
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1978

A Note on Structure and Looking Back Applied to the Relative A Note on Structure and Looking Back Applied to the Relative

Complexity of Computable Function Complexity of Computable Function

Paul Chew

Michale Machtey

Report Number:
79-312

Chew, Paul and Machtey, Michale, "A Note on Structure and Looking Back Applied to the Relative
Complexity of Computable Function" (1978). Department of Computer Science Technical Reports. Paper
241.
https://docs.lib.purdue.edu/cstech/241

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A Note on Structure and Looking Back Applied to

the Relative Complexity of Computable Functions

Paul Chew
and

Michael Machtey

Purdue University
Department of Computer Sciences
West Lafayette, Indiana 47907

July, 1979

CSD TR 312

ABSTRACT

A strong connection is established between the
structural and the looking back techniques for
manipulating the relative complexity of computable
functions and exploring the nature of subrecursive
reducibilities. Looking back serves as a basis for a
simple and general structural result which can be used
to derive many fundamental properties of subrecursive
degrees and complexity classes. For example, as has
been shown by Landweber, Lipton, and Robertson, there
is a minimal pair of polynomial time degrees below any
nonzero computable degree.

In addition, the structural method is used to
settle a problem concerning the enumeration properties
of classes of computable functions. NP-P cannot be
effectively presented by domain (i.e. by r.e. indices).
However, it can be effectively presented by ̂ indices.

This research was supported by the National
Science Foundation under Grant MCS-76-09212A1.

This note is a preliminary report of continuing
research. Its purpose is limited but timely
dissemination to interested experts, and it should be
regarded and treated accordingly.

A Note on Structure and Looking Back Applied to

the Relative Complexity of Computable Functions

Paul Chew
and

Michael Machtey

Purdue University
Department of Computer Sciences
West Lafayette, Indiana 47907

July, 1979

CSD TR 312

Introduction and Preliminaries

Recent work by Landweber, Lipton, and Robertson [Univ. Wise.

CSTR#342] has shown how to take a highly structural approach to

manipulating the relative complexity of computable sets.

Previous work of this type has used diagonal constructions

employing a looking back technique to keep complexities under

control. The structural approach is an attractive alternative,

and in some situations it is perhaps preferable to looking back.

The looking back method (sometimes somewhat inappropriately

called "delayed diagonalization") has been introduced

independently in the past decade by several authors, including

the second author of this note.

This note has three purposes: The first is to show an

intimate connection between the structural approach and the

looking back method; the structural approach can be viewed as

- 2 -

"precomputing" the information which looking back would find "on

line". The second is to give a conceptually simpler and

technically stronger proof of the central structural result in

Landweber et £l. The third is to settle an open problem

concerning the recursive presentation of NP-P posed by Landweber

et al.

The methods and results in this note are extremely general,

and they will be presented in a suitably general context. In the

interests of brevity and of not obscuring our main points, little

or no space will be devoted to carefully explaining this general

context. Instead, for those readers with doubts or who simply

prefer to navigate in a more specific and concrete environment,

we shall provide parenthetical pointers to such an environment

[in this manner] .

We consider computable functions over the natural numbers,

N. If f is a function from N into N then f{n} stands for the

restriction of f to the domain {0,...,n}; warning, this

nonstandard notation will come back to haunt youl [Functions

used in contexts such as reducibilities in which the reader may

customarily encounter sets (i.e. characteristic functions) will

be denoted in upper case. We shall use c to denote the generic

integer constant] .

We assume the reader is familiar with the basics of

computability and complexity theory, and has at least glanced at

Landweber et _al. Our model of computation is any programming

system (general or subrecursive) and accompanying computational

- 3 -

complexity measure which together satisfy some simple

"manipulation" conditions (e.g. "succinct composition"). Only

the most important of these manipulation conditions will be made

explicit. [Turing machines and Turing machine time are a

suitable concrete example].

Structure and Looking Back

In this section we establish the connection between the

looking back method and the structural approach to

diagonalization results in complexity theory. For any computable

A, we use looking back to "precompute" an honest witness function

which bounds how far we have to go in order to have witnesses

that A is not computed by short, cheap programs. Combining this

witness function with functions bounding some simple operations

on programs, we get a conceptually simpler and technically

tighter proof of a basic result of Landweber, Lipton, and

Robertson:

For every computable A$P there is a total recursive

function such that for all B, if A is polynomial

time reducible to B then no polynomial time algorithm

can compute infinitely many intft size segments of B.

We assume we are given a recursively enumerable list {i} of

total programs, and we let P^ denote the total function computed

by program i. P will stand for the set {P^}, and further

properties of P will be specified below. [E.g. let P. be the set

- 4 -

accepted by the i-th "clocked" polynomial time Turing machine].

Let small be any unbounded, honest function; for convenience

we also assume small is nondecreasing. [E.g. small(x)=logIxI].

For any computable A we define a looking back for witnesses

function as follows:

lbwA(x) = SPEND UP TO small(x) COST FINDING

max j Vi£j 3 w < x (Pi(w)4:A(w)).

This definition assumes that our programming system has some

reasonable "conservation" faci1i ty allowing a program to 1imi t

its use of resources; also, it actually depends on some specific

program for A, a fact which we have deliberately suppressed in

our notation. If A is not in P then lbwA will be unbounded, and

in any case it is nondecreasing and very "cheaply" computable.

Intuitively, the lbw functions capture the essence of the looking

back diagonalization technique.

From lbwA we define its inverse witness function as follows

witA(j) = min x (lbwft(x) j) .

For A not in P, wit is well defined and honest; thus the range n
of wit A is a very easy set to recognize. Intuitively, witft
"precomputes" easy to find bounds on the size of initial segments

of A which can be computed by short, cheap programs. This

connection between the looking back method and the structural

approach can be summarized in the following property:

(1) Vi<j 3 w (w < witA(j) & Pi(w)#A(w)).

- 5 -

To extend the connection between the looking back method and

the structural approach further we need some simple properties of

the class P. We need that P is "succinctly" closed under finite

variants; that is, patching in finite tables works roughly as one

would expect.

Specifically, let i be any program in the list [i} and let t

be any function from {0,...,x} into {0,...,b(x)}. That is, t is

a "table" of outputs <b(x) on inputs <x and b is a function

bounding the "width" of the table in terms of its "length". (In

the context of arbitrary functions, it is convenient to assume

that b majorizes {P^}). We assume there is some program j in the

list {i} such that j agrees with t up to x and agrees with i

thereafter; that is, Pj{x}=t{x} and for y>x, Pj(y)=P^(y). Such a

j can generally be found effectively from i and t, but we require

only that we be able to bound its "size" effectively. Thus,

given b we let t̂ a and tab be honest monotone functions such that

for any i, j, and t as above

j < ta(i,x) and (max i < x ta(i,x)) <_ tab(x).

2 X C X

[For Turing machines and b(x)=2 , tab(x) can be of the form 2 ;

for b(x)=l (i.e. for tables corresponding to sets), tab(x) can be

of the form 2 C X] .

Using the function tab to patch in tables for A up to x, we

have proved the following extension of property (1):

- 6 -

Theorem I.: Let P and tab be as specified above. For

any computable A£p, the following holds for all x:

(2) Vi<x 2Jw (x < w _< wit ©tab(x) & P.(w)*A(w)). "* ~ A 1

Property (2) expresses the fact that wit «tab precomputes easy to A
f ind bounds on the size of segments of A beg inning at x which can

be computed by short, quick programs. In the terminology of

Landweber, Lipton, and Robertson, A cannot be wit^otab interval

easy.

Theorem 1 supplies sufficient structural information to

begin proving nice results. As an example, we shall use it to

reprove the following from Landweber, Lipton, and Robertson:

Theorem 2: [Landweber et a_l] Let A be a set decidable

in exponential but not polynomial time. There is a

minimal pair of polynomial time degrees below A.

Proof: (Note: the assumption that A is in EXPTIME is

purely for convenience). Since this is essentially the same

proof as given by Landweber et al , we shall be very sketchy.

Define the function big. as follows:

2 X bigA(x) = max { witA«tab(x), 2 }.

Define the sets D and E as follows:

D = { x | 3 n (big A
{ 4 n) (0) < x < big A

(4n+l) (0)) };

E = { x I 3 n (b i g A
(4 n + 2) (0)< x < big A

(4n+3)
(0)) }•

- 7 -

If we let B=DflA and C=EAA then, as we shall see, B and C form the

required minimal pair.

Since bigA is honest, D and E are certainly in p. Thus B

and C are each polynomial time reducible to A. Neither B nor C

is in P by property (2) above and the definition of kigA;

property (2) has ensured that segments of B and C mimic A long

enough to look back and see additional diagonalizations against

P. Suppose that F is a set which is polynomial time reducible to

both B and C. It follows that F is in P by the same argument of

Ladner's [JACM, 1/75] as used by Landweber et al , which exploits

the double exponential gaps between the end of one section of B

and the beginning of the next section of C. ^

We now extend the connection between looking back and

structure yet further by considering reducibilities. Let

{ P^[] } be a recursively enumerable list of general recursive

operators (i.e. "transducers"), and assume that exam is an

honest, monotone function which bounds {P^ [] } ' s "examination" of

arguments as follows: for all B and for all i<x, B{exam(x)}

completely determines P-[B]{x}. (This assumption of the

existence of exam puts some restrictions on {P^[]} when applied

to unbounded functions). [E.g. can be given by the i-th

polynomial time oracle Turing machine, in which case exam(x)=2x].

We also assume that P and {P^[]} are related by a succinct

composition property. Let com be an honest, monotone function

such that for all i and j there is a k with P, [P.] =PLr and 1 1 K

k<com(i,j). [For Turing machine time, com(i,j) can be of the

- 8 -

form c*i*j].

The fundamental idea behind reducibilities is that they

transfer (hypothetical) fast algorithms from one function to

another. Using the function com we can strengthen property (2)

and see that this idea also applies to short, quick aIgorithms

for initial segments. Suppose A is computable and A=P^[B]; then

for all x,

(3) Yj<x 3 v (x < v < exam«wit «com(i ,tab(x)) & P.(v)+B(v)). — — — A]

In order to summarize this structural property we define the

function int^ by

intA(x) = examowitA(max-(x com(i, tab(x))).

intA is an honest, monotone function, and we have proved our main

result of this section:

Theorem _3: Let P, tab, {P^[]}, exam, and com be as

specified above. For any computable A£p, the following

holds for all B and x:

Vi ,j<x [3v (x < v < int (x) & B(v) *p. (v)) or
(*) , A 11

3 w (w<exam »int (x) & A(w) +P, [B] (w))]. A X

Note that if A=P.[B] then the v's in (*) are very easy to find as

well. In the terminology of Landweber, Lipton, and Robertson,

property (*) expresses the fact that if A is reducible to B then

B cannot be int interval easy. We point out that int is far A A
smaller than the bound given by Landweber et al , and is also

- 9 -

stated in a far broader context.

Enumeration and Looking Back

In this section we present the answer to an open problem

posed by Landweber, Lipton, and Robertson. First, we use a

variation on the method of the previous section to show the

following:

If P+NP then there is no recursive presentation of NP-P

by domain (i.e. by r.e. indices).

Finally, we sketch a proof that NP-P can be recursively presented

by A 2 indices. Thus the previous result is essentially the

strongest possible.

The first result is a consequence of the following:

Theorem Let {A.} be a recursively presented list

of infinite, recursively enumerable sets, let {P^} be a

recursively presented list of recursive sets, and let B

be a set not in {P^}. There is an easily recognized

set C such that BrtC is in neither {P^} nor {A^}.

Proof: The functions lbwA and witA in the previous section

depended on having a total program for A. If A is an infinite

r.e. set, we can still define a function fin which precomputes

witnesses to A's being infinite as follows:

- 10 -

finft(x) = min y { IN small(y) COST WE CAN FIND

z in A with x < z ^ y) .

If A is an infinite r.e. set then finA is an honest, monotone

function.

Let {Aj}, {P-}, and B be as stated in the Theorem, and let r

be an honest, monotone function which majorizes each fin as
i

well as witDctab. Define the set C as follows: D —

c = { x | 3 n (r (2 n) (0) < x < r (2 n + 1) (0)) } .

Since r is honest, C is certainly easily recognized [e.g., C is

in P]. Since C contains all strings in infinitely many r-

segments and r majorizes witnotab, BflC is not in {P.}. Since C o 1
has infinitely many r-gaps and r majorizes each finA , B/JC is not

i
in {A.} (for any set B). ^

The previous proof is a good example of a situation in which

either the structural approach or the looking back method seem

equally useful: intuitively, C is constructed by alternately

looking back for witnesses to the fact that A^ is infinite or

that B=)=P̂ , for successive values of i.

The following answer to the open problem posed by Landweber

et al is now immediate:

Corollary J5: If P+NP then there is no recursive

presentation of NP-P by domain (i.e. by r.e. indices).

To conclude this note, we sketch a proof that Theorem 4 is

- XI -

essentially as strong as possible. Theorem 4 rules out the

enumeration of certain classes by indices. The next theorem

shows that classes such as NP-P can be enumerated by /v̂ indices.

Recall that the ^ functions are those functions which are

recursive in the halting problem. Thus, a A j has the power

to determine whether two total recursive functions are equal (by

asking its oracle whether the search for an argument on which

they differ will ever halt).

Theorem 61 Let {P^} and tQ^} be recursively presented

lists of total recursive functions such that

is closed under finite variants. Then is

recursively presentable by^A^ indices.

Proof: If {Qi}-{Pi}=0 then the result is trivial; therefore,

assume Q is in {Q^}—{Pi>. Define the ^ function D^ as follows:

(x) = IF Vj^xtQ.+Pj)

THEN Qi(X)

ELSE Q(x).

If Qi is not in {p.} then Di=Qj_/ otherwise, D- is a finite

variant of Q. ^

As an immediate corollary, we get the following:

Corollary 2 : NP-P is recursively presentable by

indices.

	A Note on Structure and Looking Back Applied to the Relative Complexity of Computable Function
	Report Number:
	

	tmp.1307986960.pdf.2L0d9

