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Abstract
We present a shallow embedding of the Object Calculus of Abadi and Cardelli in the λΠ-calculus
modulo, an extension of the λΠ-calculus with rewriting. This embedding may be used as an
example of translation of subtyping. We prove this embedding correct with respect to the op-
erational semantics and the type system of the Object Calculus. We implemented a translation
tool from the Object Calculus to Dedukti, a type-checker for the λΠ-calculus modulo.

1998 ACM Subject Classification F.4.1 Lambda calculus and related systems
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1 Introduction

Motivation The λΠ-calculus modulo[13] (λΠm) is a type system with dependent types
in which the conversion congruence can be extended by a user-supplied rewrite system. It
can be used as a logical framework to encode all the functional Pure Type Systems[13].
Moreover, translation tools from real-world proof assistant like Coq[12, 4] and the HOL
family[3] to Dedukti[5], a type-checker for λΠm, allow for the verification of proofs done in
these complex systems using a small, easy to trust, checker.

In this paper we present an encoding of an object calculus in λΠm, more precisely the
simply-typed ς-calculus[2]. A major feature of object oriented type systems is subtyping, and
it will be the focus of this article. The simply-typed ς-calculus is the simplest object calculus
featuring subtyping. We chose it as our source language to understand the special case of
structural object subtyping to be compared with other forms of subtyping like universe
cumulativity in Coq or predicate subtyping in PVS.

We also believe that objects may be useful for proof assistants like they already are for
programming; we would like to be able to develop proofs using object oriented concepts and
mechanisms such as inheritance, method redefinition and late binding. FoCaLiZe[20] is a
logical system featuring class-based object mechanisms which are translated in λΠm. In
order to generalize this encoding of objects in λΠm to more primitive object-based mech-
anisms, we would need complex objects where methods would be typed with dependent
types. This work is a first step in that direction starting from a very simple type-system for
objects.

Related work Many encodings[27, 6] of objects have been developed, studied, and
compared in the 90s. In order to express complex but common object mechanisms such
as self reference and inheritance, the target language is usually chosen to be very rich like
System Fω<: (a type system featuring polymorphism, existential types, type operators and
subtyping).
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2 Objects and subtyping in the λΠ-calculus modulo

Because of the complexity of System Fω<: and the limitations of these encodings, they are
of limited practicality to study object oriented languages or to implement object oriented
mechanisms in proof systems; the only implementation to our knowledge is the Yarrow proof
assistant[28].

However, following the example of the λ-calculus, small calculi taking objects as core
notions have been designed and their type systems have been proved safe. For example:

The λ-calculus of objects[14] is an extension of the simply-typed λ-calculus with object
construction, method call, and method update. In this system, objects are extended
with their types using extensible records.
The Object Calculi of Abadi and Cardelli[2] are a collection of calculi based on objects.
They differ from the λ-calculus of objects in two important ways: they are not based
on the λ-calculus so they have fewer constructs and objects and their types are fixed
records. Hence they are somewhat simpler but they still are very expressive.
Featherweight Java[21] is a core calculus for the popular class-based Java programming
language. It is a small class-based object oriented calculus designed to study extensions
of class-based languages such as Java.

These three calculi can easily encode the λ-calculus, allow possibly non-terminating
recursion and have some form of subtyping: respectively row polymorphism, structural
subtyping, and class-based subtyping.

The type systems of these three calculi have been formalized in proof assistants; those
formalizations can be seen as deep embeddings of the calculi in type theory. For exam-
ple, Featherweight Java has been formalized in Coq[22] and Isabelle/HOL[15] using ex-
tensible records and subject reduction for Object Calculi has been proved in Coq[8] and
Isabelle/HOL[19]. For the untyped Object Calculus, confluence has also been formally
proved in Isabelle/HOL[18].

Encodings of objects based on rewrite techniques have also been studied; for example, in
the ρ-calculus[10], a full encoding of the untyped Object Calculus and λ-calculus of objects[9]
and a partial encoding of the simply-typed Object Calculus[10] have been designed. In the
Maude specification environment[11], objects are also encoded using a rewrite system thanks
to the reflection mechanism of Maude.

Contribution In contrast with these deep encodings, our contribution is a shallow
embedding. What we mean by the term "shallow" is that the elements of the source language,
the simply-typed ς-calculus: terms, values, and types are respectively translated to terms,
values, and types in λΠm such that operational semantic, typing derivations, and binding
operation are preserved by this translation.

The next section of this article describes λΠm, our target language, Section 3 describes
the simply-typed ς-calculus, our source language. Section 4 is the main section of this
article; it defines a strongly-normalizing encoding of the simply-typed ς-calculus in λΠm.
This encoding is not fully shallow because it does not preserve the operational semantics.
In Section 5, we add two rewrite rules to this encoding to reflect the operational semantics;
doing so we lose strong-normalization.

2 The λΠ-calculus modulo

2.1 The λΠ-calculus
The λΠ-calculus[16], also known as LF and λP, is an extension of the simply typed λ-calculus
with dependent types. λΠ terms and types have the following syntax:
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t, u, v, . . . , τ ::= x | t u | λx : τ.t | Πx : τ1.τ2 | Type | Kind

There is no syntactic distinction between terms and types but we use latin letters starting
at t to denote terms and the greek letter τ to denote types. We use the letter s to denote a
sort, either Type or Kind. The term Πx : τ1.τ2 where the variable x may appear free in τ2
is called a dependent product and represents the type of functions taking an argument x of
type τ1 and returning a value of type τ2 that may depend on x. If x does not appear free in
τ2, the term Πx : τ1.τ2 will be abbreviated as τ1 → τ2. If τ1 is clear from context, the term
Πx : τ1.τ2 will be abbreviated as Πx.τ2.

A list of variable typing declarations is called a (λΠ) context:

Γ ::= ∅ | Γ, x : τ

where ∅ denotes the empty context. We implicitly use α-conversion to avoid variable capture.
In particular, contexts contain distinct variables.

Some contexts are called well-formed. When the context Γ is well-formed, we write
Γ `d. Some terms are called well-typed. When the term t is well-typed of type τ in
context Γ, we write Γ `d t : τ . These two notions are mutually defined in Figure 1 where
t0{t1/x} denotes the capture-avoiding substitution of the variable x by the term t1 in term
t0 and ≡β is the congruence induced by β-reduction (the smallest congruence such that
(λx : τ1.t0)t1 ≡β t0{t1/x}).

s ∈ {Type, Kind}

(Empty)
∅ `d

Γ `d Γ `d τ : s x 6∈ Γ
(Decl)

Γ, x : τ `d
Γ `d (Sort)

Γ `d Type : Kind

Γ `d x : τ ∈ Γ
(Var)

Γ `d x : τ
Γ `d τ1 : Type Γ, x : τ1 `d τ2 : s

(Prod)
Γ `d Πx : τ1.τ2 : s

Γ `d τ1 : Type Γ, x : τ1 `d τ2 : s Γ, x : τ1 `d t : τ2 (Abs)
Γ `d λx : τ1.t : Πx : τ1.τ2

Γ `d t0 : Πx : τ1.τ2 Γ `d t1 : τ1 (App)
Γ `d t0t1 : τ2{t1/x}

Γ `d t : τ1 Γ `d τ1 : s Γ `d τ2 : s τ1 ≡β τ2
(Conv)

Γ `d t : τ2

Figure 1 inference rules for the λΠ-calculus

The λΠ-calculus is the type-system on which logical frameworks such as Automath[24]
and Twelf[26] are based.

2.2 The λΠ-calculus modulo
The λΠ-calculus modulo (λΠm) is an extension of the λΠ-calculus which extends the con-
version rule; terms are considered convertible not only when they are β-equivalent but also
when they are congruent for a given rewrite system.
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A : Type.
Nat : Type. List : Nat→ Type.
0 : Nat. empty : List 0.
S : Nat→ Nat. cons : Πn : Nat.A→ List n→ List (S n).

plus : Nat→ Nat→ Nat. append : Πn1.Πn2.

List n1 → List n2 → List (plus n1n2).

plus 0 n ↪→ n. append 0 n empty l ↪→ l.

plus n 0 ↪→ n. append n 0 l empty ↪→ l.

plus (S n1) n2 ↪→ S (plus n1 n2). append (S n1) n2 (cons n1 a l1) l2 ↪→
plus n1 (S n2) ↪→ S (plus n1 n2). cons (plus n1 n2) a (append n1 n2 l1 l2)

Figure 2 Example of λΠm-context: Peano natural numbers and concatenation of dependent
lists

The terms are the same as in the λΠ-calculus but contexts may also contain rewrite rules
which also need to be well-typed.

Rewrite rules are composed of three parts: a rule context which is a λΠ context used to
type free variables, a left-hand side and a right-hand side which are both terms. In order
to make the rewrite system decidable1, we need to add the following restrictions on rewrite
rules:

the left-hand side is a first-order pattern (a term built only from variables and applica-
tions)
free variables of the right-hand side also appear free in the left-hand side
free variables of the left-hand side are declared in the rule context.

So the new syntax for contexts is as follows:

Γ ::= ∅ | Γ, x : τ | Γ, (Λt ↪→ u)

where Λ stands for λΠ contexts.
The rule context Λ will often be omitted when clear from context.
For any context Γ, a reduction relation on terms −→βΓ is defined by:
for any terms t1, t2 and any variable x, (λx.t1)t2 −→βΓ t1{t2/x}
for any rule (Λl ↪→ r) ∈ Γ and any substitution θ of the variables of Λ, θl −→βΓ θr.

We denote by ≡βΓ the smallest congruence containing −→βΓ.
To check if contexts are well-formed, we add a rule for the new case of rewrite rule. A

rewrite rule is well-formed in a context Γ if the left-hand side and the right-hand side have
the same type in Γ,Λ (Γ augmented with the rule context):

Γ `d Γ,Λ `d t : τ Γ,Λ `d u : τ
(RewriteRule)

Γ, (Λt ↪→ u) `d

1 that is, to decide whether a given term matches a rewrite rule
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The set of rewrite rules in a context Γ defines a rewrite system; the conversion rule for
λΠm is the same as the one for the λΠ-calculus except that the β-equivalence is replaced
by the congruence ≡βΓ.

Γ `d t : τ1 Γ `d τ1 : s Γ `d τ2 : s τ1 ≡βΓ τ2
(Conv)

Γ `d t : τ2

Other typing rules are unchanged. In particular, if the typing judgment Γ `d t : T is
derivable in the λΠ-calculus, then it is also derivable in λΠm with the exact same derivation
and an empty rewrite system.

An example of well-formed λΠm-context2 is shown in Figure 2. This example is composed
of the definitions of the addition in Peano arithmetic and the concatenation of lists depending
on their length. Here and in rest of the paper, we omit in such definitions the types of
variables introduced by Π and λ when it is not ambiguous. The definition of the addition
is needed to convert the types of the left-hand side to the type of the right-hand side
of each rewrite rule defining the concatenation; for instance, let us check that the rule
append 0 n empty l ↪→ l is well-formed in the context Γ := Nat : Type, 0 : Nat, . . . , append :
Πn1.Πn2.List n1 → List n2 → List (plus n1 n2):

The implicit rule context is Λ := (n : Nat, l : List n).
The constants 0, empty, and append have respectively the types Nat, List 0, and
Πn1.Πn2.List n1 → List n2 → List (plus n1 n2) in Γ.
By successive applications of the (App) rule, we can type the left-hand side
append 0 n empty l with type List (plus 0 n) in Γ,Λ.
The rule plus 0 n ↪→ n is in Γ so List (plus 0 n) ≡β(Γ,∆) List n, therefore we can also
type the left-hand side with the type List n in context Γ,Λ using the (Conv) rule.
The left-hand side append 0 n empty l and the right-hand side l have the same type
List n in context Γ,Λ hence the rule Λ(append 0 n empty l) ↪→ l is well-formed in
context Γ.

Thanks to dependent types, we can state and prove theorems in λΠm. To state a theorem,
we declare a symbol whose type is the theorem statement and to prove the theorem we add
one or more rewrite rules defining this symbol as a (total and terminating) function. A
λΠm proof of the addition commutativity is given in Figure 3. This proof is composed of
two rewrite rules that mimic a proof by induction on the first argument of plus. In the
following, we call such a proof scheme a λΠm induction proof.

The interesting properties about a λΠm-context and its associated rewrite system are
confluence, strong normalization and well-formedness. None of them is decidable but when
the rewrite system is both confluent and strongly normalizing, convertibility check can be
decided by comparing normal forms so well-formedness becomes decidable and is indeed
implemented in the Dedukti[5] type checker.

However, the correctness of Dedukti relies on confluence only; strong normalization is
only used to ensure termination.

2 Examples and other contexts in λΠm are preceded in this article by a vertical bar in order to distinguish
them from examples in the ς-calculus.
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

equal : Nat→ Nat→ Type.
refl : Πn : Nat.equal n n.

equal_S : Πn1.Πn2.equal n1 n2 → equal (S n1) (S n2).
equal_S n n (refl n) ↪→ refl (S n).

plus_commute : Πn1.Πn2.equal (plus n1 n2) (plus n2 n1).
plus_commute 0 n2 ↪→ refl n2.

plus_commute (S n1) n2 ↪→ equal_S (plus n1 n2) (plus n2 n1) (plus_commute n1 n2).

Figure 3 A proof of the commutativity of addition in λΠm

3 The simply-typed ς-calculus

In this section, we describe the source language of our encoding, that is the simply-typed
ς-calculus defined by Abadi and Cardelli [2, 1] (also called Obj1<:). This calculus is an object-
based (classes are not primitive constructs) calculus with functional semantics (values are
immutable). Its type system features structural subtyping (as opposed to class subtyping).
Contrary to simply-typed λ-calculus, well-typed ς-terms do not always terminate.

3.1 Syntax

The syntax of the simply-typed ς-calculus is divided between types and terms.
Types are (possibly empty) records of types:

A,B, . . . ::= [li : Ai]i∈1...n

Labels are distinct and their order does not matter as long as each li remains associated
to the same Ai.

Terms are records of methods introduced by a self binder ς. Methods can be selected
and updated.

a, b, . . . ::= x variable
| [li = ς(xi : A)ai]i∈1...n object
| a.l method selection
| a.l⇐ ς(x : A)b method update

Again, labels in objects are distinct and their order does not matter. When the variable
introduced by the ς binder is unused, we may omit the binder and write l = b and a.l ⇐ b

instead of, respectively, l = ς(x : A)b and a.l⇐ ς(x : A)b where x does not appear free in b.
Typing contexts are lists of typing declarations:

∆ ::= ∅ | ∆, x : A

in which each variable may appear at most once.
When x appears in ∆, we denote by ∆(x) the associated type.
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3.2 Typing
The following rules, where A stands for [li : Ai]i∈1...n, define a type system for the simply-
typed ς-calculus3:

∆ `ς Ai ∀i ∈ 1 . . . n li distinct (type)
∆ `ς A

(empty)
∅ `ς

∆ `ς A x 6∈ ∆
(decl)

∆, x : A `ς
∆ `ς x ∈ ∆

(var)
∆ `ς x : ∆(x)

∆, xi : A `ς ai : Ai ∀i ∈ 1 . . . n
(obj)

∆ `ς [li = ς(xi : A)ai]i∈1...n : A
∆ `ς a : A j ∈ 1 . . . n

(select)
∆ `ς a.lj : Aj

∆ `ς a : A ∆, x : A `ς b : Aj j ∈ 1 . . . n
(update)

∆ `ς a.lj ⇐ ς(x : A)b : A

3.2.1 Subtyping
This type system is extended by a subtyping relation <: defined as follows:

∆ `ς Ai ∀i ∈ 1 . . . n+m
(subtype)

∆ `ς [li : Ai]i∈1...n+m <: [li : Ai]i∈1...n

∆ `ς A (refl)
∆ `ς A <: A

∆ `ς A <: B ∆ `ς B <: C
(trans)

∆ `ς A <: C

Since the order of labels is irrelevant, the (subtype) rule actually states that A is a
subtype of B whenever every label of B is also in A, with the same type.

This subtyping relation can be used to change the type of terms with the following
subsumption rule:

∆ `ς a : A ∆ `ς A <: B
(subsume)

∆ `ς a : B

3.2.2 Minimum types
Abadi and Cardelli have proved that the simply-typed ς-calculus enjoys minimum typing[2]:
for each well-typed term a in a context ∆, we can compute a type mintype∆ (a) such that:

∆ `ς a : mintype∆ (a)
for all A such that ∆ `ς a : A, we have ∆ `ς mintype∆ (a) <: A.

3 Abadi and Cardelli also consider a ground type that they call K or Top to ease comparison with the
simply-typed λ-calculus. It can be replaced by the empty object type [ ] so we omit it here to simplify
the calculus.
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The meta-level function mintype4 is defined as follows:
mintype∆ (x) := ∆(x)
mintype∆ ([ ]) := [ ]
mintype∆ ([li = ς(xi : A)ai]i∈1...n+1) := A

mintype∆ (a.lj) := Bj when mintype∆ (a) is [li : Bi]i∈1...n

mintype∆ (a.l⇐ ς(x : A)b) := A

3.3 Operational Semantics

The values of the simply-typed ς-calculus are plain objects. Selection and update are reduced
by the following operational semantics rules where A stands for [li : Ai]i∈1...n and a stands
for [li = ς(xi : A)ai]i∈1...n:

a.lj � aj{a/xj}
a.lj ⇐ ς(x : A′)u � [lj = ς(x : A)u, li = ς(xi : A)ai]i∈1...n,i6=j

where aj{a/x} denotes the substitution of the variable x by the term a in term aj .
The type A′ used in the binder for updating the object a does not need to be equal to

A but may be any supertype of it.
Subject reduction has been proved by Abadi and Cardelli[1]. However, reduction does

not preserve minimum typing since mintype∆ (a.lj ⇐ ς(x : A′)u) is (by definition) A′ but
this term reduces to a value of type A.

3.4 Example

The expressivity of the ς-calculus can be illustrated by the following example from Abadi
and Cardelli[2] assuming that we have a type Num for numbers and that the simply-typed
λ-calculus has been encoded:

RomCell := [ get : Num ]
PromCell := [ get : Num, set : Num→ RomCell ]
PrivateCell := [ get : Num, contents : Num, set : Num→ RomCell ]
myCell : PromCell := [ get = ς(x : PrivateCell)x.contents,

contents = ς(x : PrivateCell)0,
set = ς(x : PrivateCell)λ(n : Num)x.contents⇐ n ]

RomCell is the type of read-only memory cells; the only action that we can perform on
a RomCell is to read it (get method).

A PromCell is a memory cell which can be written once (set method), we can either
read it now or write it and get a RomCell.

PrivateCell is a type used for implementation; it extends PromCell with a contents
field which should not be seen from the outside.

The object myCell implemented as an object of type PrivateCell can be given the type
PromCell thanks to subsumption.

4 Bold face is here used to distinguish the meta-level.
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4 Encoding of the simply-typed ς-calculus in the λΠ-calculus modulo

This section describes an encoding of the simply-typed ς-calculus given by a λΠm-context
and a translation of ς-types, terms, and contexts. We want it to be shallow in the sense
discussed in the introduction. However, the encoding described in the current section will
only preserve typing and binding, since preserving reduction of a non terminating system
cannot, of course, be achieved using a strongly-normalizing rewrite system. The associated
rewrite system will be confluent and strongly normalizing, making type-checking of encoded
terms decidable. In the next section, we will add a few rewrite rules in order to preserve
reduction at the price of losing normalization.

This encoding is implemented as a translation tool[7] producing Dedukti terms from
ς-terms and types.

4.1 Encoding of types
We assume given an infinite λΠ-type label with a decidable equality.

Unit, product, Σ-types, and Leibnitz equality can all be encoded in λΠm (they are special
cases of inductive types, which are translated to λΠm by Coqine[4]) so we will consider that
they are available with the usual notations (respectively unit, A× B, Σx : A.B, and =A).
To avoid confusion with Leibnitz equality, we write ≡ for the equality at meta-level.

4.1.1 Domains
Domains are lists of labels:∣∣∣∣∣∣

domain : Type.
nil : domain.
cons : label→ domain→ domain.

We will use the notation [l1; . . . ; ln] for (cons l1 (. . . (cons ln nil) . . .)).
We avoid assuming that our domains are duplicate-free and we instead consider proofs of

membership of labels. The computational content of such a membership proof is relevant: it
is a position in the list where the label appears. We simply call membership proofs positions:∣∣∣∣∣∣

• ∈ • : label→ domain→ Type.
at-head : Πl.Πd.l ∈ cons l d.
in-tail : Πl1.Πl2.Πd.l1 ∈ d→ l1 ∈ cons l2 d.

Most functions in the encoding are defined by induction on positions.
We use the notation d1 ⊂ d2 as an abbreviation for Πl.l ∈ d1 → l ∈ d2.

4.1.2 Object types
Types are encoded as sorted association lists. Sorting is done at translation time so we don’t
need an ordering on labels in the target language.

Formally, we declare the following type and terms:∣∣∣∣∣∣
type : Type.
typenil : type.
typecons : label→ type→ type→ type.

The λΠ-term type should not be confused with the λΠ-term Type; the former is the λΠ
equivalent of ς-types and the latter is sort of all the λΠ-types.

A translation function J•K from ς-types to λΠ-terms of type type is given by
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J[li : Ai]i∈1...n,l1<...<lnK := typecons l1 JA1K (. . . (typecons ln JAnK typenil) . . .)

For example, the types RomCell, PromCell, and PrivateCell defined in Section 3.4 are
translated as follows:

JRomCellK ≡ typecons get JNumK typenil
JPromCellK ≡ typecons get JNumK (

typecons set JNum→ RomCellK
typenil)

JPrivateCellK ≡ typecons contents JNumK (
typecons get JNumK (

typecons set JNum→ RomCellK
typenil))

4.1.3 Design choices

This encoding of ς-types as association lists is a bit under-specified: the type type does not
impose unicity of label nor sorting. We know two ways to impose these two restrictions:

We can add an extra argument to the typecons constructor, witnessing that the added
label minors the elements in the tail of the list:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

type : Type.
minors : label→ type→ Type.
typenil : type.
typecons : Πl : label.ΠA : type.ΠB : type.minors l B → type.
minors-nil : Πl : label.minors l typenil.
minors-cons : Πl.Πl′.ΠA.ΠB.minors l′ B →

l < l′ → minors l (typecons l′ A B).

But this increases a lot the size of the translated types.

It is also possible to quotient the association lists by a rule exchanging the order of entries
and a rule removing duplicates:

∣∣∣∣ typecons l1 A1 (typecons l2 A2 B) ↪→ typecons l2 A2 (typecons l1 A1 B).
typecons l A1 (typecons l A2 B) ↪→ typecons l A1 B.

In order to preserve normalization, we have to guard the first rule by a condition like
l2 < l1. Unfortunately, the resulting rewrite system becomes hard to keep confluent with
definitions of functions on type. Moreover this requires an ordering on labels and the
use of conditional rewriting which is not yet implemented in Dedukti.

The benefit from excluding unsorted association lists does not seem worth the drawbacks
of these solutions hence we prefer to live with the existence of λΠ-terms of type type not
coming from the encoding.
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4.1.4 Domain and association
Since types are translated as association lists, we define the usual functions assoc and dom
for respectively looking up an association and listing the domain:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dom : type→ domain.
dom typenil ↪→ nil.
dom (typecons l A B) ↪→ cons l (dom B).

assoc : ΠA : type.Πl : label.l ∈ dom A→ type.
assoc (typecons l A B) l (at-head l (dom B)) ↪→ A.

assoc (typecons l2 A B) l1 (in-tail l1 l2 (dom B) p) ↪→ assoc B l1 p.

We will abbreviate assoc A l p as A.pl or A.l leaving the position p implicit.

4.1.5 Subtyping relations
The subtyping relation is defined by:

• ≤ • : type→ type→ Type.
A ≤ typenil ↪→ unit.
A ≤ typecons l B C ↪→ Σp : l ∈ dom A.(A.pl =type B)× (A ≤ C).

where =type is the Leibnitz equality defined on type.

4.1.6 Properties of the subtyping relation
This subsection lists a few useful properties of the ≤ relation. These properties are provable
directly in λΠm, as opposed to the correctness of the translation of subtyping which will be
addressed in Section 4.3.2. These proofs can be found at [7].

I Lemma 1 (subtype-weakening). The ≤ relation enjoys weakening; it means that in λΠm,
we can define a total function subtype-weakening of type ΠA.ΠB.Πl.ΠC.A ≤ B →
(typecons l A C) ≤ B.

Proof. Direct by induction on B (as explained previously, the function subtype-weakening
is defined by two rewrite rules, one for B ≡ typenil and another for B ≡ typecons ...).

J

I Lemma 2 (subtype-refl). The ≤ relation is reflexive; in λΠm, we can define a total function
subtype-refl of type ΠA.A ≤ A.

Proof. By induction on A using the previous lemma. J

I Lemma 3 (subtype-dom). The dom function is compatible with ≤; in λΠm, we can define
a total function subtype-dom of type ΠA.ΠB.A ≤ B → dom B ⊂ dom A.

Proof. By induction on B.
base case is trivial (there is no rewrite rule for this case because it is an empty case)
if B is typecons l′ B1 B2, we have some position p′ : l′ ∈ dom A and A ≤ B2. For any l
and any position p : l ∈ cons l (dom B2), either p is at head in which case l ≡ l′ and p′
proves the goal, or p is in tail and we conclude using the induction hypothesis.

J
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I Lemma 4 (subtype-assoc). The assoc function is compatible with ≤; in λΠm, we can define
a total function subtype-assoc of type ΠA.ΠB.Πst : A ≤ B.Πl.Πp : l ∈ dom B.B.pl =type

A.subtype-dom A B st l p l.

Proof. By induction on B.
base case is trivial
if B is typecons l′ B1 B2, we have some position p′ : l′ ∈ dom A such that A.p′ l′ =type B1
and A ≤ B2. For any l and any position p : l′ ∈ cons l (dom B2),

either p is at head in which case l ≡ l′ and B.pl ≡ B1. A.subtype-dom A B st l pl
′ ≡

A.p′ l′ ≡ B1
or p is in tail in which case we conclude again using the induction hypothesis.

J

I Lemma 5 (subtype-trans). The subtyping relation is transitive; in λΠm, we can define a
total function subtype-trans of type ΠA.ΠB.ΠC.A ≤ B → B ≤ C → A ≤ C.

Proof. By induction on C, using subtype-dom and subtype-assoc. J

4.2 Encoding of terms
As we did for types, we define translation functions from terms and contexts of the simply-
typed ς-calculus to terms and contexts of λΠm.

These functions preserve typing in the sense that we can define, in λΠm, a function Expr
such that whenever the judgment ∆ `ς a : A is valid in the simply-typed ς-calculus, the
judgment J∆K `d JaK∆,A : Expr JAK is valid in λΠm.

We define a λΠm-context reflecting the syntax and the semantics of the ς-calculus. We
start with concrete objects, we then define coercions reflecting the use of the subsumption
rule. From these declarations, we define the λΠm version of selection and update, and finally
we give the translation function for terms.

4.2.1 Objects
Expr A represents the λΠm-type of well-typed objects of type A and Meth A B represents
the λΠm-type of methods of A returning an object of type B.

We can declare Expr and Meth:∣∣∣∣ Expr : type→ Type.
Meth : type→ type→ Type.

Unfortunately, we cannot define Expr directly by some nil and cons constructors, as we
did for types, because a sublist of a well-typed object is not well-typed.

We call a sublist of a well-typed object of type A, defined on some set of labels d, a
preobject of type (A, d).

Formally, we define a λΠm-type Preobj A d by the following declarations:∣∣∣∣∣∣∣∣
Preobj : type→ domain→ Type.
prenil : ΠA.Preobj A nil.
precons : ΠA.Πd.Πl.Πp : l ∈ dom A.

Meth A A.pl→ Preobj A d→ Preobj A (cons l d).

With preobjects at hand, we can define objects of type A:∣∣ Obj A ↪→ Preobj A (dom A).
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and expressions of type B are objects of a type A, subtype of B:∣∣ Expr B ↪→ ΣA : type.(Obj A)× (A ≤ B).

Since the subtyping relation is reflexive, we can inject objects into expressions:∣∣∣∣ expr-of-obj : ΠA.Obj A→ Expr A.
expr-of-obj a ↪→ (A, a, subtype-refl A).

We would like to define Meth A B as Expr A→ Expr B to end this set of definitions but
then the negative occurrence of Expr would be a source of non-termination.

We solve this problem by adding axioms stating that Meth A B is equivalent to Expr A→
Expr B:∣∣∣∣ Eval-meth : ΠA.ΠB.Meth A B → Expr A→ Expr B.

Make-meth : ΠA.ΠB.(Expr A→ Expr B)→ Meth A B.

The key point here is that Eval-meth and Make-meth will freeze reduction. For example
the translation of a looping ς-term like [l = ς(x : [l : []])x.l].l will be a term whose normal-
ization will freeze at an occurrence of the pattern Eval-meth A B (Make-meth A B f) a
which will not be matched by any rewrite rule.

To get a reduction-preserving encoding, we just have to add some rewrite rules; either
the rule Eval-meth A B (Make-meth A B f) a ↪→ f a or the following one Meth A B ↪→
Expr A→ Expr B (and Eval-meth and Make-meth both reduce to identity).

4.2.2 Coercions
Implicit subtyping cannot be expressed in λΠm because each λΠ-term has at most one type
modulo β and rewriting. Hence we cannot simply rewrite any type A to any of its subtypes
or supertypes; rewriting is oriented but conversion is symmetric.

Since we cannot use implicit subtyping, we have to define some explicit coercion operation
to be used instead of the subsumption typing rule.

These coercions are actually very easy to define thanks to our definition of Expr and
Lemma 5; if a is an object of type A subtype of B seen as an expression of type B, seeing
a as an expression of type C supertype of B only requires a proof of A ≤ C which may be
obtained by transitivity of ≤:∣∣∣∣ coerce : ΠB : type.ΠC : type.B ≤ C → Expr B → Expr C.

coerce B C stBC (A, a, stAB) ↪→ (A, a, subtype-trans stAB stBC).

We will use the notation a ↑BA for the term coerce A B st a of type Expr B, leaving the
subtyping proof implicit.

4.2.3 Operational semantics
The select and update functions explore the object until they find the corresponding
method and either return it or rebuild another object.

Their definitions follow the definitions of Expr and Obj; they work recursively on the
Preobj structure using auxiliary functions called preselect and preupdate. These func-
tions operate on a preobject of type (A, d) and are defined by induction on a position p : l ∈ d
which can be converted to a position of type l ∈ dom A thanks to the following lemma:
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I Lemma 6 (preobj-subset). Preobjects are defined on subsets of the domain: in λΠm, we
can define a total function preobj-subset of type ΠA.Πd.Preobj A d→ d ⊂ dom A.

Proof. Straightforward by induction on d. J

The definition of update is straightforward:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

preupdate : ΠA.Πd.Πl.Πp : l ∈ d.Πpo : Preobj A d.

Meth A A.preobj-subset A d po l pl→ Preobj A d.

obj-update : ΠA.Πl.Πp : l ∈ dom A.Obj A→ Meth A A.pl→ Obj A.
update : ΠA.Πl.Πp : l ∈ dom A.Expr A→ Meth A A.pl→ Expr A.

preupdate A (cons l d) l (at-head l d) (precons A d l p′ m′ po) m
↪→ precons A d l p′ m po.

preupdate A (cons l′ d) l (in-tail l l′ d p) (precons A d l′ p′ m′ po) m
↪→ precons A d l′ p′ m′ (preupdate A d l p po m).

obj-update A l p a m ↪→ preupdate A (dom A) l p a m.

obj-update can be used to update a method of an object of type A; if we want to update
an expression of type B where A ≤ B, we only have at hand a method of type Meth B A.l

(for some l) where obj-update needs a Meth A A.l. This can be solved by a substitution
of the self variable by its coercion self ↑BA in the method body, which is easy to write
as (Make-meth A A.l ((λ(self : Expr A) (Eval-meth B A.l m (self ↑BA))))). Hence we can
define update as follows:∣∣∣∣∣∣∣∣∣∣

update B l p (A, a, st) m
↪→ (A,

obj-update A l (subtype-dom A B st p ) a
(Make-meth A A.l (λ(self : Expr A) (Eval-meth B A.l m (self ↑BA)))),

st).

Selection is a bit more subtle because we need both the selected method, which is found
by inductively destructing the object, and the full object which should be substituted for the
self variable. The preselect function doesn’t return an object but the method associated
with the label. The select function duplicates its argument a, one copy is passed to
preselect and the other is used with the returned method to build a blocked redex using
the Eval-meth axiom.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

preselect : ΠA.Πd.Πl.Πp : l ∈ d.Preobj A d→ Meth A (A.pl).
obj-select : ΠA.Πl.Πp : l ∈ dom A.Obj A→ Meth A (A.pl).
select : ΠA.Πl.Πp : l ∈ dom A.Expr A→ Expr A.pl.

preselect A (cons l d) l (at-head l d) (precons A d l p′ m po)
↪→ m.

preselect A (cons l′ d) l (in-tail l l′ d p) (precons A d l′ p′ m′ po)
↪→ preselect A d l p po.

obj-select A l p a ↪→ preselect A (dom A) l p a.

select B l p (A, a, st) ↪→ Eval-meth A A.p l

(obj-select A l p a) (A, a, st).
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4.2.4 Translation function for expressions

We now have all we need to define a translation function from simply-typed ς-terms to λΠm.

The same ς-term a may have to be translated to different λΠ-terms of different types
because λΠm lacks subtyping and subsumption. Hence we have to parameterize our trans-
lation function by the targeted type A of a in the ς-calculus. Fortunately, it is enough to
define the translation function for the minimum type of a, written JaK∆. We can then define
the general translation function for type A as JaK∆,A := JaK∆ ↑JAK

Jmintype∆(a)K where the proof
of Jmintype∆ (a)K ≤ JAK is computed by a meta-level5 function decide-subtype (omitted
here).

The J•K∆ function, the J•K∆,A function and the translation function for methods are
mutually defined by:

JaK∆,A := JaK∆ ↑JAK
Jmintype∆(a)K

J[li = ς(x : A)ai]i∈1...n,l1<...<lnK∆
:= expr-of-obj (

precons JAK [l2; . . . ; ln] l1 p1 Jς(x : A)a1K∆,A.p1 l1
(

. . . (precons JAK [ ] ln pn Jς(x : A)anK∆,A.pn ln
prenil JAK)))

Ja.lK∆ := select Jmintype∆ (a)K l p JaK∆
Ja.l⇐ ς(x : A)bK∆ := update JAK l p JaK∆,A Jς(x : A)bK∆,A.pl

Jς(x : A)bK∆,B
:= Make-meth JAK JBK (λx : Expr JAK.JbK(∆,x:A),B)

The positions pi and p in this encoding can be computed for any well-typed ς-term : pi
is the ith position (p1 is at-head l1 [l2; . . . ; ln], p2 is in-tail l2 l1 (at-head l2 [l3; . . . ; ln]),
pn is in-tail ln l1 (. . . (in-tail ln ln−1 (at-head ln [ ]) ) . . .), and p is the pi such that l
is li).

The translation of the binding operation of our source language (the ς binder) is done
by a binding operation in the target language (the λ binder). This technique is generally
known as Higher-Order Abstract Syntax (HOAS)[25].

We can now compute the translation of our example term myCell. We translate a term
a by an object of type Jmintype∆ (a)K seen as an expression of the required type. In this
case, mintype∆ (myCell) is PrivateCell and the required type is PromCell.

5 The function decide-subtype is easy to define at the meta-level but could also be defined in λΠm.
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JmyCellK∆,PromCell

≡ JmyCellK∆ ↑JPromCellKJmintype∆(myCell)K

≡ JmyCellK∆ ↑JPromCellKJPrivateCellK

≡ (JPrivateCellK,
precons JPrivateCellK [get; set] contents p1

Jς(x : PrivateCell)0K∆,Num(
precons JPrivateCellK [set] get p2

Jς(x : PrivateCell)x.contentsK∆,Num(
precons JPrivateCellK [ ] set p3

Jς(x : PrivateCell)λ(n : Num)x.contents⇐ nK∆,Num→RomCell(
prenil JPrivateCellK))),

decide-subtype JPrivateCellK JPromCellK)
Jς(x : PrivateCell)0K∆,Num
≡ Make-meth JPrivateCellK JNumK

(λx : Expr JPrivateCellK.J0K(∆,x:PrivateCell),Num)
Jς(x : PrivateCell)x.contentsK∆,Num
≡ Make-meth JPrivateCellK JNumK

(λx : Expr JPrivateCellK.select JNumK contents p1 x)
Jς(x : PrivateCell)λ(n : Num)x.contents⇐ nK∆,Num→RomCell
≡ Make-meth JPrivateCellK JNum→ RomCellK

(λx : Expr JPrivateCellK.Jλ(n : Num)x.contents⇐ nK∆,Num→RomCell)

As expected, the translation of the looping ς-term [l = ς(x : [l : [ ]])x.l].l normalizes to
an instance of the pattern Eval-meth A B (Make-meth A B f) a:

J[l : [ ]]K∅ ≡ typecons l typenil typenil
Jx.lKx:[l:[ ]] ≡ select J[l : [ ]]Kx:[l:[ ]] l p1 x

Jς(x : [l : [ ]])x.lK∅,[] ≡ Make-meth J[l : [ ]]K∅ [ ] (λx : Expr J[l : [ ]]K∅.Jx.lKx:[l:[ ]])
J[l = ς(x : [l : [ ]])x.l]K∅ ≡ (J[l : [ ]]K∅,

precons J[l : [ ]]K∅ [ ] l p1 Jς(x : [l : [ ]])x.lK∅,[] prenil J[l : [ ]]K∅,
subtype-refl J[l : [ ]]K∅)

J[l = ς(x : [l : [ ]])x.l].lK∅ ≡ select J[l : [ ]]K∆ l p1 J[l = ς(x : [l : [ ]])x.l]K∅
↪→ Eval-meth J[l : [ ]]K∅ [ ] l

(obj-select J[l : [ ]]K∅ l p1
(precons . . .))

J[l = ς(x : [l : [ ]])x.l]K∅
↪→ Eval-meth J[l : [ ]]K∅ [ ] l

(preselect J[l : [ ]]K∅ [l] l p1
(precons . . .))

J[l = ς(x : [l : [ ]])x.l]K∅
↪→ Eval-meth J[l : [ ]]K∅ [ ] l

(Make-meth J[l : [ ]]K∅ [ ] (λx : Expr J[l : [ ]]K∅.Jx.lKx:[l:[ ]]))
J[l = ς(x : [l : [ ]])x.l]K∅

4.3 Properties of the encoding

Let Γ0 be the λΠm-context composed of the declarations and rewrite rules presented pre-
viously in this section. We investigate properties of the rewrite system R0 associated with
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Γ0 and of translated ς-terms in contexts of the form Γ0,Λ where Λ is a λΠ-context (a
λΠm-context without rewrite rule) so the rewrite system associated with Γ0,Λ is R0.

The proofs in this section are done at the meta-level and are pen-and-paper proofs.

4.3.1 Normalization and confluence
The rewrite system R0 is strongly normalizing because recursive calls are performed on
strict subterms and variables of left-hand sides are never applied in the right-hand side. It
is also confluent because it is left-linear and normalizing[23].

In order to be extra-confident in these properties, we implemented the definitions of Γ0
in the Calculus of Inductive Constructions, which is known to be strongly normalizing and
confluent[12], and type-checked this implementation with Coq.

Our code is available at http://sigmaid.gforge.inria.fr. However this translation
to Coq uses axioms (Meth, Make-meth, and Eval-meth) which are a priori not provable in
Coq.

4.3.2 Preservation of the subtyping relation by the translation
In this subsection we prove that our translation of types preserves subtyping: given two
ς-types A and B, we have A <: B if and only if JAK ≤ JBK.

I Lemma 7. If l ∈ dom J[li : Ai]i∈1...nK then l ≡ lj for some j ∈ 1 . . . n.

Proof. Trivial by induction on the position of type l ∈ dom J[li : Ai]i∈1...nK. J

I Lemma 8. If j ∈ 1 . . . n, then lj ∈ dom J[li : Ai]i∈1...nK.

Proof. Without loss of generality, we assume that l1 > . . . > ln. dom J[li : Ai]i∈1...nK is
[ln; . . . ; l1]. We prove that lj ∈ [ln; . . . ; l1] by induction on n:

case n ≡ 0: the hypothesis j ∈ 1 . . . n is a contradiction.
case n ≡ p + 1: if j ≡ p + 1 then at-head j [lp; . . . ; l1] proves lj ∈ [lp+1; . . . l1] else
j ∈ 1 . . . p so by induction hypothesis, lj ∈ [lp; . . . l1] thus lj ∈ [lp+1; . . . ; l1] by in-tail.

J

I Lemma 9. If j ∈ 1 . . . n, then J[li : Ai]i∈1...nK.poslj ≡ JAjK where pos is the proof of the
previous lemma.

Proof. This is trivial by following the same steps as the previous lemma. J

I Theorem 10. For every type A and B, if ∆ `ς A <: B then JAK ≤ JBK.

Proof. We proceed by induction on the derivation of ∆ `ς A <: B, there are three cases:
case (subtype)
A is some [li : Ai]i∈1...n+m with B ≡ [li : Ai]i∈1...n. Without loss of generality, we may
assume ln < ln−1 < . . . < l2 < l1. We proceed by induction on n:

case n ≡ 0: JBK ≡ typenil hence JAK ≤ JBK.
case n ≡ p+ 1: JBK ≡ typecons lp+1 JAp+1K J[li : Ai]i∈1...pK.

JAK ≤ JBK
≡ JAK ≤ typecons lp+1 JAp+1K J[li : Ai]i∈1...pK
≡ Σpos : lp+1 ∈ dom JAK.(

JAK.poslp+1 =type JAp+1K
)
× (JAK ≤ J[li : Ai]i∈1...pK)

pos and the equality proof are given by Lemma 8 and Lemma 9. The proof of JAK ≤
J[li : Ai]i∈1...pK is given by the induction hypothesis.

http://sigmaid.gforge.inria.fr
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case (refl)
This is trivial by Lemma 2.
case (trans)
This is trivial by Lemma 5.

J

I Theorem 11. The translation function on types is injective: if JAK =type JBK then A ≡ B.

Proof. A type and its encoding have the same size hence A and B have the same size. The
proof is by induction on this common size; both cases are trivial. J

I Theorem 12. For every type A and B, well-formed in context ∆, if JAK ≤ JBK then
∆ `ς A <: B.

Proof. By induction on the size n of B := [li : Bi]l1>...>ln .
case n ≡ 0: B ≡ [ ] hence ∆ `ς A <: B.
case n ≡ p+1: JBK ≡ typecons lp+1 JBp+1K J[li : Bi]l1>...>lpK. Our hypothesis simplifies
to:

JAK ≤ JBK
≡ JAK ≤ typecons lp+1 JBp+1K J[li : Bi]l1>...>lpK
≡ Σpos : lp+1 ∈ dom JAK.(

JAK.poslp+1 =type JBp+1K
)
×

(
JAK ≤ J[li : Bi]l1>...>lpK

)
By induction hypothesis, A is of the form [li : Bi; l′j : Aj ]i∈1...p,j∈1...m+1. From the lemmata
and the injectivity theorem, we get lp+1 ≡ l′j and Aj ≡ Bp+1 for some j ∈ 1 . . .m + 1. By
renaming the l’s, we can choose j ≡ m + 1 and we get A ≡ [li : Bi; l′j : Aj ]i∈1...p,j∈1...m so
∆ `ς A <: B by rule (subtype). J

4.3.3 Type preservation
We want to prove the following type preservation theorem:

I Theorem 13. If, in the simply typed ς-calculus, the judgment ∆ `ς a : A is valid, then
the encoded judgment J∆K `d JaK∆,A : Expr JAK, is valid in λΠm.

For this, we first need to define J∆K:

J∅K := Γ0
J∆, x : AK := J∆K, x : Expr JAK

Since the translation function J•K∆,A is recursively defined together with J•K∆ and the
translation function for methods, we need lemmata to relate these three functions:

I Lemma 14. If, in the simply typed ς-calculus, the judgment ∆ `ς a : A is valid, and, in
λΠm, the judgment J∆K `d JaK∆ : Expr Jmintype∆ (a)K is valid, then so is the judgment
J∆K `d JaK∆,A : Expr JAK.

Proof. From ∆ `ς a : A we get, by minimality, ∆ `ς mintype∆ (a) <: A hence
Jmintype∆ (a)K ≤ JAK by Theorem 10. Therefore JaK∆,A ≡ JaK∆ ↑JAK

Jmintype∆(a)K has type
Expr JAK. J

I Lemma 15. If, in λΠm, the judgment J∆K, x : Expr JAK `d JbK(∆,x:A),B : Expr JBK is
valid, then so is the judgment J∆K `d Jς(x : A)bK∆,B : Meth JAK JBK.



R. Cauderlier and C. Dubois 19

Proof. x doesn’t occur free in JBK because it is a closed term.
Hence we can type the λ-abstraction with an arrow type: J∆K `d λx : Expr JAK.JbK(∆,x:A),B :

Expr JAK→ Expr JBK.
Therefore Jς(x : A)bK∆,B ≡ Make-meth JAK JBK (λx : Expr JAK.JbK(∆,x:A),B) has type

Meth JAK JBK. J

I Theorem 16. If, in the simply typed ς-calculus, the judgment ∆ `ς a : A is valid, then
the judgment J∆K `d JaK∆ : Expr Jmintype∆ (a)K is valid in λΠm.

Proof. By minimality, ∆ `ς a : mintype∆ (a). We proceed by induction on this typing
derivation; we have one case for each typing rule in the simply-typed ς-calculus:

case (var): a is a variable x appearing in ∆ and mintype∆ (a) ≡mintype∆ (x) ≡ ∆(x).
By definition of J∆K, x ∈ J∆K and J∆K(x) ≡ Expr J∆(x)K ≡ Expr Jmintype∆ (a)K.
case (obj): a is [li = ς(xi : A) ai]l1<...<ln with mintype∆ (a) ≡ A ≡ [li : Ai]l1<...<ln .
JaK∆ ≡ J[li = ς(xi : A) ai]l1<...<lnK∆

≡ expr-of-obj (
precons JAK [l2; . . . ; ln] l1 p1 Jς(x : A)a1K∆,A.p1 l1

(
. . . (precons JAK [ ] ln pn Jς(x : A)anK∆,A.pn ln

prenil JAK)))
The term expr-of-obj has type Obj JAK → Expr JAK so we just need to check that
precons JAK [l2; . . . ; ln] l1 p1 Jς(x : A)a1K∆,A.p1 l1

(. . . (precons JAK [ ] ln pn Jς(x :
A)anK∆,A.pn ln

prenil JAK)) has type Obj JAK.

To compute Obj JAK, we first compute dom JAK:
dom JAK ≡ dom J[li : Ai]l1<...<lnK

≡ dom (typecons l1 JA1K (. . . (typecons ln JAnK typenil) . . .))
≡ [l1; . . . ; ln]

hence Obj JAK ≡ Preobj JAK (dom JAK) ≡ Preobj JAK [l1; . . . ; ln].
We show by induction that each built preobject is well-typed with the expected type.
For all i ∈ 1 . . . n,
J∆K `d precons JAK [li+1; . . . ; ln] li pi Jς(x : A)aiK∆,A.pi

li (
. . . (precons JAK [ ] ln pn Jς(x : A)anK∆,A.pn ln

prenil JAK))
: Preobj JAK [li; . . . ; ln]

This is trivial by decreasing recursion on i.

Finally J∆K `d J[li = ς(xi : A) ai]l1<...<lnK∆ : Expr JAK.
case (select): a is of the form a′.lj with j ∈ 1 . . . n and ∆ `ς a′ : A′ where A′ := [li :
Ai]i∈1...n. Without loss of generality, we can assume that A′ is the minimal type of a′6:
mintype∆ (a′) ≡ [li : Ai]i∈1...n so mintype∆ (a) ≡ Aj .
Lemma 8 gives us a position p : lj ∈ dom Jmintype∆ (a′)K hence by Lemma 9,
Jmintype∆ (a′)K.plj ≡ JAjK ≡ Jmintype∆ (a)K.
Moreover, ∆ `ς Ja′K∆ : Expr Jmintype∆ (a′)K by induction hypothesis thus JaK∆ ≡
select Jmintype∆ (a′)K lj p Ja′K∆ has type Expr Jmintype∆ (a)K.
case (update): a is of the form a′.lj ⇐ ς(x : A)b with j ∈ 1 . . . n, ∆ `ς a′ : A, and
∆, x : A `ς b : Aj where A ≡ [li : Ai]i∈1...n.
By induction hypothesis and Lemma 14, J∆K `d Ja′K∆,A : Expr A. By Lemma 15,
J∆K `d Jς(x : A)bK∆,Aj

: Meth JAK JAjK.

6 This comes from the proof of minimality in [1] (Propositions 4.1.1-1 to 4.1.1-4); a minimal typing
judgment can be derived by allowing subsumption only before the (update) and (obj) rules.
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Like in the previous case, Lemma 8 gives us a position p : lj ∈ dom JAK and by Lemma 9,
JAK.plj ≡ JAjK.
Hence JaK∆ ≡ update JAK lj p Ja′K∆,A Jς(x : A)bK∆,Aj

has type JAK ≡ Jmintype∆ (a)K.
case (subsume): The only possible instantiation of the subsumption rule which derives
a minimum typing is the trivial case

∆ `ς a : mintype∆ (a) ∆ `ς mintype∆ (a) <: mintype∆ (a)
(subsume)

∆ `ς a : mintype∆ (a)

In this case, our goal is exactly the induction hypothesis J∆K `d JaK∆ : Expr Jmintype∆ (a)K.

J

From this and Lemma 14, we have proved Theorem 13.

4.3.4 Semantics preservation and consistency
Semantics preservation is not ensured because our rewrite system is strongly normalizing
and the simply-typed ς-calculus is not.

However, we may want the following weaker result:
I Statement 1. If ∆ `ς a : A and a � a′ then JaK∆,A =Expr JAK Ja′K∆,A is inhabited in
context J∆K.

In the case where a is a selection a ≡ a′′.l, JaK∆,A reduces to an instance of the pattern
Eval-meth B C (Make-meth B C f) b such that Ja′K∆,A ≡ f b.

Hence we would need

reduce-meth : ΠB.ΠC.Πf.Πb.Eval-meth B C (Make-meth B C f) b =Expr B f b

as an additional axiom. Unfortunately, it would be inconsistent with our encoding so State-
ment 1 is hopeless. The following inconsistency result has been proved in Coq[7]:

I Theorem 17. For any label l, the type(
ΠB.ΠC.Πf.Πb.Eval-meth B C (Make-meth B C f) b =Expr C f b

)
→ ([ ] =type [l : [ ]]) is

inhabited.

Proof. From an expression, we can extract the type of the underlying object:∣∣∣∣ underlying-type : ΠB.Expr B → type.
underlying-type B (A, a, st) ↪→ A.

Let A0 be the type [l : [ ]] and a0 an inhabitant of Expr A0 (for instance a0 : Expr A0 :=
[l = [ ]]). t0 := a0 ↑[ ]

A0
is an inhabitant of Expr [ ] which we can distinguish from the

empty expression [ ] because they have different underlying types.
We define a function swap : Expr [ ] → Expr [ ] returning an expression different from
its argument:∣∣∣∣∣∣∣∣∣∣

swap-aux : type→ Expr [ ].
swap-aux typenil ↪→ t0.

swap-aux (typecons l′ B C) ↪→ [ ].
swap : Expr [ ]→ Expr [ ].
swap b ↪→ swap-aux (underlying-type b).

We remark that Expr A0 is isomorphic to Expr A0 → Expr [ ]:
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We can define a function elim-A0 : Expr A0 → Expr A0 → Expr [ ] by

elim-A0 [l = ς(x)f(x)] := f

and a function intro-A0 : (Expr A0 → Expr [ ])→ Expr A0 by

intro-A0 f := [l = ς(x)f(x)]

let E0 : Expr A0 → Expr [ ] be the function defined by E0 a := swap(elim-A0 a).
Then b0 : Expr [ ] := E0 (intro-A0 E0) is such that we can prove, using the
reduce-meth axiom, b0 =Expr [ ] swap b0, hence underlying-type (swap b0) =
underlying-type (swap (swap b0)) but swap b0 is either [ ] or t0 and we get ([ ] =type

[l : [ ]]) in both cases. This last step is actually an adaption of the proof of Cantor’s
theorem.

J

Consistency is hard to define in λΠm because we have not even defined anything looking
like the false proposition. Consistency is to be defined relatively to a given logic. However,
we probably never want ([ ] =type [l : [ ]]) to be inhabited.

5 Shallow, non-terminating encoding

In this section, we trade strong-normalization for a shallow encoding.

5.1 Modified rewrite system
In order to get a shallow encoding, we have to add the following rewrite rules:∣∣∣∣∣∣

Meth A B ↪→ Expr A→ Expr B.
Eval-meth A B m ↪→ m.

Make-meth A B f ↪→ f.

From this, the reduce-meth axiom can trivially be proved so we need to change our
encoding a bit to forbid the proof of Theorem 17. We do this by disabling the extraction
of underlying type and the distinction between objects and expressions. Instead of defining
Expr B as ΣA : type.(Obj A) × (A ≤ B), we rewrite Expr A to Obj A and change the
definitions of the functions that destructed expressions: update, select, and coerce:

∣∣∣∣ Expr A ↪→ Obj A.
expr-of-obj a ↪→ a.∣∣∣∣∣∣∣∣
update • • • (precons • • • • • •) •

↪→ obj-update • • • (precons • • • • • •) • .
update B l p (coerce A B st a) m

↪→ coerce A B st
(
update A l (subtype-dom A B st l p) a (λ(self).m (self ↑BA))

)
.∣∣∣∣∣∣∣∣

select • • • (precons • • • • • •)
↪→ obj-select • • • (precons • • • • • •).

select B l p (coerce A B st a)
↪→ select A l (subtype-dom A B st l p) a.∣∣∣∣ coerce B C stBC (coerce A B stAB a)
↪→ coerce A C (subtype-trans stAB stBC) a
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coerce is not a total function anymore because it does not reduce on values but only
when applied to another coercion. It is a constructor of Expr with some computational
behaviour; we call such constructors smart constructors. The bullets in the rules defining
update and select represent the most general pattern that make these rules well-typed.
The idea here is simply that update and select are defined by pattern matching on the
object, which is either a value or a coercion. We don’t need rules for the prenil case because
there is no label to select or update in that case.

We call Γ1 this new λΠm-context and R1 the new rewrite system. We believe that R1 is
confluent because the non-orthogonal part reflects the simply-typed ς-calculus known to be
confluent[2], but have not formally checked it. However, R1 is not expected to be (strongly
or even weakly) normalizing. Hence Dedukti will type-check encoded object programs only
if they are well-typed but may not answer on non-terminating terms7.

5.2 Semantics preservation
Proofs of the theorems of Section 4 are unchanged because they did not rely on the definitions
of update, select, and coerce. The new encoding has the additional property of semantics
preservation:

I Theorem 18. If ∆ `ς a : A and a� a′ then JaK∆,A ↪→+ Ja′K∆,A.

To prove this theorem, we first need two lemmata: stability of the encoding by substi-
tution and unicity of subtyping proofs.

I Lemma 19. The translation function is stable by substitution: JaK(∆1,x:B),A{JbK(∆1,∆2),B/x} ≡
Ja{b/x}K(∆1,∆2),A.

Proof. This comes from the fact that binding operation is preserved by the encoding. This
can be proved by induction on a. J

I Lemma 20. Unicity of subtype proofs: if st1 and st2 both have type JAK ≤ JBK then
st1 =JAK≤JBK st2.

This lemma justifies our use of implicit subtype proofs in the notation • ↑J•KJ•K.

Proof. Unicity of subtype proofs comes from the fact that JAK is duplicate-free. We don’t
use, however, the fact that JBK is duplicate-free and prove this theorem for any β8 of type
type: if st1 and st2 both have type JAK ≤ β then st1 =JAK≤β st2.

We proceed by induction on β.
base case: β ≡ typenil
JAK ≤ β ≡ JAK ≤ typenil ≡ unit. The type unit has only one inhabitant so st1 =JAK≤β
st2.

7 Actually it will terminate because
conversion check, which triggers reduction, only occurs in types;

non-termination only occurs at the object level;

there is no dependent type involving objects coming from our encoding.

8 We use the greek letter β here to distinguish the ς-term B and the λΠ-term β which abstracts JBK.
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inductive case: β ≡ typecons l β1 β2

A is some [li : Ai]l1<...<ln .
By definition of ≤,

JAK ≤ typecons l β1 β2 ≡ Σp : l ∈ [l1; . . . ; ln].(JAK.pl =type β1)× (JAK ≤ β2)

But there is only one p : l ∈ [l1; . . . ; ln] because the lis are different. Let us call it p0.
JAK ≤ typecons l β1 β2 is isomorphic to (JAK.p0 l =type β1)× (JAK ≤ β2).
The left type JAK.p0 l =type β1 has at most one inhabitant thanks to Hedberg Theorem[17]
because equality on type is decidable; the right type JAK ≤ β2 has only one element by
induction hypothesis so st1 =JAK≤β st2.

J

We can now prove Theorem 18:

Proof. The simply-typed ς-calculus enjoys subject-reduction[2] so ∆ `ς a′ : A. From the
type-preservation theorem, JaK∆,A and Ja′K∆,A have type Expr JAK in context J∆K.

We proceed by induction on the operational semantics definition; there are two cases:

case (select): a� a′ is an instance of a′′.lj � aj{a′′/xj}
with a′′ := [li = ς(xi : A′′)ai]i∈1...n and A′′ := [li : Ai]i=1...n.
So a ≡ a′′.lj and a′ ≡ aj{a′′/xj}.
We look at the minimum types of a and a′:

mintype∆ (a′′) ≡ A′′ ≡ [li : Ai]i∈1...n so mintype∆ (a) ≡mintype∆ (a′′.lj) ≡ Aj
We call A′ the minimum type of a′, by minimality we know that ∆ `ς A′ <: Aj .

Ja′′K∆ is of the form (. . . (precons JA′′K [lj+1; . . . ; ln] lj Jς(xj : A′′)ajK∆,Aj
. . . ) ), we

abbreviate it as α.

JaK∆ ≡ select JA′′K lj p α
↪→ obj-select JA′′K lj p α α
↪→ preselect JA′′K [l1; . . . ; ln] lj p α α
↪→∗ Jς(xj : A′′)ajK∆,Aj

α

≡
(
λxj : Expr JA′′K.JajK(∆,xj :A′′),Aj

)
α

−→β JajK(∆,xj :A′′),Aj
{Ja′′K∆/x}

Hence, by Lemma 19, we get exactly JaK∆ ↪→+ Ja′K∆,Aj
.

Finally,
JaK∆,A ≡ JaK ↑JAK

Jmintype∆(a)K

↪→+ Ja′K∆,Aj
↑JAK

JAjK

≡
(
Ja′K∆ ↑

JAjK
Jmintype∆(a′)K

)
↑JAK

JAjK

↪→ Ja′K∆ ↑JAK
Jmintype∆(a′)K

≡ Ja′K∆,A

case (update): this case is very similar to the previous one, only simpler because we
don’t need to use the substitution lemma.

J
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6 Conclusion

We defined an embedding of the simply-typed ς-calculus to λΠm and implemented it in
Dedukti as a compiler named sigmaid (SIGMA-calculus In Dedukti)[7]. This implementation
has been tested on the following original examples from Abadi and Cardelli:

encoding of the simply-typed λ-calculus,
encoding of booleans,
memory cells.

Despite non-termination of the ς-calculus, we managed to translate it in a very shallow
fashion by means of two encodings: a normalizing one and a semantics-preserving one.

This embedding is a starting point for other shallow embeddings of typed object oriented
calculi with subtyping.

Beside common extensions for object type systems (polymorphism, variance annotations,
type operators), we are especially interested in extending this work to object type systems
with dependent types in order to study dependently-typed objects combining computational
methods and logical methods which depend upon them and prove their specifications. These
logical methods would be proofs taking benefits of the mechanisms of object oriented pro-
gramming.

We would also like to encode class-based calculi like Featherweight Java[21] in λΠm in
order to compare the encoded versions of structural subtyping and class-based subtyping.
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