
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1978 

The Effect on Accuracy of the Placement of Auxiliary Points in the The Effect on Accuracy of the Placement of Auxiliary Points in the 

Hodie Method for the Helmholtz Problem Hodie Method for the Helmholtz Problem 

Ronald F. Boisvert 

Report Number: 
78-266 

Boisvert, Ronald F., "The Effect on Accuracy of the Placement of Auxiliary Points in the Hodie Method for 
the Helmholtz Problem" (1978). Department of Computer Science Technical Reports. Paper 197. 
https://docs.lib.purdue.edu/cstech/197 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


,

THE EFFECT ON ACCURACY

OF THE PLACEMENT OF AUZILIARY POINTS

IN THE HODIE ~fETHOD FOR THE HELMHOLTZ PROBLEM

Ronald F. Boisvert

Purdue University
Department of Computer Science
West Lafayette, Indiana 47907

CSD-TR 266

June 1978
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Purdue UnJversity

June 6, 1978

Abstract

An analysis of two one-parameter families of fourth order

flnfte difference methods of the HODIE type Is presented for

the constant coefficient Helmholtz equation V2 u + Fu = G on

a rectangle. It Is shown that the choice of the parameter,

which specifies a set of auxiliary points In the HODIE

scheme, sig'nlficantly affects the accuracy attafned by the

method. Extensions are made to the case of variable F. A

sixth order method for the constant coefficients case is

stated.

,
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1. Introduct Jon

We consider the numer.rcal solution to the DirIchlet

problem on a rectangle for the Helmholtz equation

V2 u + Fu = G

where F~O, by the use of high order difference methods of

the HOOlE type Introduced by Lynch and Rice In [3]. These

methods appear promising since they retain the slmpl iclty of

O(h 2
) finite difference techniques whIle attaining the high

orders possible with the fInite element approach.

A nine-point HODIE discretization of the operator Lu=G at

the point (xo,Yo) takes the form

LhU ~ (1/h') L ~,U, = L BJGJ ~ IhG

where Ul is the estimate of u(x],y.), Gj = G(xj,Yj), and h

Is the grid spacing. The (xI,Yr) are the nine grid points

adjacent to (xo.Yo) label led as

6-2--5
I I I
3-0---1
I I I
7-4-8

and the points (Xj.Yj) are additional points, called

auxiliary points, which are located near (xo,Yo). The

coefficients al and Bj are chosen to make the discretization

exact for the space Fn of polynomials of degree at most n,

that Is,

for a 1I self'n

together with a normalization equation. In [3], Lynch and



Rice show that for nS7 there exist auxn lary -points "for

which the HOD1E discretization of the Helmholtz equation T.s

exact on IP n and h-as order -of accuracy O(-h n - 1 ) "for ueCn+1.

One o·f the key I deas of the HOD IE method I s that hl gh

order's atta-I ned by the add J t Ion and placement of -aux 11 Iary

points and not by the use ,of mesh .points more than one grid

1 I,ne away "from (x o , Yo) . In t·h I s way the 1 I near system .for U

I s no more c'omp,l ex than tha,t of t,he usua:l n,T,ne....,po-J,nt star

d I,scretl.z.at,i on. 'It has·t:he same 'b'l-ock trj'dl,agona'l structure

,and the -Ci eoerf'! c-f:ents ar-e Ofh.) perturbat Ions of the 'usuall

ones. The 'coeffic,Ients 'Ci r ,and B:J mus·t be deter:m1ned by

so.lvi-ng a J I,near system -(possIbly one system per ,gr,id

,pm-i'n-t), but ,the ,number 'of equa-,t.lons In '-th,ls -sys-tem :is ,fixed

rndependant :of :h arid -so -as 'h-'O 'the -t lme to so 1ve the system

of -d'; fference -eql1at I'ons dom !nates.

2. Fam·1 '1 'roes :or Four-·th ;Or-der :Me:tt.lOds .for :Coms.t-arn :f

In ;the 'case ,o'f ;f¢wrth '0rder :me·thods :for ,the -He l:mho:! ,.tz

equa-t:i-on wl':th cCor:Ts',tan·t F, the '-S'y-s-tem :defln,r n9 'the Ci'r ":s ,and

Bj 's ;j's :partlcu-I'ar:! ,y .sJmp;j'e 'and can be s-o:] ved ·exp·] i'c!J;t.] y,.

the :c0e'ff-j C'1'er;'t~s 'be'j:ng :the s-ame 'I ndependan.t 'o-f t,he 'j'oce:tlon

of ,,(x.o-,Yo)'. In :or-der th-a·t .Lh·s = ·'Ih-L's -·for ;a;ll s'e'jp.L5' 22

'cond-j ·ttons mus,t ·be 's-'a~t;'~S'f j;ed, ,one for each e;j--eme-nt 'of :a

bas i s for '1P 6 plus '-a -norma 1 i zat'l on. 'S'i'nce there are 'n i ne



a's, we need at least 13 B's, some of which might be zero in

special cases.

We can determIne that all but five B's are zero by taking

advantage of symmetry. Hence 'we cons i der on 1y those

discretizations with five auxi 1 Iary points placed

symmetrically with respect to both grid 1 ines passing

through (xo,Yo). We label these as

III
3-0-1

LLJ
Set P

or

2 1
I I I
+------{)--+

I I I
3 I 4

Set Q

WIthout loss of generality we assume that xo=O and Yo=O. We

define two sets of auxiliary points,

P(h,<) = {CO,O),Ceh,O).CO,eh).(-eh,O),CO,-<h»

Q{h,<) ~ {CO,O),«h,<h),(-<h,<h),C-eh,-eh),«h,-eh»

where O<~~1 Is a parameter. Finally, we focus our attention

on those discretizations with the symmetry constraints

sfmpl iflcations produced by these assumptions we state a

lemma whose proof is easy.

Lemma 2-1

Let + +

and suppose +

8,(G,+G 2 +G a+G 4 ) where the four auxilIary points are

chosen as either the set P(h,~) or Q(h,~). Then the

3



discretization LHu=IhG is exact for all monomials x1yJ

with at least one of f and J odd.

Theorem 2-1(a)

Let the discretization Lhu=IhG be defined as Tn Lemma

2-1 by the coeffJclents

~o ~ -20 + (6-~')Fh' - ~(l-~')F'h'

a 1=a2=cx S=a4 = 4

a s =d e =a 7=ae = 1 + ~~2Fh2

Bo = (6~'-1)/(6~') ~ (1/12)(1-~')Fh'

B,=B.=B.=B. ~ 1/(24~')

and the auxiliary point set Q(h.~). Then L,u=I,G Is

exact for all uePs _

Theorem 2 1 (b)

Let the discretization Lhu=IhG be defined as In Lemma

2-1 by the coeffIcients

~o = -20 + 2(3-~')Fh' - ~(l-~')F'h'

a,=a2=aa=cx4 = 4 + %~2Fh2

CX S =CX 6 =CX 7 =C{e =

Bo ~ (3~'-1)/(3~') - (1/12)(1-~')Fh'

B,=B,=Bs=B. ~ 1/(12~')

and the auxl I fary point set P(h,~). Then Lhu=I~G Is

exact for all u€fs .

Proof :

By Lemma 2-1 we need only satIsfy Lhu = IhLu for the

functions 1 J x 2 -h 2 , y2_h 2 , x 2 (x 2 _h 2 ), y2(y2_h2) and

4



(x 2-h 2 )(y2_h 2 ). Since the pairs x 2 _h 2 , y2_h 2 and

x 2 (x2_h 2
), y2(y2_h 2) and their partial derivatives are

1!nearly dependant on each of the given point sets we

can further reduce these to the basIs functions

1, x 2-h 2 , x 2 (x2 _h 2), (x2-h2)(y2_h2)

In addItion, one normal izatlon equation Is needed. In

this way we get a system of five equations which are

non-singular for all O<~~1 in the unknowns ~oJ a
1

, as,

So, and Sl· In each case, the solution of the system

leads to the coefficients given above. _

The discretlzations with ~=1 are especfaily appealing

since, In these cases, the auxll iary points are also grid

points and thus no more than one evaluation of the right

sIde G per grid point is needed. However, In some cases a

HOOLE discretization with O<~<1 can produce an error small

enough to warrant its use in spite of an increase In the

number of evaluations of G.

Some stencils of particular Interest are displayed below.

The notation L~tU = I~tG denotes the HODIE discretization

wIth grid spacing hand auxil iary point set P{hJ~). Note

that the stencils for I~t and I~t are given at half-grid

points.

5



Aux!! lary point set P(h,l)

1 4 1

4 -20 4

1 4 1

+ F/12

1

1 8 1

1

(1/12)

1

1 8 1

1

Auxiliary point set P(h.~)

L~... ~ 1/(6h2)

1 4 1

4 -20 4

1 4 1

+ F/48

1

1 44 1

1

- F 2 h 2 /16

(1/3)

1

1 -1 1

1

- Fh 2 /16
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Auxll lery point set Q(h,l)

L~., = 11(6h')

1 4 1

4 -20 4

1 4 1

+ F/24

1 1

20

1 1

I~.f = (1/24 )

1 1

20

1 1

Aux' , 'ary point set Q(h,~)

L~... = 1/(6h')

1 4 1

4 -20 4

1 4 1

+ F/96

1 1

92

1 1

F'h'/16

I ~.Ij, = (1/6)

1 1

2

1 1

- Fh'/16
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The linear systems generated by these dlscretfzatfons are

O(h
2

) perturbations of the usual nine-point drscretizatloh

of the Laplacian and thus they possess a number- of

properties which permit the use of efficient equation

solution technIques. We summarrze these properties in the

fol lOWing theorem.

Theorem 2-2

Let -A be the matrix generated using any of the HOOlE

schemes P(h,~) or Q(h,~) for the Dirichlet problem for

the Helmholtz equation V2u + Fu = G with constant FsO

on a rectangle. We assume that the natural ordering of

equations and unknowns is used. Then, for h

sufficiently small, the matrix A is

a) real and symmetric,

b) Irreducibly diagonally domInant,

c) positive defrnlte, and

d) of monotone type.

Proof :

Part a Is obvious. For b we first note that, prOVided

F<O and h2<4/(-F~2). we have that ~o<O and ~r>O for '*0

and thus the matrix A has the sfgn dlstributron 8, 1>0

and alJSO for I¢J. In each case, ~~JSO, and so, as e

result of the sign dIstribution, JaIl I = -01 0 ~ 4~, +

40fs = :rla lJ I, with s-trict Inequal ity for equations

resulting from stencils with central points adjacent to

a



the boundary. since some of the al with i>O are equal

to zero there. Thus, since the I inear system is

obvrously Irreducible, A Is irreducibly diagonally

dominant. Part c follows from the fact that an

IrreducIbly diagonally dominant symmetric matrix with

posItIve diagonal entries Is positive definite (see

[5], pg. 23). Finally, monotonicity follows from b

and the sign distribution (see [5], pg. 85). •

One consequence of this theorem is that any of the point

or block Jacobi, Gauss-SeIdel or SOR Iterative methods are

convergent when appl ied to any HOOlE method of the classes

considered here.

3. Error Analysis for Members of the Fourth Order Farnil ies

There are many fourth order HODIE dlscretlzations with

five auxil iary points. The first non-zero term in an

expansion of the truncation error, Th = IhL-Lh , provIdes

some insight about which of these methods are superior.

Let XlyJ denote the differentiation operator of order

fn x and j In y, and let I denote the identity operator. We

defIne several Intermediate operators and give expansions of

the result of applyIng the operators to some sufficiently

smooth function u.

9



A~uo = {-20u o + 4{~,+U2+U~+~4} + 1 (~5+~6+U7+8»/6h2

= [(X 2+y2) + (h 2/12)(X4+y4)

+ (1/360)h4 (X 6+SX4y2+SX2y4+Y6)]U
O

+ O(h 6 )

BhUe = 4(3-C2 }u O + ~~(U1+U2+U~+U4)

= [121 + ~2h2(X2+y2) + (1/12)~2h4(X4+y4)]Uo

+ O(h 6 )

ChUO - 2(6-~2}UO + ~~2(U~+U6+U7+U8}

= [121 + ~2h2(X2+y2)

+ (1/12)~2h4(X4+6X2y2+y4)]uo + O(h6)

Dh'.tVo = 4{3e 2 -1 }ve + 1 (V f +V 2 +V a+V 4 )

= [12~21 + ~2h2(X2+y,)

+ (1/12)~2h4(X4+Y4)]vo + O(h6)

D~tVo = 2(6e 2-1)v o + %(V 1 +V 2 +Va+V 4 )

~ [12~21 + ~2h'(X2+y2)

+ (1/12)~2h4(X4+6X2y2+y4)]vo + O(h6)

discretization operators can be expressed as

In terms of these operators the fam! 1 i as of

Lh'.!1 = Ah + (F/24)Bh - (1/12)(1-~2)F2h'l

I h." ~ 1/(12~2)Dh .• - (1/12)(1-F)Fh'l

L~.~ = Ah + (F/24)C h - (1/12)(1-~2)F2h'l

I ~.i = 1/(12~2)D~.• - (1/12) (1-~')Fh'l

Nota that Lh'.i and L~.e as well as I ~i and I ~., are Identical

except that Ch and D~~ each have one fourth order cross

derivatIve term.

,
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Next we can compute the truncatIon operators dIrectly.

Theorem 3-1(a)

The truncatIon operator of the HODIE discretization

with auxi Ilary point set Q{h,~) is

T~.e = I ~.t'L - L~.t

~ (h'/720)[ (5~2_2)(X'+Y') +

5(7~2_2)(X'Y2+X2y') ] + O(h')

Theorem 3-1 (b)

The truncation operator of the HODIE discretization

with auxi I lary point set P(h.~) is

T~.t = I ~.qL - L~v

~ (h'/720)[ (5~2_2)(X'+Y') +

5(~'-2)(X'y2+X2y') ] + O(h')

We can now compare the truncation operators of the HODIE

dlscretlzations displayed In the last section. They are

T~,1 ~ (h'/720)[ 3(X'+Y') + 25(X 4y2+X 2y4) ] + O(h')

T~.1j, ~ (h'/720) [ -(3/4) (X'+Y') - (5/4)(X'y2+X'Y') ]

+ O(h')

T~ 1 ~ (h' /720)[ 3(X'+Y') - 5(X'y2+X2y') ] + O(h')

T~.1i. ~ (h'/720)[ -(3/4) (X'+Y') - (35/4)(X'y2+X2y') ]

+ O(h')

For the Helmholtz operator It is not difficult to relate

the truncation error to the discretization error e = U - u,

where u Is the true solution and U Is the approximate

11



'50'1 u,t I.Orl. We f:f,rst 'mo,te that i-n each ',case the tr,uncat lon

operator Is of ~he form

T h•• = (h4/720) [ rHHXB+Y'j +S(~)(X4Y2+X2y4) ] + O('hB)

'wher.e r{~) and 5:( e) are ,constant-s depend,' ng on the parameter

~ .

Theorem .3-2

Le-t ,R ,be a 'r-ec'tangl,e :R = [a,b] X [c,d] -for which the

rat·r,o ('b-_a)/(d-_c) is ra,t'lona,!. For rn·tegers -n,rrt:S2.

s.uppose ·thath = (b-a}In= (d-c)!m and let x, = a + Ih,

YI = c + ,Ih. For g'lven 'functions G and H, let u denote

the sO'T out i on to

'V 2 u + Fu = G on InterJor(.R)

u .= H on boundary (R)

'where 'F~O is a constant. Suppose further that G and ~

are sufflclent1y smooth so that ueC6(R). Denote

u(x"YJ) by u 1J • If U 1J Is an approximation to u
1J

by

one of the HODIE dlscretlzatlons P(h.~) or Q(h.~) for

O<eS1, then, for h sufficiently small,

le'JI = IU'J - U'JI ~ h4K(~)

for i=1,2, ...•-n-1 and j=1 ,2, ... ,m-1, where -K(f) Is a

constant depending only on u, ,e and whether the

auxl' lary _point set was of type P or Q.

Pr,oof :

Let w(x,y) = ~(t2 - (X-XO)2 (y_Yo)2), where (xo,Yo) =

«a+b)/2.(c+d}/2) and ~ and t are constants. Choose t



large enough that t 2 - (X-xo )2 - (y_YO)2 > 0 on Rand

choose ~ small enough that w(x,y)S 1 on R. Then for

all sUfficiently small h,

ILh.,wlJ I " M > 0

for some constant M independant of I, J and h. To see

this, note that L."t = (er: O+4er: 1+4er:s )w - 4h 2 (er: 1 +2a s ). We

have seen before that (Xo+4Cr: 1 +4er: s ~ 0 and that if F<O

and h2<4/(-F~2) then both (X1 and er: s are positive. Thus

L.,.iw j s of one sign on RI wh j ch shows the ex i 5 tence of

the required M>O. Let M, and M2 be constants chosen so

that

I (X'+Y')ul ,; M, and I (X'Y'+X'Y')ul ,; M,

In R. In addition, let the constant K(l;) be chosen so

large that for h'<4/(-F~'),

(Ir(~)IM, + Is(~)IM,)/720M + IO(h')1 ,; K(~)

Then,

ILh.•e 'J I ~ ILh"U'J - Lh"u 'J I

~ IJh.• G'J - Lh"u'J I ~ ITh.qu 'J I

,; (h'/nO)<!r«)IM, + Is«)IM,) + IO(h')1

,; h'K(I)M ,; h'K(~)ILh~W'JI

= ILh.• (h'K«)w ,J ) I
Since, as we have shown above, for h chosen as above,

the operator Lh,fI Is of monotone type, this Impl ies that

(see [0], pg. 43)

le 'J I ,; h'K«)w 'J ,; h'KCIl •

13



trunCat Ion"the

are reduc'e'd. then' the:

a I so be' reduced. In

(nspec t i ng, the proof' one- sees- that

error constants Ir(~)1 and Is(HI

do' scre t I zat I on' error bound K (e) can

part Icul ar, us-I ng, the truneat I'on error cons'tants pr-evlous'l'y

displayed, we see rmm'ediate'ly tliat the sma' I lest error boun'd

arrived at this way is a"tt'a-ine-d wrth the Q(h.~) method and-'

the largest with the Q(h,l) method.

We now consider the value- of e which produces the

smalles-t error bound. Since we do' n'ot know anything about

dar I vat i ves of u In g'enera I., I tis natura I to seek that

value of ~ that minimizes max( Ir(~) 1.ls(~) I). (We note that

other norms could be used as we'll and, In general, would

lead to different theoretical conclusions.) This determines

a set of auxilIary points which are optimal with respect to

this choice of norm. Frgure 1 shows the region bounded by

the curves f~O, Ir(~)I. Is(~)I, and ~=1 for Q(h,~) and

Figure 2 shows the curves for- PCh,e). From the diagrams It

is clear that the minima Occur at the vertex where 6-1Se2 =

10Se
2
-30 in FIgure 1 and at ~ = 1 in Figure 2. Thus the

min-max va'Jus of the parameter Is- f'!=j(i":3for Q(h,~) and it

is ~+=1 for P(h,~). These yield the truncation operators

T~••• = (h 4/720)[ _J,;(X6+y6) - J,;(X4y2+X2y4)] + 0(h6)

Th.•, = (h 4/720) [ 3(X6+y6) - 5(X4y2+X'y4) ] + 0(h6)

from which the dlscretlz~tjon with Q(h,~~) gives the smalier

bound on the discretization error.

14
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o
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Figure 2 J Min-max Values of P(hp~)



Finally we note that the dlscretlzatlons with ~=~ or t=1

appear to be the only HODIE schemes of practical value In

these fam1lles sInce In these cases the number of

evaluations of the function G per grId point can be reduced

from an average of five to one or two. However, the fact

that ~*-O.55 fndlcates that the discretization usIng the

auxiliary point set Q(h.~) might be the best of those

considered for the constant coeffIcIents caSe.

4. Extensions to Variable F

We now briefly consIder Helmholtz type operators L = V2 +

F in whi"ch F Is a function of x and y. A simple extension

of the constant coefficient case Is a result of the

following theorem.

Theorem 4-1

Let Lh and I h be fT-nlte d-rfference operators such t-hat

Lhs = I.nV
2 s for 'a,11 SEPno Then ,the discretizat,j.on

(l. + I.Flu = I.G

of the equation 'lu = (V' + Flu = G with variable 'FSO 1$

exact 'on 'IF'n'

Proof :

Choose ssPn • Then "Ls = V2 s + Fs and so adding IhFs to

both sides of Lhs = I hV2 s gives

(l. + I.F)s = I.(V's + Fsl ~ I.ls = I.G. II

,.5



--': --

This theorem Is of practical use only when the auxiliary

points are a subset of the nine mesh points of a single grid

element, since otherwise extra unknowns are introduced rnto

the system of difference equations.

Corollary

The HOOlE discretization of Lu = V2 u + Fu = G with

variable F using the auxll iary point sets P(h,1) and

Q(h,1) are exact on F s and the truncation errors are

the same as for the constant coefficient case.

5. A Sixth-Order HOOlE Discretization

We next observe that fn the case of constant coefficients

there Is a HOOlE method which has sixth order accuracy.

This was first observed In the case F=O by Lynch and Rice in

[3].

Theorem 5-1

The finite difference approximation

(48L~~ + 4L~1 + 8Lh,1)U = (481~~ + 4I~1 +8Ih,1)G

of the Helmholtz equation V2 u + Fu = G with constant F

Is exact for all ueF 7 •

Proof :

A simple computatfon shows that 48T~.1a + 4T~" + 8Th,1 =

O(h
G

) and hence the discretization above has truncation

17
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This discretization has the auxiliary point set Q(h.~) U

Q(h.l) U P(h.l) which gives a set of auxll iary points of the

form

• • •I 0 J 0 I
0 0--

J 0 I • I
0 0 0

and hence requires an average of two evaluations of G per

grid point. This discretization requires only s1 fghtly more

computation (to evaluate the right side of the difference

equations) than the fourth order method with the set Q(h,~),

a fact that makes the sixth order method quIte attractive rn

the case of constant coefficients.

6. Numerical Results

Several FORTRAN programs were written to verify the

derived propertIes of the HODIE schemes. These programs

have been Interfaced with the ELLPACK 77 system [4] for the

solution to el I Iptie partial differential equations and were

run on the Purdue University CDC 6500 computing system. The

CDC 6500 uses floating point numbers accurate to about one

part In 10-
14

• The Minnesota FORTRAN compiler was used in

1:he tests.
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One of our programs generates a discretization based on

the fourth order P(h,~) or Q(h,~) schemes. Because the

parameter ~ Is arbitrary here, the function G is evaluated

five times per grid point in this program. In order to

assess the savings possible In a more efficient

implementation of the schemes P(h.1). Q(h.1). P(h.~). and

Q(h,~), an efficient version of P(h,1) written by R. E.

Lynch was also used. We call this program "Fast P(h,1)".

We also tested the sixth order HOOlE code available in the

March 27, 1978 version of ELLPACK 77. In this experimental

code the coefficients of the method are initially derived

(though they are known for the cases we consider here) and

then 13 evaluations of G are made per grid point. Finally,

we also ran the bl-cubic Hermite (PaC') collocation module

available In the same version of ELLPACK 77 as a benchmark.

In each case the ELLPACK general banded linear system solver

was used to solve the system of difference equations.

Here we report on some of the experiments which were

carried out. The methods P(h.1), P(h,~), Q(h.1). Q(h.~).

Q(h,~¥), Fast P(h,1), PaC1 collocation, and the sixth order

HOOlE were each run on a set of seven problems taken from

the POE population study [2], Including three Poisson

equations, two Helmholtz equations with constant F and two

with variable F. In each case the region R is the unit

square. The methods with auxIliary points not at grid

points were not used In the latter two cases.
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The problems are (proplem numbers ~re taken from [2]):

" Prop 1ern :

operator

:O;o!utlon

Feature$

3

'l2u = G(x,yJ

u = 3exp(x+y)xy(1~xJ(1-y)

Analytic solutfQn

7

'l2 U - 100u = G(x,yJ

u = ~(cosh(10x)/cosh(10)

+ cosh(ayJ/cosh(a»

Parameter values: a=20

Features: Boundary layer

• Problem:

Oper~tor

Solution

Op.erator

Solution

• Prob lem: 1.7-

'l2u = G(x,y)

u = s In(x-y+~)

+ exp(-y2-(ab"x'/(1+h',,"Jl2)

Parameter v~lues: a=~. 0=3

Fea.tures: Ri,dge In solutlon

e. ProbJem: 3,8

Operator 'l2 U = G(x,y)

Solution u = (xY).**(~a)

p.arameter va.l ues: a.=l:6

Fea.tur;-es: S.o.l,ution has: d.E;rfvatfv~s, which are. sJPl9.u,l'er

at the., /;>oundarv
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• Problem;

Operator

SolutIon

• Problem: 41

Operator V2 u - au = G(x,y)

Solution u = cos(by) + sln(b(x-y»

Parameter values: a=10. b~10

Features: OscIllatory solution

• Problem: 6

Operator: V'u - F(x,y)u = G(x,y)

F(x,y) = 100 + cos(2nx) + sln(3ny)

Solution u = o/(x)o/(y)sln(nx)y(y-l)

'(1/(1+¢(x,y)4)-~)

o/(z) = 5.4 - cos(4nz)

¢(x,y) = 4«x-~)' + (Y-~)')

Features Oscillatory solution

20

V'u - F(x,y)u = G(x,y)

u = 10¢(x)¢(y) + a

¢(z) = z(z-1)exp(-100(z-~)')

Parameter values a~10

Features: Sharp peak In solution

The problems were solved on square grids in which the

number of grid lines in each dIrection was 5, 9, 11 and 13

for the fourth order HODIE methods, 3. 5. 6 and 7 for the

collocation method and 3, 5. 9 and 11 for the sixth order

HODIE method. The results are summarized on the followIng
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of l09,oClerrorj) versus

error denotes the discrete L
2

pages which show graphs

log,oCexecutlon time) where

error at the grid points.

For the case of constant F the optimal scheme Q(h,~.) was

unIformly superior, that Is, for a gIven error, It required

less execution time than the others. The Q(h,~) method was

the next most efficient. The Fast PCh,1) method, although

clearly better than Its IneffIcient counterpart PCh.1), was

never better than the QChJ~) scheme, even though the

implementation of the latter Uses fIve evaluations of G per

grid point. The QCh,1) choice of auxIliary points was the

least effectIve of the HOOlE methods tested, although It

still performed better than than collocation In each case.

It should be emphasized that most of the test problems do

not have homogeneous boundary conditions and no problems

were run wfth non-uniform grids, two cases in which the

relative performance of collocatIon Improves. Finally we

see that the sixth order HOOlE method was usually superior

for higher accuracies, although a more efficrent

implementation of the sixth order method (reducing the

number of evaluations of G at each mesh point from 13 to 2)

would make this method competitive even for moderate

accuracy.
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PROBLEM 3 U xx + U =yy G(x,y)
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LZ
E
R
R
o
R

•

PROBLIlM 7

Fast p(h.1)

Uxx + uyy - 100u • G(x;y)
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PROBLEM 17
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PROBLEM )8 U + U
yyxx = G(X,y)
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6th order
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, .

PROBLEIVI 6 u + u + F(x,y)u = G(x,y)xx yy
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PROBLEM 20 Uxx + Uyy + F(x,y)u = G(x,y)
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E
R
R
o
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.,
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\

\
\
\

Collocation \

\
\
\

\
\

\
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7. Con.cluslons

We have shqwn that the choice OT the auxiliary points In

the HOOlE methoq ~an ~lgnrfican~ly affect Its performance.

In partrcul~r! W~ see that, of the schemes tested. the one

wIth the auxiliary point set Q(h,%) Is the most efficient

practlca! fourth order method for the equation V2 u + Fu = G

with constant F, rts performance being nearly optimal in its

class. In addition, we have found that the sixth order

method presented here Is quite attractive for problems in

which moderate to high ~ccuracy Is required. We conjecture

that, for F constant, an ImplementatTon of these methods in

conjunction with the Fast Fourier Transform method of

solving the resulting system of difference equations as in

[1] will yield a method wIth even more erficiency for

solving this class of problems.

For the case of variable F we have found the HODIE method

with auxiliary point s~t P(h,1) superior to the alternatrve

Q(h,1). For the set of problems presented here. the HOOlE

method performs better· than the lP'aC1 collocation method.

It is natural to ask wheth~r the superIority of the HOD-IE

methods wi.th auxl'l iary pO-Ints, that are not all grid points

extends to cases where F is variable or the principal part

of the operator i.s not the Laplaci:an. In these Cgses more

than five auxT J iary po,I'nts are. requIred to attain fourth

order accuracy. We haye not yet treated this situatIon.
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