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HIGH ORDER DISCRETIZATIONS OF THE HELMHOLTZ PROBLEM
WHICH ADMIT ITERATIVE SOLUTION TECHNIQUES

Ronald F. Boisvert

Department of Computer Sciences
Purdue University

CSD-TR 296

November 1978

Abstract

Two one-parameter families of fourth order finite difference
discretizations of the Dirichlet problem for the Helmholtz equation
a 2 u/ax 2 + ij2 uJa y2 + Fu = G on a rectangle are presented. The general
suitabil~ty of several standard iterative techniques for the solution

.to the resulting systems of linear equations are discussed. Some
numerical results are presented which indicate that such high order
schemes may be preferable to the usual low order methods for use with
iterative solution techniques for such problems.



1. Introduction

We consider the numerical solution to the the Dirichlet problem on
a rectangle for the Helmholtz ,eq1Jation

(1) V2 u + Fu = G,

where F:§O is, a constant, by the use of, high order difference methods
of the,HODIE type introdQced py Lynch and Rice [8].

A nine-point HODlE discretization of the operator Lu=G at the
point (xo,Yo) takes the form

where U i is
spacing. The
labelled as

an estimate of U(Xi'Yi)' Gj=G(Xj,Yj) and h
points (Xi,Yi) are the grid points adjacent

6--2-----5

I I I
3--0--1

! I !
7--4--8

is
to

variable coefficients, the
are determined by solving a

The size of this system is
to solve the system of

small.

and the points (Xj'Yj) are additional points, called auxiliary points,
which are located near (xo,Yo). The coefficients eli and I3 j are chosen
to make the discretization exact for the space P n of polynomials of
degree at most n, that is, Lhs - IhLs = 0 for all sePn .

A key idea of the HODIE method is that high order is attained by
the use of auxiliary points and not by the use of grid points more
than one grid line away from the centrai point. The resulting linear
system for the U i has the same block tridiagonal form as the usual
nine-point discretization of the Laplacian; in fact, the coefficients
ai are O(h) perturbations of these.

For an elliptic operator with
difference equation coefficients ai and Sj
small linear system for each grid point.
fixed independant of h and thus the time
difference equations for U dominates for h

2. Fami I i,es of Fourth .or.der Methods for.. the He I. mho.l tz Prob 1ell!.

In the
and {3. are

. J
Helmholtz
au):i 1 ial'y
13 to 5.

case of constant coefficient operators. the coefficients a l
constants independant of (xo,Yo). In addition. for the
problem, symmetry can be used to reduce the number of

points required to get fourth order accuracy from the us\,;.al
We define two sets of auxi I iary po·int.s,

P(h,l) - !(O,O).(I.O).{O.I),(-I.O),(O,-I)},
Q(h,1J - {(O,O).(I,IJ,(-I,n,(-I.-rJ.(I.-I)l.
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where 0<~~1 is a parameter, and label them as

~
~

of fourth order HODIE discretizationsfamilies
where

Two one-parameter
the form LhU = IhG,

LhU = (1/(6h 2» (~oUo + «1(U1+U 2+U 9+U 4) + «s(U S+U6+U 7+Ue »
of

can be constructed using the
coefficients of these schemes

point
are:

sets P(h,q) and The

For the set Q(h,e)

a o = -20 + (B-~2)Fh2 - (1_~2)F2h4/2

al=~2=«a=«4 = 4
a6=~6=a7=aa = 1 + ~2Fh2/4

a, ~ (Sq'-l)/(sq') - (1-q')Fh'/12
a,~a,~a3~a, ~ 1/(24q')

For the set p(h,e)

ao = -20 + 2(3-~2)Fh2 - (1-e 2 )F 2h 4/2
«1=«2=«a=«4 = 4 + e2Fh 2/2
«6=a6=a7=«a = 1
a, ~ (3q'-1)/(3q') - (1-q')Fh'/12
el=e2=a3=~4 = 1/(12e 2 ).

The fourth order convergence of these schemes is proven in [1].
A number of specific discretizations in these families have been

considered previously for the case of the Poisson equation (F=O). The
method with auxiliary point set P(h,l) appears in a number of sources,
see [3] for example. Similar families for the Poisson equation were
derived by Esch [4] using Fourier series methods.

In [1], the discretization error of ~embers of these families are
considered in more detail. In particular, it is shown that the method
based on Q(h,~) is optimal with respect to a certain bound on the
discretization error. The method Q(h,l/Z) is found to be a nearly
optimal method, and the method Q(h,l) is seen to give the worst
overall performance in both theory and practice. All these methods
were found to compare favorably with the collocation finite element
method using bi-cubic Hermite elements.

3



3. The Use or,lterative Methods
,

Once a problem is-di-scretized u,sing one: of the methods of the
previous section, we -are left with a -linea'r system o-f equatio'n~ to
solve for the values of the solution at the grid poiri,ts.
Traditionally, such linear systems have been very large (from i0 9Xl0 3

to 10 6Xl0 6 , for example) and hence' iterative sQlution techniqu09s have
been preferred, since storage requirements are typically much smaller
for such methods. Although high order methods have the advantage that
for smooth problems a ,relatively-coarse mesh can deliver the required
accuracy (e. g. for h sufficiently small, if h is 'halved, the error
in a second order method goes down by a factor of 1/4, whereas the
error in a fourth order method goes down by a factor of- 1/16). -it is
still concievable that large matrix problems might need to be solved.
Hence we consider the applicability of iterative methods.

We start with some standard definitions.

Definitions

Let A be a real matrix of order N>l. Then,
a) A is irreducible if and only if there

permutation matrix P such that
does not exist a

P-1AP =

where B and D are square matrices.
b) A is weakly diagonally dominant if la;;I~~la'jl for each i.

where the sum is taken over all j¢li and strict inequal ity
holds for at least one i.

0) A is an L matriy. if ai ;;'>0 for i=1,2 •... ,N and ai j~O for
i, j=1.,2, ... "U with iO'!j.

d) A i-s a Stieltjes matri:: if it is a positive definite L-matrix.

We now
generated by

Theorem 3.1

summarize
the HODIE

some of the basic propert-ies
discretizations of the previous

of the matrices
sect.:.ion.

'Let -A be the NxN matrix gen~rated by any of the HODIE
discretizations of (1) given above. We assume that the natural
ordering of equations and unknowns is used. Then, for h
sufficiently small, A is real and

a) symmetric,
b) irreducible,
c) weakly diagonally dominant,
d) a block tridiagonal matrix, each block being itself

tridiagonal and strictly d'iagonal iy dominant.
e) an L-matrix, ~nd

f) positive definite.
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Note that an immediate consequence of e) and f) is that A is a
Stieltjes matrix.

For a matrix with these properties, much of the existing theory on
iterative method applies, which we summarize here. We know. for
example. that any of the point Jacobi, Gauss-Seidel and successive
overrelaxation (SOR, for relaxation parameter 0<w<2) converge when
applied to the matrix A of Theorem 3.1 (this follows from
irreducibility and weak diagonal dominance, see [lol, pp. 107-108).
In addition, since A is both an L-matrix and a Stieltjes matrix, we
know that the asymptotic rate of convergence of the Gauss-Seidel
method is greater than that of the Jacobi method.

Since the discretizations given here are based on nine-point
formulas, the resulting matrix does not have wProperty AW (see [10l.
pp. 41-42) ,and hence the SOR theory which yields an optimum relaxation
factor does not apply. However, since A is Stieltjes, the SOR theory
holds approximately, that is, the relaxation parameter called for by
the theory for matrices with Property A is nearly optimal, and the SOR
method might still be effective. Also, when considered as a block
tridiagonal matrix, A does have ·Property A(rr)~ (see [10], p. 445) and
thus the SOR. theory does apply to relaxation by lines. Such block
iterative techniques have been found to be quite effective in both
theory and practice.

A number of techniques for accelerating the convergence of the
basic iterative methods have been proposed that apply in the case we
consider here. For example, since A is symmetric positive definite,
the Chebyshev semi-iterative methods apply (see [10], pp. 344-385).
When used in conjunction with the Jacobi method, optimum values of the
acceleration parameters are known, yielding the so-called Jacobi-SI
method. which can result in an order-of-magnitude improvement in
convergence rate when compared to the point Jacobi method. Other
acceleration- methods are possible, notably the conjugate gradient
acceleration developed in [5].

The use of semi-iterative methods has not been found to yield
substantial gains when applied to the SOR method for general problems.
However, a variant of SOR, the symmetric SOR (SSOR) method, is
particularly suited to this technique. At each step of an SSOR
iteration, two sweeps are made over the equations, one forward and one
backward. This method converges whenever A is symmetric and positive
definite, as is the case here, and the SOR relaxation parameter is
chosen 0<00<2 (see [10]. pp. 461-466). In addition, a particularly
good choice of w is known for matrices that also satisfy the SSOR
condition: p(LU)§1/4, where Land U are the strictly lower and upper
triangular parts of the matrix diag(A)-l'A respectively an p(M)
denotes the spectral radius of M.

The matrices we consider here do, in fact, satisfy the SSOR
condition. Consider the Q(h,~) case (the P(h,~) case is similar).
Since A is symmetric, L=UT and hence it is sufficient to show that
p(L)~1/2. Also, p(L)~IILn~, and so evidently, peL) ~ I«ol( 1«1 I + ]«21
+ 1",1 + 1",1 ) = (10 + ,'Fh'J/(20 - (6-,')Fh' + (1-,')F'h 4 )/2J, so
long as h is chosen so small that ~2IFlh2~4. Thus p(L)~1/2 for h
sufficiently small.

Although SSOR reqUires twice the work per iteration of SOR,
implementations using semi-iteration have proven highly successful.
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4. Numerical Tests ; .
-'- '-

computer system at Pu~du~

performanc,e eVE,duation of
described in [2]. Al I

whic.h
from

were chosen
numbers are

A n'U.mber of test problem.s have he,en ciise:retize,el \Ii',ith both the seco.nd.
ord.er five-point star and the fourth Qrder BOO.IE method bas.ed:,· on
auxiliary poit:l-t., ~et Q(h.~/2}. IT) ea,c.h. Qas~. five iterat.iv~ algor:t:f;hms
in the ITPACK p~~kage of programs [7] were applied: SOR, Jacobi-SI.
Jacobi-eG, SSO~-GI and SSOR-CG (31 = Che~yshev semi-iLer.ative
accelera~ion, CG = conjugate graelient accelerati~n). These p~ograms

are based on ~he adaptive methoels of Hageman and Young' [5] in which
r~laxation and- acc.eleration parameters are c.hosen automatieal iy ..
Start~ng vectors were o~tained by linearly interpolating the boundary
c.ondit.ions.

'1.!he tests we('e p,erformed, qn the CDC 6500
University, with the aid of the system for'
softwar~ for partial differential equations
modules t~sted are included in ELLPACK [9J.

Six problems, from the POE population study [6]
exhibit a variety of behav.iors. They are (problem
[Sn:

o Problem 3
Oper~to,r ..
Solution
Features...

Poisson
3exp.( x'+'y ).xy (1-x). (l-y)
Encire solution

c Problem 4
Operator
Solution
Features

Pois,son
A function qf x 3 / 4 and y3/4
Solution has singular first derivative

o P:r:-obl e.m 8.
Operator:­
Solution

~eatur:-es

Poisson, G is a delta-type function
¢(~)¢(y), where ~(x)=1 for K~O.$5. ¢(x)=p(x) for
O.. 35:§!x:§0.65. and iP(x)=O for 0.65';§x;, and p(lt) is a
q~intic polynomial with concinuous second derivatives.
Solution has a wavefront at a right angle through the
center of the domain connecting two flat areas.
Soiution ha,s a discontinuous third derivat'ive.

o Problem 41
-Op,erator:­
Solution ..
Features

Helmholtz. V2 u-l0u = G
cos(10y) + ~in(10(x-y»

Oscillatory solution

., Problem 7
Operator,
Solution
Fe~tures

H~lmholtz, V2 u-l00u = g
[cosh(lOx)/cosh(10) + cosh(20y)/cosh(20)]/2
Nearly singular scdution with boundary l,ayer

• f'roblp.m 6
'Ope,rat.or
Solution

Helmholtz, V 2 u-(100+cos(31Tx.)+si.n(21TY»U, = G
O.31(5.4-cos(41Tx»sin(nx)y(y-l) (5.4-Qos(4ny»(1/(1+
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Features
~4)-(1/2». where ~ ~ 4(K-(1/2»'+4(y-(1/2)')
Non-constant coefficient operator, oscillatory
solution

Note that problem 6 has a variable coeffici.ent F and hence the
analysis given above does not completely apply. However, as shown in
[1]. the HOOlE discretization using auxiliary point set P(h,l) yields
a fourth order method in this case. The resulting matrix is no longer
symmetric. although for sufficiently small h it remains .irreducible,
wealt I y diagonal I y dominant and an L-matri x. We shall see that the
observed behavior of the iterative methods remains the same as in the
other cases for the problem considered here.

Each problem was solved on the region O~x~l, O~y~l with square
grids giving h = 1/4, 1/8, 1/12. ana 1/16. The results are summarized
in Tabi~ 1 and Figure 1.

For each problem tested, the high order discretization yielded the
most efficient method, that is, for a given accuracy, the smallest
execution time for all methods tested occurred with the high order
discretization. The superiority of th~ HOOIE methods extends to the
case where u has nearly singular behavior or even discontinuous
derivatives. In this case the rate of convergence is reduced, perhaps
until it i5 the same as for a lower order method (as in Problem 4),
but we have found that the absolute error given by the high order
di~cretization is almost always smaller.

The adaptive iterative methods t.ested here appear to be as
effective in solving the nine-point fourth order difference equations
as in solving the second order five-point star difference equations.
We observe that the number of iterations required to solve a linear
syst~m of a given order for a specific problem was roughly the same
regardless of whether the system was generated by the second ·or fourth
order discretization. Since the matrices generated by HOOIE have
twice as ~any off-diagonal elements it is not surprising that the
execution times were greater in this case. The increase in work was
never more than 50 percent. however. and the greater accuracy of the
fourth order discretization \'IC!'.S al ways enough to offset this.

Of the adaptive iterative ~odes tested, the SSOR-CG method seemed
to show the best overall performance in solving the five-point star
equations. its execution time being smallest, or nearly so, in each
case. For solving the nine-point HOOlE equations, both the Jacobi-CG
and the SSOR-CG codes appeared to yield the best performance. The
Jacobi-Sl code showed the longest running time ill each case.
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Figure 1 : Plots of performance data

The following plots show log(max error at nodes) versus log (time in sec.)
for each test problem whose data appears in T3ble 1. Time includes both
discretization and solution time. For each method the best least squares
line is fit through the data. The symbols used for each method are
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