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Recent studies in secure computer svstems have shown that lattice 
structured information flow policies have properties which lead to 
simple and efficient enforcement mechanisms. This paper outlines a 
method for transforming nonlattice structured policies into lattices 
while Dreserving the validity of all :flows. 
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I • I lit roduct i mi 

Recent research in computer systems security has focused on 

specifying and enforcing "information flow policies" — i.e., policies 

regulating information dissemination. It has been shown that lattice 

structured policies have properties which lead to simple and efficient 

enforcement mechanisms [1,3,4,8,9]. The program certification mech-

anism described in [4], for example, verifies that the flow of data 

through a program docs not violate a given lattice structured policy. 

The lattice properties of the policy are exploited to construct an 

efficient mechanism that can easily be incorporated into the analysis 

phase of a compiler. 

We have already argued intuitively that lattice structured flow 

policies follow naturally from the semantics of information flow [3]. 

The objective of this paper is to show further that lattice structured 

policies lose no generality. We shall give a construction for 

transforming an arbitrary Flow policy, satisfying minimal conditions, 

into a lattice while preserving the validity of all flows. 

lattice Properties 

A lattice is a structure L = (A, <_, +, *) where (A, <_) is a 

partially ordered set (poset) and + and * are, respectively, least 

upper bound and greatest lower bound operators on A [2,7]. That 

(A, <_) is a poset implies that the relation is reflexive, transitive, 

and anti-symmetric; that is, for all a,b,c e A: 
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I. ;i ' a freflp.xive) 

5 . a b and b <_ a => a = b (anti-symmetric). 

That + is a least upper bound operator on A implies that for each 

pair of elements a and b in A, there exists a unique element c e A 

(c = a + b) such that: 

1. a _< c and b <_ c, and 

2. a <_ d and b <_ d => c d for all d e A. 

By extension, corresponding to any nonempty subset B - {a,,...,a } of 
1 n 

A, there is a unique element +B = a^ + a.̂ * • • . + a n which is the least 

upper bound for the set. That * is a greatest lower bound operator 

on A implies that for each pair of elements a and b in A , there exists 

a unique element e in A (e = a * b] such that: 

1. e ^ a and e <_ b, and 

2. d ^ a and d b => d <_ c for all d E A. 

By extension, corresponding to any subset B = { a ^ , . . . ^ } of A , there 

is a unique element *B = a^*a2*...*a n which is the greatest lower 

bound for the set. 

An example of a lattice is derived from the subsets of a given 

finite 

set X: L = ( ^ ( X ) , C , U , n ) , w h e r e ^ ( X ) denotes the powerset 

of X. The partial ordering relation oni?(X) is set inclusion C ; the 

least upper bound operator is set union U i a r id the greatest lower 

bound operator is set intersection O . Figure 1 illustrates for 

X = {x,y,z}. The graphical representation is a standard precedence 

graph for a partial order, showing only the non-reflexive immediate 

re hit ions. Subset Lattices play a key role in Iho transformation of 

flow policies into lattices. 



\ 
U , y J (x.zJ {y.z} 

{x} i y } {zj 

\ 
Figure 1. Lattice of subsets of X = {x,y,z}. 

3. Information Flow Policies 

An information flow policy P is defined by P = (X, -+) , where X is 

a .set of "security classes" and + is a flow relation on X. P is a 

lattice structured policy if it is a poset and there exist least upper 

and greatest lower bound operators, denoted © and 8 respectively, on X. 

For security classes x and y, we write x -* y if and only if 

'ntormation in class x is permitted to flow into class y. Objects 

r.ucii as files, variables, and users are associated with security 

d i.sses; flows between two security classes x and y result when 

information derived from an object with security class x is stored in 

another object with security class y, A complete description of flow 

policies and an overview of their enforcement mechanisms is given in [3] 

An alternative specification for information flow policies was 

studied by Jones and Lipton [6], They defined a policy in terms of 

allowable flows from the input parameters I to the output parameters 0 

of a program. This type of policy can be expressed in our terms as :i 
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lattice structured flow policy ( , C , U , H ) over security classes 

^ ( 1 ) : each input parameter i is associated with the security class 

{i}, and each output parameter o is associated with the security class 

{i [ i may flow into o). 

4. Derivation of Latticc 

The objective is to transform a given flow policy into a lattice 

while preserving the validity of all flows. To make this precise, 

let P = (X, •*) and 1" = (X', be flow policies and let f be a 

mapping from X to X'. Then f is flow preserving between P and P' if 

and only if for all x,y e X, x y <=> f(x) f(y) . This says that 

the flows permitted by policy P between pairs of security classes 

x,y z X are the same as those permitted by policy P' between security 

classes f(x),f(y) E X'. Let o denote the security class in X 

associated with object o . Then if £ is replaced by the security class 

t'(o) in X1 for all objects o , policy P' will permit exactly the same 

flows to occur among objects as policy P. 

Our method for transforming a policy P = (X, into a lattice 

requires that P satisfy two conditions: 

1. X must be finite, and 

2. must be reflexive and transitive. 

The first condition is required to guarantee the transformation halts; 

the second is required to construct a flow preserving mapping. We are 

aware of no policies which violate either of these conditions. There 

are, however, policies which satisfy these conditions but not neces-

sarily the stronger conditions required for a lattice (c.f. [5]). 
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Define a mapping f from X t o ^ ( X ) by f(x) = {y | y e X and y x} 

for all x e X. This maps each security class x into the set consisting 

of all of the security classes permitted to flow into x. Let 

A = (f(x) ] x E X} and consider a policy Q = (A, C ) that orders 

members of A by set inclusion. We make the following observation: 

Lemma 1. f is flow preserving between P and Q. 

Proof. Consider any x,y e X. We must show that x -»- y <=> 

f(x) C f(y). Suppose first that x -+ y, and let z E f(x). Since 

z -»• x -*• y implies z y by transitivity of -+, z E f(y), and 

thus f(x) C fty). Suppose next that f(x) C f(y). Since + is 

reflexive, x e f(x); but then x E fty), which implies x + y. 

The above policy Q eliminates redundant security classes from 

I' to achicve a partial ordering of the classes. For example, if 

both x y and y x holds for security classes x and y, one is 

redundant since anything in one can flow to the other. Since 

t'U) C f(y) and t'(y) C f(x) imply ffx) = fCy), this redundancy is 

removed in policy Q. 

Although Q = (A, C ) is a poset, it may not satisfy the least 

upper bound and greatest lower bound lattice properties. To obtain 

a policy R = (B, C ) which does satisfy these properties, we first 

set B = A U 0 U X, where the empty set 0 gives a lower bound on B, 

and the set X gives an upper bound on B. We then add to B additional 

sets of ^ ( X ) until each pair of elements of B has a least upper 

bound in B. To determine if a pair of elements a,b c B has a least 
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upper bound in B., we identify the set of successors common to a and 

b, S(a,b) = (d | d e B and a u b C d } . Clearly S(a,b) is nonempty since 

X e S(a,b). Let c = n S ( a . b ) . If c E S(a,b), then a and b have c as 

their least upper bound in B; otherwise they have none, so we add c 

to B. 

This expansion of B is guaranteed to terminate since there are 

at most a finite number of sets in that can be added to B, and 

set union is a least upper bound operator on j?(X). Let © denote the 

least upper bound operator on B, and let R = (B, C , ©) denote the 

resulting structure. The following theorem proves that the derivation 

is flow preserving and yields a lattice structured policy whose flow 

relation is set inclusion. 

Theorem. R = (B, C , ®) is a lattice for which f is flow preserving 

between P and R. 

Proof. To prove that R is a lattice, we need only show that there 

exists a greatest lower bound operator on B. For any pair of sets 

a,b e B, define T(a,b) = { c | c e. B and c C a O b}. T(a,b) is the 

set of predecessors common to a and b. Clearly T(a,b) is nonempty 

since the empty set 0 is in T(a,b). Define a 8 b to be the least 

upper bound of the predecessors: a 6 b = ®T(a,b). Then a 8 b z B 

by construction of B, and a 8 b C a and a 8 b C b. Also, if c C a 

and c C b, then c C a 8 b. Therefore, a 8 b is a greatest lower 

bound operator on B. 

To prove that f is flow preserving between P and R, it is 

sufficient to observe that for any pair of security classes x and 
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y in X, tlic sets f(x) ;>JiiJ f(y) ordered by set inclusion in " 

R as in Q. Therefore, the results of Lemma 1 hold for both Q 

and R. 

5. Example 

Figures 2 (a)-(d) illustrate the derivation of a lattice from an 

initial policy P = (X,-*) . The security classes in X are numbered 

0,1,...,9. Note that the flow preserving mapping f takes the security 

classes 5, 6, and 7, which form a cycle, into the single set 

{1,2,5,6,7}. The expansion of the set {f(x} | x c X} into a lattice 

requires the addition of only four sets: 0 , {0,1}, {0,1,2,4,5,6,7} and 

X. These new sets are distinguished in the graph of the final lattice 

with asterisks. 

6. Conclusions 

We have supported our assertion that lattice structured 

information flow policies lose no generality. This was proved by 

showing that an arbitrary finite, reflexive, and transitive flow 

policy can be transformed into a lattice while preserving the validity 

of all flows. We have omitted the details of this transformation 

because 1) our primary objective was to demonstrate the existence 

of a flow preserving lattice transformation; and 2 ) we believe that 

for most systems, the transformation would be required only once and 

could be done by inspection. The design of an efficient transformation 

which derives lattices having a minimal number of sets would be of 

interest in systems wheTe the policy is subject to frequent change. 
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0 1 2 

a. Initial policy P = (X, ->) 

1 1 C * L 
0 T o } 
1 (l) 
2 
3 
4 
5 
6 
7 

(2} 
{0,1,3} 
{0,1,4} 
{1,2,5,6,7} 
{1,2,5,6,7} 
{1,2,5,6,7} 

8 {0,1,2,3,4,5,6,7,8} 
9 {0,1,2,4,5,6,7,9} 

b. Flow preserving mapping. 

{0,1,2,3,4,5,6,7,8} {0,1,2,4,5,6,7,9} 

X T 
{0,1,3} {0,1,4} {1,2,5,6,7} 

j} [ U ^ ^ j} 
c. Intermediate policy Q = (A, C ) . 

{0,1,2,3,4,5,6,7,8,9}* 

{0,1,2,3,4,5,6,7,8} {0,1,2,4,5,6,7,9} 

{0,1,2,4,5,6,7} 

/ \ 
{0,1,3} {0,1,4} 

\ / 
<0,1}* 

{1,2,5,6,7} 

d. Final lattice structured policy R = (B, C ) 

Figure 2. Example of a Lattice Derivation. 
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