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Abstract

Two one—parameter families of fourth order finite difference
discretizations of the Dirichlet problem for the Helmholtz equation
92u/3x2 + 92u/8y? + Fu = G on a rectangle are presented. The general
suitability of several standard iterative techniques for the soclution
.to  the resulting systems of Iinear equations are discussed. Some
numerical results are presented which indicate that such high order
schemes may be preferable to the usual low order methods lor use with
iterative solution techniques for such problems.




l1.Introduction

We consider the numerical solution to the the Dirichlet problem on
a rectangle for the Helmholtz equation . , - ,

(1) : V2u + Fu = G, V2 = 32/8%x2 + 92/ay?

where F=0 is a constant, by the use of high order difference methods
of the HODIE type introduced by Lynch and Rice [8]. S

A nine—point HODIE discretization of the operator Lu=G at the
peint (Xg,ye) takes the form

LhU = (i/hz) EuiUi = szGj = IhG

where U; is an estimate of u(x;,y;), G;=G(x;,y;) and h is the grid
spacing. The points (x;,y;) are the grid points adjacent to (x4.yg)
labelled as
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and the points (xj,yj) are additional peints, called auxiliary points,
which are located near (x%g,¥o)- The coefficients ¢; and B; are chosen
to make the discretization exact for the space P, of polynomials of
degree at most n, that is, Lys — I, )Ls = 0 for all seP,.

A key idea of the HODIE method is that high order is attained by
the wuse of auxiliary points and not by the use of grid points more
than one grid line away from the central point. The resulting linear
system for the U; has the same block tridiagonal form as the usual
nine-point discretization of the Laplacian; in faet, the coefficients
a; are O(h) perturbations of these.

For an elliptic operater with wvariable coefficients, the
difference equation coefficients «; and B; are determined by solving a
small linear system for each grid peint. The size of this system 1is
fixed independant of h and thus the time to solve the sysbem of
difference equations for U dominaktes for h small.

2. Families of Fourth Order Methods for the Helmholtz Problem

In the case of constant coefficienlt operators, the coefficients o
and B; are constants independant of (xg.y,). In addition, Tfor the
Helmholtz probklem, symmetry c¢an be used Lo reduce the number of
auxiliary points required to get fourth order accuracy from the usual
13 to 5. We define two seks of auxiliary points,

{(0.0),(4,0),¢0,¢),(-¢,0),(0,-¢)},
{(OIO)D(EIE)I(_EIE)I(_EI_E)!(G’_E)}!

P(h,&)
Q(h, &)



where 0<§=1 is a parameter, and label them as

P(h,£): Q(h.&):
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Two one—parameter families of fourth order HODIE discretizations
of the feorm L U = I,G, where

LU = (1/(6h2)) (aoUe + &, (Uy+Us+Ugtls) + ag (UgtUg+U,+Ug))
IhG = BoGo + BI(G1+G2+G3+G4>

can be constructed using the point sets P(h,&) and Q¢h,eg). The
coefficients of these schemes are:

For the set Q(h,8)

g = —20 + (B~£2)Fh2 ~ (1—-§2)F2nh¢/2
&1=d2=&3=&4 = 4

d5=d5=d7=da = 1 + $2Fh2/4

Bg = (B§2-1)/(842) - (1-4?)Fh?/12
B1=52=Ba=84 = 1/(2452)

For the set P(h, &)

@y = —20 + 2(3-§2)Fh? —~ (1-¢2)F2h4/2
m1=m2=&3=d4 = 4 + Ethzfz
Up=0g=0W7=0g = 1

Bo = (3£2-1)/(3£2) — (1-£2)Fh2/12
B,=B,=Bz=B, = 1/(12§2).

The fourth order convergence of these schemes is proven in [1].

A number of specific discretizations in these families have been
considered previously lor the case of the Poisson equation (F=0). The
method with auxiliary point set P(h,1) appears in a number of sources,
see [3] for example. Similar families for the Poisson equation were
derived by Esch [4] wusing Fourier series methods.

In [1], the discretization error of members of these families are
considered in more detail. In particular, it is shown that the method
based on Q(h,/0.3') is optimal with respect to a certain bound on the
discretization error. The method Q(h,1/2) is found to be a nearly
optimal method, and the method Q(h,1) is seenh to give the worst
overall performance in both theory and practice. All these methods
were found to compare favorably with the collocation finite element
method using bi-cubic Hermite elements.




3. The Use of:Iterative Methods Lo

‘Once a problem is.discretized using one: of " the  methods of the
previcus section, we are left with a linear system of equatidhs to
solve for the values of the solubioen at the grid ‘points.
Traditionally, such linear systems have been very large (from 103x10°3
to 106%10%, for example) and hence iterative seolution techniques have
been preferred, since storage requirements are typically much smaller
for such methods. Although high order methods have the advantage that
for smooth problems a relatively coarse mesh can deliver the reguired
accuracy (e. g, for h sufficiently small, if h is halved, the error
in a second order method geces down by a factor of 1/4, whereas the
error in a fourth order method goes down by a factor of 1/16), ‘it
still concievable that ‘large matrix problems might need to be solved
Hence we consider the applicability of iterative methods.

We start with some standard definilions.

Definitions

Let A be a real matrix of order N>1. Then, )
a) A is irreducible if and only if there does not exist a
permutation mabtrix P such that

P-lap = B O
CD

where B and D are square matrices.

b)Y A is weakly diagonally dominant if |a11l—zla;j' for each i,
where the sum is taken over all j#i and strict inequality
holds for at least one 1i.

¢} A is an L-makrix if a;;>0 for i=1,2,...,N and a;;S0 for
i,j=1,2,...,H with i#j.

d) A is a Stieltjes matrix if it is =a positive definite L-matrix.

We now summarize some of the basic properties of the matrices
generated by the HODIE discretizations of the previous seclion.

Theorem 3.1

Let —-A be the NxN matrix generated by any of the HODIE
discretizations of (1) given above. We assume that the natural
ordering of equatioens and unknowns 1is wused. Then, for h
sufficiently small, A is real and

a) symmetrice,

b) irreducible,

c) weakly diagonally deminant,

d) a block tridiagonal matrix, each blochk being itself

tridiagonal and strictly diagonally dominant,
e) an L-matrix, and
f) positive definite.

B



Note that an immediate consequence of e) and ) is that A is a
Stieltjes matrix.
For a matrix with these properties, much of the existing theory on

iterative method applies, which we summarize here. We know, for
example, that any of the peint Jacobi, Gauss—Seidel and successive
overrelaxation (SOR, for relaxation parameter O<w<2) converge when

applied to the matrix A of Theorem 3.1 (this follows from
irreducibility and weak diagonal dominance, see [10], pp. 107-108).
In addition, since A is both an L-matrix and a Stieltjes matrix, we
know that the asymptotic rate of convergence of the Gauss—Seidel
method is greater than that of the Jacocbi method.

Since the discretizations given here are based on nine-point
formulas, the resulting matrix does not have "Property A" (see [10],
pp. 41-42).,and hence the SOR theory which yields an optimum relaxation
factor doces not apply. However, since A is Stieltjes, the SOR theory
holds approximately, that is, the relaxation parameter called for by
the theory for matrices with Property A is nearly optimal, and the SOR
methed might still be effective. Also, when c¢onsidered as a block
tridiagonal matrix, A does have "Property A(im)" (see [10], p. 445) and
thus the SOR. theory does apply to relaxation by lines,. Such block
iterative techniques have been [found to be quite effective in both
theory and practice.

A number of techniques for accelerating the convergence of the
basic iterative methods have been propesed that apply in the case we
consider here. For example, since A is symmetric positive definite,
the Chebyshev semi-iterative methods apply (see {10], pp. 344-385).
When wused in conjunction with the Jacobi method, eoptimum values of the
acceleration parameters are known, yielding the so—called Jacobi-SI
method, which can result in an order-of-magnitude improvement in
convergence rate when compared to the point Jacobi method. Other
acceleration methods are possible, notably the c¢onjugate gradient
acceleration developed in [B]. )

The use of semi-iterative methods has not been found teo yield
substantial gains when applied to the SOR methed for general problems.
However, a variant of SOR, the symmetric SOR (SSOR) methed, is
particularly suited to this technique. At each step of an SSOR
iteration, two sweeps are made over the equations, one forward and one
backward. This metheod converges whenever A is symmetriec and positive
definite, as 1is the case here, and the SOR relaxation parameter is
chosen 0<w<2 (see [10], pp. 461-4B5). In addition, a particularly
good choice of w 1is known for matrices that also satisfy the SSOR
condition: p(LU)S1/4, where L and U are the strictly lower and upper
triangular parts of the matrix diag(A)-!-A respectively an p{(M)
denctes the spectral radius of M.

The matrices we consider here do, in fact, satisfy the BSS0R
condition, Consider the Q(h,£&) case (the P(h,Z) case is similar).
Since A is symmetriec, L=UT and hence it is sufficient to show Ethat
p(LY=1/2. Also, p(L)S|Lll,, and so evidently, p(L) S [agl( la,| + Je,l
+ log] + lagl ) = (10 + ¢2Fh2)/(20 -~ (B=£2)Fh2? + (1-£2)F2h%)/2), so
long as h is c¢hosen so small that £2|{F{h2324. Thus p(L)S1/2 for h
sufficiently small.

Although SSOR requires twice the work per iteration of SOR,
implementations using semi—iteration have proven highly successful.




4. Numerical Tests . P
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of kest problems have been discretized with both the second
fourth order HODIE method based- on
In each case, Tive iterative algorithms

A number
order {ive—point star and the
auxiliary point set Q(h,1/2).

in the ITPACK package of programs [7] were applied: EOR, Jacobi-SI,
Jacobi—-CG, SSOR-SI and SSOR-CG (SI = Chebyshev semi—iterative
acceleration, CG = conjugate gradient acceleration). These programs

are based on the adaptive methods of Hageman and Young [S5] in which
relaxation and acceleration parameters are chosen automatically.
Starting vectors vere obtained by linearly inlerpolating the boundary
conditions.

The tests were performed on the CDC 8500 compufer system at Purdue
University with the aid of the system for performance evaluakbion of
software ror partial differential equations described. in {2]. All
modules tested are included in ELLPACK [9]. ’

Six problems from the PDE population study [6] were chosen which

) Problem 41

exhibit a variety of behaviors. They are (problem numbers are from
[6}):
0 Problem 3
Operator : Peoisson
Solution Bexp(xty)xy(1-x)(1-y)
Features : Enktire solution
Problem 4
" Operator Poisseon
Sclution A function of x?/% and y?#/%
‘Features Solukion has singular first derivative
FProblem 8
Operator Poisson, @ is a delta—type function
Solution : ¢(x)®(y), where ¢(x)=1 for xs50.385, ¢{x)=p(x) for
0.355x20.65, and ¢{x)=0 for 0.85=x; and p(x) is a
quintic polynomial with conbinucus second derivatives.
Features Solution has a wavefront at a right angle through the

center of the domain connecting two flat areas.
Soiution has a discontinuous third derivative.

Operator : Helmholtz, VZu—10u = G
Solution : cos(10y) + sin{(10{(x—y))
Features Oscillatory solution
Problem 7
Operator Helmholtz, ¥V2u—100u = g
Solution [cosh(10x)/cosh(10) + cosh(20y)/cosh(20)1/2
Features Nearly singular solution with boundary layer
Problem &
Operator Helmholtz, V2u—(100+cos(3mx)+sin{2ray))u = G
Solution 0.31(5.4—cos(4nx))sin{nx)yly—1) (5.4—cos{4ny)) (1/( 1+




$4)—(1/2)), where ¢ = 4(x—(1/2))2+4(y-(1/2)2)
Features : Non-constant ceefficient operator, oscillatery
solution .

Note that problem 6 has a variable coefficient F and hehce the
analysis given above does not completely apply. However, as shown in
[1], the HODIE discretization using auxiliary point set P(h,1) yields
a fourth order method in this case. The resulting matrix is no longer
symmetric, although for sufficiently small h it remains irreducible,
weally diagonally dominant and an L-matrix. We shall see that the
observed behavior of the iterative methods remains the same as in the
other cases for the preblem considered here. -

Each preblem was scolved on the region 0=x=1, 0=y=1l with square
grids giving h = 1/4, 1/8, 1/12, and 1/16. The resuits are summarized
in Tabie 1 and Figure 1.

For each problem tested, the high order discretization yielded the
mest efficient method, that is, for a given accuracy, the snallest
execution time for all methods tested occcurred with Lthe high order

disgretization. The superiority of the HODIE methods extends to the
case where u has nearly singular behavior or even discontinucus
derivatives. In this case the rate of convergence is reduced, perhaps

until it is the same as for a lower order method (as in Problem 4),
but we have found that the absolute error given by the high order
diseretization is almost always smaller.

The adaptive iterative methods tested here appear to be as
eflFective 1in solving the nine—poinkt fourth order difference equations
as in seclving the second order live—point star difference equations.
We observe thakt the number of iterations required to solve a linear
system of a given order for a specific problem was roughly the same
regardless of whether the system was generated by the second or fourth

order diseretization. Since the matrices generated by HODIE have
twice as many off-diagonal elements it is not surprising that the
execubtion times were greater in this case., The increase in work was

never more than B0 percent, however, and the greater accuracy of the
fourth order discretization wes always enough to offset this.

Of the adaptive iterative codes tested, the SSOR-CG method seemed
to show the best overall performance in solving the five—point star

equations, its execution time being smallest, or nearly so, in each
case. For solving the nine—point HODIE equations, both the Jacobi—-CG
and the SSO0R-CG codes appeared to yield the best performance. The

Jacobi—3I code showed the longest running time in each case.
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Fipure 1 : Plots of performaunce data

The following plots show log(max error at nodes) versus log(time ia sec.)
for each test problem whose data appears in Table 1. Time includes both
discretization and solution time. For each method the best least squares
line is fi{t chrough the data. The symbols used for each method are
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