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Abstract—Computing eigenpairs of a symmetric matrix is
a problem arising in many industrial applications, including
quantum physics and finite-elements computation for automo-
biles. A classical approach is to reduce the matrix to tridiagonal
form before computing eigenpairs of the tridiagonal matrix.
Then, a back-transformation allows one to obtain the final
solution. Parallelism issues of the reduction stage have already
been tackled in different shared-memory libraries. In this
article, we focus on solving the tridiagonal eigenproblem, and
we describe a novel implementation of the Divide and Conquer
algorithm. The algorithm is expressed as a sequential task-flow,
scheduled in an out-of-order fashion by a dynamic runtime
which allows the programmer to play with tasks granularity.
The resulting implementation is between two and five times
faster than the equivalent routine from the INTEL MKL
library, and outperforms the best MRRR implementation for
many matrices.

Keywords-Eigensolver, multicore, task-based programming,
PLASMA, LAPACK

I. INTRODUCTION

With the recent emergence of architectures with many
cores, algorithms have to be re-designed to take advantage
of the new hardware solutions. The level of parallelism to
express becomes so significant that, according to Amdahl’s
law, some algorithms see their performance decrease dra-
matically due to the cost of their sequential portion. In
addition, the fork/join model has reached its limits due to
the cost of synchronizations on a number of resources that
keep increasing. Recently, many runtimes have emerged to
limit and find solutions to this problem. The task-based
approach is a way to avoid many of those barriers as they
can be expressed as local barriers, concerning a smaller
number of tasks. A runtime schedules tasks on the multiple
computational units available according to their dependency
analysis. Thus, the sequential part of the original algorithm
can sometimes be computed alongside other tasks. Further-
more, using tile algorithms allows us to take advantage of
data locality by pipelining operations that exploit the same
data. A contiguous memory can be divided up in the tile
distribution in such a way that it provides a good task
granularity depending on the architecture. Combining both
approaches expresses more parallelism, and exploits current
architectures as much as possible. Here, we focus on the

symmetric eigenproblem for a multicore system, to see how
such a task-based tile algorithm can outperform existing
implementations.

The symmetric eigenproblem is a problem arising in
many applications, such as quantum physics, chemistry and
statistics. A standard approach for computing eigenpairs is
first to reduce the matrix to a tridiagonal form T :

A = QTQT (1)

where A is the considered dense n-by-n original matrix and
Q an orthogonal matrix. Then, a tridiagonal eigensolver is
used to compute eigenpairs of the tridiagonal matrix:

T = V ΛV T (2)

where V is the matrix of orthogonal eigenvectors, and Λ
the diagonal matrix encoding the eigenvalues. Finally, the
resulting eigenvectors are updated according to the original
matrix:

A = (QV )Λ(QV )T (3)

The PLASMA project [1], [2] started a few years ago to
revisit well-known algorithms of the LAPACK library, and
to adapt their implementations to current multicore systems.
PLASMA algorithms follow a task-flow model, which allows
the programmer to utilize a huge level of parallelism through
a fine task granularity. The symmetric eigenproblem has
already been studied in PLASMA, with the implementation of
a new routine to compute the tridiagonal reduction [3]. The
back-transformation relies on matrix products and is already
efficient on recent architectures. However, the solution of
the tridiagonal eigenproblem is computed using LAPACK
routines, and only exploits parallelism through level 3 BLAS
operations if correctly linked with a multi-threaded imple-
mentation such as the INTEL MKL or the AMD ACML
libraries. Thus, we would like to propose a new tridiagonal
eigensolver, based on a task-flow programming model, on
top of the internal QUARK runtime.

Regarding this problem, four algorithms are available: QR
iterations, Bisection and Inverse Iteration (BI), Divide and
Conquer (D&C), and Multiple Relatively Robust Represen-
tations (MRRR). The first two, QR and BI, are presented
in [4], but a performance comparison made by Demmel et



al. [5] compared LAPACK algorithms and concluded that
D&C and MRRR are the fastest available solvers. However,
while D&C requires a larger extra workspace, MRRR is
less accurate. Accuracy is a fundamental parameter, because
the tridiagonal eigensolver is known to be the part of the
overall symmetric eigensolver where accuracy can be lost.
D&C is more robust than MRRR, which can fail to provide
an accurate solution in some cases. In theory, MRRR is
a Θ(n2) algorithm, whereas D&C is between Θ(n2) and
Θ(n3), depending on the matrix properties. In many real-
life applications, D&C is often less than cubic while MRRR
seems to be slower than expected due to the number of
floating divisions and the cost of the iterative process.
The main asset of MRRR is that a subset computation is
possible, reducing the complexity to Θ(nk) for computing
k eigenpairs. Such an option was not included within the
classical D&C implementations, or it only reduced the cost
of the updating phase of the last step of the algorithm [6].
Considering the fact that accuracy and robustness are impor-
tant parameters, the objective of this paper is to introduce a
new task-based Divide and Conquer algorithm for computing
all eigenpairs of a symmetric tridiagonal matrix.

The rest of the paper is organized as follows. We present
the sequential algorithm in Section III, followed by the
parallelization strategy in Section IV. Then, Section V
describes the testing environment with a set of matrices
presenting different properties, and analyzes our results in
comparison with existing concurrents. Finally, Section VI
concludes with some prospects of the current work.

II. RELATED WORK

As we mentioned in Section I, four algorithms are avail-
able in LAPACK [7] to solve the tridiagonal eigenproblem.
In this part, we will focus only on D&C and MRRR, the
fastest available solvers. However, different approaches can
be used to solve the complete symmetric eigenproblem.
The Jacobi eigenvalue algorithm [4] is an iterative process
to compute eigenpairs of a real symmetric matrix, but
it is not that efficient. Recently, the QDWH (QR-based
dynamically weighted Halley) algorithm was developed by
Nakatsukasa [8], and provides a fast solution to the full
problem. Another approach is to reduce the matrix to band
form (not especially tridiagonal form) before using a band
eigensolver. It has been investigated in the past, but here we
will focus more precisely on the tridiagonal eigensolver.

The Divide and Conquer algorithm is included in both
LAPACK and SCALAPACK [9], and – to our knowledge –
no faster implementation is available for multicore architec-
tures. The LAPACK version [10] is sequential, and exploits
parallelism through level 3 BLAS operations. During the
merge process, the main cost lies on two matrix products,
and parallelizing those operations provides a good speedup
with respect to the sequential execution. The first parallel
implementation was proposed in [11] to exploit the idea

of partitioning the original problem. SCALAPACK [12]
expands the previous implementation for distributed ar-
chitectures. Contrary to LAPACK where subproblems are
sequential, SCALAPACK allows us to distribute the compu-
tation among all the available nodes. In addition, the merge
steps present much more parallelism than the LAPACK
version, where only the updating process performs BLAS 3
operations. Both LAPACK and SCALAPACK implemen-
tations are included in the INTEL MKL library [13].

MRRR, designed by Dhillon [14], has also been studied
for multicore architectures. The objective of MRRR is to
find a suitable standard symmetric indefinite decomposition
LDLT of the tridiagonal matrix, such as a small change in
L causes a small change in D. Such a representation allows
for computing eigenvectors with a relatively high accuracy.
On the other hand, it requires well separated eigenvalues.
The first representation divides the eigenvalues spectrum
into subsets of close eigenvalues. Then, a new representation
L′D′L′T = LDLT−σI is computed with σ chosen in order
to break existing clusters. This process is repeated until each
cluster contains only one eigenvalue. Then, eigenvectors
can be computed. With such an approach, a good level
of parallelism is expressed: an eigenvector computation is
independent from the rest. However, the LAPACK version
does not rely on level 3 BLAS operations, so it is more
difficult to exploit parallelism. SCALAPACK provides a
parallel implementation for distributed architectures, but the
available routine in the API is for the complete symmet-
ric eigenproblem. The fastest implementation for shared-
memory systems was developed by the Aachen Institute for
Advanced Study in Computational Engineering Science in
MR3-SMP [15]. The algorithm is expressed like a flow of
sequential tasks and relies on POSIX threads. Their internal
runtime can schedule tasks statically or dynamically. Their
experiments showed how well it outperforms the original
MRRR algorithm with naive fork/join parallelization. They
also explain why the implementation is scalable, and how it
exploits as much parallelism as possible. In addition, com-
putational timing shows that MR3-SMP is often better than
the D&C from the INTEL MKL library. It confirms that, as
in many cases, the task-based approach is better suited than
the fork/join model provided by the INTEL MKL library for
modern architectures. As Demmel et al. showed that D&C
and MRRR are comparable in terms of performance for a
sequential run, it motivates our development of a task-based
D&C to see how well this approach can challenge MR3-
SMP.

A heterogeneous approach of D&C algorithm for the
Singular Value Decomposition (SVD) problem has also been
studied in [16]. The algorithm is close to the one used for
the eigenproblem, and both the secular equation and the
GEMMs are computed on GPUs. The speedup with respect
to the INTEL MKL library is interesting, but we cannot
exploit those improvements in our task-based approach.



III. THE SEQUENTIAL ALGORITHM

A symmetric tridiagonal eigensolver computes the spec-
tral decomposition of a tridiagonal matrix T such that:

T = V ΛV T with V V T = I (4)

where V are the eigenvectors, and Λ the eigenvalues. The
original Divide and Conquer algorithm was designed by
Cuppen [17] and later [18] proposed a stable version of
this algorithm. This algorithm has been implemented by
the state-of-art LAPACK and SCALAPACK packages. We
follow Cuppen’s strategy in our design. The D&C approach
can then be expressed in three phases:
• Partitioning the tridiagonal matrix T into p subproblems

in a recursive manner forming a tree.
• The subproblems at the leaf of the tree are considered to

be simple or small eigenvalue problems. Each of these
problems may be considered as an independent problem
without any data dependencies with the other leaves
of the tree and solved by the classical QR iterations
technique which provides an accurate solution.

• Merge the subproblems which are defined by a rank-
one modification of a tridiagonal matrix, and proceed
to the next level of the tree in a bottom-up fashion as
shown in Figure 1.

Thus, the main computational part of the D&C algorithm is
the merging process. In order to describe the merging phase
and for the sake of simplicity, we define p = 2, but it is
easy to generalize for any p < n, with n being the matrix
size. Partitioning the problem with p = 2 gives:

T =

(
T1 0
0 T2

)
+ βuuT (5)

where T1 and T2 are the two tridiagonal submatrices, with
the first and the last element modified by subtracting β
respectively, u is a vector where ui = 1 only when i = n

2 or
i = n

2 + 1. Suppose that the solution of the eigenproblem of
T1 and T2 are given by T1 = V1D1V

T
1 and T2 = V2D2V

T
2 .

Thus, the merge phase consists of solving the system:

T = Ṽ (D + βzzT )Ṽ T (6)

where Ṽ = diag(V1, V2) and z = Ṽ Tu. This system is
solved by two steps, first we find the spectral decomposition
of R = D + βzzT = XΛXT (which is called “rank-
one modification”) and then we explicitly construct the
eigenvectors V of T by performing a matrix product of the
updated eigenvectors X with the previous computed one’s
(the eigenvectors Ṽ of the two sons) such as V = Ṽ ×X .
Golub [19], [20] has shown that if the di (the components of
D) are distinct and the ζi (the components of z) are different
from zero for all i, then the eigenvalues/vectors of R are the
zeros of w(λ), where

w(λ) ≡ 1 + β

n∑
i=1

ζ2i
di − λ

(7)

Equation 7 is known as the secular equation. Note that when
the di are equal (meaning that D has multiple eigenvalues) or
when ζi = 0 or |ζi| = 1 the problem is deflated meaning that
some of its final eigenpairs (λ, v) are directly known without
the need of any computation. As a result, the deflation
process prevents the computation of eigenpairs (λ, v) of the
merged system R, which are acceptable to be eigenpairs of
the father node (here in this example, it is T ). Therefore, it
reduces both the number of secular equations and the size
of the matrix product with Ṽ .

Finally, let us outline a detailed description of the merging
phase. It proceeds in seven steps:
• finding the deflation;
• permuting the vectors Ṽ in a way to have two sets

(non-deflated and deflated vectors);
• solving the secular equations of the non-deflated portion

(compute the updated eigenvalues Λ and the compo-
nents of the updated eigenvectors X);

• computing a stabilization value for each eigenvector
according to Gu technique (described in [18]);

• permuting back the deflated eigenvectors;
• computing the eigenvectors X of the updated system
R;

• updating the eigenvectors of the father system V =
Ṽ ×X .

The D&C approach is sequentially one of the fastest
methods currently available if all eigenpairs are to be com-
puted [4]. It also has attractive parallelization properties as
shown in [12].

Figure 1. D&C merging tree

Given n the size of the problem and k the number of
non-deflated eigenvalues, the cost of the different steps of
the merging phase is listed in Table III.

In the worst case, when no eigenvalue is deflated, the
overall complexity can be expressed by:

n3 +2(
n

2
)3 +4(

n

4
)3 + · · · =

log(n)∑
i=0

n3

22i
=

4n3

3
+Θ(n2) (8)

We can observe that the overall complexity is dominated
by the cost of the last merge which is about n3 operations.



Operation Cost
Compute the number of deflated eigenvalues Θ(n)

Permute eigenvectors (copy) Θ(n2)
Solve the secular equation Θ(k2)

Compute stabilization values Θ(k2)
Permute eigenvectors (copy-back) Θ(n(n− k))

Compute eigenvectors X of R Θ(k2)

Compute eigenvectors V = Ṽ X Θ(nk2)

Table I
COST OF THE MERGE OPERATIONS

The two penultimate merges require n3

4 operations and the
rest of the algorithm only requires n3

12 operations. Consid-
ering this result, computing both independent subproblems
and merging steps in parallel seems to be important. It is
worth noting that the greater the amount of deflation, the
lesser the number of required operations, which leads to
better performance. The amount of deflation depends on
the eigenvalue distribution as well as the structure of the
eigenvectors. In practice, most of the application matrices
arising from engineering areas provide a reasonable amount
of deflation, and so the D&C algorithm runs at less than
O(n2.4) instead of O(n3).

IV. PARALLELIZATION STRATEGY

PLASMA expresses algorithms as a sequential task flow.
Dependencies between tasks are described through a set of
qualifiers: INPUT, OUTPUT, and INOUT, which define the
access type to the data. A master thread submits those tasks
to the dynamic runtime QUARK [21]. This later analyzes the
qualifiers to generate dependencies between tasks, and then
schedule them in an out-of-order fashion over the working
threads when their dependencies are satisfied. Algorithms
exploiting this approach usually splits the work by (square or
rectangular) tiles covering the matrix. The tiling allows the
users to tune the execution from a few large efficient kernels
to numerous smaller kernels that provide more parallelism
and better scalability. The data is often distributed following
the same cutting to improve data locality of the kernels.

Since computation of each eigenvector relies mostly on
the secular equation (which computes the components vi
of the eigenvector) followed by the stabilization step which
will also operates on the vector by itself, we decided to
implement the D&C algorithm using a panel distribution
of the tasks, thus keeping the LAPACK column major
layout (rectangular tiles fashion). Operations on matrices are
divided as a set of operations on eigenvectors panels. This
greatly simplifies the management of the task dependencies
in the divide and conquer process, and allows us to directly
call LAPACK internal subroutines such as LAED4 for
computing the solution of the secular equation on each
eigenvector. In contrast to the classical algorithm, the data
dependencies tracking of the task flow implementation is
not as straightforward and requires more attention because
of the dynamic computation of the number of the non-

deflated eigenvalues. Note that the required workspace of
the algorithm depends on this computed deflation value and
thus workspace sizes become dynamic if one wants to keep
the extra space as low as possible. To overcome the dynamic
output result, we decided to keep the same sequential task
flow style which looks simple. However, in this case tasks
related to the deflated and the non-deflated eigenvalues are
submitted. This creates extra tasks without computational
work. The overhead is considered marginal compared to the
computational cost of other tasks. As a result, the generated
task graph (DAG) is matrix independent: there will be as
many tasks for a matrix with a lot of deflation as for a
matrix without deflation.
Algorithm 1 Merge step

Compute deflation( V ) . Deflate
for each eigenvectors panel p do

PermuteV( Vp, Vd ) . Permute and compress storage
LAED4( Vp ) . Solve the secular equation
ComputeLocalW( Vp, Wp ) . Local reduction

end for
ReduceW( V , W ) . Reduce
for each eigenvectors panel p do

CopyBackDeflated( Vp, Vd )
ComputeVect( Vp, W ) . Stabilize new eigenvectors
UpdateVect( Vp, Vd ) . Update eigenvectors

end for

Most of the steps of the merging phase described in
Section III can be redesigned in a parallel fashion by
splitting the operations over a subset of eigenvectors, i.e.,
panel of the matrix V . The parallel algorithm is described
in Algorithm 1 and is composed of eight tasks:
• Compute deflation: Find if there is a possible deflation,

and generate the permutation to rearrange the eigen-
values/vectors in four groups: non-deflated of the first
subproblem V1, the correlated eigenvectors between V1
and V2, non-deflated of the second subproblem V2, and
the deflated eigenvalues. It returns the number of non-
deflated eigenvalues.

• PermuteV: Rearranges a set of vectors from V , to a
workspace in a compressed form: do not store the zeros
below V1, and above V2 from Equation 6. Deflated
vectors are sorted at the end of this buffer.

• LAED4: Solves the secular equation on each non-
deflated eigenvalue computing the new eigenvalue λ of
the rank-one modification problem R, and generating
the components of the new eigenvector. Every task is
a panel and thus works on a set of nb vectors.

• ComputeLocalW: The stabilization step described in
Section III is split over two tasks. First is the parallel
set of ComputeLocalW tasks which are independent
for every panel, and then the ReduceW task perform a
reduction to generate the stabilization vector W . Hence,
the ComputeLocalW task consists of computing the



local contribution Wp to the stabilization vector W .
• ReduceW: Computes the stabilization vector W of all

the panels.
• CopyBackDeflated: Copies back the deflated vectors to

the end of father eigenvector matrix V . At this level,
when the previous steps finished, we know all the
permutation and sizes of deflation, so we can perform
this copy back to allow using the workspace used for
storing it in the next steps.

• ComputeVect: Stabilizes and compute the new non-
deflated eigenvectors X . Thanks to the W vector.

• UpdateVect: Updates the non-deflated eigenvectors X
by performing the matrix product V = Ṽ ×X described
in Equation 6.

As shown in Algorithm 1, only two kernels remain
sequential and create a join operation: the Compute deflation
and the ReduceW. However, these kernels are very fast (they
constitute less than 1% of the overall computational time),
and they are local to each merging phase. Therefore, two
independent merging phase have two independent Compute
deflation and ReduceW kernels that can run in parallel. This
is not the case in the fork/join model provided by MKL LA-
PACK implementation that uses the multi-threaded BLAS
library. A deep analysis of the task-flow model let us observe
that some tasks have a dependency on every panel of the
matrix resulting in about Θ(n) data tracking complexity.
In order to minimize the amount of dependencies being
tracked, we developed the GATHERV qualifier for the
QUARK runtime. Therefore, all tasks have a constant number
of dependencies. Those working on a panel have an extra
dependency on the full matrix with the GATHERV flag,
while the join task (Compute deflation and ReduceW) has a
single INOUT dependency on the full matrix. All tasks with
the GATHERV flag can be scheduled concurrently since the
developer guarantees they work on independent data, and
the join task waits for them to be completed before being
scheduled. Then, it is possible to describe work similar to a
fork/join model on each subproblem with a constant number
of dependencies per task. This lowers the complexity of
the dependency tracking algorithm. Furthermore, the task
parallelism and granularity of this technique is controlled by
the panel size nb which is a parameter that is defined by the
problem size but also can be chosen by the user. As usual,
nb has to be tunned to take advantage of criteria such as the
number of cores (which define the amount of parallelism
required to fulfill the cores) and the efficiency of the kernel
itself (the computing kernel might have different behavior
depending on small and large nb). Dependencies between
the merging phases need to be handled correctly to allow
independent subproblems to be solved in parallel. Since the
tree is traversed in bottom-up fashion, different merging pro-
cesses of the same level of the tree are always independent
and thus can be solved in parallel. Moreover, we can state

that the merging process between two different levels of
the tree are independent if and only if they do not belong
to the same branch of the tree. Figure 2 shows the task

Scale T

Partitioning

STEDC STEDC STEDC STEDC

Compute deflation Compute deflation

Permute V1 LAED4 Permute V2 LAED4

CopyBackDeflated

ComputeLocalW

ReduceW

ComputeVect

UpdateVect UpdateVect

Compute deflation

CopyBackDeflated

ComputeLocalW

ReduceW

ComputeVect

UpdateVect UpdateVect

Permute V˜ LAED4 Permute V˜LAED4

CopyBackDeflated

ComputeLocalW

CopyBackDeflated

ComputeLocalW

ComputeVect ComputeVect

ReduceW

UpdateVect UpdateVect UpdateVect UpdateVect

Scale back

Figure 2. DAG of the D&C tridiagonal eigensolver for a matrix of size
1000, with a minimal partition size of 300, and a panel size of 500

Direct Acyclic Graph (DAG) and its dependencies obtained
for a problem of size 1000, recursively partitioned down
to achieve subproblem at the bottom of the tree of size less
than or equal to 300 (minimal partition size is 300). This will
result in four subproblems of size 250 each. We defined the
panel size nb = 500 meaning that our tasks are split by panel
of 500 columns. The first two nodes of the DAG are the
tasks which prepare (scale if necessary the tridiagonal matrix
T ) and split the problem, then we can observe two sub-
DAG (highlighted by the rectangular border) corresponding
to the two independent merging processes; followed by the
sub-DAG at the bottom that correspond to the final merge
process. And finally if the original matrix T was scaled
we need to apply the scale back. At the beginning, four
independent eigenproblems are solved sequentially using the
kernel STEDC. Then the runtime will schedule in parallel the
two independent merging processes of a same level without



coordinating the progress of each merge. Figure 2 allows us
to explain the importance of the parallelization we propose.
Despite that the D&C algorithm exhibit tree parallelism, our
proposition of breaking the panel into chunks of size nb
will create extra tasks producing more parallelism that we
can exploit either at the bottom or at the top of the DAG.
Every level of the DAG consists of tasks that can run in
parallel. For example, in Figure 2, for the first two merges,
the fifth level of the DAG, assuming there is no deflation,
each LAED4 has a size of 500 (it corresponds to the merging
process of the two sons of size 250 each). Since our panel
nb = 500 we end up having one LAED4 task for merging
son1 and son2, and another parallel LAED4 task for merging
son3 and son4 while if we change our nb to be 100 we can
create ten tasks. Note that we can observe in Figure 2 that
the permute task can run in parallel with the LAED4 task
while in Algorithm 1 they are sequential. We analyzed the
algorithm and found that we can also create extra parallel
task by requiring extra workspace. For that we integrated a
user option that allows the algorithm to use extra workspace
and thus can create more parallel tasks. For example, the
permutation can be executed in parallel with the LAED4
if there is extra workspace. Similarly, the CopyBack can
be executed in parallel with the ComputeVect if this extra
workspace is allowed. In practice, the effect of this option
can be seen on a machine with large number of cores where
we need to exhibit parallelism as much as possible.

The execution traces of Figure 3 illustrates the different
level of parallelization exploited to achieve efficient compu-
tation on multi-core and to avoid idle states. Those traces
were obtained on a dual INTEL octo-core machine. The
matrix used is of type 4 as described in Table III, and of size
10000×10000. We choose this type to illustrate the case with
few deflated vectors implying expensive merge operations.
The kernel’s color and name are listed in Table II. Two
additional tasks are present: LASET which initializes the
workspace to identity matrix, and SortEigenvectors which
sorts the eigenvectors by ascending order of the eigenvalues.

UpdateVect ComputeVect
LAED4 ComputeLocalW

SortEigenvectors STEDC
LASET Compute deflation

PermuteV CopyBackDeflated

Table II
COLOR CODE OF THE KERNELS IN THE DAG AND EXECUTION TRACES

The sequential execution, which takes 18sec, shows that
most of the time is spent on matrix products (UpdateVect).
For this case, it represents around 90% of the overall time.
The first idea is then to parallelize these operations (GEMM).
The trace is illustrated in Figure 3(a) and it provides a
makespan of only 4.3sec. This is similar to the INTEL MKL
implementation on this architecture with a speedup of 4 with

respect to the sequential implementation. In Figure 3(a) we
can easily determine the level of the tree as well as each of
the merging process. The evaluation of this trace in particu-
lar, the black color which corresponds to the idle time, make
us notice that there is more room for improvements. Solving
the secular equation (LAED4 blue) represents around half
of the execution time. It is then natural to parallelize this

(a) Multi-threaded vectors’ update

(b) Multi-threaded merge operation

(c) Exploiting the independence between subproblems

Figure 3. Comparison of the execution traces on a type 4 matrix, with
few deflated vectors, when adding optimizations on a 16 core architecture

operation, as well as the computation of the eigenvectors
(purple). The result of this optimization is illustrated in
Figure 3(b). It provides a speedup of a factor of two (1.8sec)
on this 16 cores machine. Note that if the machine has more
cores, we can expect higher speedup factor. The assessment
of the trace shows that the last merging process at the top
of the tree is the most time consuming (which confirm
our complexity analysis) and could provide enough work
for all the threads. However, some cores are still stalling
during the small merges carried out at the bottom of the
tree. Since these subproblems are independent, they can be
solved in parallel to exploit the available resources. This last



improvement removes the synchronization barriers between
the level of the tree, and reduces the idle time at the
beginning of the trace. For instance, the two penultimate
merges, previously computed one after the other, as shown in
Figure 3(b), are now computed in parallel (Figure 3(c)). This
provides a final improvement on the algorithm makespan,
and a final speedup of twelve on this problem. These traces
showed an example for a matrix without a lot of deflation.
Since D&C behavior is matrix-dependent, we illustrated in
Figure 4 the execution trace with a matrix of type 5 (see
Table III) of size 10000×10000. As opposed to the previous
example (type 4), this test case generates close to 100% of
deflation. One can expect that the merging process is now
summarized by the permutation kernels which mean that
the computational bound operations (UpdateVect kernel),
are mainly replaced by vector copies (Permute kernels)
which are memory bound. Despite this constraint, one can
observe, a good level of parallelism and small idle times
with our proposed implementation. Note that due to the
characteristics of the operations, the speedup expected will
not be as high as the previous case.

Figure 4. Execution trace on a type 5 matrix, with almost 100% deflation,
on a 16 cores architecture

V. PERFORMANCE AND NUMERICAL ACCURACY
EVALUATION

Experiments were performed on a machine with 2 IN-
TEL XEON E5-2650v2 CPUs running at 2.6GHz (16 cores
total) and 64GB of memory. PLASMA was built using
GCC 4.4.7, and linked with the sequential INTEL MKL
11.2.0 and the HWLOC library. Experiments involving
PLASMA were run with 16 threads bound to a dedicated
core. Experiments with LAPACK and SCALAPACK were
using the INTEL implementation, with 16 threads and
16 MPI processes respectively. Except for SCALAPACK,
numactl --interleave=all was used to dispatch the
data in shared memory which will let the multi-thread
MKL library performing better. For the comparison with
MRRR, we used the MR3-SMP 1.2, with 16 threads, built
with the same GCC. The testing environment follows [5],
[22], and is inspired from [23]. It uses a large spectrum
of tridiagonal matrices in double precision described in
Table III with varying sizes from 2500 to 25000. In our
testing environment, the k parameter is arbitrarily set to

1.0e6, and ulp is the relative unit-in-the-place, computed
by the LAPACK subroutine lamch for precision.

Type Description
1 λ1 = 1, λi = 1

k , i = 2..n

2 λi = 1, i = 1..n− 1, λn = 1
k

3 λi = k
− i−1

n−1 , i = 1..n

4 λi = 1− ( i−1
n−1 )(1−

1
k ), i = 1..n

5 n random numbers with log(i) uniformly distributed

6 n random numbers

7 λi = ulp ∗ i, i = 1..n− 1, λn = 1

8 λ1 = ulp, λi = 1 + i×
√
ulp, i = 2..n− 1, λn = 2

9 λ1 = 1, λi = λi−1 + 100 ∗ ulp, i = 2..n

10 (1,2,1) tridiagonal matrix

11 Wilkinson matrix

12 Clement matrix

13 Legendre matrix

14 Laguerre matrix

15 Hermite matrix

Table III
DESCRIPTION OF THE TEST MATRICES

For scalability and comparison with respect to the INTEL
MKL library implementation, we used matrices of type 2,
3, and 4, because they present different properties, with
about 20%, 50% and 100% of deflation respectively. Our
experiments showed that the proposed set of experiments
are representatives for the matrices presented in Table III.
Figure 5 presents the scalability of our implementation from
1 to 16 threads. Small amount of deflation cases showed up
to 12× speedup using the 16 threads. This behavior is similar
to the one illustrated in Section IV for the execution traces.
When the deflation ratio is high, the speedup decreases and
highlights the transition from a compute bound to a memory
bound algorithm. For memory bound operations (Permute
kernels) the speedup can be determined by the bandwidth.
We can easily see that 4 threads are able to saturate the
bandwidth of the first socket and thus the speedup stagnate
around 4 till we start using the second socket (>8 threads).
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Figure 5. Scalability of the D&C algorithm on type 2, 3 and 4 matrices
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Figure 6. Speedup of D&C algorithm with respect to the INTEL MKL
LAPACK implementation

Figure 6 presents the speedup of our algorithm with respect
to the INTEL MKL implementation. When the deflation
level is large, our algorithm takes advantage of the par-
allelization of the subproblems and the secular equation.
As a consequence, it is four to six times faster. When the
deflation level is small, and when the machine has small
number of cores, the cost of the algorithm is mainly bound
by the cost of GEMM operations. Thus, one can expect that
the model based on multi-threaded BLAS (the LAPACK
routines in the INTEL MKL library) will marginally decrease
the speedup for large matrix sizes.
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Figure 7. Speedup of D&C algorithm with respect to the INTEL MKL
SCALAPACK implementation

Figure 7 presents the speedup with respect to the IN-
TEL MKL SCALAPACK implementation. Contrary to LA-
PACK, SCALAPACK already solves independent sub-
problems in parallel. Furthermore, the programming mod-
els are different. As SCALAPACK is developed for
distributed architectures, the memory is naturally dis-
tributed among the different NUMA nodes before call-
ing the tridiagonal eigensolver. In PLASMA, we use
numactl --interleave=all to distribute the data
among different NUMA nodes. However, with this approach
the data is not as close to the compute node as in SCALA-
PACK. On the other side, SCALAPACK prevents direct

access to the data and data copies are required for exchanges
between NUMA nodes. The speedup is then not as good as
the one shown above, but remains around two for matrices
with more than 20% of deflation. It also reaches four for
test cases with almost 100% deflation.
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Figure 8. Timing of the MR3-SMP implementation versus PLASMA D&C

The comparison with MRRR is more complex than the
comparison with other D&C eigensolvers. Indeed, D&C is
efficient when eigenvalues are clustered, whereas MRRR is
fast when the eigenvalues are well separated. D&C requires
larger workspace, but its accuracy is better. All those pa-
rameters suggest that choosing one eigensolver is problem-
dependent. As reported in Figure 8, the timing comparison
with respect to MR3-SMP is matrix-dependent. Both imple-
mentations are always faster than the corresponding INTEL
MKL implementations, with the same accuracy. The slower
MR3-SMP is, the faster D&C becomes, and, conversely,
as stated by the theory. For most of the test cases, our
new algorithm is faster than MR3-SMP and can be up to
25× faster except for some cases where it can be at max
2× slower. Considering the improvement with respect to
existing D&C implementations, those results are interesting,
because a larger set of matrices become faster to solve
using D&C than using MRRR. On an application where
performance is the main asset, we can suppose that using
D&C or MRRR will depend on the matrix used. However,
the main asset of D&C is the accuracy provided, and it
is better than the obtained accuracy with MRRR on both
the orthogonality of the eigenvectors and the reduction of
the tridiagonal matrix. In theory, for a matrix of size n
and a machine precision of ε, D&C achieves errors of size
O(
√
nε), whereas MRRR error is in O(nε).

Figures 9(a) and 9(b) present the eigenvectors orthogo-
nality, and the reduction of the tridiagonal matrix preci-
sion, respectively. Results shows that the precision of our
implementation is comparable to that of D&C LAPACK,
and MR3-SMP achieves the same results as MRRR LA-
PACK. As predicted by the theory, D&C implementations
are always more accurate than MRRR’s, with a difference
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Figure 9. Stability of both MR3-SMP and PLASMA D&C on the full set
of matrices with different sizes

between one and two digits in our experiments in favor of
D&C. In addition, the worst accuracy case for MR3-SMP is
the fastest run: when MR3-SMP is faster than PLASMA, the
achieved accuracy is often less than the machine precision.
MRRR can achieve good accuracy, because all eigenvalues
are computed before the eigenvectors. This provides addi-
tional information on the matrix properties to stabilize the
process. As the tridiagonal eigensolver is the critical part of
the complete symmetric eigensolver in terms of accuracy,
our results (always close to the machine precision) are
interesting, because they are as accurate as the corresponding
reduction stage, and they show that multiple threads do not
degrade the results. Previous implementations exhibit the
same accuracy, but the set of matrices where D&C outper-
formed MRRR was smaller. Figure 10 shows the timing of
the MR3-SMP and the PLASMA D&C algorithm on a set of
application matrices from the LAPACK stetester 1 and
described in [22]. Our D&C implementation outperforms
MR3-SMP on almost all cases while providing a better

1http://crd-legacy.lbl.gov/∼osni/Codes/stetester/DATA
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Figure 10. Application matrices

accuracy. However, those matrices are small and it is hard
to conclude anything about scalability and efficiency.

VI. CONCLUSION

We presented a new Divide and Conquer implementation,
exploiting parallelism through a task-flow model. Accord-
ing to the experiments we conducted, our implementa-
tion outperforms existing D&C implementations with the
same accuracy. The task-based approach, using the runtime
QUARK to schedule tasks, provides good performance, as
seen previously with the implementation of the reduction
to tridiagonal form. In addition, performance experiments
showed that the implementation is competitive with the
best MRRR implementation on shared-memory architec-
tures. Considering the assets and the drawbacks of both
algorithms, and the fact that the problem is mainly matrix-
dependent, choosing one eigensolver depends on the ap-
plication. The extra amount of memory required by D&C
could be problematic, but the robustness of the algorithm
ensures that we obtain an accurate solution. In addition, our
algorithm presents a speedup on matrices extracted from
real-life applications. Those matrices are well-known, and
we suppose they represent a good set to demonstrate the
benefit of our new Divide and Conquer implementation.

Our main improvement was to express more parallelism
during the merge step where the quadratic operations be-
come costly as long as the cubic operations are well paral-
lelized. A recent study by Li [24] showed that the matrix
products could be improved with the use of hierarchical
matrices, reducing the cubic part with the same accuracy.
Combining both solutions should provide a fast and accurate
solution, while reducing the memory space required.

For future work, we plan to study the implementation
for both heterogeneous and distributed architectures, in the
MAGMA and DPLASMA libraries. As the Singular Value
Decomposition (SVD) follows the same scheme as the
symmetric eigenproblem, by reducing the initial matrix to
bidiagonal form and using a Divide and Conquer algorithm



as bidiagonal solver, it is also a good candidate for applying
the ideas of this paper. bidiagonal solver.
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