
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1980

Low Contention Semaphores and Ready Lists Low Contention Semaphores and Ready Lists

Peter J. Denning

T. Don Dennis

Jeffrey Brumfield

Report Number:
80-332

Denning, Peter J.; Dennis, T. Don; and Brumfield, Jeffrey, "Low Contention Semaphores and Ready Lists"
(1980). Department of Computer Science Technical Reports. Paper 261.
https://docs.lib.purdue.edu/cstech/261

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

LOW CONTENTION SEMAPHORES AND READY LISTS

Peter J. Denning
T. Don Dennis

Jeffrey Brumfield

Computer Sciences Department
Purdue University

W. Lafayette, IN 47907

CSD-TR-332

February 1980
Revised June 1980

Abstract. A method for reducing sema
phore and ready list contention in mul
tiprocessor operating systems is
described. Its correctness is esta
blished. Its performance is compared
with conventional implementations. A
method of implementing the ready list
with a ring network is proposed and
evaluated.

This work was supported in part by NSF Grant MCS78
01729 at Purdue University.

June 18, 1980

- 2 -

THE PROBLEM

Modern operating systems implement semaphores for synchron-

izing multiple concurrent processes. Unless the primitive opera-

tions for starting, stopping, and scheduling processes and for

manipulating semaphores are well supported by the hardware, con-

text switching and interprocess signaling can be major overheads

[1]. To avoid these overheads, many operating systems use fast,

but unreliable ad hoc methods for synchronizing processes. The

number of processors (CPUs) that can be kept busy can be limited

by contention at the ready list or at semaphores.

We will present a process manager that overcomes these prob-

lerns. The hardware architecture is tightly coupled with the

software and data structure. Five indivisible operations

start, stop, and schedule a process, plus wait and signal on

semaphores are implemented as microprograms in each

processor's instruction set.* This significantly reduces the

holding times of locks on the semaphores and on the ready list.

Tagged memory can be used to ensure the integrity of semaphores

and data structures but is not essential. We will compare stan-

dard implementations of the wait and signal operations with our

proposals a We will extend the design to include I/O control via

private semaphores that honor higher priorities among device

driver processes a We will also show that ready list contention

*wait and signal were microprogrammed on the VENUS
machine, an experimental uniprocessor [9]a The GEe
4080, a commercial machine, comes closest to meeting
the design objectives discussed here [8]a

June 18, 1980

- 3 -

and the " multiprocessor priority problem" can be virtually elim

inated by implementing the ready list not as a passive data

structure but as a circulating ring of process indices.

OVERVIEW OF A PROCESS MANAGER

The process manager is the portion of the operating system

that implements processes and semaphores. It abstracts away from

the details of scheduling and switching the several processors

among the processes. It replaces busy-waiting on locks with pro

cess suspension on semaphores.

Data Structure

The internal data structure of the process manager comprises

the process list, the ready list, and the semaphore list. Figure

1 illustrates.

The process list (PL) is an array of process control blocks

(PCBs) identified by process indices. Each PCB contains a state

word field and a link field. The stateword field contains a copy

of the values of all processor registers defining the environment

of the process -- e.g., program counter, general registers, page

table base, stack pointer, and interrupt masks. It occupies s

memory words. The link field contains the index of the next pro

cess on the same queue; queues are implemented as linked lists.

June 18, 1980

i:

Process li st (PL)

LINK
PL [i]

- 4 -

Ready List (RL)
head tail lock

---'[;8--'

Semaphore List (SL)

count head t'ai 1 lock

•
•

FIGURE 1: Process manager data structures.

- 5 -

Expressed as Pascal declarations:

~ processindex: 1 •• N

~ PCB = record
stateword: ••• ;
link: processindex

end

var PL: array[processindex] of PCB

Note that the allowable process indices are It ••• ,N. For con-

venience, we will use the notation LINK[i] for the link field in

PL[i], rather than the formally correct notation PL[i].link.

The ready list (RL) is a queue containing indices of all

processes enabled to run on a processor. It emanates from a

descriptor containing a (head, tail) linked-list specifier and a

lock bit. The queue itself is the chain of processes found by

tracing through successive link fields starting from the head

process and terminating at the tail process. The link field of

the tail process is set to O. The lock bit is used to restrict

access to the ready list to at most one processor at a time.

Expressed as a Pascal declaration:

var RL: record
head, tail: processindex;
lock: Boolean

end

It is possible to represent several ready lists -- e.g., one for

each priority level -- by an array of such records.

June 18, 1980

- 6 -

The semaphore list (SL) is an array of semaphore descrip-

tors, each containing a count field registering the excess of

sent over received signals, a (head, tail) linked-list specifier

defining a queue of processes waiting for signals, and a lock bit

to prevent simultaneous access by two or more processors. A Pas-

cal definition:

~ semindex: I •• M

var SL: array[semindex] of
record

count: integer:
head, tail: processindex;
lock: Boolean

end

Following convention, the initial value of a semaphore's count

must be nonnegative; a nonnegative count indicates an empty

queue, whereas a negative count indicates a queue whose length is

the magnitude of the count.

Locks

The foregoing definitions show a lock bit in the ready list

descriptor and in each semaphore descriptora These bits must be

set while any processor is using the associated data structurea

They are set using a LOCK instruction, reset using UNLK (unlock)a

Let Mem[xlalock denote the low-order bit of the memory word at

address Xa The microprogram for LOCK x follows this schema:

June 18, 1980

- 7 -

LOCK x:

b := Mem[x] .lock
IF b = 1 THEN "retry at LOCK"
"disable interrupts"
Mem[x].lock ;= 1

The microprogram for UNLK follows the schema:

UNLK x: Mem[xl.lock:= a

"enable interrupts"

The LOCK-UNLK pair is intended to enclose a critical section of

instructions. The interrupts of the processor inside the criti-

cal section must be disabled to guarantee the indivisibility of

the critical operation. The LOCK instruction takes (at least)

two memory reference times (at least one read and a write) and

the UNLK one.*

The LOCK instruction itself must also be indivisible: once

started, the addressed lock bit must be fetched, modified, and

returned to memory; no other processor may access the addressed

memory location until the instruction is complete. This

requirement is easily enforced by the usual protocol at the

processor-memory interface. Having placed an address in its

memory address register, the processor raises an address-request

*As specified, LOCK is not the same as
on the IBM 370. In fact, LOCK requires
tions, and UNLK two, on the IBM 370.

June 18, 1980

"test-and-set"
three instruc-

- 8 -

line, A, and waits. When the addressed memory bank becomes idle,

the memory arbiter selects a waiting processor (one with A=l) and

pulses the proceed line to that processor. As soon as it

receives the proceed pulse, the processor performs the memory

access (read and/or write) on the addressed location. At the

completion of the memory access, the processor lowers the

address-request line (sets A=O), which informs the memory arbiter

that the addressed bank is again idle. In the case of the LOCK

instruction, both a read and a write operation are performed

while A=l. The protocol requires a processor to release the A

line before loading a new address into its memory address regis

ter.

The dashed lines in the microprogram for LOCK and UNLK

represent points at which the processor must relinquish its con

trol over the memory bank~ It must set A=O in order to cross a

dashed line.

If the LOCK instruction is begun when the lock is set, the

processor will perform the "retry at LOCK" action. This means

that the processor must release exclusive access to the addressed

memory location and restart the LOCK operation~ It also means

that a processor waiting for a lock engages in busy waiting.

Busy waiting increases lock contention: by stealing memory

cycles from the processor inside the critical section, the wait

ing processors prolong the holding time of the lock~ This degra

dation can be mitigated by changing the retry action to

June 18, 1980

- 9 -

"retry after delay Tn,

where T should be about half the time a processor will remain in

the critical section. Except in special cases, however, it is

impossible to know a priori what T will be.

Starting, Stopping, and Scheduling Processes

We suppose that there are three (uninterruptible) operations

for manipulating the process list and the ready list. These

operations refer to a processor register, Iself l
, that contains

the process index of the process currently funning on that pro-

ceSSer. A funning process is not on the ready list. The

instructions are:

SAVESW

LOADSW

READY(i)

Used to stop a process from run
ning. The processor registers are
copied into PL[self].stateword.

Used to start a process running.
Removes the head process from RL
and sets 'self' to this value.
Loads the processor registers from
PL[selfJ.stateword and proceeds.

Used to schedule a process.
Inserts process index i at the tail
of the RL.

The SAVESW is equivalent to an instruction sequence for saving

all general registers, all control registers, and the program

status word (PSW) on the IBM 370. The LOADSW consists of a

ready-list manipulation followed by the equivalent of the

June 18, 1980

- 10 -

instruction sequence that loads all registers and the PSW on the

IBM 370. A program for LOADSW is:

LOADSW: with RL do
LOCK lock
self ;= head
head :~ LINK[head]
LINK[self] := 0
" eopy PL[self].stateword into registers"
UNLK lock

end

Note that LINK[self] is set to 0 to indicate that no process £01-

lows self on any queue. A program for READY is:

READY (i) : wi th RL do
--LOCK lock

if head = 0
then head := i
else LINK [tail] : = i
rr-

tail:= i
UNLK lock

end

Wait and Signal Operations

The WAIT operation is used to receive a signal from a sema-

phore; the calling process will be delayed if the count is zero

or less at the time of the attempted reception. The SIGNAL

operation is used to transmit a signal through a semaphore; the

head waiting process is released if the count is less than zero

at the time of the attempted transmission. Both operations must

be indivisible in the sense that, while a WAIT or SIGNAL is in

progress on a given semaphore, no other WAIT or SIGNAL on that

June 18, 1980

- 11 -

same semaphore may be initiated. This implies that both opera-

tions must be uninterruptible. A program for the wait operation

is:

WAIT: procedure(j: semindex)
with SL[j] do
--LOCK lock

count := count - 1
if count < 0 then

SAVESW
if head = a

then head := self
else LINK[tailJ := self
~

tail: = self
LOADSW
fi

UNLKlock
end

A program for the signal operation is:

SIGNAL: procedure(j: semindex)
with SL[j] do
--LOCK lock

count := count + 1
if count < 0 then

i := head
head := LINK [head]
LINK[i] :~ 0
READY (i)
fi

UNLKlock
end

Note that the ready list may be locked for a subinterval of the

semaphore lock. This will occur if count < 0 in WAIT (LOADSW

will be executed) and if count < 0 in SIGNAL (READY will be exe-

cuted) •

June 18, 1980

- 12 -

Correctness

The correctness of the above implementation derives from

four facts. First, the instruction SAVESW is uninterruptible

once begun on a given processor because it is a microprogram that

does not inspect the interrupt indicators. The programs LOADSW

and READY are uninterruptible once begun because they are

enclosed in LOCK-UNLK pairs.

Second, ready list manipulations are mutually excluded

because the ready list is locked by LOADSW and READY, the only

two programs that operate on it. While these locks are set,

interrupts are disabled by the LOCK instruction.

Third, the critical sections of the WAIT and SIGNAL programs

are enclosed by a LOCK-UNLK pair. This ensures their mutual

exclusion for any given semaphore and prevents the interruption

of the processor inside the critical section.

Fourth, each process index is either in some one 'self'

register, on the ready list, or on some one semaphore list. The

moving of a process index between pairs of these places cannot be

interfered with for the reasons summarized in Table 1.

Deadlock is not possible because the holding of RL locks is

strictly nested inside the holdings of semaphore locks. Because

its interrupts are disabled while it is in a locked region, a

processor cannot be diverted to another program containing an

attempted lock on another semaphore or on the ready list.

June 18, 1980

Transition

RL -) self

self -) SL [j]

SL[j] -) RL

Operation

LOADSW

WAIT

SIGNAL

- 13 -

Reasons

RL is locked by processor
executing the LOADSW, and
'self' is private to that
processor.

SL[j] is locked by the
processor performing the
wait, and 'self l is pri
vate to that processor.

Both SL[j] and RL are
locked by the processor
performing the signal.

TABLE 1: Correctness of process index transitions.

Performance

To estimate space and time requirements, we hand coded the

five process management operations for the IBM 370 and VAX-ll/780

instruction sets. We assumed that these instruction sequences

would be put in line, as macros, to avoid the additional overhead

of procedure calls [7]. The results are summarized in Table 2.

In the IBM 370, the stateword comprises 16 general regis-

ters, 16 control registers, 4 floating-point registers, and the

program status word (PSW). LOADSW and SAVESW each include s = 37

operand references for all these registers; they also include

instructions for disabling and enabling interrupts. In the VAX,

the stateword comprises 16 general registers and 2 control regis-

ters. LOADSW and SAVESW each include s = 18 operand references

for these registers.

June 18, 1980

IBM 370 VAX 11/780

SAVESW LOADSW PUT WAIT SIGNAL SAVESW LOADSW PUT WAIT SIGNAL

Instruction Storage
(bytes) 42 86 60 254 148 1 36 26 74 57

Instruction Fetches
Short Path 11 22 14 19 19 1 9 6 7 7
Long Path 11 22 14 62 38 1 9 6 20 14 ..,.

Operand References
Short Path 38 47 8 17 17 18 34 11 6 6
Long Path 38 47 9 101 29 18 34 11 65 39

TABLE 2: Space and time requirements of operations a

- 15 -

The figures in Table 2 do not include the delays for busy

waiting on locks or for memory cycles lost while other processors

cycle at LOCK operations. The "short path" cases of instruction

fetching and operand referencing arise when the semaphore counts

are high enough to avoid queueing. The "long path" cases arise

when queues must be manipulated and contexts switched. Compared

to the IBM 370, the VAX implementation requires roughly 1/3 the

space and 1/2 the execution time, or roughly 1/6 the space-time.

The wait and signal overheads in the worst case are suffi

ciently high that communications among operating systems

processes, which typically occur from 100 to 300 times per

second, cannot be handled efficiently by programs such as we have

given earlier. These operations must be incorporated into the

machine's instruction set.

A SOLUTION

Suppose that the basic machine has tagged memory: each word

of memory contains a tag field containing the type of information

stored therein. Tagged memories were an integral part of the

Rice University Machine [4] and of the Burroughs 86700 [12].

Advanced forms reduce space overhead by tagging regions of memory

rather than individual words [10,5].

Suppose that a semaphore is implemented as a semaphore word,

as in Figure 2, and that the wait and signal operations are part

June 18, 1980

- 16 -

of the instruction set of each processor. For this environment,

the instructions WAIT x and SIGNAL x operate on a semaphore word

stored in Mem[x]. These instructions are uninterruptible because

their microprograms do not examine interrupt indicators.

tag

sem

count

c

head

h

tail

t

lock

1

FIGURE 2: Semaphore word.

Tagging permits distributing semaphores throughout data

structures without endangering the integrity of wait and signal

operations. Tagging increases software reliability by preventing

locking operations from being applied to nonsemaphore locations.

Note, however, that a type-checking compiler also provides the

same advantage. For this application, tagging is more a conveni

ence than a necessity.

While a semaphore operation is in progress on Mem[x], the

lock bit is set. Any other processor attempting a semaphore

operation on Mem[x] must pause, retrying the operation after a

delay. The delay should be about half the time required to com

plete the operation.

Once in control of a semaphore word, a processor adjusts the

count field and, if necessary, moves a process index between the

June 18, 1980

- 17 -

semaphore queue and the ready list. The ready list emanates from

a semaphore word stored in Mem[RL], whose count field is not

used. A processor attempting use of the ready list semaphore

word must pause and retry after a delay if the ready list is

locked. Access to the ready list is embedded in both the WAIT

and SIGNAL instructions.

Figures 3 and 4 specify microprograms for the SAVESW,

LOADSW, and READY instructions. The dashed lines represent

points at which the addressing protocol requires the processor to

release the addressed memory bank. SAVESW simply copies the pro

cessor registers to the current process control block. LOADSW

locks the ready list, removes the head process, unlockS the ready

list, and loads the processor registers from the new process con

trol block.

June 18, 1980

- 18 -

SAVESW: "copy registers into PL[self] .stateword"

LOADSW:

(tag, c, h, t, lock) := Mem[RL]
IF tag t sem THEN ERROR
IF lock = 1 THEN "retry after delay 2"
Mem[RL].lock := 1

self := h
h := Mem[LINK + h]

Mem[RL] := (tag, c, h, t, 0)

Mem[LINK + self] := 0

"load registers from PL[self].stateword"

FIGURE 3: Instructions for context switching.

READY (i) :

(tag, c, h, t, lock) := Mem[RL]
IF tag # sem THEN ERROR
IF lock = 1 THEN "retry after delay 2"
IF h = 0 THEN Mem[RL] := (tag, c, i, i , 0)

ELSE Mem[RL] := (tag, c, h, i, 1)

Mem[LINK + t] := i

Mem[RL].lock := 0 FI

FIGURE 4: The READY (i) instruction microprogram.

June 18, 1980

- 19 -

Both LQADSW and READY begin with a tag check and test of the

lock bit; after the ready list has been modified, the lock bit is

reset. (Compare with the specifications of the LOCK and UNLK

instructions given earlier. Explicit LOCK and UNLK instructions

are no longer needed.) LOADSW locks the ready list for four

memory reference times; READY locks it for at most four. If the

lock bit is set, the action

"retry after delay 2"

means: "release the memory, wait two memory reference times, then

restart the microprogram." The delay of 2 is about half the time

another processor executing a LOADSW or READY will hold the ready

list.

Executing LOADSW when there is only one process, say k, in

the ready list will leave RL.head = 0 because LINK[k] = O. The

subsequent READY(i) instruction tests for the empty ready list

(head = 0) and sets both head and tail to i in this case. Mani

pulations of head and tail pointers can be performed during the

same memory access that manipUlates the lock bit.

The high-level specifications of Figures 3 and 4 are to be

understood as descriptions of microprograms. For examples, the

symbols

tag, c, h, t, lock, i, self, LINK

refer to registers in the processor. The links (PL[].link) are

assumed to be stored in a linear array whose base address is in

June 18, 1980

- 20 -

the local register LINK. The action

(tag, c, h, t, lock) := Mem[x]

specifies a memory read operation, while

Mem[x] := (tag, c, h, t, lock)

specifies a write operation. The action

self := h

specifies a register-register transfer.

Figures 5 and 6 specify microprograms for the WAIT and SIG-

NAL instructions. These microprograms begin with tag and lock

checking. If the semaphore's lock is set, the retry delay is T

memory reference times, where T represents half the time another

processor will hold the lock in the worst case. If the count c)

0, the WAIT instruction will write c-l into the count field

without setting the lock, completing in 2 memory reference times.

If the count c > 0, the SIGNAL instruction will write c+l into

the count field without setting the lock, completing in 2 memory

reference times. Otherwise, these instructions set the semaphore

lock and proceed to their critical sections.

June 18, 1980

WAIT x:

- 21 -

(tag, c, h, t, lock) := Mem[x]
IF tag # sem THEN ERROR
IF lock = 1 THEN "retry after delay T"
IF c > 0 THEN Mem[x] := (tag, c-l, h, t, 0)

ELSE Mem[x] .lock := 1

SAVESW

IF h=O THEN Mem[x] := (tag, c-l, self, self, 0)
ELSE Mem[LINK + t] := self

Mem[x] := (tag, c-l, h, self, 0) FI

LOADSW FI
--

FIGURE 5: WAIT instruction microprogram.

SIGNAL x:

(tag, c, h, t, lock) := Mem[x]
IF tag # sem THEN ERROR
IF lock = 1 THEN "retry after delay T"
IF c > 0 THEN Mem[x] := (tag, c+l, h, t, 0)

- ELSE Mem[x].lock ;= 1

i := h
h := Mem[LINK + hl

Mem[x] := (tag, c+l, h, t, 0)

Mem[LINK + i] := 0

READY (i) FI

FIGURE 6: SIGNAL instruction microprogram.

June 18, 1980

- 22 -

The crit,ical section of the WAIT instruction saves the

current stateword and attaches -self l to the semaphore's queue.

The new count (c-l), head, tail, and lock value (0) are written

to memory in one memory reference time. The LOADSW operation can

be placed outside the critical section because the processor has

completely dumped the stateword and the old ·self l value; an

arbitrary delay can be tolerated until the (uninterruptible!)

processor picks up a new process index for execution. This

reduces the holding time of the semaphore lock to 4+5 memory

reference times in the worst case, and makes the ready list lock

ing interval disjoint from the semaphore locking interval.

The critical section of the SIGNAL instruction removes the

process index from the head of the semaphore's queue, holding it

in a local register, i. This permits the READY (i) microprogram

to be executed outside the critical section (but within the con

text of an uninterruptible microprogram). It reduces the holding

time of the semaphore lock to 4 memory reference times in the

worst case.

The correctness of these instructions follows from that of

the software WAIT and SIGNAL implementation given earlier: the

microprograms simulate the previous case. The only changes are

putting ready list operations outside semaphore critical sections

for reasons noted above.

June 18, 1980

- 23 -

Performance

The overall space and time requirements of this proposal are

summarized in Table 3 and compared with IBM 370 and VAX implemen-

tations. "Execution times" are simply the sums of instruction

fetches and operand references. Compared with the VAX implemen

tation, the proposed solution with 5 = 18 runs in roughly 1/3 the

time and 1/20 the space, or roughly 1/60 the space-time. The

proposed solution also reduces the Ready List lock holding time

significantly.

In the long run, as many WAITs will be executed as SIGNALs.

This means that the semaphore lock retry delay should be half the

average semaphore lock time, or

T

memory reference times.

= = s
2 + 4

These figures can be used to evaluate the tolerable overhead

in tagging semaphore words. Suppose that a single bit were used

to distinguish semaphore words from all others. Suppose that

WAIT and SIGNAL operations appear statically in approximately

equal numbers. On the IBM 370, the average of the WAIT and SIG-

NAL macros is about 200 bytes (1600 bits) longer than the pro-

posed WAIT and SIGNAL instructions. Therefore programs on the

tagged machine could contain 1600 times as many semaphore opera-

tions without being longer than their counterparts on the IBM

June 18, 1980

- 24 -

370. The corresponding figure for the VAX is 500.

IBM 370 VAX 11/780 Proposal

WAIT SIGNAL WAIT SIGNAL WAIT SIGNAL

Instruction Storage
(bytes) 254 148 74 57 3 3

Execution Time
(memory refs)

Short Path 36 36 13 13 3 3
Long Path 163 67 85 53 10+25 10

Semaphore Lock Time
(memory refs)

Long Path 145 49 78 46 4+s 4

RL Lock Time
(memory refs)

Long Path 17 20 19 12 4 4

TABLE 3: Comparisons with proposed solution.

A real tagged memory would use larger tags, say 4 bits, to

identify more types of data objects in memory. But there is a

corresponding savings because other types of macros (e.g., for

mixed mode expression evaluation) can be eliminated from object

code. Myers [10] reports data showing that most programs become

shorter when compiled for a tagged memory instruction set -- com-

June 18, 1980

- 25 -

man, replicated macros can be eliminated in favor of one

microprogram for the same operation. Dennis [2] reports simi

larly that tagging easily reduces program size by factors of up

to 2.

PRIVATE SEMAPHORES AND I/O OPERATIONS

A private semaphore is a semaphore on which only one process

can wait. Private semaphores are especially useful for communi

cating with input/output processes and for receiving completion

signal interrupts from devices. Every process will have a

private semaphore, kept in a field PL[self].psem of its control

block.

We suppose that all user processes operate at priority 0 and

that system device driver processes, which start devices and I/O

controllers and receive completion signals from them, operate at

higher priorities. All other processes must interface their I/O

operations through driver processes. A device driver process

must usually be run soon after the completion of the previous I/O

task in order to maintain I/O device utilization as high as pos

sible. To this end, each processor contains a 'priority' regis

ter telling the (fixed) priority of the current process (self).

The priority register can either be a field of the self register

or a component of the stateword. Private semaphores will display

June 18, 1980

- 26 -

the priority of the waiting process a

Private Semaphores

A private semaphore (Figure 7) can be stored as a field in a

process control block or as a component of any other data struc-

ture. Its tag is Ipsem'. The process index field (1) will be

nonzero whenever a process is waiting on the private semaphore.

The priority field (P), which contains the priority number of the

waiting process, is used to determine if the waiting process must

preempt the signaling process. The wakeup waiting bit (w)

records a signal sent before the receiving process sought it.

The lock bit prevents a signaler from interfering with a

receiver.

process
tag index priority

psern i P

wakeup/
waiting

w

lock

1

FIGURE 7: Private semaphore.

The machine instructions PWAIT x and PSIGNAL x are used to

receive and send, respectively, via a private semaphore word in

Mem[x]. Alternatively, the WAIT (SIGNAL) microprogram can be

generic, taking the PWAIT (PSIGNAL) action if the tag is 'psem'

June 18, 1980

- 27 -

rather then lsem l •

Figure 8 specifies the microprogram for PWAIT; it is simpler

than WAIT (Figure 5). It takes 2 memory reference times for the

short path and 8+25 for the long. It needs to lock the semaphore

while SAVESW is in progress to prevent a signaler from attempting

a wakeup before the receiver is fully blocked.

Figure 9 specifies the microprogram for PSIGNAL. Except for

actions (a), necessitated by device driver process priorities, it

is simpler than SIGNAL (Figure 6). It takes 2 memory reference

times for the short path and 10+25 for the long. If no process

is waiting (i=O), PSIGNAL sets the wakeup waiting bit. Other

wise, PSIGNAL checks the priority of the waiting process: if

higher than that of self, it moves self to the head of the ready

list (using a new operation, PUSH, Figure 10) and switches to the

waiting process; if not higher, it moves the waiting process

either to the head or the tail of the ready list, depending on

its priority. The semaphore need not be locked during context

switching because the two process indices, self and i, are in

private registers of the processor and nowhere else; no other

process can attempt to manipulate either PL[self] or PL[i].

June 18, 1980

- 28 -

PWAIT x:

(tag, i , P, w, lock) := Mem[x]
IF (tag, i) t (psem, 0) THEN ERROR
IF lock = 1 THEN "retry after delay 5/2"
IF w = 1 THEN Mem[x] := (tag, 0, 0, 0, 0)

ELSE Mem[x] := (tag, self, priority, 0, 1)

SAVESW

Mem[x] .lock := 0

LOADSW FI

FIGURE 8: Wait operation for private semaphore.

PSIGNAL x:

(tag, i, p, w, lock) := Mem[x]
IF (tag, w) t (psem, 0) THEN ERROR
IF lock = 1 THEN "retry after delay 5/2"
IF i = 0 THEN Mem[x] := (tag, 0, 0, 1, O)

ELSE Mem[x] := (tag, 0, 0, 0, 0)

(a)

/
I
I
I

/
\

I
I
I
I
\

IF P > priority
THEN SAVESW

PUSH (self)
self := i
"load registers from

PL [self] .stateword l'

ELSE IF P > 0 THEN PUSH(i)
ELSE READY (i)
FI

FI
FI

FIGURE 9: Signal operation for private semaphore.

June 18, 1980

I

- 29 -

PUSH(i):

(tag, c, h, t, lock) := Mem[RL]
IF tag# sem THEN ERROR
IF lock = 1 THEN "retry after delay 2"
IF h = 0 THEN Mem[RL] := (tag, c, i, i, 0)

ELSE Mem[RL] := (tag, c, i, t, 1)

Mern[LINK + i] := h

Mern[RLJ.lock := 0 FI

FIGURE 10: Push operation.

Ideally, a multiprocessor system will solve the "priority

problem", which requires that the lowest priority running process

must have priority at least as high as the highest priority ready

process. In practice this means that a preemption must occur

within a short time as soon as a process is enabled whose prior-

ity exceeds that of a running process.

The priority mechanism of PSIGNAL does not solve this prob-

Iern. This is because PSIGNAL may awaken a process whose priority

is less than that of 'self' but greater than that of a process

running on another processor. The priority mechanism guarantees

only that the next LOADSW will give preference to some high

priority process. (On a single processor system, however, this

mechanism will always run the highest priority enabled process.)

An interprocessor broadcast mechanism is required to achieve fas-

ter preemption in favor of high priority processes.

June 18, 1980

The ready

- 30 -

list ring proposed in the next section has this property -- it

obviates the PUSH operation and eliminates all the steps (a) from

Figure 9.

I/O Control

Many systems channel all requests to any given I/O unit

through a device driver process in charge of that unit. A driver

process has the sole authority to issue STARTlO commands to its

device and to receive the completion signals from its device. It

also maintains a work queue of requests from all other processes

for tasks at that device. All the details of interacting with a

given device, from setting up channel programs, to scheduling

tasks, and to error recovery, are hidden away inside the driver

process.

The work queue of a device driver will contain entries of

the form (i, r) where i is a process index and r an I/O-request

descriptora A semaphore 'wsern' counts the number of entries in

the work queue.

schema:

To make a request, a process follows this

r := "description of request"
"attach (self, r) to work queue"
SIGNAL wsem
PWAIT PL[self] apsem

where PL[self].psem is a private semaphore kept in the control

block of a process a In the simplest case, where the device

June 18, 1980

- 31 -

accepts only one request at a time, the driver process follows

the schema:

1: WAIT wsem
(i, r) := "remove request from work queue"
"generate channel program for request r,

at starting address jn
START10(j)
PWAIT PL[self] apsem
PSIGNAL PL[i].psem
gate 1

The driver's private semaphore is used to receive the device com-

pletion signal that eventually results· after a STARTlO. The

driver then informs the requestor (1) of the task's completion

via the requestor's private semaphore.

The last command (HALT) of a channel program instructs the
/

device to enter its "idle" state and generate a completion signal

interrupt to the processor that started it.

processor issues the command

PSIGNAL x

In response, the

where x is the address of the private semaphore of the device

driver that started the I/O operation.

June 18, 1980

- 32 -

THE READY LIST

The solution outlined above locks the ready list for a

minimal time (four memory reference times per operation). Ready

list lock contention can still be a problem if there is a lot of

process switching.* The contention can be eliminated if each pro

cessor has a private window into the ready list, such that each

window contains at most one process index and process indices

move among the windows.

Ready List Ring

One possible implementation of this principle is a circulat-

ing ring of slots (packets), each capable of holding the index of

a ready process and its priority number. As sketched in Figure

11, each processor has its own port into the ring. Two of the

previous operations are redefined:

LOADSW Wait until a used slot comes
(self, priority) registers
and mark the slot as unused.
ters from PL[self].stateword

by; load the
from the packet
Load the regis

and proceed.

*Suppose that the ready list lock holding time is A and
the mean interval between ready list accesses by a
given processor is B. There can be at most l!A proces
sors per second completing ready list operations.
Then, by Little's Formula, there can be at most an
average of B!A processors not waiting at the ready
list. Therefore an average of at least N-B!A proces
sors can be lost to ready list contention (N is the
number of processors).

June 18, 1980

circulating
slots

"'----

unused slot
wused slot w

o -
• • l'""" ',.."'"• • • •• •

unit

I
GJGJ

FIGURE 11: Ready list ring.

READY(i,p) --

- 34 -

Wait until an unused
(i,p) in it and mark

slot comes by;
the slot as used.

store

These operations replace the microprograms defined in Figures 3

and 4. Note that READY(i,O) can be used in the SIGNAL operation

to avoid looking up p in the process list. If the priority

numbers are part of process indices, p is implicitly inserted by

the ordinary READY(i) operation.

Each processor's ring interface unit monitors the priorities

of passing used slots. If a slot (i,p) comes by for which p >

priority, the ring interface unit removes the packet, marks the

slot as unused, and triggers the following sequence in the pro-

cesser:

READY(self, priority)
SAVESW
(self, priority) := (i,p)
"Load registers from PL[self].stateword"

This solves the mUltiprocessor priority problem noted earlier: a

high priority process will preempt an available processor within

one ring circuit time. This implies that the PSIGNAL micropro-

gram can be simplified by eliminating all the steps (a) in Figure

9; its shortest and longest path times are then both the same,

namely 2 memory reference times.

A special processor can perform "ring management". Its goal

is to separate each pair of used slots by an empty slot so as to

equalize the LOADSW and READY times under heavy load. If the

density of empty slots is too low, this processor can remove

June 18, 1980

- 35 -

process indices and hold them in its local store. It can insert

processes indices back again when the density of empty slots

rises. The capacity of the ring is increased by the size of the

local store of the ring manager.

The ready list ring can be modelled as a queue with random

selection for service. If there are n process indices in the

ready list, a given one will be selected by the next LOADSW

operation probability lin. The mean number of LOADSWs until

selection is n, the same as for a FIFO queue. A process will be

unselected after k successive LOADSW operations with probability

k -kin(1-1/n) , which for large n is approximately e ; thus the pro-

bability that a process is still waiting after 4n selections is

about e- 4 or 1.8%. Because the nonselection probability decays

exponentially, there is no need for a special mechanism to

guarantee the eventual selection of a ready process index. In

other words, "starvation" is no problem.

Other Implementations

The principle of the ring can be simulated in a conventional

system by letting the processors cycle their ports through slots

fixed in memory. The RL can be a vector of bytes, RL[l •. N-l], in

which RL[i] = 1 if process i is ready and a otherwise. Let TR(x)

denote a test-and-reset operation on the byte Mem[x]; this opera

tion returns the value of the byte and sets it to 0 in one indi-

visible step. The LOADSW and READY operations become:

June 18, 1980

- 36 -

LOADSW: while TR(RL[self]) = 0 do
self := self + 1 mod ~ ad

"load registers from PL(self):"stateword"

READY (i) : RL [i] : = 1

CONCLUSION

We have demonstrated that a modest amount of hardware sup-

port can significantly reduce the space and time requirements of

the primitive operations for process context switching and sema-

phore management. The proposed WAIT and SIGNAL operations have

roughly 1/360 the space-time of the corresponding IBM 370 imple

mentation, and roughly 1/60 the space-time of the corresponding

VAX implementation. The proposed implementation reduces ready-

list lock holding times to 4 memory reference times. These

operations are efficient enough to permit process management

without shortcuts and to permit a greater number of processors to

be used.

Tagged memory is not critical to our implementation. A type

checking compiler, such as for Concurrent Pascal or Ada, can ver-

ify that the addresses supplied to WAIT and SIGNAL machine

instructions are in fact for semaphore words. The main purpose

of tagging is a defense against unreliable programs. Obviously,

the combination of a type checking compiler and a tagged memory

machine is more reliable than either would be alone. The tagged

memory permi ts semaphores to be distributed among data

June 18, 1980

- 37 -

structures, which tends to reduce the complexity of the operating

system [2].

The discussion of the ready list ring illustrates that a

multipart list is not prone to be a bottleneck under heavy use.

The probability of ultimate "starvation" is zero even though the

list becomes a random selection queue. The technology of ring

networks is already well developed e.g., the University of

Cambridge Ring for connecting machines [11] and the University of

Manchester's Dataflow Machine's ring of enabled instructions [7].

ACKNOWLEDGEMENTS

We are grateful to Walter Tichy for carefully reading drafts

of this paper, to P. M. Meliar-Smith for pointing out the GEe

machine, and to P. Feiler [3] for suggesting improvements in

LOADSW and READY. We are also grateful to the National Science

Foundation, which supported some of this work through grant

MCS78-01729 at Purdue University.

June 18, 1980

- 38 -

References

1. Batson, A. P. and Brundage, R. E. , "Segment Sizes and
times in Algol 60 Programs," Comma ACM Vol. 20 (1) pp.
(Jan. 1977).

Life
36-44

2. Dennis, T. D., "A Capability Architecture," PhD Thesis,
Purdue University (May 1980).

3. Feiler, P. H., "Letter to the Editor," Operating Systems
Review, (July, 1980).

4. Feustel, E. A. , liOn the Advantages of Tagged Architecture,"
IEEE Trans. Comptrs. Vol. C-22 (7) pp. 644-656 (July 1973).

5. GEe Computers Limited, GEe 4000 Series Computers, GEe Com
puters Limited, Hertfordshire WD6 lRX, England (Nov. 1976).

6. Gehringer, E. F q "Variable-Length Capabilities as a Solu-
t ion to
Operating
1979) •

the Small-Object Problem,"
Systs. Princs., pp. 131-142

Prac.
ACM

7th ~. on
SIGOPS, (Dec.

7. Gurd , J., Watson, 1., and Glaurt, J., "A MUlti-layered Data
Flow Computer Architecture," Technical Report, Department
of Computer Science, University of Manchester, Manchester
M13 9PL, England (July 1978).

8. Habermann, A. N., Flon, L., and Cooprider, L., "Modulariza
tion and Hierarchy in a Family of Operating Systems," Comm.
ACM Vol. 19(5) pp. 266-272 (May 1976). -----

9. Liskov, B., "The Design
Comm. ACM Vol. 15(3) pp.

of the
144-149

VENUS
(Ma rch

Operating
1972) •

System,"

10. Myers, G. J., Advances in Computer Architecture, McGraw-Hill
(1978).

ll. Needham, R. M., "System Aspects of
Proc. 7th~. on Operating Systs.
SIGOPS,~ec. 1979).

the Cambridge Ring, II

Princs., pp. 82-85 ACM

12. Organick, E. I.,
B5700/B6700 Series,

Computer System
Academic Press, New

Organization: The
York, N.Y. (1973).

June 18, 1980

	Low Contention Semaphores and Ready Lists
	Report Number:
	

	tmp.1307986960.pdf.r_PDy

