
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1976

Real Time Generation of MIN Distance Strings Real Time Generation of MIN Distance Strings

Peter J. Denning

Report Number:
77-211

Denning, Peter J., "Real Time Generation of MIN Distance Strings" (1976). Department of Computer
Science Technical Reports. Paper 151.
https://docs.lib.purdue.edu/cstech/151

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Purdue E-Pubs

https://core.ac.uk/display/4951385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Real Time Generation of MIN Distance Strings

Peter J. Denning
Computer Science Department

Purdue University

CSD TR - 211

November, 1976

Real Time Generation of MIN Distance Strings*

Peter J. Denning
Purdue University•*

November, 1976

Abstract: A simple proof is presented for an old result:

the stack distance string for the optimal paging algorithm,

MIN, can be generated in real time at the same overhead as

any general stack algorithm.

Key Words and Phrases; Paging algorithm, optimal paging

algorithm, MIN algorithm, MIN policy, sorting networks.

CR Categories: 8.1, 4.32

•Work reported herein supported in part by NSF Grant GJ-41289.

"Computer Sciences Department, West Lafayette, Indiana 47907.

1
J

Real Time Generation of MIN Distance Strings

Peter J, Denning

Introduction

Though optimal memory policies be unrealizable, their paging

behaviors are of interest as the best possible performance obtainable

from a given program in a given memory space. When the resident set

size is held fixed, the optimal demand policy, MIN, replaces pages with

the longest forward reference intervals [Bel66, MGS70]. When the resi-

dent set size is allowed to vary, the optimal demand policy, VMIN, repla-

ces pages whose forward reference intervals exceed a given threshold

[PrF76, DeS76]. Having fewer constraints than MIN, VMIN produces lower

paging rates at each given value of mean resident set size. VMIN is

well behaved; its proof of optimality is simple, and its paging curve

can be obtained, on one pass of a program's reference string, as a sub-

computation of the working set paging curves CDen75, DeS76]. In contrast,

MIN's behavior Is difficult to understand; its proof of optimality is

tedious, and efficient procedures for computing its paging rates diffi-

cult to find.

A straightforward procedure for computing the MIN paging rates was

devised by Mattson et al [MGS70]. On a forward pass over a reference

string, it tags each reference with the time since prior reference; on a

2

reverse pass, it uses these tags as lookahead intervals. This procedure

has two practical limitations. First, address trace tapes are often long;

processing them twice doubles the overhead in comparison with one pass

methods. Second, it cannot be employed for on-line measurement. These

limitations motivate interest in one-pass MIN analyzers.

Belady's original MIN analyzer is one pass [Bel66]. It is based on

deferring a given page replacement decision until enough subsequent

references have been observed. It has two limitations. First, it counts

page faults for one given resident set size only. Second, it does not oper-

ate in real time: its output at time t is a delayed page fault count —

that is valid at some time t' < t. (In fact, t' is the latest time for

which all pages resident at t* are referenced again between t' and t.)

To remove these limitations, Belady and Palermo devised the "multilevel

MIN" analyzer, which produces the MIN paging rates on a given reference

string, for all memory sizes of interest, in a single pass CBeP74].

Because it is capable of real time operation — that is, it produces

the page fault count for time t at time t — the mulitlevel MIN procedure

is the basis of a patent, issued to Belady, for on-line measurement of MIN

paging rates [Bel]. In their own studies of the Belady-Palermo procedure,

Lewis and Nelson discovered a simple proof that real-time analysis of

the MIN algorithm is possible and a procedure for doing it [LeN74]. The purpose

of this paper is giving a greatly shortened, simplified proof of these

on-line procedures.

3

Since knowledge of stack distances suffices to compute page fault

counts for stack algorithms, such as MIN [CoD73, MGS70] , we will confine

our attention to real time generation of MIN (stack) distance strings.

After a review of stack algorithm properties, we present the intuitive

basis of a one-pass MIN analyzer. By means of a "tableau procedure" we

demonstrate that real time generation of MIN stack distances is possible.

Analogies between the tableau procedure and sorting networks are exploited

to develop n simple proof of the real time MIN analyzer.

•it.ack Algorithms I>1GS7(), Cou73.1

Let S(t) = (x^,...,*) denote a MIN stack at time t, just after the

reference to page r(t), for t = 1,2,... . The resident set of size m page

frames is the topmost m elements of S(t), viz. The MIN distance

d(t) is the position of r(t) in the stack S(t-l); a page fault occurs at time t

if and only if d(t) > m. The tails of the frequency distribution of MIN

distances define the page fault rate function, known as the paging curve.

Suppose D(x,t) denotes the distance of page x in the MIN stack S(t).

Then d(t) = DtrU), t-1). It is well known that

1. Dfx, t) = 1, if r(t) = x;

(1) 2. D(x, t) > D(x, t-1), if r(t) £ x; and

3. D(x, t) = D(x, t-1), if d(t) < D(x, t-1).

4

The set of distances D(x,t) for some interval of t is called the trajectory

of x in that interval. On a first reference to a page dCt) is infinite,

a fact denoted by writing d(t) = #; the number of known pages (n) increases

by I when d(t) = #.

MIN's replacement decisions depend on a priority list P(t)=(p1,...jp^)

which orders the pages according to increasing forward distance after t —

i < j implies p^ is referenced before p^. If a page fault occurs at time t

for a memory of size m, the replacement page is

(2) z = min(x,,... ,x) = min(z x) , m>l, m I r a m-1 ra

where S(t-l) = (x,,...,x x) and "min" denotes smaller priority 1 m n
according to P(t), that is, larger forward distance. Using (1) and (2),

It is not difficult to define the new stack S(t) = (y1) in terras

of the former stack S(t-l) = (x ^ . . . ^) and priority list P(t), when d(t)=m:

y. = max(z. , x), i < j < ra
(3) J J _ 1 J

y = z ra • m-1
Yj = Xj* m < j < n

In case d(t)=#, S(t) contains one more page, than S(t-l); the correct S(t)

will result if r(t) is added to the rrt-lst position of S(t-l) and (3) is

applied with in=n+l. Relations (3) can be envisaged as a sorting network

as sketched in Figure 1. Let G denote the updating function (3); thus

the sorting network of Figure 1 performs the transformation

(4) S(t-l) — > s(t) .

5

m+1

m-1

m
rm+l

a

b

—max(a,b)

-min(a,b)

n n

S(t-l) S(t)

Figure 1. Sorting network for MIN stack updating procedure,

Basis of one pass MIN Anaylzer

A direct implementation of MIN is not possible since the priority

list needed for updating the stack is not known in advance. However, an

indirect implementation is possible. Suppose the MIN stack S(t-l) has

been constructed under the hypothesized future

(5) P(t-1) = -

If one then discovers that r(t)=p^ for i>l, one must construct a

corrected stack 5'(t-1) consistent with a corrected priority list

(6) P'(t-l) = (p.,p ,...,p. _,...,p)

6

Since the corrected priority list is a minimal purturbation of the hypo-

thesized one, p.̂ changes priority relative only to p ,...,p while maintaining

the same priority relative to pi+1,...,pn. From Figure 1, this implies that

the correction of S(t-l) should involve only^the permutation of p^,...,p.

among the same set of positions. Denote the correction (if it exists) by

a transformation F, that is

(7) S(t-l) — > S'(t-l) .

In the discussion of the tableau procedure, we will show that the MIN

stack position of r(t) is uniquely determined by the reference string prefix

r(l)...r(t); thus the position of p^ in the corrected S'(t-l) is its correct

position and can be outputted as the MIN distance d(t). When the hypothesis

F(t) is the reversed LRU stack, in which i<j implies p^ was referenced less

recently than p^, the transformation F exists and is straightforward.

What must be proved is the following. Suppose d(1)..,d(t-1) have been

correctly generated. The stack S(t-l) is correct for the hypothesis that

P(t-l) = (p1,-..,pn) is the reversed LRU stack. When it is discovered that

r(t) = p^, the next stack is computed from

(8) S(t-l) — > S'(t-l) — > S(t)

where F rearranges among their original positions and G updates

according to the reversed LRU stack

(9) P(t) = (p1>...,pi_1,pi+1,...,pn,pi) .

The correct MIN stack distance d(t) is the position of p^ in S'(t-l).

It is worth noting immediately that, if the above formulation is

correct, the updating of S*(t-1) by G is trivial. That P(t-l) is the

reversed LU'i stack at time t-1 implies r(t-l) = pn is on top of both

7

S(t-l) and 5'(t-1). Referring to the sorting network of Figure 1, one can

see that moving p. from position m to position 1 will cause p to move into i n
position m, since pn has 1fewest priority. In other words, G is executed

simply by exchanging the referencaipage with the top page of S'(t-1). If

r(t) is a first reference, S(t-l)=S'(t-1); however, by placing r(t) at the
st

n+1 position of S'(t-l), G is still implemented by exchanging the top

and referenced pages.

A Tableau Procedure for Generating MIN Distances*

A pictorial representation of MIN behavior is useful: both for proving

that real time MIN distance generation is possible, and for developing the

intuition for a correcting function F. It is based on constructing a por-

tion of the trajectory of page x, as soon as it is discovered that r(t)=x,

in a two-dimensional matrix whose rows (counting down) correspond to stack

positions (l,...,n) and columns (counting right) to time instants (t=l,2,...).

If D(x,t)=i is finite, x will be entered in square (i,t); no entry will be

shown otherwise. The tableau procedure consists in applying these steps

for t =1,2,... : Let r(t)=x, then

1. Enter x in position (l,t).

2. If r(t) is not the first reference to x, locate the time t1 of

prior reference to x. For u = t*+1,...,t-l, enter x in position

(j,u), where j is the topmost vacancy not higher than D(x, u-1).

The claim is that this procedure constructs the MIN trajectory D(x,u) for

•This discussion simplifies the presentation of Lewis and Nelson [LeN74], who
observed that it reformulates the Belady-Palermo procedure [BeP74]« The
example of Figure 2 also appears in [LeN743.

8

t' < u < t. Figure 2 illustrates a tableau constructed in

stages by applying this procedure to a reference string for t = 5,6,...,12;

MIN distances are indicated along the top line of each stage.

This procedure is easily proved correct with the help of relations

(l)-(3). It is evidently correct when d(t) = and in particular for t=l.

As an induction hypothesis, assume it is correct for all t<T and suppose

x-r{T) is not a first reference. Suppose T' is the time of prior reference

to x. Let t be given, where T' < t < T. Let k be the correct position of

x at time t, and note from (1) ti-at k D(x, t-1). Let j be the topmost

vacancy in column t not higher than DCx, t-1). Any page occupying position i,

where DCx, t-1) < i < j, must have been entered prior to time T and is, by

hypothesis, correctly positioned; thus k<j is Impossible. If it were

that k>j, relations (3) require the page z that belongs in position j to

be referenced earlier than x; however, this is impossible because the

induction hypothesis holds that any such page z is already correctly

positioned. Therefore, k=j is the only possibility for the MIN position D(x,t).

The important property demonstrated by this procedure is that the

MIN trajectory for r(t) is uniquely determined by the trajectories of pages

referenced prior to time t; it will not be changed by any trajectory entered

subsequently. Thus it is possible to determine MIN distance d(t) as soon

as r(t) is observed. The problem is to make this determination without

storing the entire tableau.

9

A B C D E C B D A B D E

4 # # # # 2
A B C D E C B D A B D E

C C

2 3
A D D E C B D A B D ' E

J3 C C
B B B

2 3 4
A B C D E C S £ A B D E

B C C
B B B

D D D

tt # # # # 2 3 4 5
A B C D E C B D _A 3 D E

A B C C
A_ B B B £ D D D

t=9 ' A A A A

2 3 4 5 2
A B C D E C B D A B D E

A B C C B B
A B B B

A D D D
t=10 A A A A

2 3 A 5 2 3
A B C D E C B D A 3 D E

A . B C C B B
A B B B D D

A D D D
t=ll A A A A

2 3 4 5 2 3 4
A B C D E C B D A B D E

A B C C E E B B
A B B B E D D

A D D D E E E
t=12 A A A A

Figure 2. Example showing successive stages of
MIN tableau procedure. New trajectories
indicated with underbars.

t-6

t=7

10

The Stack. Correction Procedure

Figure 3(a) shows an idealization of a tableau constructed on the
i

hypothesis that the future priority list P(t-l) is the reversed LRU stack.

For each i, p1,...,pi 1 will be called the LRU elders of p^ The trajectories

of are shown, together with their resulting positions in S(t-l).

These trajectories may be regarded as paths in a large sorting network

(corresponding to compositions of the updating network of Figure 1); the

points where trajectories cross correspond to. comparisons using max/min

according to P(t-l). Figure 3(b) illustrates the changes that occur when

r(t) = u^ is discovered. The tableau procedure will enter the new trajectory

of p^ before those of its LRU elders; p^ will then follow the path of highest

vacancy, which in this case was previously followed by p^. The tableau pro-

cedure then enters new trajectories in order for P ^ i • • • e a c h will follow

a path of highest vacancy (not higher than its former path) and will enter a

stack position formerly occupied by some LRU elder of p^. Figures 4(a) and

4(b) illustrate this; only A, B, and C change positions in S(16) when page C

becomes the reference r(17). The following observations are important:

1. No two trajectories of cross more than once en route

to S(t-l), since their relative priorities do not change in this region.

2. Let q^,...,^ denote the subset of appearing in S(t-l)

from p^ upward; in particular, 'A/hen p^ is promoted from

lowest to highest priority among Plt...,P^, only q^,...,^ are

reordered, for only.their trajectories cross that of p^.

11

12

t: 1 2 3 4 5 6 7 8 9 10 11 12 13 1U 15 16 17 18 19

r (t): A V W X W V B V X C V Z V Y Z V A B C

1 A V V X W V B V X c V Z V Y Z V A B c
2 A V w X X V B V V c V z Z
3 A V V X X B B B B B V V
4 A A A A A A A A A A A A A
5 C G B B B B
6 C C C C C

A V W X V V B V X C V Z V Y Z V G A • B

1 A V W X W V B V
(b) 2 A V V X X V B

3 A V V X X
k .A A A A A
5'

X C V Z V Y Z V C A
V V G V Z Z
B B B c c V V
A A A A A C C C

B B A A A A
B B B B B

Figure 4. A MIN tableau before and after a
change at t = 17.

13

3. The pages of q„,...fq are reordered in the same set of stack 1 m
positions, since as a group continue to have the same

priorities relative to the other pages between tr and t (where

r(t') is the last reference to p.). 3.

4. In S'(t-l),'p^ occupies the position held formerly by q^ in S(t-l).

Since the trajectory of r(t)=p_̂ is uniquely determined at time t,

the position of p^ in S'(t-l) is the correct KIN distance d(t).

A few moments reflection on the sorting networks of Figure 3 leads to

the observation that, after q^ moves upward, ^ move downward,

undergoing successive pairwise exchanges according to the max/min relations

of P(t-l). In other words, the correction function F is nothing more than

an application of the MIN sorting network to using the reversed

LRU stack as a priority list.

A proof of this can be constructed as follows. Let t' be the

time of prior reference to p^ = r(t). The correction, which changes only

the priority of p^ relative to its LRU elders at time t, can alter only the

portion of the tableau between t1 and t. The stack updating procedure uses

the same relative priorities for everywhere in the interval (t',t)

let G denote this procedure when the hypothesized priority order of these

pages is P^P^'^-P^i and G' when the priority of these pages is

Using G(u) and G'(u) to denote, respectively, instances of G and G' at

time u (t'<u<t), our objective is showing that the proposed correction F

completes this diagram:

14

S(t') G(t'+l)...G(t-l)

(10)

-> S(t-l)

G' (t'+1)..«G' (t—1) > s,Yt_1}

[uncorrected]

[corrected]

A few moments further reflection about F suggests that the proposed F

would apply to p^ and its LRU elders everywhere in the interval between

t' and t. Letting F(u) denote the instance of F used to correct the stack

at time u, we have the diagram

S(u-l) SCu) [uncorrected]

(in [•'{..-1 i P(n> I.' 'ii-'I

(u-1) -> .'i'(u) [cori W.'l <;(1]

This diagram underlies an inductive proof of F. Assuming F(u-l) is valid,

we can show F(u) is valid by proving

(12) G(u)FCu) = F(u-l)G'Cu) .

The basis of this proof is trivial, since F(t*) is an identity function

because p^ is on top of S(t'), and we already know S(t') = S'(t'). a

proof of the induction step, using sorting networks, is given in Appendix 1.

15

Conclusion

This paper has outlined a proof of the observation that the MIN stack

distance d(t) can be computed in real time as soon as reference r(t) is

observed. This fact rests on the observation that the KIN distance trajec-

tory of page r(t) is determined uniquely by the-trajectories of all prior

references. A three stage procedure maintains a MIN stack on the hypothesis

that the future reference order is the reversed LRU stack: 1) If the next

reference x fails to confirm this hypothesis, the MIN stack Is corrected

by applying the MIN updating procedure to x and its LRU elders in the

same set of stack positions. 2) The position of x in the corrected MIN

stack is d(t). 3) The corrected MIN stack is updated for the corrected

"future hypothesis by exchanging the top and referenced pages. The

procedure is repeated for the next reference. If x is a first reference,

it is appended to the uncorrected stack, the MIN distance is set to #,

and only Step 3 is performed. Details appear in Appendix 2.

One should not conclude that, because MIN distances are computable

in real time, MIN itself is somehow realizable. Let MIN* denote a paging

algorithm maintaining stacks and updating according to the F and G func-

tions of this paper* MIN* would determine a resident set of k pages accor-

ding to the hypothesized future; when the next page x is observed, the

correction function F might move x upward from a position below k. This

produces a page fault not produced by MIN.

Acknowledgement s

I am grateful to Karl Winklmann and Kevin Kahn for criticizing an

early draft of this paper; to R. A. Nelson for encouraging me to work on

the problem; and to L. A. Belady for posing it.

I

16

Appendix 1 - Proof of Induction Step In Correction Procedure

We wish to prove eq. (12), the induction step in the proof that the

correction function F is the MIN updating procedure applied to p^ = r(t)

and its LRU elders ampng the same set of stack positions. We do this with

sorting networks. It is necessary only to specify networks that sort

since only the relative positions of these pages are affected

by the correction. Figure 5(a) illustrates a network for F when 1=10 and

p^ is at the 7U> position among p^,...,?^ (Figure 3(a) illustrates that

p^ need not be at the ±u> position.) This network is interpreted as taking

the set in their order of appearance in some stack S(u), and

specifying their order of appearance in the same set of positions in S"(u).

Figure 5(b) illustrates a network for G when i=10; it specifies that the

set plf...,p^ in some stack S(u-l) are to be reordered and placed in S(u).

It is important to realize that this G is not a full MIN updating network

(Figure 1); it specifies only the relative positions of (The

actual positions of would be determined from a full network.)

The essential property of a G-network is that it contains k-1 comparators,

for some k, l<k<i,connected across the first k inputs in the pattern shown

in the figure; k is called the depth of G. That this is" the only possible

form of G is seen with the help of Figure 1 and the fact that p^,...^

are adjacent in priority during every update between t1 and t. Suppose

r^,...,^ is the permutation of p^,...^ appearing in a stack S(u-l).

For each j>l, x = min(r^,... will be compared with r. only if a) x has

lower priority than all pages in S(u-l) between r, 1 and r., and b) the

17

18

distance d(u) exceeds D(r\, u-1). Obviously, if (a) is true for all j,

the depth of G is determined by d(u). Otherwise, x encounters some

lower priority y in S(u-3) between r^ ^ and r^ for some j; this y will

simply pass any subsequent members of p^,...,p^ with which it is compared,

leaving them in the same order; in this case, the depth of G is j, being

determined by D(y, u~l).

Figure 5(c) illustrates a network G1 when i=10. It is identical to

G except that the 1-2 comparator is deleted. The 1-2 comparator is not

needed because page p^ is known (from the induction hypothesis) to

occupy the highest position in S1(u-1) relative to its LRU elders, and

p^ is already of highest priority among in the corrected tableau.

The proof of G(u)F(u) = F(u-l)G'(u) is illustrated in Figure 6. The

figures are drawn for i=10 in order to keep them simple; however, the pattern

of the general case will be obvious. There are two cases to consider, depending

on the relation of pi's position in G, Dtp^ G), to the depth of G.

Figure 6(a) illustrates the case that Dtp^G) does not exceed the

depth of G. The important observation is that, since p^ has lowest priority

among P^.-.jP^, it will descend to the depth of G, whereupon F(u) must bring

it from this depth to the top. It is easy to see from the diagram that the

outputs of the two networks are identical, since the second set of comparators

(cl,...,c5) have the same inputs in each case.

Figure 6(b) illustrates the case that D(pif G) exceeds the depth of G.

In this case, F(u)=F(u-l). Since G* (u) has one less comparator that G(u),

1?

G(u) F(u) F(u-l) G* <u)

Figure 6(a). Depth of G not less than D(pif G),

G(u) F(u) F(u-l) G« (u)

Figure 6(b). Depth of G less than D(p^, q).

2(5 .

the network GF has one more comparator than FG*. We will show that the

comparator with the double crosshatch is redundant in the GF network, in

which case the remaining networks are identical. To see this, let x denote

the smallest of the first k elements, and y the second smallest, where k is

the depth of G. (k=5 in the figure.) In GF, x will appear on the kU) output

line of G, becoming the lower input of the marked comparator; and F will

place y on the upper input of this comparator. Since x has lower priority

than y, this comparator is redundant.

21

Appendix 2 - Real Time MIN Analyzer Algorithm

Suppose the linear array S[l:n] implements the MIN stack S(t) for

all t, where the (variable) n is the number of pages referenced through

time t. The LRU stack is implemented as a linked list using

HEAD, TAIL, LINK[l:n], DIST[l:n],

such that HEAD and TAIL are the pages at the beginning and end, respectively

of the LRU stack, LINK[i] is the successor of page i, and DIST[i] is the

position of i in the LRU stack. Page i is an LRU elder of x if and only

if DIST[i] > DISTCxJ. Suppose r(t)=x. The algorithm to update the

state of the system must perform these computations:

S := F(S);
d(t) := position of x in S;
S := G(S);
update LRU stack.

22

As noted earlier, the G function is implemented simply by exchanging the

referenced page with the 'top page in the corrected stack. In case of a

first reference there is no correction; it is necessary only to place the
st

referenced page at the n+1 position of S and at the tail of the LRU

stack before performing G.

Initially, all variables are zero. Once d(l)...d(t) are generated,

the distance d(t+l) is generated by this procedure:

t := t+1
x := r(t)

^perform pj
if DIST[x] = o

then ("first reference: add x to end of the MIN /
\and LRU stacks; set m to position of x in S J

n := n+1
m : = n
S[n] := x
LINK[x] := TAIL
TAIL := x
output (#)

else preference of page x is not firstJ
1: "correct S, set m to position of x in S"

^perform g]
exchange(S[l], S[m])
2: "update LRU stack"

The correction procedure (label 1) operates in two stages. The first

moves a pointer m down until an LRU elder of the referenced page x is

found; this will be the MIN position of x after correction. The second

I
23

advances a pointer p down from m until x is found, maintaining a variable y

which is the eldest of the LRU elders of x so far observed. The refinement

of 1 is:

1: j*find x or first LRU elder of x }
m := 1
while DIST[S[m]] < DIST[x] do m m+1

J do pairwise updating of LRU 1
I elders of x, until x found J
p := m
y := S[m]
while x ^ S[p] do

if DIST[y] < DIST[s[p]] then exchange(y, S[p])
p := p+1

end

| place x in proper position J-
S[m] := x
SUp] := y

The LRU stack updating proceudre locates the desired page in the LRU stack,

unlinks it from its current position, and links it to the head. The LHU

distances of intervening pages are increased by 1. This leads to a refinement

of 2:

2: if HEAD = x then return
p := HEAD
while p ̂ x do

DISTtpl := DISTCpl+1 q p
p := LINK[p]

end

/unlink p, by making successor of p be successor!
I. of the predecessor q of p, move p to top J
LINK[q] r = LINK[p]
LINK[x] := HEAD
HEAD := x
DIST[x] 1
if p = TAIL then TAIL : = q

24

References

[Bel66] Belady, L. A., "A study of replacement algorithms for a virtual
storage computer," IBM Sys. J. 5. 2 (1966) 78-101.

[BeP74] Belady, L. A., and Palermo, F. P., "On-line measurement of
paging behavior by the multivalued MIN algorithm," IBM J.
of R & D 18. 1 (Jan 1974).

[CoD73] Coffman, E. G., and Denning, P. J., Operating Systems Theory,
Prentice-Hall, 1973.

[Den75] Denning, P. J., "The compuatlon and use of optimal paging curves,
Purdue Univ., Computer Sciences Dep't, TR-148, June 1975.

[DeS76] Denning, P. J. and Slutz, D. R., "Generalized working set and
optimal measures for segment reference strings,'/ Purdue Univ.,
Computer Sciences Dep't, TR-178, March 1976.

[LeN74] Lewis, C. H., and Nelson R. A., "Some one-pass algorithms for
the generation of OPT distance strings,** IBM T. J. Watson
Research Center Report RC 4758 (March 1974).

[MGS70] Mattson, R. L., Gecsei, J., Slutz, D. R., and Traiger, I.,
"Evaluation techniques for storage hierarchies," IBM Sys J. 9, 2

. (1970), 78-101.

[PrF76] Prieve, B. G., and Fabry, R. S., "VMIN - an optimal variable
space page replacement algorithm," Comm. ACM 19, 5 (May 1976).

[Bel 1 Belady, L.A., "On-Line system for measuring the efficiency
of replacement algorithms," U. S. Patent 3,577,185.

	Real Time Generation of MIN Distance Strings
	Report Number:
	

	tmp.1307986960.pdf.pBI4S

