

"Clh «++AC — (EA-E) by definition.
But then

Vlal (Cl"‘ R Cn) -3 [a] (E A-E) and

[lal (EA -E)-—>[a]B by Necessitation and Dy~
Hence

}{a]Cln...n[a]Cn—a[a]B.

Since each state w contains all the provable Eformulae and

- 21 -

by definition [a]Ci is in w for each i, [alB must be in w.

. This contradicts our assumption that S was inconsistent.

Now consider the set T = S U {-B}. We would 1like to
show that the addition of -B preserves the consistency of S.
The proof is analogous to the previous argument: Towards a
contradiction, the only reasonable candidates for an incon-
sistent subset of S are sets including -B. We can apply the
same procedure as before to derive the contradiction that

[a}B is in w. Hence T is consistent.

Since T is consistent with respect to D U DO' DU D0 u
T is consistent. Extend this set to a state v in W in the
classical way, i.e. let Py Por see be an enumeration of the
0 = DU D0 U T. Recursively define

to be v, U {pn} if this set is consistent and v, U {-pn}

formulae of PDL, Let v
vn+1
otherwise, Let v =rgovn. Then it is straightforward to
show that v is a complete consistent set of formulae and

hence a state in ND'

8ince T is a subset of v, (w,v) is in p(a) by defini-
tion. Recall that by hypothesis we had ND,wk=[a]B. Hence
{w,v) in p(a) implies that v is in TI(B). But this provides

the desired contradiction since by induction, ND,VF=—B.

We have shown that ND,wh=[a]B implies that [a]JB 1is in
w. For the other direction, let [alB be in w, and assume
towards a contradiction the ND,wh=-[a]B. Let (w,v) be an

input-output pair in p(a) and v a state at which -B is true,

- 22 =

By definition, (w,v) in p(a) implies that for all formulae
C, [alC is in wonly if C is in v. 1In particular, [a]B in. w

implies that B is in v. Contradiction.

Hence for all formulae A, Ny, wi=A 1£f A is in w. B

We can use Lemma 1 to prove both a) and b). Since the
formulae D are in every state w in N.., ND,wI=D For all w.
Hence each formula of D is valid in ND and ND is a D-sound
model (proving a). To show b), let A be an unprovable for-—
mula. Then {-A} is consistent with respect to D U Dy~
Extend D U D0 U {-A} to a state w in ND by the procedure
given in Lemma 1., Alsoc by Lemma l, -A in w implies that

ND,wh=—A. Hence A is satisfiable in ND. X

Corollary 1

Pr(D U DO) = Th(MD).

A particularly nice property of N, is that if any of
the schemas in D are included in D, the corresponding seman-—
tic restriction on program interaction holds for the acces—
sibility relation p in Nn. Recall that in the construction
ot ND' program interaction was not explicitly specified by
semantic constraints on P (i.e. ftor an arbitrary D-sound

that
model M,sthe schema <alb> p < <a>p v p s in D does not

23

necessarily imply that p (allb) = P (a) U g (b) holds in ™M
[Be2]). We show this property for one implication of the

schema D, (for sequencing) for N_ in the next proposition.

D
{Note that in particular, if D =|D, HD is a Loop Invariant

model}.

Proposition]}

Let D be a consistent set of formulae which inludes all

instances of the schema
<a;b>p-=><a>p.

Then p(a;b) & pfalep(b) in ND.

Proof

Let (w,v) be an input-output state pair in p(a;b). Let

n' = {pl p in v} U {pl [alp in w}.

We wish to show that u' is consistent. Towards a con-
tradiction, the only reasonable candidate for an incon-
sistent subset is {pl, p2, ces g pn, Qpren- ,qk}
where Pys +ee /P, are in v and [a]ql, .. ,[a]qk are in w.

i : -aw _) aaa i i
Since <a,b>(p1h »\pn) <a>(plh “pn) is in Pr{(D U DO)
and ND,wF=<a;b>(pln .../\pn) then by Lemma 1, there is a
state x with (w,x) in p(a) and ND,x|a(plf\ se« APyl . X is
a complete and consistent set which includes the formulae
(pl;\ I S pn) A qlh cee NG and

“(PlA cne A(b)pnA q; A ...Aqk) - Contradiction, hence u'

._24_
is consistent.

Extend u' U D U D0 to a complete consistent extension

u. By construction, u is in ND. We claim that (w,u) is in

p(a}) and (u,v) is in p(b). To see this, note that for all

formulae p,

{alp in w implies p in u
and

P in v implies p in u.

Hence (w,v) is in p(a)op(b). B

Section 4: Semantic Constraints in ﬂn

By completeness, for D =)D, the class of ID-sound models
satisfies all and only the correct formulae given by the
natural set of program specifications |D. The semantic con-
straints implied by the validity of these schemas seem weak:
If we represent a model of PDL by a directed graph in which
nodes represent states and edges represent programs, a |D-
sound model cannot even guarantee for example that given the
input-output state pair (w,v) for a branching program aub,
that (w,v) is an input-output state pair for component pro-
grams a or b. In an LI model, such a constraint is

quaranteed by the semantic restriction p(alb) = p{a) U p(b).

- 25 -

It is somewhat surprising then, that every |D-sound
model can be extended to a Loop Invariant model, Further-
more, we can construct such an extension so as not to change
the truth value of any PDL formula at any state of the ori-
ginal {(D-sound) model. We exhibit this construction in

Theocrems 5 - 9 and prove the result in Theorem 10.

Conversely, we would 1like to show that every Loop
Invariant model is a |D-sound model. This is trivial and
demonstrates our contention that the semantic restrictions
‘"of * Loop Invariant models are at least as strong as the
axioms which induce them. As a corollary of these results,
we will show that Th(ﬂD) = Th(LI). This, together with the
general completeness proof of Sectidn 3 will show that the
proof system [D is complete with respect to the classes of

Loop Invariant and Standard models.
Theorem 4
Let M be a Loop Invariant model. Then M is a [D-sound model.

Proof

Let M be a Loop Invariant model. It is sufficient to
show that each of the schema in |D hold in M. This is

straightforward and left to the reader. g

We are aiming at the following result:

- 26 —
Theorem 10

Let M be a [p-sound model. Then there is an extension M' of
M such that M' is a Loop Invariant model and for all formu-

lae A and all states w in M,

M,wk=A 1iff M!',wk=A.

In fact, an even stronger version of this result is true.
If we separate the axiom schemas of |D according to their
manipulation of the programming constructs U, ;, * and ?,
the theorem is true for each group of schemas independently.

These results are given in the following set of theorems.

Theorem 5

Let M be a D_l—sound model where D_l is the schema

<a;b>p-d<a>p. Then there is an extension M' of M with

1) p'l(a;bjep’ ialop' (b)

2) For all states w in M and all ©PPL formulae p,

M,wk=p iff M',wk=p.

Proof

Let M = (W, II, p) and 1let (w,v) be an input-output
state pair in p(a;b) - p(a)ep(b). For each such pair, we

will construct a new state z such that (w,z) is in
W,V W,V

- 27 -

p'(a) and (zw’v,v) is in p {b). (We will also add other new
states and edges to preserve satisfiability at w). M' will

result from applying this construction to each such (w,v) in

pl{a;b) - p(ajep(b). ok

For convenience, let Th{M,x) denote {p| M,xk=p} for any
state X in M. Consider Th{M,w), Th(M,v) for the states w, v
given above. Note that each of these sets of formulae are
complete and consistent (in the sense of Section 3). 1In
particular, we can assosciate with each state x in M, the

state Th(M,x) in ND . (Note that this mapping may not be
;1
r

one-to—-one bécause of indistinguishable states in M. For

this reason, we will graft the parts we need from ND onto
7l
r

M to create the extension M'), 1In addition, if x and y are

states in M with (x,y) in p(c¢) then (Th(M,x},Th(M,y)) igs in

Py (c) for any program c. Hence (Th(M,w),Th(M,v)) 1is in
D

py ‘(a;b). By Proposition 1, (Th(M,w),Th(M,v)) is also in
D

Pu ;l(a)opN (b) . Hence there is a state z, 6, in N, with
r - l

H . . t

6} in PND (a) and (zw'v,Th(M,v)) in PND (b) .

In addition, we can asside by the construction given iht

(Thiﬁ,w),zw'
the
proof of Proposition 1 that {pl| [alp is in w} U {pl p is

i is a s .
in v} ubset of zw,v

What we've done so far is exhibited an appropriate

state A in N so that (Th(M,w),Th{M,v)} is in
W,V D°l

- 28 -

Py (a;b)f\ PND (a)opN (b). Clearly, we want to add

1

- D-
2 to M' for eaéh such p%ir (w,v) in pla;b) ~ p(a)op(b) so

H

that p'(a;b)e o' (a)ep'({b). However for each z we need

w,v’

all of the formulae in the set z to be true at z in
W,V W,V

M'. (Note that we have denoted both states in M' and ND
;1

I
by the same names. To be precise, we should denote each

state x in ND by another name in M' but the introduction
il
1

of additional notation seems worse!} To create M', we must
graft an appropriate submodel of ND onto M at each =z

;1
r
This is easiest to see if we consider the models M and N

w,v’
D;l
as graphs,

Let G be the graph described by Ny i.e the directed
Hal

graph in which nodes correspond to states of N and edges

D
;1
correspond to programs, Let Gw v be the subgraph of G in
r

which every node lies on a path with source Z, y- (Note
r

E) where for each state x in V

that G o = (V, or E, wov
there is a program ¢ with (zw'v,xJ in pND (c). w This will
be helpful in the proof of Theorem 10). il

Let M' = (WU (x in v I (w,v} in p(a;b) - p(a)ep(b)},

W,V

nm, pu U[Ew,vl (w,v) in p(a;b) - p{a)ep(b)}). Let I'(p) =
II{p) U Uf{x in v&,vl (w,v) is in p(a;b) - p(a)ep(b)}. By
Proposition 1 and construction, p'(a;b)g.p'(a)op'(b). It is

left to show that for all formulae Pr M,wk=p 1iff M' ,wk=p.

We proceed by structural induction. If p is a proposi-
tional wvariable then M,wkp iff M' ,wlk=p since our construc-

tion left the truth value of the propesitional variables

- 29 -

unchanged at states in M, Similarly, if p is -q, or g v r,;
it is straightforward to show that M,wlmp iff M',wk=p by

Induction.

Let p = <c>q. If ¢ # a then M,wk<c>q iff M',wkE=<e>q
by induction (and since p(c) = p'{c) for c g a). Let ¢ = a.
Clearly, M,wlk=<a>g implies M' ,wk<a>q. Assume M' ,wk=<a>q.

The nontrivial case 1is when (w,zw v) is in p'(a) with
]

M',zw Vk=q. Assume towards a contradiction that M,wk=-<a>q.
r
Then -g is in {ql M,wF[alq}. By construction, -q is in

zw,v‘ (Note that (zw'v,Th(M,v)) is already an edge in G

labelled by program b and that Z, o is a complete consistent
r

set of formulae. Hence the addition of the edge (zw v,v) in
[

'{b) in M' does not add formulae inconsistent with =z Y.
P W,V

Therefore, —q is in z This provides a contradiction,

w,v"

since by hypothesis, M',z F=q. 4}
r

Theorem 13

Let M be a D .-sound model where D is the schema

;P2 P2
<a>p—<a;b>p. Then there is an extension M' of M with

1) p'(a)ep'(b)sp'(a;zb)

2) For all states w in M and all PDL formulae p,

M,wEp iff M',whep.

- 30 -
Proof

We construct M' from M by connecting the graph of M as

follows: ab

Clearly p'(a)op'(b)sap'(a;b), showing 1).

For 2}, we proceed by structural induction on p. If p
is a propositional variable then M,wEp iff M ,wl=p since
the construction did not alter the truth value of any propo-

sitional wvariable. The proof is straightforward by induc-

tion for p -qg and p=q v r.

Let p <e>q. Clearly M,wk=<c>q implies M, wk<c3g
since no edges were deleted during the construction. Let
(w,v) be an edge added to the graph of M. Then (w,v) is in
p'(a;b) for some programs a and b and there is a state u in
M with (w,u) in p(a) and (u,v) in p(b). By 1induction,

M' ,vimqg implies M,vi=q. By D M,wk=<a>q implies

;2!
M,wk=<a;bd>q, Hence M,wk<c>q. K

Theorem 7

Let M be a DU—sound model where Dy is the schema <aUb>p &>

<a>p v p. Then there exists a model M' which extends M

and in which

- 31 -
1) p'(aub) = p'(a) U p'(b)
2) For all w in M and all PDL formulae p, M,wl=p iff
M' ,wk=p.
Proof

We construct M' from M by connecting the graph of M as

follows:

If (w,v) is in p(a) U p(b) - p(aub} then add the state

pair {w,v) to p'(an).

o o~ b
v
w/_ﬂ

LY -

If (w,v) is in p(aub] - p(a) U p(b) then
add the state pair (w,v) to p'(a)

if M,wk=[alp implies M,vi=p Efor all formulae p

and

add the state pair (w,v) to p' (b)

if M,wk=[blp implies M,v=p for all formulae p

- 32 -

We first show 2). Proceed by structural induction on
P Let p be a propositional variable. By construction,
only edges were added to the graph of M. Hence the truth
value of propositional variables at any state in M remains
the same. It is straightforward to show that if pis ~g or

q v r then 2) holds.

Let p = <a>q. Since we have not deleted edges from the
graph of M, clearly M,wk=<a>p implies M' ,wl=<a>p. Con-
versely, let M',wk=<a>p. Then there is an edge (w,v) in
p'(a) with M',vikqg. By induction, M,vl=q. If (w,v) is alseo
in p(a) then M,wk<a>q. If not, then (w,v) must have been
added during the construction. But recall that we only
added edges (w,v) for which M,wk=Tlalr implied M,vEk=r for all
PDL formulae r. So in particular, M,vik=q implies M,wk=<a>q.
Hence M,wi=<a>q iff M!' ,wk=<adq, Similarly, if M' ,wi=<alb>q
then M,wk=<adqg v q by construction. By Dyr M,wi=<ad>g v

qgq implies M,wkE<aub>q.

To prove 1), we wish to show that p'(aub) = p'{a) U
p'(b). Clearly p'(a) U p'(b) = p'(alb). Towards a con-
tradiction, assume that {w,v) is in p'{atb) - p'(a) U p'(b).
Then it must be the case that there are formulae C and p
with M,wlk=[aJC A [b}D and M,vE=-C A-D. But then by schemas
D, and DO' M,wk=[aJCA[bID implies M,wk[aub] (CAD). This

Provides a contradiction since we also must have

M,v=(C v D). Hence p'(autb) = p'(a) U p'(b)y. =&

33.
Theorem g

Let M be D,-sound model where D, is the schema
{p v <a>p v <a*><a*>p)—a*>p. Then there is a model M'

which extends M and in which
1) p'(a) U p'(a’) U p'(ar)ep’ (a*) & p' (a%)

2) For all w in M and PDL formulae p, M,wlsp Iiff

M' ,wip.

Proof

Construct M' from M by connecting the graph of M as

follows:

If (w,v) is in p(ao) - p{a*) then add the state pair

(w,v) to p'(a*).

o
oo LA

If (w,v) is in p(a) - p(a*) then add the state pair

(w,v) to p'(a*).

a.
wmv
\\. ﬂ:. -

If (w,v) is in p(a*)ep(a*) - p(a*) then add the state

- 34 =

Clearly p'{a) u p'(ao) U p'(a*)oFy'(a*)g p'{a*), Property 2)
is also straightforward: Since the construction adds only
edges, M,whkwp iff M' ,wkp for all Propositional variables P.

By induction, 2) holds for p = ~q and P=gquvr.

Let p = qQq. Since we have not deleted edges from the
graph, clearly M,wk=q implies M' ,wkg. Let M' ,wlk=q
where (w,v) was added to p'(b) during the construction.
Then b = a* for some @ and by induction, M,vkq. By
hypothesis, (w,v} is in p(a) U p(ao) U pla*}op(a*), so
M,wE<a>q v <cadq v <a*><a*>q. By Dy, M,wk=<a*>g. Hence

M,wkEq., &g

Theorem 9

Let M be a D,~sound model where D, 1s the schema <p?>geé->

PAq. Then there is a model M' which extends M and in which

1) P(P?}) = {(w,w')] w is inTI{p}) and w and w' are
indistinguishable} for all PDL formulae p.
(Note that if all states in M are distinguishable
by PDL formulae then P{P?} = {(w,w)] wis in

ey 1 .

2) For all w in M and pDL formulae q, M,wk=q ifFf

M' ,wik=q.

- 35 -
Proof

Let w and w' be indistinguishable states, with w in

I{p). Then add the state pairs (w,w') and w',w) to p'(p?7).

?
P:.
f‘- “\
W/ YW’ .
Y /!
\'\ __"
>
P

Clearly 2) holds. For 1), 1e£ M be a D?—sound model.
Let (w,w') be in p(p?). Then if w and w' are distinguish-
able, there exists a formula A with M,wEA and M,w'=-A.
Hence M,wkE<p2?>-A. By D,, M,wkpa -A. Contradiction.
Hence w and w' are indistinguishable. By another applica-
tion of D?, if (w,w") i=s in p{p?) then w is in [I(p). Hence
pip?) & {(w,w')l wis in [I(p) and w and w' are indistinguish-

able}., The reverse containment holds by construction. X

Theorems 5 - 9 can be combined in the proof of

Theorem lg

Let M be a |D-sound model. Then there is an extension M' of
M such that M' is a Loop Invariant model and for all formu-

lae p and all states w in M,

M,wE=p 1ff M',wkp.

- 36 -
Proof

Let M be a|D—sound model. We construct the extension

model M' of M as follows:

Let MO = M, Repeatedly apply Theorems 5 - 9 in order

generating an infinite sequence of models MO, Ml' ees In

each instance, construct model Mi+1 from Mi by applying one

of the theorems. Let M' =_g§i, i.e. M' = (W, II, p) where
W= 0w

TM(p) = {wl there is an i with w injﬂi(p)}

for all formulae p

p(a) = {(w,v)] there exists an i with (w,v) in pi(a)}
for all programs a
We will show that M' is a Loop Invariant model and M,wk=p
iff M',wkp for all formulae p and all states w in M.

First note that M' is a model since [] satisfies the

usual properties:

O{p v 9) = O(p) U (g

The state w is inTJ(p v q) iff there is an i with w in
Hi(p v q), iff there is an i with w injﬂi(p) orjﬂi(q) {since

M; is a model). Hence, w is in [I(p) U II(q}.

- 37 -

The state w is in I[{p) U TI(q) iff there is an i with w
in I'Ii(p) or there is an 1 with w in Hi(p}. Hence there is

an i with w in Hi(pv q) and w is In IJ{(p v qQ).

t=p) =W - TI(p)

The state w 1s in [I(-p) iff there exists an i with w in
Hi(—p) . Assume towards a contradiction that there exists a
j with w in r[j(p) . Then let k = max{i,j}. By construction
and Theorems 5 - 9, Mi,wl=—p implies Mk,w|==-p and similarly,
Mj,wi=p implies Mk,wl=p. Contradiction. Hence for all i, w

is not in I'Ii(p) . Therefore w cannot be in JI(p).

Assume that w is in W - T[(p). Then for all i, w is 1in

]'Ii (-p) since each Mi is a model. Hence w is in [I(-p).

[M{<a>p) = {wl there is a v with (w,v) in p(a) and v in IM{p)}

Let w be in IT(<a>p). Then there exists an i with w in
1'[i{<a>p) . Hence there is a v in Mi with {(w,v) in p;(a) and
v in Hi(p) . By construction, {(w,v) is in p(a) and v is in

[I{p) .

Conversely, assume that (w,v)} is in p{a} and v is in
[I{p). Then there exist i and j with (w,v) in p;{a) and v in
I'Ij(p) . Let k = max{i,j}. Then by construction and Theorems
5 - 9, (w,v) is in pPr(a) and v is in Hk(p). Hence w is in

Hk(<a>p] and consequently, w is in TI(<adp).

38

We have just shown that M' is a model. To show that M'

is a Loop Invariant model, we must show that the appropriate
semantic constraints on p hold in M' and that the induction

schema is valid in M'.

p(a;b) = p{alep(b)

Let (w,v) be an input-output state pair in p{a;b).
Then there exists an i with (w,v) in pi[a;b). By construc-
tion, (w,v) is in pi+n(a;b} for all n > 0. Hence after the
next application of Theorem 5 (w,v} is in
Pi+n+m(a)°Pi+n+m(b) for some m. Hence (w,v) is in
p{ajop(b).

Conversely, assume that (w,u) is in p{a) and (u,v) is
in p(b). Then there exist i and j with (w,u) in p;(a) and
{u,v) in pj(b). Let k = max{i,jl. Then by construction,
(w,u) is in pk(a) and (u,v) is in pk(b). By the next appli-

cation of Theorem 6, (w,v) will be in p{a;b).

p(aub) = p(a) U p(b)

The proof is similar to the previous case and 1left to

the reader.

p(a) U p(a) U pla*sp(a*)s pla*)

Again, the proof is straightforward and 1left to the

reader.,

- 39 -

p(p?) = {(w,w')l w is in [I(p) and w, w' are indistinguish-

able}.

The proof is left to the reader.

Clearly, M' is an extension of M. Hencde M' will be a
Loop Invariant model once we show that the induction schema
I holds In M' (i.e. M'|=<a*>p-(p v <a*> {(-pa<a>p})}, First

we show that for all states w in M, M,wkep iff M',wi=p.

Let p be a formula, Since M = MO' M,wk»p implies
M' wkp, Now suppose M',wlkp. Then there exists an i with
Mi,wk-p. Assume towards a contradiction that Mo,wk=—p.
Then by construction and Theorems 5 - 9, Mi;wk=-p. Contrad-
iction since Mi is a model. Hence M',wkE=p and M,wlk=p iff

M' ,wik=p.

In particular for all states w in M, M',wk=1 (where 1
is the induction schema). We would like to show that M' =T.
Let x be a state in M' but not in M. Then x was added dur—~
ing some application of Theorem 5 to a model Mi to form

model Mi+ Hence for some states w and v in Mi and some

l'o
program ¢, (zw,v,x) i1s in pi+l(c). In particular, (w,x) is
in pi+l(a;c) for some program a. If w is in M' - M, we can
find some descending sequence of Mi's such that eventually,
there is a state u in M and pregrams ¢, Cyr sns 4Chs

A, 8ys een 43, such that (u,x) is in pofal;cl;...;a;c).

Now M0F=I S0 Mo,u#=[al;cl;...;a;c]I. Hence Mi+l,xk=I.

- 40 -

Since the choice of X was arbitrary and
M',uh:[al;cl;...;a;c]I, M'kmI, Hence M' is a Loop Invariant

extension of M. B8

Corollary 2

Let WD be the class of Ib-sound models and LI be the class of

Loop Invariant models., Then Th(ﬂD) = Th(LI).
Prbof

By Theorem 4, every ID-sound model is a Loop Invariant

model. Hence Th(LI)ETh(Mu}.

By Theorem 10, every |[D-sound model M can be embedded in
a Loop Invariant model M', Hence, Th(M')= Th{(M). In addi-
tion, if MEA then for all w in M, M,wk=A; so, for all
states w inM™M, M'",wlk=sA. We wish to show M',wkA for all w
in M' - M., Since M is a model and A is in Th(M}, [alA is in
Th(M) for all programs a. Let w be a state in M' - M. By
the techniques used to show M' kI in the proof of Thecrem
10, there exists a program c and a state u in M with (u,w)
in p'(c). Since MEA implies M,ul=(clA, M',ul=[c]lA by
Theorem 10. Hence M',wkA. Since w was arbitrary, M',wl|=Aa
for all states in M'. Hence M' kA, Therefore Th(M) =

Th(M') and Th(l‘llgEﬂ‘h{LI). re]

Corollary 3

qDUD is a sound and complete proof system with respect to
0

the classes of Standard and Loop Invariant models.
Proot

By Coreollary 2, Th(ﬂD) = Th(LI). By Theorem 1, Th(S8) =

Th(LI). By Corollary 1, Pr{D U Dj) = Th(M,). =

Section 5: Conclusion

The main focus of this paper has been to develop alter-
native classes of models for PDL and their relationship to
the class of Standard models for PDL. Parikh first
described a nonstandard class of models for PDL in order to
prove completeness for |D with respect to the Standard models
in [Par]. Most recently, Pratt discusses the use of non-
standard models for verification in Dynamic Logic ([Pratt2].
But to our knowledge, this work is the first to focus on the
semantic constraints induced by the regular pregram opera-
tors U, ;, * and ? in PDL and to focus on the relationship
between the class of Standard ﬁodels and alternative classes
of models for PDL. We also present a new class of interpre-

tations for PDL, the class of D-sound models.

The results presented here show a flexibility in

interpretations for PDL. The class of Standard models

- 42 -

reflects most strongly our intuitive perception of how to
represent flowchart schemes but the representation of
unbounded finite iteration {(the construct represented by *)
makes decision procedures for the language unwieldy ([(F&L2})
and completeness results difficult to prove {[par],
{Pratt3]). The c¢lass of Loop Invariant interpretations
would probably simplify decision procedures and satisfies
the same set of true formulae as the class of Standard
models. The natural proof systemID can also be shown to be
complete with respect to the class of Loop Invariant models

without the aid of a small model theorem [Par].

The class of D-sound models presented here vyields a
general completeness technique for any set of consistent
formulae which would characterize the behavior of program-
ming constructs (as the schemas |D characterize the Intended
behavior of U, ;, * and ?). This is applied to the schemas
ID to derive completeness of the class of ID-sound medels In
Section 3 and of the classes of Standard and Loop Invariant
models in Section 4. Although completeness of the classes
of Standard and Loop Invariant models 1is not new ({([Parl,
[K&P], [Pratt3), etc.), our method of proof can be easily
expanded to include new programming constructs such as //
(shuffle) for parallel programs, -1 (reverse), 1 (intersec-
tion), etc., 1In addition, the construction in the proofs of
Theorems 5 - 9 sheds light on the nature of the constraints

induced by schemas ID on the graphs of models of PDL.

- 43 -

Theorems 5 - 10 show the close relationship between ID-
sound and Loop Invariant models. Given that semantic con-
stralnts on state-to-state transitions cannot be completely
specified in the language of PDL, Theorem 10 shows that we
can nonetheless come quite close to describing these transi-
tions. In addition, when such models fail to satisfy these
constraints, they do so by leaving out state—-to-state tran-
sitions rather than by including inappropriate ones. Such
results also support the naturalness of the set of axiom

schemas ID.

The development and study of nonstandard classes of
models is motivated by their natural interpretation of PDL
formulae and by their simple description and ease of techn-
ical manipulation. We hope to have contributed to that

study here,

Acknowledgments

We would like te thank Mike Fischer and Bob Ritchie for
their generous support and encouragement during this work.
We would also like to thank Mike 0'Donnell and Mitch Wand

for their helpful comments on a preliminary draft of this

paper.

We are grateful to Joe Halpern and Albert Meyer for

pointing out an error in the original proof of Theorem 5.

The present proof is based on a suggestion of Rohit Parikh.

- 44 -

Bibliography

[Apt]

[Bel]

[Be2]

[Dij]

[FRL1]

[F&EL2]

[Grei]

[Harel]

[K&P]

[(M&P]

[Par]

(Pnueli]

apt, K. R., "Ten Years of Hoare's Logic, A Sur-
vey." Manuscript, Erasmus University, Rotterdam,
The Netherlands, 1979.

Berman, F., "A Completeness Technique for D-
Axiomatizable Semantics.”™ 11lth Symposium on the
Theory of Computing, 1979.

Berman, F., "Syntactic and Semantic Structure 1in
Propositional Dynamic Logic.™ Ph.D. Dissertation,
University of Washington, 1979.

Dijkstra, BE. W., A Discipline of Programming.
Prentice-Hall, New York, 1976.

Fischer, M. J. and R. E. Ladner, "Propositional
Modal Logic of Programs". 9th Symposium on the
Theory of Computing, 1977.

Fischer, M. J. and R. E. Ladner, "Propositional
Dynamic Logic of Regular Programs."” JCSS 18:2,
april, 1979.

Greibach, S., Theory of Program Structures:;
Schemes, Semantics and Verification, Lecture
Notes in Computer Science No. 36, Springer-verlag,
New York, 1975,

Harel, D., First-Order Dynamic Logic. Lecture
Notes in Computer Science No, 68, Springer-Verlaqg,
New York/Berlin, 1979.

Kozen, D. and R. Parikh, "An Elementary Proof of
the Completeness of PDL." TCS, to appear (also IBM
Report RC8097, Jan. 1980} .

Manna, Z. and A. Pnueli, "The Modal Logic of Pro-
grams." 6th International Colloquium on Automata,
Languages and Programming, Graz, Austria, 1979.

Parikh, R., "A Completeness Result for Proposi-
tional Dynamic Logic." Symposium on the Mathemati-
cal Foundations of Computer Science, Zakopane,

Poland, 1978.

Phueli, A., "The Temporal Logic of Programs." 19th
IEEE Symposium on the Foundations of Computer Sci-
ance, 1977.

[Prattl]

[Pratt?2]

[Pratt3]

[5al]

[Seql]

(Seg2]

- 45 -

Pratt, V., "Semantical Considerations on Floyd-
Hoare Logic.,” 17th IEEE Sympasium on the Founda-
tions of Computer Science, 1976.

Pratt, V., "On Specifying Verifiers." 7th Sympo-
sium on the Priniciples of Programming Languages,
1980.

Pratt, V., "A Practical Decision Method for Propo-
sitional Dynamic Logic." 10th Symposium on the
Theory of Computing, 1978.

Salwicki, A., "On Algorithmic Logic and its Appli-
cations." Technical Report, Polish Academy of Sci-
ences, Warsaw, Poland.

Segerberqg, K., "A Completeness Theorem in the

Modal Leogic of Programs."”™ Preliminary Report,
‘Notices of the AMS, 24, 6, A-552, Oct., 1977. ’

Segerberg, K., "An Essay in Classical Modal
Logic." (Volume 1), Ph.D, Dissertation, Uppsala
Universitet, 1971.

	Models for Verifiers
	Report Number:
	

	tmp.1307986960.pdf.LyAQG

