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Abstract

An analysis of two one-parameter familles of fourth order
finfte difference methods of the HODIE type Is presented for
the constant coeffliclent Helmholtz equation V2u + Fu = G on
a2 rectangle. It Is shown that the cholce of the parameter,
which specifles a set of auxillary polnts In the HODIE
scheme, significantly affects the accuracy attafned by the
method. Extensfons are made to the case of variable F. A
sIxth order method for the constant coefficlents case s

stated.



1. Introduction

We consider the numerical solutlion to the Dirlchlet
problem on a rectangle for the Helmholtz equation
V2u + Fu =G
where F<0, by the use of high order difference methods of
the HODIE type Introduced by Lynch and Rice in [3]. These
methods appear promising since they retain the simplicity of
0(h?) finite difference techniques while attaining the high

orders possible with the finite element approach.

A nine-point HODIE discretization of the operator Lu=G at
the polint (xg4,yo) takes the form
LyU = (1/h%) X o;U; = X 8,G, = [,G
where U, s the estimate of ulx,,y,), G, = G(x;,y,), and h
fs the grid spaclng. The (x,,y,) are the nine grid points
adJacent to (xg,yye) labelled as
6—2—75

| ]
3—0—1

bl
and the polnts (x;,y,) are additicnal polnts, called
auxlllary points, which are located near {X0,)Yo0) - The
coefficlents a, and B; are chosen to make the discretization
exact for the space P, of polynomials of degree at most n,
that Is,

Lps -~ I Ls =0 for all seP,

together with a normallzation equation. In [3], Lyneh and




Rice show that for n<7 there exlst auxillary points for
which the HODIE discretization of the Helmholtz equation is

exact on P, and has order of accuracy O(h"—!) for ueCt+?,

One of the key Ideas of the HODIE method s that high
order Is attained by the addition and placement of auxiliary
pelints and not by the use of mesh pelnts more than one grid
line away from (xq,ye,). In this way the 1lnear system for U
Is no more complex than that of the usual nlne-point star
discretization. It has the same block tridiagonal structure
and the o coefficlents are 0(h) perturbations of ths wusual
ones. The coefficlents &, and B; must be determined by
solving a Jlinear system {posslbiy one system per grid
point), but the number of equations In this system is fixed
[ndependant of h amd'so as’h4O the time to solve the system

of difference equations dominates.

2. Famliles of Fourth Order Methods For Constant F

In the -<case of Fourth order methods for the Helmheltz
equation with -constant ‘F, the ‘system defining the w;"s and
Bi's s particularly sImple and can be sol ved -explicitly,
the coefficlents being the same Independant of the ilocation
of  ({xy,¥p). In order that L,s = Iyls For all sePg, 22

conditlens must be satlsfied, one for each element of a

basis for P plus @ normalization. Since there are nine



a's, we need at least 13 B's, some of which might be zero in

special cases.

We can determine that all but five 8's are zero by taking

advantage of symmetry. Hence we consider only those
discretizations with Flve auxil lary polnts placed
symmetrically with respect to both grid 1lnes passing

through (Xe,y0). We label these as

r———2 2————1

3———%-——4 or l———JP———l

S SR
Set P Set Q

Without loss of generallity we assume that Xo=0 and yo,=0. We

define two sets of auxillary polnts,

P(h, &)
Q(h,¢)

{(0,0)] (Eh,O).(O.Eh) p(_Eh!O),(O,_Eh)}
{(0,0),(Eh,Eh),(—Eh,Eh),(—Eh,—Eh).(Eh,—Eh)}

where 0<{(<1 Is a parameter. Finally, we focus our attention
on those dlscretizations with the symmetry constralnts
A SUF=0g=0Cy, Og=Ug=0,=Uy and B,;=B8,=R,=8,. To indicate the
simplIflcatlions produced by these assumptions we state a

temma whose proof is easy.

Lemma 2-—1
Let Lyu = 1/(6h2) (etqug + aq (Ug+utustu,) +
g (Ug+ugtus+ug)) and suppose I.G = ByG, +
B1(Gy+G,1G,+G,) where the four auxiliary points are

chosen as elther the set P(h,#¢) or Q(h,&). Then the




discretization L,u=1,G is exact for all monomials x'yJ

with at least one of | and J odd.

Theorem 2-1(a)

Let the dlscretization Lhu=1,G be deflned as In Lemma
2-1 by the coefflcients

%o = —20 + (6-£2)Fh2 - %(1-£2)F2h*

Oy =Ua=Ug=0, = 4

T + %£2Fh?

=0 g=0 ;=0 g
Bo = (6£2-1)/(682) = (1/12)(1-£2)Fh2
Bi=B,=Bz=B; = 1/(24¢2)

and the auxl|llary point sat Q(h,§). Then Lpu=1,G is

exact for all ueP;.

Théorem 2—1(b)

Let the discretization Lru=I,G be defined as In Lemma
2-1 by the coefficients
®p = —20 + 2(3-£2)Fh2 - %(1-£2)F2n*
Uy=0=Uy=0ly = 4 + %E2FKH2
Ug=Ug=U,=0Gg = 1
Bo = (3§2-1)/(3¢2) - (1/12) (1-£2)Fh?
B1=B3=83=B4 = 1/(12£2)
and the auxllfary point set P(h,§£). Then L,u=I,G Is

exact for all uelPg.

Proof
By Lemma 2-1 we need only satlsfy L u = I, Lu for the

functions 1, x2-h2, y2-p2, x2(x2-h2), vy2(y?-h2) and



(x2-h2)(y2-h2), Since the pairs x2?-h?, y2-h? and
x2(x?-h?), y2(y2-h2) and their partlal derlvatives are
Ilnearly dependant on each of the given point sets we
can further reduce these to the basls functlions

1, x2-h2, x2(x2-h?), (xz_hz)(ya_hz)
In addition, one normalization equation is needed. In

this way we get a system of five equations which are

non—-singular for all 0<£<1 in the unknowns o, ™q, Cg,
Bo, 'and B,. In each case, the solution of the system
leads to the coefficients glven above. =

The discretlzations with £=1 are especially appealing
since, In thesg cases, the auxlliary points are also grid
polnts and-thus no more than one evaluation of the right
side G per grid point is needed. However, In some cases a
HODIE discretizatlion with 0<¢<1 can produce an error small
enough to warrant its use in spite of an increase in the

number of evaluations of G.

Some-stencils of particular interest are displayed below,.
The notation LE,U = I[¢G denotes the HODIE discretization
with grid spacing h and auxiliary point set P{h,£). Note
that the stencils for If, and IR, are given at half-grid

points.




AuxX!lliary point set P{h,1)

+ F/12( 1 8

1141
LEt = 1/(6h2)| 4 |-20] 4
1] 41
1

Ia = (1/12)] 1 8 1

Auxlilary polnt set P(h,6%)

+ F/48] 1 | 44

1 4 1

Liw = 1/(6h2)| 4 |-20{ 4
1 4 1

1

1 - Fh2716

F2h2/16




Auxlllary point set O(h,1)

Q
L b1

L
Ih,T

1/(6h2)

(1/24)

Auxlliary point set Q(h,%)

L g‘h

1/(6h?%)

(1/86)

4 1 1
—-20| 4 + F/24 20
4 1 1
1
20
1
4 1 1
-20| 4 + F/96 92
4 1 1
t 1
2 - Fh2/16

F2h2/186




The 1lnear systems generated by these dlscretizations are
0(h?) perturbations of the usual nine-point discretizstion
of the Laplaclan and thus they possess a number of
properties which permit the use of efficlent equation
selution technlques. We sunmar|ze theseé properties in the

following theorem.

Theorem 2-2

Let -A be the matrix gerierated using any of the HODIE
schemes P(h,£{) or Q(h,%) for the Pirichlet preobiem for
the Helmholtz equation V2u + Fu = G with constant F<0
on a rectangle. We assume that the natural ordeEing of
equations and unknowns is used. Then, for h
sufficlently small, the matrix A is

a) real and symmetric,

b) irreducibly diagonally domlnant,

c) positive deflnite, and

d) of menotone type.

Proof
Part a Is obvious. For b we first note that, provided
F<0 and h2<4/(-F£2), we have that %<0 and o«,;>0 for 1#0
and thus the matrix A has the sign dlstribution a,,>0
and a, ;20 for i#£]. In each case, 3o <0, and so, as =2
result of the sign distribution, l[ay] = ~a¢ 2 4a, +
4ag = Zja;,|, with strict Inequality for equations

resulting from stencils with central points adjacent to



the boundary, since some of the «, with i>0 are equal
to zero there, Thus, since the linear system is
obvlously Irreducible, A Is lirreducibly diagonally
dominant. Part ¢ follows from the fact that an
[rreducibly diagonally dominant symmetric matrix with
positive diagonal entries Is positive definite (see
5], pg. 23). Finally, monotonicity follows from b

and the sign distribution (see [5], pg. 85). |

One consequence of this theorem is that any of the polint
or block Jacobl, Gauss—Seldel or SOR iteratlive methods are
convergent when applied to any HODIE method of the c¢lasses

consldered here.

3. Error Analysis for Members of the Fourth Order Families

There are many fourth order HODIE discretizations with
five auxiliary points. The first non-zero term in an
expansion of the truncation error, T, = Inh-L,, provides

some insight about which of these methods are superior.

Let X'Y) denote the dIfferentlatlion operator of order |
fn x and j In y, and let [ denote the identity operator. We
deflne several intermedlate opsrators and give expansions of
the result of applying the operators to some sufficiently

smooth function u.




AnUe = (-20ug + 4(Uy+Uptustuy) + 1(Ug+Ugtus+g) ) /BN2

EIX2+Y2) + (h2/12) (X4+Y%)

+ {1/360)h4(X5+5X4Y2+5X2Y4+Y3)]u0 + O(h%)

BhUQ 4(3“&2)Ug + 62(u1+U2+U3+U4)

[121 + £2h2(X24Y2) + (1/12)£2h%(X%+Y4) ]y,
+ O(hS)

Chug = 2(6-¢2)u, + %E2 (ug+ug+u,+ug)

[12] + £2h2(X2+Y2)
+ (1/12)82h* (X*46X2Y2+4Y4) Juy, + O(h®)

DﬁtVo = 4(352—1)V0 + 1(V1+V2+V3+V4)

[12621 + §2n2(X2+Y2)
+ (1/12)£2h% (X*+Y*%) Jv, + O(RE)

m

DRévo = 2(662-1)v, + %{v,+vy+vatv,)

(12621 + £2R2(X2+Y2)

+ (1/12)£2h% (X%+6X2Y24Y4) ]y, + O(h®)

In terms of these operators the families of

discretization operators can be expressed as

]

LTy = An + (F/24)B, - {(1/12) (1-£2)F2h2]
The = 1/(1262)DF, — (1/12) (1-¢2)Fh2]
Lie = A, + (F/24)C,, - (1/12)(1-£2)F2h2]

1/(1262)DRy - (1/12) (1-£2)Fh21]

4

IS4
Note that L[, and LY, as well as ITg and 134 are identlcal
except that C, and Dﬁ§ each have one fourth order Ccross

darivatlive term.
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Next we can compute the truncatlon operators dlrectiy.

Theorem 3-1(a)

The truncatlon operator of the HODIE discretization
with auxitiary point set Q(h,£) is
The

Thel ~ LRg

(h*/720) [ (5£2-2) (X5+Y%) +
S5(7£2-2) (X*Y2+X2Y4) ] + 0O(hS)

Theorem 3-1(b)

The truncation operator of the HODIE discretization
with auxillary polnt set P(h,¢) is

The = Thgl — Ly

(h#/720)[ (5£2-2) (X6+Y®) +

5(£2-2) (X%Y2+X2Y4) 1 + O(h®)

We can now compare the truncation operators of the HODIE

discretizations displayed In the last sectlon. They are

Taa = (h*/720) [ 3(X®+Y®) + 25(X°Y2+X2Y%) 1 4+ O(hS)

Thw = (h*/720) [ —(3/4) (X®+Y®) — (5/4)(XY2+X2Y%) ]
+ 0(h®)

TRt = (R®/720) [ 3(X®+Y®) - B(X*Y2+X2Y4) ] + O(hS)

Thin = (n*/720)[ -(3/4) (X5+Y5) - (35/4) (X4Y24X2Y4) ]

+ O(h®)

For the Helmholtz operator it is not difficult to relate
the truncation error to the discretization error e = U — u,

where u Is the true solution and U is the approximate

11




solutlon. We filrst note that fﬂ each case the truncation
operator Is of the Form

Thg = (h%/720) [ r{€)(X®4+Y%) + s(£)(X4Y24X2Y4) ] + O(h®)
where r(£) and s{¢) are constants depending on the parameter

Theorem 3-2

Let R be a rectangle R = [a,b] X [c,d] For which the

ratfe (b—a)/(d-c) is ratlional. For Integers n,m<2,
suppose that h = (b-a)/n = (d—¢)/m and let X; = a+ ih,
Yi = ¢ + th. For glven functions G and H, let u denote

the selution to

V2u + Fu G on Interlor(r)

u=H on boundary(R)
where F=0 is a constant. Suppose further that G and H
are sufficlently smooth so that ueCS(R). Desnote
ulx;,y,;) by u;;. If U,, Ts an approximation to-uIJ by
one of the HODIE discretlzatlons P{h,&) or Q(h,t) for
0<£<1, then, for h sufficiently small,
[ery] = fu;; = U ] < h*K(g)
For i=1,2,...,n-1 and J=1,2,....m1, where K(¢) Is a
consfant depending only on u, £ and whether thé

auxlliary point set was of type P or Q.

Proof
Let wix,y) = v(t? -~ (x-xq)2 - (y=va)2)}, where {(x,,yq,) =

((a+b)/2,(c+d)/2) and ¥ and t ars constants. Choose t

12




large enough that t? - (x—x,)? = {y-yo)2 > 0 on R and
choose ¥ small enough that w(x,y)< 1 on R. Then for
all sufficiently small h,
[Lngwiy] 2 M >0

for some constant M independant of |, ] and h. To see
this, note that L,y = (@e+da,+daglw — 4h2 (o, +205). We
have seen before that og+4a,+40as £ 0 and that if F<O
and h2<4/(-F¢2) then both wn, and og are positive. Thus
Lh.gw is of one sign on R, which shows the existence of
the required M>0. Let M, and M, be constants chosen so
that

[ (XB4+Y®)uf < M, and |(X4Y2+X2Y4)u] < M,
In R. In addition, let the constant K{(&) be chosen so
large that for h2<4/(-F§2),

(|r(&) M, + |s(&)|Mz)/720M + [O(h8)| < K(&)
Then,
ILheeis| = [LpgUig — Lnguiy|

= [TagGiy = Luguig| = [Thguyyl

< (h*/720) (|r(&) M, + |s(&)|My) + |O(h®)|

< h*K(EIM = hK(&) |Lpew;, |

|Lpng (R*K(EIw, )]

Since, as we have shown above, for h chosen as above,
the operator L,y s of monotone type, this Implies that
(see [0], pg. 43)

leiy] £ h*K(&)w,, < h*K(&) ]

13




Pnspecting.the proof one sees that If the truncation

error constants [r(§)] and [s(£)| are reduced, then the
discretization error bound K(£) can also be reduced. In
particular, using the truncatlon error constants previousiy

displayed, we see Immediately that the smallest error bound

arrived at this way is attained with the Q(h,%) method and

the largest with the Q(h,1) method.

We now consider the wvalue of £ which produces thHe
smallest error bound. Since we do rot know anything about
derivatives of u In deneral, it is natural to seek tHat
value of £ that minlmizes max{|r(&)|,|s(€)]). (We note that
other norms could be used as well and, In gensral, would
lead to different theoretical conclusions.} This determines
a8 set of auxlltary points which are optimal with respect to
this cholce of norm. Flgure 1t shows the region bounded by
the curves £=0, [r{&) ]|, Is(¢)|, and ¢=1 for Q(h,¢) and
Figure 2 shows the curves for  P(h,&). From the diagrams [t
is clear that the minima Secur at the vertex where 6-15&2 =
105£2-30 in Flgure 1 and at £ =1 1in Figuré 2. Thus the
min-max value of the parameter ls-E*=\J6T§_for Q(h,&) and it
is £ =1 for P(h,£). These yleld the truncation operators

The= (h*/720) -%(X®+Y6) - B(X4Y2+X2Y4) 1 + O(h®)
TRy = (h*/720)[ 3(X®+Y%) - S{X*Y2+X2Y*) ] + O(HS)
from which the discretization with Q(h, &%) gives the smalier

bound on the discretization arror.

14
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Figure 2 : Min-max Values of P(h,%)




Finally we note that the discretlizations wlth £=% or &=
8ppear to be the only HODIE schemes of practical value In
these famflles since in these cases the number of
evaluations of the functlion G per grld polnt can be reduced
from an average of five to one or two. However, the fact
that £*~0.55 indicates that the discretization using the
auxillary point set Q(h,k) might be the best of those

considered for the constant coafficlants case.

4. Extensions to Variabie F

We now briefly consider Helmholtz type operators L = ¥2 +
F in which F Is a function of x and Y- A simple extension
of the constant coefFficient case Is a result of the

following theorem.

Theorem 4—1

Let L, and I, be finlte difference eperators such that
Lys = [,V%s for all seP,. Then the discretization

(L + 1,F)u = 1,G
of the equation Lu = (V2 + F)u = G with varlable FL0 1s

exact on ¥,.

Proof
Choose seP,. Then Ls = V25 + Fs and so adding I,Fs to

both sldes of L,s = 1,V2s gives

(Lh + IhF)S Ih'(st + FS) = Ih'LS = 'IhG. (|

T8




This theorem 1Is of practical use only when the aux!llary
polnts are a subset of the nine mesh points of a single grid
element, since otherwise extra unknowns are introduced Into

the system of difference equations.

Coro]lérx
The HODIE discretization of Lu = V2y + Fy = G with

variable F using the auxlliary point sets P(h,1) and
Q(h,1) are exact on Fs and the truncation errors are

the same as for the constant coefficient case.

5. A Sixth-Order HODIE Discretization

We next observe that In the case of constant coefficients
there s a HODIE method which has sixth order accuracy.

This was first observed in the case F=0 by Lynch and Rice in

[3].

Theorem 5—1

The finlte difference approximation
(48L%y + 4LZ, + BLE,)u = (4813, + 413, +8IF,)G
of the Helmholtz equation V2u + Fu = G with constant F

Is exact for all ueP,.

Proof
A simple computation shows that 48Ty, + 4T3, + 8TL, =

0(h®) and hence the discretlzation above has truncation

17




error O(h®). =m

This discretlzation has the auxillary point set Q(h,%) U
Q(h,1) U P(h,1) which glves a set of auxlliary points of the

form

and hence requires an average of two evaluations of G per
grid point. This discretizatlion requires only slightly more
computation (to evaluate the right side of the difference
equations) than the fourth order method with the set Q{h,%),
a fact that makes the sixth order method quite attractive In

the case of constant coefficlents.

6, Numerical Results

Several FORTRAN programs were written to verify the -

derived properties of the HODIE schemes. These programs
have been Interfaced with the ELLPACK 77 system [4] for the
solution to eilliptic partial differential equatlions and were
run on the Purdue University CDC 6500 computing system. The
CDC 6500 uses floating point numbers accurate to about one
part In 107'%., The Minnesota FORTRAN compller was used in

the tests.

18



One of our programs generates a discraetization based on
the fourth order P(h,£) or Q{(h,¢) schemes. Because the
parameter £ Is arbltrary here, the function G is evaluated
five times per grid polnt in this program. In order to
assess the 'savings possible 'n a more efficient
implementation of the schemes P(h,1), Q(h,1), P{(h,%), and
Q(h,%), an efficlent version of P(h,1) written by R. E.
Lynch was also used. We call thls program "Fast P(h,1)".
We also tested the sixth order HODIE code available in the
March 27, 1978 version of ELLPACK 77. In this experimental
code the coefficients of the method are initially derived
(though they are known for the cases we consider here) and
then 13 evaluations of G are made per grid point. Finally,
we also ran the bl-cubic Hermite (P,C') collocation module
available In the same version of ELLPACK 77 as a benchmark.
In each case the ELLPACK general banded 1finear system solver

was used to solve the system of difference equations.

Here we report on some of the experiments which were
carried out. The methods P(h,%1), P(h,%), Q(h,1), Q{h,%),
Q(h,&¥), Fast P(h,1), P,C" collocation, and the sixth order
HODIE were each run on a set of seven problems taken from
the PDE population study [2], Including three Poisson
equations, two Helmholtz equations with constant F and two
with wvariable F. In each case the region R is the unit
square. The metheods with auxiliary points not at grid

points were not used In the latter two cases.

19
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The problems are (problem numbers are taken frem [2]):

® Problem : 3
Operator : V2y = €(x,y)
Solution : uy = 3exp (x+y)xy (1-x) (1-y)

Features : Analytic solut/en

® Problem : 7
Operator : V2u - 100u = G(x,v)
Solution : Uy = %{cosh(10x) /cosh(10Q)

*+ cosh(ay)/cosh(a))

Parameter values : a=20
Features : Boundary 1ayer
e Problem : 17

Operator : V2u = G(x,y)
Solution : u = s In(x—y+%)

t exp(-y2-(ab®x3/(1+h%x3))2)

Parameter values : a=5, b=3
Features : Ridge Im solutlon
e Problem : 38

Operator : V2u = G(x,y)

Soltution : uy = (xy)xx(%a)

Parameter Qa]ues . a=h

Features : Selution has derivatives which are singuiar

at tha boundarv

2%



® Problem : 41

Operator : V2u - au = G(x,y)
Solution : u = cos(by) + sin(b(x~y))
Parameter values : a=10, b=10
Features : Osclillatory solution

® Probtlem : 6

Operator : V2u — F(x,y)u = G(x,y) ‘
F(x,y) = 100 + cos{(2nx) + sin(3my)
Solutlon @ u = vx)v(y)sin(ax)y(y—1)
1/ (1+e(x,y) 4)-%)
v(z) = 5.4 - cos(4nz)
¢(x,y) = 4((x-%)2 + (y—%)2)

Features : Oscillatory solution

® Problem : 20
Operator : V2u — F(x,y)u = G(x,y)
Solution : u = 108(x)e(y) + a
- ¢(z) = z(z-1)exp(~-100(z-%)2)
Parameter values : a=10

Features : Sharp peak in solutlon

The problems were solved on square grids in which the
number of grid llnes in each direction was 5, 9, 11 and 13
for the fourth order HODIE methods, 3, 5, 8 and 7 for the
collocation method and 3, 5, 9 and 11 for the sixth order

HOPIE method. The results are summarized on the following
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pages  which show  graphs of log1o(|error]) versus
logio(execution time) where error denotes the discrete L,

error at the gr!d polnts.

For the case of constant F the optimal scheme Q(h,s;) was
unlformly superlor, that is, for a glven error, It requlred
less execution time than the others. The Q(h,%) method was
the next most efflicient. The Fast P(h,1) method, al though
clearly better than Its nefficient counterpart P(h,1), was
never better than the Q(h,%) scheme, even though the
impiementation of the latter uses fjive evaluations of G per
grid point. The Q(h,1) choice of auxiliary points was the
least effective of the HODIE methods tested, although It
still performed better than than collocation In each case.
It should be emphasized that most of the test probiems do
not have homogeneous boundary conditions and no problems
were run with non—uniform grids, two cases in which the
relative performance of collocation improves, Finally we
See that the sixth order HODIE method was usually superior
for higher accuracies, al though a more efficlent
Imp]eméntation of the sixth order method (reducing the
number of evaluatlons of G at each mesh point from 13 to 2)

would make this method competitive even for moderate

accuracy.
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7. Conclusions

We have shown that the choice of the auxliliary points In
the HODIE method can slgnificantly affect Its performance.
In particutar, we see that, of the schemes tested, the one
with the auxillary point set Q(h,%) Is the most efficient
practical fourth order method for the equation V2u + Fuy = @
with constant F, f[ts performance being nearly optimal in its
class. In additlon, we have found that the sixth order
method presented here Is qulte attractive for problems in
which moderate to high accuracy s reguired. We conJecture
that, for F constant, an Implementation of these methods in
conjunction with the Fast Fourier Transform method of
solving the resulting system of difference equations as in
[1] will yleld a method wlth even more efficiency for

solving this class of probtems.

For the case of variable F we have found the HODIE me thod

with auxlilary polnt set P(h,1) superior to the alternatlve

Q(h,1). For the set of problems presented here, the HODIE-

method performs better than the P3C' cotlocation method.

It is naturél to ask whether the superlority of the HODIE
methods with auxiliary polnts that are not all grid points
extends to cases where F is variable or the principal part
of the operator is not the Laplacian. In these cases more
than five auxlliary points are requlred to attain fourth

order accuracy. We have not yet treated this sltuation.
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