
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1976

On the Derivation of Lattice Structured Information Flow Policies On the Derivation of Lattice Structured Information Flow Policies

Dorothy E. Denning

Peter J. Denning

G. Scott Graham

Report Number:
76-180

Denning, Dorothy E.; Denning, Peter J.; and Graham, G. Scott, "On the Derivation of Lattice Structured
Information Flow Policies" (1976). Department of Computer Science Technical Reports. Paper 123.
https://docs.lib.purdue.edu/cstech/123

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

ON THE DERIVATION OF LATTICE STRUCTURED INFORMATION FLOW POLICIES 1

2
Dorothy E. Denning
Purdue University

March 1976
CSD TR 180

Recent studies in secure computer svstems have shown that lattice
structured information flow policies have properties which lead to
simple and efficient enforcement mechanisms. This paper outlines a
method for transforming nonlattice structured policies into lattices
while Dreserving the validity of all :flows.

Key Words and Phrases: protection, security, information flow,
security class, lattice

CR Categories: 4.35

*WorK reported herein was supoorted in Dart by NSF Grant GJ-43176.

2
Author's present address: Purdue University, Computer Sciences Dept

W. Lafayette,' Ind. 47907.

1

I • I lit roduct i mi

Recent research in computer systems security has focused on

specifying and enforcing "information flow policies" — i.e., policies

regulating information dissemination. It has been shown that lattice

structured policies have properties which lead to simple and efficient

enforcement mechanisms [1,3,4,8,9]. The program certification mech-

anism described in [4], for example, verifies that the flow of data

through a program docs not violate a given lattice structured policy.

The lattice properties of the policy are exploited to construct an

efficient mechanism that can easily be incorporated into the analysis

phase of a compiler.

We have already argued intuitively that lattice structured flow

policies follow naturally from the semantics of information flow [3].

The objective of this paper is to show further that lattice structured

policies lose no generality. We shall give a construction for

transforming an arbitrary Flow policy, satisfying minimal conditions,

into a lattice while preserving the validity of all flows.

lattice Properties

A lattice is a structure L = (A, <_, +, *) where (A, <_) is a

partially ordered set (poset) and + and * are, respectively, least

upper bound and greatest lower bound operators on A [2,7]. That

(A, <_) is a poset implies that the relation is reflexive, transitive,

and anti-symmetric; that is, for all a,b,c e A:

2

I. ;i ' a freflp.xive)

5 . a b and b <_ a => a = b (anti-symmetric).

That + is a least upper bound operator on A implies that for each

pair of elements a and b in A, there exists a unique element c e A

(c = a + b) such that:

1. a _< c and b <_ c, and

2. a <_ d and b <_ d => c d for all d e A.

By extension, corresponding to any nonempty subset B - {a,,...,a } of
1 n

A, there is a unique element +B = a^ + a.̂ * • • . + a n which is the least

upper bound for the set. That * is a greatest lower bound operator

on A implies that for each pair of elements a and b in A , there exists

a unique element e in A (e = a * b] such that:

1. e ^ a and e <_ b, and

2. d ^ a and d b => d <_ c for all d E A.

By extension, corresponding to any subset B = { a ^ , . . . ^ } of A , there

is a unique element *B = a^*a2*...*a n which is the greatest lower

bound for the set.

An example of a lattice is derived from the subsets of a given

finite

set X: L = (^ (X) , C , U , n) , w h e r e ^ (X) denotes the powerset

of X. The partial ordering relation oni?(X) is set inclusion C ; the

least upper bound operator is set union U i a r id the greatest lower

bound operator is set intersection O . Figure 1 illustrates for

X = {x,y,z}. The graphical representation is a standard precedence

graph for a partial order, showing only the non-reflexive immediate

re hit ions. Subset Lattices play a key role in Iho transformation of

flow policies into lattices.

\
U , y J (x.zJ {y.z}

{x} i y } {zj

\
Figure 1. Lattice of subsets of X = {x,y,z}.

3. Information Flow Policies

An information flow policy P is defined by P = (X, -+) , where X is

a .set of "security classes" and + is a flow relation on X. P is a

lattice structured policy if it is a poset and there exist least upper

and greatest lower bound operators, denoted © and 8 respectively, on X.

For security classes x and y, we write x -* y if and only if

'ntormation in class x is permitted to flow into class y. Objects

r.ucii as files, variables, and users are associated with security

d i.sses; flows between two security classes x and y result when

information derived from an object with security class x is stored in

another object with security class y, A complete description of flow

policies and an overview of their enforcement mechanisms is given in [3]

An alternative specification for information flow policies was

studied by Jones and Lipton [6], They defined a policy in terms of

allowable flows from the input parameters I to the output parameters 0

of a program. This type of policy can be expressed in our terms as :i

4

lattice structured flow policy (, C , U , H) over security classes

^ (1) : each input parameter i is associated with the security class

{i}, and each output parameter o is associated with the security class

{i [i may flow into o).

4. Derivation of Latticc

The objective is to transform a given flow policy into a lattice

while preserving the validity of all flows. To make this precise,

let P = (X, •*) and 1" = (X', be flow policies and let f be a

mapping from X to X'. Then f is flow preserving between P and P' if

and only if for all x,y e X, x y <=> f(x) f(y) . This says that

the flows permitted by policy P between pairs of security classes

x,y z X are the same as those permitted by policy P' between security

classes f(x),f(y) E X'. Let o denote the security class in X

associated with object o . Then if £ is replaced by the security class

t'(o) in X1 for all objects o , policy P' will permit exactly the same

flows to occur among objects as policy P.

Our method for transforming a policy P = (X, into a lattice

requires that P satisfy two conditions:

1. X must be finite, and

2. must be reflexive and transitive.

The first condition is required to guarantee the transformation halts;

the second is required to construct a flow preserving mapping. We are

aware of no policies which violate either of these conditions. There

are, however, policies which satisfy these conditions but not neces-

sarily the stronger conditions required for a lattice (c.f. [5]).

5

Define a mapping f from X t o ^ (X) by f(x) = {y | y e X and y x}

for all x e X. This maps each security class x into the set consisting

of all of the security classes permitted to flow into x. Let

A = (f(x)] x E X} and consider a policy Q = (A, C) that orders

members of A by set inclusion. We make the following observation:

Lemma 1. f is flow preserving between P and Q.

Proof. Consider any x,y e X. We must show that x -»- y <=>

f(x) C f(y). Suppose first that x -+ y, and let z E f(x). Since

z -»• x -*• y implies z y by transitivity of -+, z E f(y), and

thus f(x) C fty). Suppose next that f(x) C f(y). Since + is

reflexive, x e f(x); but then x E fty), which implies x + y.

The above policy Q eliminates redundant security classes from

I' to achicve a partial ordering of the classes. For example, if

both x y and y x holds for security classes x and y, one is

redundant since anything in one can flow to the other. Since

t'U) C f(y) and t'(y) C f(x) imply ffx) = fCy), this redundancy is

removed in policy Q.

Although Q = (A, C) is a poset, it may not satisfy the least

upper bound and greatest lower bound lattice properties. To obtain

a policy R = (B, C) which does satisfy these properties, we first

set B = A U 0 U X, where the empty set 0 gives a lower bound on B,

and the set X gives an upper bound on B. We then add to B additional

sets of ^ (X) until each pair of elements of B has a least upper

bound in B. To determine if a pair of elements a,b c B has a least

6

upper bound in B., we identify the set of successors common to a and

b, S(a,b) = (d | d e B and a u b C d } . Clearly S(a,b) is nonempty since

X e S(a,b). Let c = n S (a . b) . If c E S(a,b), then a and b have c as

their least upper bound in B; otherwise they have none, so we add c

to B.

This expansion of B is guaranteed to terminate since there are

at most a finite number of sets in that can be added to B, and

set union is a least upper bound operator on j?(X). Let © denote the

least upper bound operator on B, and let R = (B, C , ©) denote the

resulting structure. The following theorem proves that the derivation

is flow preserving and yields a lattice structured policy whose flow

relation is set inclusion.

Theorem. R = (B, C , ®) is a lattice for which f is flow preserving

between P and R.

Proof. To prove that R is a lattice, we need only show that there

exists a greatest lower bound operator on B. For any pair of sets

a,b e B, define T(a,b) = { c | c e. B and c C a O b}. T(a,b) is the

set of predecessors common to a and b. Clearly T(a,b) is nonempty

since the empty set 0 is in T(a,b). Define a 8 b to be the least

upper bound of the predecessors: a 6 b = ®T(a,b). Then a 8 b z B

by construction of B, and a 8 b C a and a 8 b C b. Also, if c C a

and c C b, then c C a 8 b. Therefore, a 8 b is a greatest lower

bound operator on B.

To prove that f is flow preserving between P and R, it is

sufficient to observe that for any pair of security classes x and

7

y in X, tlic sets f(x) ;>JiiJ f(y) ordered by set inclusion in "

R as in Q. Therefore, the results of Lemma 1 hold for both Q

and R.

5. Example

Figures 2 (a)-(d) illustrate the derivation of a lattice from an

initial policy P = (X,-*) . The security classes in X are numbered

0,1,...,9. Note that the flow preserving mapping f takes the security

classes 5, 6, and 7, which form a cycle, into the single set

{1,2,5,6,7}. The expansion of the set {f(x} | x c X} into a lattice

requires the addition of only four sets: 0 , {0,1}, {0,1,2,4,5,6,7} and

X. These new sets are distinguished in the graph of the final lattice

with asterisks.

6. Conclusions

We have supported our assertion that lattice structured

information flow policies lose no generality. This was proved by

showing that an arbitrary finite, reflexive, and transitive flow

policy can be transformed into a lattice while preserving the validity

of all flows. We have omitted the details of this transformation

because 1) our primary objective was to demonstrate the existence

of a flow preserving lattice transformation; and 2) we believe that

for most systems, the transformation would be required only once and

could be done by inspection. The design of an efficient transformation

which derives lattices having a minimal number of sets would be of

interest in systems wheTe the policy is subject to frequent change.

8

0 1 2

a. Initial policy P = (X, ->)

1 1 C * L
0 T o }
1 (l)
2
3
4
5
6
7

(2}
{0,1,3}
{0,1,4}
{1,2,5,6,7}
{1,2,5,6,7}
{1,2,5,6,7}

8 {0,1,2,3,4,5,6,7,8}
9 {0,1,2,4,5,6,7,9}

b. Flow preserving mapping.

{0,1,2,3,4,5,6,7,8} {0,1,2,4,5,6,7,9}

X T
{0,1,3} {0,1,4} {1,2,5,6,7}

j} [U ^ ^ j}
c. Intermediate policy Q = (A, C) .

{0,1,2,3,4,5,6,7,8,9}*

{0,1,2,3,4,5,6,7,8} {0,1,2,4,5,6,7,9}

{0,1,2,4,5,6,7}

/ \
{0,1,3} {0,1,4}

\ /
<0,1}*

{1,2,5,6,7}

d. Final lattice structured policy R = (B, C)

Figure 2. Example of a Lattice Derivation.

9

Acknowledgments•

I am grateful to Peter J. Denning for many helpful suggestions.

References.
1. Bell, D. E. and LaPadula, L. J., "Secure Computer Systems:

Mathematical Foundations," ESD-TR-73-278, Vol. I-III, The
MITRE rorp , Bedford, Mass.

2 Birkhoff, G. Lattice Theory,Amer. Math. Soc. Col. Pub., XXV,
3rd. ed., 1967.

3. Denning. D. E., "A Lattice Model of Secure Information Flow,"
Comm. ACM, Mav 1976.

4. Denning, D. E. and Denning, P. J . , "Certification of Programs
for Secure Information Flow." Comm. ACM, Cto appear).

5. Fenton, J. S.. "Information Protection Systems," Ph.D. Disserta-
tion, Univ. Of Cambridge, England, 1973.

6. Jones. A. K. and Lipton, R. J . , "The Enforcement of Security
Policies for Computation," Proc. Fifth Symposium on Operating
Systems Principles. Nov. 1975.

7. Stone, H . S., Discrete Math. Structures and Their Applications,
Science Res. Assoc., 1973.

8. Walter, K. G. et al., "Structured Specification of a Securitv
Kernel," Proc. Int'l Conf. on Reliable Software. SIGPLAN
Notices- H), 6, June 1975, 28b-293-

9. Weissman, C., "Security Controls in the ADEPT-50 Timp-Sharing
System," Proc. AFIPS 1969 FJCC. 35, 119-133.

	On the Derivation of Lattice Structured Information Flow Policies
	Report Number:
	

	tmp.1307986960.pdf.3e6pk

