
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1976

Generalized Working Sets for Segment Reference Strings Generalized Working Sets for Segment Reference Strings

Peter J. Denning

Donald R. Slutz

Report Number:
76-178

Denning, Peter J. and Slutz, Donald R., "Generalized Working Sets for Segment Reference Strings" (1976).
Department of Computer Science Technical Reports. Paper 120.
https://docs.lib.purdue.edu/cstech/120

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

GENERALIZED WORKING SETS FOR SEGMENT REFERENCE STRINGS1
P

2 Peter J. Denning
3

Donald R. Slutz

March 1976
Revised January 1977
Revised September 1977
Revised December 1977

Abstract: Tne working set concept is extended for programs that reference
segments of different sizes. The generalized working set policy (GWS)
keeps as its resident set those segments whose retention costs do not ex-
ceed their retrieval costs. The GWS is a model for the entire class of
demand-fetching memory policies that satisfy a resident set inclusion
property. A generalized optimal policy (GOPT) is also defined; at its
operating points it minimizes aggregated retention and swapping costs.
Special cases of the cost structure allow GWS and GOPT to simulate any
known stack algorithm, the working set, and VMIN. Efficient procedures
for computing demand curves showing swapping load as a function of
memory usage are developed for GWS and GOPT policies. Empirical data
from an actual system are included.

Key Words and Phrases; Data base referencing, memory management, optimal
memory policies, paging, program behavior, program measurement, segmentation,
working sets.

CR Categories: 4.3; 8.1.

1 Supported at Purdue University in part by NSP Grant GJ-41289.
2
Computer Sciences Department, Purdue University, W. Lafayette, IN 47907, 3IBM Research Laboratory, 5600 Cottle Road, San Jose, CA 95193.

1

INTRODUCTION

Segment referencing is increasingly prevalent. It is used in many data

base systems; it is supported in hardware by several manufacturers; it

underlies "program restructuring," which seeks a locality-preserving distri-

bution of small logical program blocks among large physical storage pages.

There is a clear need for memory demand measures under segment referencing.

The common procedures for measuring memory demand are suited only for

paged memory systems. They measure a resident set's size by counting pages,

and the swapping load by counting page faults. But if storage blocks are

segments of different sizes, these measures do not accurately portray a

program's memory demands. The number of resident segments may bear little

relation to the memory reguired to hold them; the number of missing-segment

faults may not measure the load actually placed on the swapping system.

This paper presents the generalized working set (GWS) approach to

measuring memory demand under segment referencing. It is based on defining

a cost of retaining a segment in residence without being referenced, and

a cost of retrieving (swapping in) a missing segment. The GWS memory pol-

icy assigns each active program a resident set containing each segment

whose retention cost does not exceed its retrieval cost. A parameter 0,

the threshold , represents the cost of retrieval relative to retention.

The GWS models all one-parameter memory policies whose resident sets

satisfy an inclusion property under increasing values of the control para-

meter (0). The well known "stack algorithms" CMGS70, CoD73] and "time

window working set" [Den68, DeS72, CoD73] are special cases of the GWS.

this model extends the measurement technique to segment referencing, and

it unifies previous models as well.

2

In a single pass over a given segment reference string, GWS procedures

measure a memory demand curve y = f(x). Each possible threshold value (0)

generates a particular demand point (x,y) on this curve. This curve shows

the tradeoff between a "memory space investment" x and a "swapping load" y.

The memory space investment x is either CT, the mean size of the resident

set, or s, the mean of the retention costs of segments kept in the GWS.

The swapping load represents the delay from moving segments into main

memory; it is represented as y = m + Ap,, where m is the missing-segment

fault rate, pi- is the rate of information flow resulting from segment

faults, and A is a parameter selected by the analyst. The familiar page

fault curve is the demand curve m = f(C). These definitions give the

analyst considerable flexibility in choosing a memory demand measure.

A special case of GWS policy is a generalized optimal policy

(GOPT). No memory policy can generate a demand point

below the demand curve of GOPT. Although GOFT's lookahead

prevents it from operating in real time, its demand curves are easily

obtained — in fact, the GOPT and GWS demand curves can be computed from

each other. It is thus cheap to learn how far from optimal a given GWS

policy is. The GOPT policy reduces to VMIN for paging [PrF76].

The original procedures for measuring page fault rate curves under

the time-window working set policy required storage of order 0(M+p), where

M is the maximum time window of interest and p is the number of pages.
4 5

(See [DeS72, S1T74].) In practice, M must be very large — 10 or 10

references — to obtain demand points over the entire range of interest.

3

The GWS and GOPT measurement procedures calculate demand points for N selec-

ted threshold values, with storage of order 0(N+p), where N can be as small

as log^M. For practical programs, this represents a storage reduction of

two or more orders of magnitude and corresponding speedup in computing the

demand curves. These procedures are generalizations of ones noted by

Easton & Bennett for the time-window working set [EaB77], but they were

developed independently by the authors [Den75, Slu75].

Because its cost functions measure each program singly, GWS analysis

does not calculate the actual cost of running a program. It does not

account for the overheads of placement or replacement policies, or the

effects of queueing. GWS analysis does measure the tradeoff between memory

space investment and swapping load intrinsic to each given program.

To estimate the actual cost of running a program, the memory demand

curves of programs in a workload must be used to drive a simulation or

analytic model of the entire system. The system model accounts for over-

head and queueing. This has been done successfully many times with paging

systems. For example, paging curves have been used to estimate processor

utilization, throughput, and mean response time at various levels of multi-

programming [Bar73, Bar75, Cou77, DeG75]; to determine bounds on throughput

[DKL76]; to construct synthetic workloads [SrK74]; and to measure program

locality [DeK75, GrD77]. With demand curves from GWS analysis, these

same techniques can be applied to systems with segment addressing.

4

DEMAND CURVES

A program's address space consists of p segments, denoted by Indices

l,,,.,p. The size of segment i is z^ data units. A data unit is a fixed

quantity such as a bit, byte, word, or page* The total of segment sizes

is Z = Z + +2 . IJndpr naolno. all * — 1.

which r(t) is the index number of the segment referenced at virtual time

t. The total volume of referenced information, V, is the sura, over all t,

of the size of the segment referenced at time t. Since we assume that

all of a segment najst be loaded in main memory for referencing, the

mean resident set size of any memory policy is at least V/T.

Our analysis supposes that every program starts execution with an

empty resident set, and that missing segments are placed in the resident

set on demand* A memory policy (MP) determines which aegments are

removed from resident sets* The MPs of Interest here decide whether

to retain or remove a segment by comparing memory usage costs against

swapping loads. A fixed threshold, 8 , specifies the relative cost the

MP assigns to retaining and swapping segments. For a given such MP,

each resident set is determined completely by the reference string and

the setting of the control parameter, Q,

Our MPs associate a reference cost and a retention cost with each

segment at each time t. The reference cost accounts for the unavoidable

cost of using memory while a segment is being referenced. We let q^

denote the reference cost for segment i. The total reference cost, Q,

is the sum, over all t, of the reference cost of the segment referenced

at time t. The cost Q is incurred by every MP in processing the given

reference string. For paging, all q = 1.

A segment reference string is a sequence {r(t),

5

The (accumulated) retention cost accounts Cor the memory used to maintain

a segment in residence beyond its prior reference. For each segment at time t,

this cost is represented by a function R(i,t) > 0 satisfying three properties:

A. Prior to the first reference of segment i, R(i,t) is infinite: no

finite expenditure can cause a segment to be resident before its

first reference under a demand MP. (However, nonempty initial resi-

dent sets can be represented with R(i,0) being a suitable finite value.)

B. If r(t) 41 i, R(i,t+l) > R(i,t): retention cost accumulates with

time since prior reference*

C. If r(t) = i, R(i,t+) = 0: retention cost is reset Just after a refer-

ence. (The cost of the reference itself is accounted for by

In general, retention cost depends on some total internal state of (a model of) the

program -- thus R(i,t) is not independent of R(j,t), To keep the notation

simple, we have not shown such a state explicitly as a parameter.

It is convenient to extend these definitions to continuous time, in which

segments are referenced at integer times. In this case, segment 1 is regarded

as being resident during [t, t+1) whenever r(t) = i, and the cost of this refer-

ence is represented by q^. (Note that R(i,t) need not be continuous.)

The demand curve of an MP for a given reference string is a function

y = f(x) specifying the "swapping load" y that results from making a "memory

space investment" x. A point (x,y) of this function is called a demand point.

The swapping load is represented as a linear form

y = m 4- A jjLt

where m is the miss rate, the number of segment faults per

unit virtual time, and

pL is the information flow rate, the number of data units

per unit virtual time being moved to satisfy segment faults.

6

The analyst would normally choose the parameter A so that y is propor-

tional to the average time required to service a single swapping opera-

tion (queueing for swapping service is excluded). This can be done by

setting
A _ mean time to transfer one data unit

mean access time of secondary store
Under this interpretation of A, the total time to complete all the

swapping is yT access times, and the mean swapping delay for one fault

of segment i is 1+Az^ access times.

There are two possible representations of the memory space invest-

ment xi either

C, the mean resident set size generated by the MP; or

s, the mean memory usage cost (per reference) actually

expended by the MP.

Notice that ô T is the total (virtual) space-time accumulated among all

resident segments; it could be computed by summing resident set sizes

for t = 1,».»,T. Likewise, sT is the total memory usage cost; it could

be computed by adding the total reference cost, Q, to the total of all

retention-cosc Increments, R(i,t) - R(i,t-1), for all resident i and

t = 1,..,,T. However, there are more efficient computational methods

than these.

The most efficient methods for measuring the totals crT, sT, and

yT are based on calculating contributions for each interval between

successive references to a segment [CoD73, DeS72, S1T74, PrF76]. These

contributions are summarized in Table 1. There are three cases, accord-

ing as r(t) = i is a first, an intermediate, or a final reference. A

first reference contributes a swap, and memory usage only during

7

A subsequent reference ends an interval ^t'+l, tj that spans a pair

of successive references; segment i is resident during a prefix

[t'+l,t"], and a swap occurs only if t" < t. After a final reference

there may be an additional period of residence [t'+l, t"]; in a one-pass

measurement, its contribution must be confuted after time T+l (the

procedure cannot discover prior to this time that there are no more

references).

In practice, an analyst wishes to evaluate the demand curve of an

MP on a given reference string only for a given set of threshold values

n = 1,...,N|. The measurements will yield a corresponding set of

demand points (x
n»yn)* These points are usually displayed as graphs by

connecting adjacent points with straight line segments. (Fitted inter-

polation can also be used [Snri76],) This method of display, intended

primarily for visual convenience, has been used for years with page-fault

rate functions — e.g., [Bar73, Bar75, Bel66, Ch072, CoD73, EaB77, MGS70,

PrF76, S1T74]. Mathematically, these graphs approximate a value y = f(x)

by linear interpolation between the nearest pair of measured (x,y)

demand points. If the approximation is too crude, the analyst must

calculate demand points for further values of B.

It is inportant to remember that the reference and retention costs

are abstract quantities usd to define memory policies, and that the

swapping load does not account for system delays such as queueing for

swapping or overhead in placement and replacement. Therefore, costs

displayed by demand curves need not correspond to the actual costs of

running programs in the system. To assess actual costs, an analyst nust

use the demand curves to drive sinulations or analytic models of a system.

References to
segment i

f—:— prior present
Residence
Interval a-T

Contributions to

sT yr

First r(t) [t, t] 1+Az.

Subsequent r(t') r(t) [c'+l, t"J 2i(t"-t') q.+R(i,t")
0, t" = t

1+Azi, t" < t

Post-final r(t') [t'+l, t"] z1(t"-t'-l) R(i,t") 0

TABLE 1. Contributions associated with intervals between references.

9

GENERALIZED MEMORY POLICIES

Generalized Working Sets

The familiar time-window working set for paging, W(t,T), compri-

ses all pages which have been referenced in the virtual time interval

(t- T, t] (See [Den68].) If r(t-u) is the latest reference to page i

prior to time t, then u > 1 and page i is in the working set whenever

u-1 < T .

The parameter T can be regarded as a proportionality constant

that relates the value of retaining a page in memory to the cost of

retrieving it on a page fault. The working det'behaves as if T page-

seconds of nonreference are as expensive as one page fault; it removes

a page as soon as the cost of retaining it begins to exceed the cost

of retrieving it.

The generalized working set MP extends this cost balancing prin~

ciple. The cost of retaining segment i in residence from its prior

reference until time t is R(i,t). The cost of swapping (retrieving)

it is 1 + Az^* The threshold 9 is the constant of proportionality

that relates one unit of swapping to one unit of retention cost. The

generalized working set (GWS), W(t,$) for t = 1,.. ,,T and 0 > 0 com-

prises r(t) plus all segments for which

R(i,t) < 0(1+Azi) .

This definition implies that a segment can be removed from the GWS

at a noninteger time; however, the program is always charged a reten-

tion cost of exactly 0(1+Az^) for a segment so removed from the GWS.

It is easy to see that the GWS satisfies the inclusion property

M(t, 0) ^ W(t ,0 + e) £ > 0

for all t. This observation shows that the GWS policies are contained

10

in the class of all demand-fetching MPs that have a control parameter

0 > 0 and satisfy the inclusion property. The converse is also true

— every demand-fetching MP that has a control parameter 0 > 0 and

satisfies the inclusion property is equivalent to some GWS.

To see this, let M(t, 9) denote the resident set of such an MP

at time t, given that its control parameter is fixed at 9. Suppose

that the inclusion property holds — i.e., M(t, Q M(t, 9 + £.). We

will define a retention cost function R(i,t) so that the GWS W(t,0)

is Identical to M(t,0). Since the inclusion property holds, we can

imagine that the p segments are placed o n the interval so that,

for every G, exactly the segments of M(t,0) are contained in the

interval [0, 9]. At t=Q, all segments are at infinity, since M(0,

is empty. (This is a continuous form of the "stack" [MGS70, COD73].)

Let R(i,t) denote the distance of segment i from the origin; remember

that R(i,t) may depend on some total internal state of (a model of)

the program. This distance function satisfies the three properties

of retention cost:

A. Prior to the first reference to segment i, R(i,t) is

infinite, else i would be in M(t, Q) for some finite 0.

B. If r(t) i= i, it is impossible for R(i,t) < R(i,t-1): for if

so, segment i would enter M(t, R(i,t)) at time t, contradic-

ting the assumption that, for every 0, MP fetches missing

segments only when they are referenced.

C. If r(t) = i, R(i,t+) must be 0, else segment i could not be

guaranteed to be in M(t, 0) for every Q > 0 just after a

reference to it.

11

The foregoing arguments define the sense in which the GWS is a

model for the entire class of demand-fetching MPs that have a single

control parameter & > 0 and satisfy the inclusion property. No MP

in this class displays "anomalous behavior", which would be a decrease

in x or an increase in y when B is decreased [FGG78],

For each value of 6, the GWS produces values of mean resident

set size cr(9), mean memory usage cost s(0), miss rate m(0), and

information flow rate The inclusion property implies that

s(9) and <y(, &) are nondecreasing in $. Moreover, the segment

faults at threshold 0+E, are a subsequence of those at threshold 0;

this implies that m(Q) and 9) are nonincreasing in 0. Figure 1

summarizes these facts for a demand curve y(0) = f(s(9)). When 0,

it will be true that

s(0) > Q/T and y(0) < 1 + AV/T,

with equality only if there are no repeated references, and only if

retention co&t is never 0 except for the infinitesimal interval immedi-

ately following a reference. When 0 =oO, segment faults occur only

at first references; there are p such faults and they move Z = z^+...+z

data units, whence y(oo) = (p+AZ)/T.

Examples

The time-window working set removes a segment which has been

unreferenced for 0 time units. This effect occurs when R(i,t) =

(u-l)(1+Az^), where r(t-u) is the most recent reference to segment i

prior to time t. For paging, this GWS resembles the original paged

working set with T = 0+1.

swapping .
Loa.4 y h

s[o)
s (o4)

f\(rVR£ (• bo pertof A d o w J Cun«

12

The space-time working set uses qi = zi and sets retention cost

to measure the space-time accumulated by a segment after its prior

reference. Thus R(i,t) = (u-l)zi> where r(t-u) is the most recent

reference to segment i prior to time t. Putting all reduces this

GWS to the time-window working set for paging. It is important to

note that s —<y— i.e., the mean cost is the same as the mean resident

set size when memory usage is measured by space-time.

The function R(i,t) = D(i,t)-1, where D(i,t) is the stack distance

of page i at time t under a given stack algorithm, is also a valid

retention cost function [MGS7Q, CoD73]. Therefore W(t,9) is precisely

the resident set of size 6?+l of the given stack algorithm. In this

case s(0) is the mean stack distance over the referenced pages.

It is possible to Specify a GWS reflecting program behavior [TQT75].

Denote by P(i,t) the probability of referencing page i at time t; assume

that r(t) =jt 1 implies P(i,t+1) < P(i,t) and that r(t) = i inylies

P(i,t+) = 1. Then R(i,t) = 1-P(i,t) is a valid retention cost function

and, for 0 < 0 < 1, W(t,0) is r(t) plus all pages whose reference

probability is at least 1-0 . A similar idea was suggested by Coffman

and Ryan [CoR72].

The page fault frequency policy (PFF) [Ch072] is not a GWS. The

PFF retention costs Increase with time, but are reset to zero on any

page fault; PFF thus violates retention cost Property B. PFF violates

the inclusion property and exhibits anomalous behavior [FGG78].

13

Generalized Optimal Policies

The purpose of this subsection is to define a demand-fetching MP

whose convex demand curve divides the (x,y) plane into a feasible upper

part and an infeasible lower part. This policy will be called the

generalized optimal policy (GOPT) because no memory policy can generate

a demand point below its demand curve. Because the GOPT has lookahead,

it is useless for optimal memory management in real time. However,

its demand durve, which is easily computed as a byproduct of the GWS's

demand curve, can be valuable in showing the analyst how well a pro-

gram or memory policy behaves.

Recall that memory space investment (x) is either the mean size

of the resident set (CT) or the mean of memory usage costs (s), and

that in the space-time memory usage cost s = CT. This means that, to

find the minimum possible swapping for a given mean resident set size,

the analyst needs to study only the demand curve of space-time GOPT.

It also means that we may study GOPT only in the (s,y) plane without

loss of generality.

Underlying the GWS is the concept that the threshold 0 is the

value of one unit of swapping relative to one unit of memory usage.

This means that s+0y can be interpreted as the "net cost" of demand

point (s,y). The concept underlying GOPT is to make replacement deci-

sions to minimize the "net cost" relative to the given measures of

memory usage and swapping.

It now follows that GOPT must remove a segment from the resident

set just after its final reference, for any delay would increase memory

usage (s) without affecting swapping (y). Indeed, if GOPT opts to

remove any segment from the resident set, it must do so immediately

14

after a reference to that segment; any delay would Increase s without

affecting y.

It foil ows from these properties that, for each reference r(t) — 1,

GOPT makes just one of two decisions: retain i until its next reference

r(t+u), or remove i just after time t. For a given value of threshold

0 > 0, the retain decision is taken if and only if

R(i,t+u) < 0(1+Azi) .

Because 0 specifies the value of retaining relative to swapping, this

criterion causes GOPT to select the cheaper decision for each refer-
4 5

ence. It follows that GOPT minimizes the total cost sT + 9yT. '

Notice that an equivalent statement of the GOPT decision rule is:

take the "retain" decision for r(t)=i just if the cost/swap ratio

R(i, t+u) / (1+Az^) does not exceed the threshold. If r(t) is a final

reference, setting R(i,t+u) to be infinite forces the "remove" decision.

Another way to see this is to consider the effect, on the sum s4~0y,

of changing a "remove" to a "retain" decision, and vice versa. Chan-

ging the reference r(t)=i from a "remove" to a "retain" changes the

total memory usage cost to sT + R(i,t+u), and the swapping cost to

yT - (1+Az^). This changes the total net cost to sT + 0yT + [R(i,t+u)

- 0(1+Azi)]. Since r(t) is retained under GOPT, the bracketted

term is positive -- such a change cannot lower the net cost. A simi-

lar argument shows that changing a GOPT "retain" to a "remove" cannot

lower the net cost.

15

GOPT need not be optimal among nondemand optimal MPs. Let F(i,w)

denote the swapping cost when segment 1 is fetched w time units prior

to a reference r(t). Note that F(i,0) = 0 0 + A z ^ . Prefetching would

be advantageous if R(i,t) - R(i,t-w) + F(i,w) < F(i,0) for some w > 0.

It is easy to see that GOPT satisfies the inclusion peoperty on

its resident sets — at threshold & it takes a subset of the retain

decisions it takes at threshold 0+£. . Therefore, there exists a GWS

that simulates GOPT. (One possible GWS uses the retention cost func-

tion R'(i,t) defined as follows. Whenever r(t) and r(t+u) are suc-

cessive references to segment i, set R'(i,t*) = R(i,t+u) for all t'

in the interval [t+1, t+u].)

We can show now that GOPT's demand curve is convex and divides

the (s,y) plane into a feasible upper part and an infeasible lower

part. Let p^ = 0, and let yÔ denote the k1"*1 largest of the cost/swap

ratios occurring in the reference string. Let K < T-p be the number

of distinct finite values of these ratios (the p final references have

infinite ratios). Then p Q < p i < ... < p . When 0 = GOPT

generates a demand point (s^y^) f°r which s^ is the meam reference

cost Q/T plus the mean of retention costs over all references whose

cost/swap ratios do not exceed p^t an<J y^ is the mean of swapping

loads over all references whose ratios exceed As shown in

Figure 2, the slope of the line connecting adjacent demand points

for 0= and 0 = p k is

W i r k

— s

Fl&vte 2. Adj'tLc-eu* of (roPT.

3- J^Wflfc du^L j^ii.

16

This is because all the references which GOPT changes from "remove"

to "retain" decisions when 0 changes from yO^ ^ to p ^ have the same

value of cost/swap ratio C Note also that for p• 1 < 0 <

GOPT generates the one demand point (s^ ^y^ ^ Note finally that

no MP can generate a demand point below the line connecting the two

demand points for 0 = p ^ and Q = p ; for if (s,y) were such a

demand point, its "net cost" would be s+p^y < s^+P^k i n contradic-

tion to the optimality of GOPT.

Repeating the argument for k — 1,2,...,K and accounting for the

boundary conditions at Q = 0 and & = Do , we find that the GOPT demand

curve is convex and divides the (s,y) plane into a feasible and

infeasible region, as shown in Figure 3.

Suppose that GOPT demand points are computed for a finite set

of arbitrary thresholds The resulting N demand points

will be a subset of the K possible ones, and the piecewise linear

curve connecting adjacent points will be convex. However, if N < K,

this demand curve will not partition the plane into a feasible and

feasible region.

It is possible to define other optimal MPs based on criteria

such as ''minimize s for each given y" or "minimize y for each given s."

Because such MPs may select arbitrary subsets of references to be "retain"
T

and "remove" decisions, they may generate as many as 2 distinct demand

points. However, the demand curve of such an MP must lie on or above

the demand curve of GOPT, and need not be convex.

17

Examples

Let [t, t+u] denote an interreference interval of segment i.

When retention cost is measured by space-time, R(i,t+u) = (u-l)z^;

this GOPT retains i only if u < 1 + ©(Atl/z^. For paging with all

zi = 1 and with A = 0, this GOPT reduces to the VM1N policy [PrF76].

We noted that GWS simulates a stack paging algorithm if the

retention cost function is the stack algorithm's distance function.

However, GOPT is not the MIN policy in this case [Bel66, BeP74]. MIN

optimizes (cr,ra) demand points over the entire class of fixed-space

stack algorithms and, hence, over the entire class of possible stack

distance functions; in contrast, GOPT optimizes relative to a single,

given stack distance function. Moreover, VMIN may produce a demand

curve below that of MIN [PrF76].

An argument similar to the one used to prove the GOPT can be used

to prove that the time-window working set may be optimal among nonlook-

ahead policies, when the program has sufficient locality of reference

[Den78]. The required conditions seem to hold in practice [GrD77],

A Relation Between GWS and GOFI

Let [t, t+u] denote an interreference interval of segment i.

When R(i,t+u) < 0(1+Az^) both policies retain i during the interval

[t, t+u]. Otherwise, GOPT removes i at the beginning of the interval

while GWS retains it until its retention cost attains SCl+Az^).

Therefore, for given 0, GWS and GOPT have identical fault sequences;

they produce the same swapping load.

The memory usage cost difference between GWS and GOPT is estimated

easily (Figure 4). After each nonfinal reference at which GOPT removes

segment i, CWS generates the additional retention cost 0(1+Az,).

StottylnQ
loAd y 1

1 X f ^ " N ^
\ 1

1

1 ^ ^ ^
GWS

1 1
1 1

— Gopr

' (

y , e ; L V — ^

f e ile)

5

flfryfcE 4. C^R^^I**" of OcpT

18

After the final reference, GWS may be forced to remove i at time T+l,

so that the final cost difference is at least 0 but at most ^(l+Az^.

By associating the final GWS cost contribution for segment i with the

initial fault for segment i, we see that a) the total of all cost dif-

ferences cannot exceed the sum of 0(1+Az^) contributions at faults

i.e., T0y(6); and b) because the cost differences after final refer-

ences cannot total more than 0(p+AZ) among the p segments of total

volume Z, the total cost difference is at least T0y(9) - ©(p+AZ). Thus

e(y(0) - < Stf(ff) - so(0) < 9y{$) .

For small 9 or large T, Qy(9) is a good approximation to the cost

difference.

EFFICIENT COMPUTATION OF DEMAND CURVES

Let 0Q = 0 and suppose that is a sequence of increasing

threshold valu es for which GWS and GOPT demand points are to be conv-

puted. Often = f°r gives clear resolution of a demand

curve, whence N approximately lc^T for a reference string of length T

[Smi76]. In the following, [t-u, t] will denote an interreference

interval of segment i; if r(t) is a first reference, u will be a large

value. The length u can be computed simply, if each segment's time

of most recent reference is kept in a table [coD73, EaB77, S1T74],

The four measures (m,p>, s,cr) will be specified from information

obtained in one pass over the reference string and stored in four sets of

N+2 counters. For n = 1 the counters are defined so:

19

a(n), Total swapping load from segment faults that would

be saved by increasing 6 from 6 . to 0 : n-1 n
b(n), Total reference volume for faults tallied in a(n);

c(n), Total of retention costs that would be added by

increasing 0 from ^ to 0^; and

d(n), Total of resident segment spac«*times that would

be added by increasing 0 from 0^ to Q^.

For n = 0, the counters record events for 0= 0. For n = N+l, they

record ail events for 0>0^< Two additional counters, V and Q,

tally the total reference volume and the total of (unavoidable)

reference costs; each reference to segment i contributes z^ to V

and q^ to Q. Initially all the counters contain zeroes.

The values in the counters are updated for t = 1,...,T as

follows. If R(i,t) = 0, set n to 0, otherwise find the largest n

(1 < n < N+l) such that 0 . < R(i,t)/(1+Az.). Then add — — n-1 l

1+Az^ to a(n)

z^ to b(n)

R(i,t) to c(n)

zi(u-l) to d(n).

For initial references, R(i,t) is chosen to be larger than ©^(l+Az^)

for all 1. When R(i,t) depends only on u, this can be satisfied by

choosing a sufficiently large initial value for u.

20

The counter updating actions will fail to record contributions

occurring after the final reference to a segment. This does not

affect GOPT, which removes every segment after its final reference;

but it does affect GWS. Since the GWS behavior following the final

reference to segment i depends on whether R(i,T+l) < Sd+Az^J, the

corrections for these "end effects" are computed by performing the

counter updating actions as if i = r(T+l) for each segment i = l,..«,p.

(See Table 1.) We let a*(n) denote the total corrections generated

for counter a(n); similarly for b*(n), c*(n), and d*(n).

21

Miss Rate, Flow Rate, and Swapping Load

The miss rate, information flow rate, and swapping load are the same for both

GWS and GOPT. Reference r(t) = i produces a fault, whose retrieval demand

is 1+Az±, if and only if 0 < R(i,t)/(1+Az); it follows that

. a(n+l)+...+a(N+l)
n = 5 •

The flow rate is, similarly,

b(n+l)+...+b(N+l)

The miss rate can be calculated as

M(0) = YCO) - hulQ) n J n i n

GOPT Mean Cost and Mean Resident Set Size

The GOPT mean cost is denoted s^Co) and mean resident set size CT^©). The

total GOPT cost, Ts^fO), is Q plus all retention costs generated on inter-

reference intervals [t-u,t] for which R{i,t)/(1+Az^) < 0:

. Q+c(0)+—+c(n)
0 n T

The total space-time of resident segments, TO^(O), is reference volume V

plus all additional space-time from retained segments:

rr (Q) _ O n ~ T

The large retention cost assumed for an initial reference causes counters

c(N+l) and d(N+l) to receive meaningless values on first references; however,

these counters are not used.

22

GWS Mean Cost

The GWS mean cost is denoted s, («). We noted earlier that s (0) is w w
approximated well by + 0y(0), whenever e = 0(p+AZ)/T is small compared

to &y(G). The exact GWS mean cost is calculated by correcting the lower

bound on the cost difference, ©y(0)-e, with the additional retention cost

contributions following the final references. Let s *(0) denote the correction 1!

s (0) = s W Q(0) +0(y(0> - £ ^ + s w - (0) .

At time T + l , segment i contributes R(i,T+l) to the correction if

R(i,T+1)/(1+AzJ < 0; otherwise it contributes 0(1+Az^). Summing these

contr ibut ions,

c*(0)+...c*(n) _ a*(n+l)+...+a*(N+l) s • (©) = " w ' "" + 0 W n T n T

Since the sum of all the corrections cannot exceed OCp+AZ),

s ,-(0) < 6 (p+AZ) /T . W n — n

There is another way of computing the exact sw<0). After the counters

have been used to compute the GOPT demand measures, the corrections are added

to them. Then the mean cost is computed directly, using corrected a- and

c-counters, from

- . Q+c(0)+...+c(n) a(n+l)+...+a(N+l)-(p+A2) s i w J — - — — _ + y » W n T n T

The quantity p+A2 is deducted from the corrected a-counters because there

are no retention costs prior to the first references.

23

Consider a page reference string (all z^ = 1) with A=0 and suppose that

the thresholds are chosen to be the first N integers (i.e., 0 = n)- If

retention costs are integers, such as at integer times for the time and

space-time retention measures, then R(i,t) = n implies 1 is added to counter

a(n) and n to counter b(n) during updating. This implies that b(n) = na(n).

The mean GWS costs can be expressed as

This generalizes the working set relation obtained for T infinite [CoD73,

De572]. Since m(n) and a* (n+1) + .. .+a* (N+l) are nonincreasing in n, s,̂ (n)

is increasing and concave downward. A subset of the points on the s..(n) W

curve will define a piecewise linear curve which is also concave downward.

GWS Mean Resident Set Size

In the space-time retention measure, is the mean resident set size

of GWS. But the mean resident set size f o r a n arbitrary retention

measure may be more difficult to compute. This is because the additional

space-time accumulated, among segments retained by GWS beyond their GOPT

removal times, is not related simply to any of our previous measures. To

illustrate, let v^ denote the time required beyond time t for segment i = r(t)

to accumulate retention cost Q(l+Az.) — i.e., R(i.t+v.) = 0(1+Az.)» Let i ' ' i i

y(itO) denote the swapping load due to segment i. Ignoring end effects,

arguments similar to our previous ones show that

n

s ,(n-l) + m(n) + W
a»(n+l)+...+a'(N+l)-p

T

This could not be computed unless the a-counters were partitioned into

p sets, one for each segment

24

The exacto^tO) can be computed, for the time-window working set, using

the available information. For an interreference interval [t-u,t] of seg-

ment i, u > ©+1 implies that segment i contributes Oz^ space-time before

its removal from the G'.7S. Reasoning similar to that used before produces

_ * V+d(0) + .. ,+d(n) ^ b(n+l)+.. .-t-b(N-fl)-Z cr (o) = + o - , W n T n T '

using the corrected b- and d-counters. Moreover,

Q^tlQ)-Z/T^J < " ° 0 (G) - •

EXAMPLES

Tables 2 and 3 show the distributions and calculations of the various

measures for a short reference string. The demand curves m = f(s) are

plotted in Figure 5 (note A = 0 in this case). For the time-window GWS,

we calculated the resident set sizes to enable a direct comparison with

costs in the space-time cost structure. Some of space-time GOPT's demand

points are more favorable than for time-window GOFT, since the latter does

not necessarily produce the smallest miss rate for a given mean resident

set size.

Figure 6 shows the demand curves from an actual segment reference

string obtained from a data base system at the IBM San Jose Research Labora-

tory. The data base contains several hundred thousand segments, whose sizes
(See also [RaR76t Rod76].)

range from tens to hundreds of bytes with an average of about 75 bytes. / The

segment reference string records only references to data segments during

several hours of tracing the system; it contains nearly two million references

to 183,000 distinct segments, made jointly by several concurrent users. For

25

this system, the time-window and space-tijne working sets give nearly the

same performance, with neither showing a consistent advantage. At high

miss rates, they require 15 to 20 times as much space as the optimal policy;

this difference reduces to a factor of 4 or 5 for low miss rates.

CONCLUSION

We have extended the working set concepts to general cost measures and seg-

reference strings. The memory usage costs include the unavoidable cost of

all references tc each segment and a nondecreasing cost of retaining each

segment while unreferenced. The swapping load is proportional the delay

in retrieving a missing segment. Using threshold O as the relative value

between one unit of swapping and one unit of retention, the generalized

working set (GWS) defines the resident set to be the segment referenced at

time t plus all others whose retention-cost to swapping-load ratio does not

yet exceed 0. Corresponding to this is a generalized optimal policy (GOPT)

which removes a segment just after it is referenced, if the retention-cost

to swapping-load ratio will exceed Q by the time of next reference.

Demand curves for the GWS and GOPT policies can be computed in a single

scan of the reference string without simulation. These computations can be

done with little space if we are willing to determine demand points for a

small number of threshold values. For the space-time GWS and time-window

GWS, demand points for adjacent value of 0 tend to be very close (or identical)

when 0 is large [Bar73, Bar75, Ch072l. Thus, little resolution is lost in

constructing piecewise linear curves connecting computed demand points.

When all segments are of one size and the cost structure is based on

space-time, these results reduce to the familiar ones for paging: GWS becomes

the conventional time-window working set [Den68], GOPT becomes VMIN [PrF76l.

26

Preliminary data showed little practical difference between time-window

and space-time GWS performance.

Most of our results do not apply if 0 can vary at run time. No

policy, including one with ^-variation, can generate a demand point

below the GOPT curve: such variation is of no interest for optimal

policies. However, it is possible to vary the GWS threshold so that

GWS simulates an optimal policy for part of the time; the resulting

demand point may lie below the fixed-Q GWS demand curve.

We showed that the cost difference between GWS and GOPT on

demand curves y = f(s) is approximately 0y(0). For programs whose

behavior comprises long phases of referencing over associated

locality sets, most of the segment faults occur during transitions

between phases [Den78, DeK75, GrD77, MaB76]. For such programs,

the easily-computed 0y(0) is a possible measure of the intrinsic

differences between a lookahead policy, which can anticipate a transi-.

tion, and a nonlookahead policy.

ACKNOWLEDGEMENTS

We should like to thank Alan P. Batson, R. Stockton Gaines, G.

Scott Graham, Kevin C. Kahn, and Alan J. Smith for comments as the

many revisions of this manuscript evolved.

27

TABLE 2

Example of the time—window working set

r(t):E C B E A B D C D E B C B B

R: (D <D QD 2 GO 2 GD 5 1 5 4 3 1 0

b(R): 5 3 2 5 1 2 4 3 4 5 2 3 2 2

d(R): - - - 10 - 4 - 15 4 25 B 9 2 0

End Corrections

seg size R b* d*

A 1 9 1 9
B 2 0 2 0
C 3 2 3 6
D 4 5 4 20
E 5 4 5 20

Misses Volume corrected GWS GOPT
R=0 a(0) Tm(0) b(0) TpXG) /dle) b(o) T<r (0) W d(0)

0 1 13 2 41 0 4 43 0 43
1 2 11 6 35 6 6 82 6 49
2 2 9 7 28 20 10 115 14 63
3 1 8 3 25 9 3 138 9 72

4 1 7 2 23 28 7 158 8 80
5 2 5 8 15 60 12 171 40 120
9 0 5 0 15 9 1 175 0 120

5 15 15

R = Retention cost value [unreferenced time]
a(O) = Number of references of R=0
b(0) = Total of segment sizes among references of R=0
c(0) = Total of R values among references of K=o
d(0) = Total of Rz. among references of R=©

V = Total of b-counters = 43

TABLE 3

Example of the space-time working set

r(t): E C B E A B D C D E B C B B

R: qd ® ® 10 OD 4 OD 15 4 2 5 8 9 2 0
5 3 2 5 1 2 4 3 4 5 2 3 2 2

End Corrections
Seg Size R=i

A 1 9
B 2 0
C 3 6
D 4 20
E 5 20

MissHS Volume corrected GOPT GWS
R=0 a (CO c(e) Tm(O) b(tt) TfAO) aCO) c(Q) TSg(O) Ts (O) W
0 1 0 13 2 41 2 0 43 43
2 1 2 12 2 39 1 2 45 67
4 2 8 10 6 33 2 e 53 89
6 0 0 10 0 33 1 6 53 107

8 1 8 9 2 31 1 8 61 123
9 1 9 8 3 28 2 18 70 130
10 1 10 7 5 23 1 10 80 135
15 1 15 6 3 20 1 15' 95 155

20 0 0 6 0 20 2 40 95 170
25 1 25 5 5 15 1 25 120 175
<33 5 15 5

i

Segment
Misses
m(0)T

• • • GWS

• • GOPT
Space-Time Cost

O O O GWS

O o O GOPT

Time Cost

20 10 60 80 100 120 140 160 180 200

Resident Set Space Time a {0)T

Figure 5. Demand curves of example reference string.

Figure 6. Demand curves for a data base system.

29

REFERENCES

Bar73 Bard, Y., "Characterization of program paging in a time sharing

environment," IBM J R & D 17, 5 (September 1973), 387-393.

Bar75 Bard, Y., "Application of the page survival index (PSI) to

virtual memory system performance," IBM J R & D 19, 3 (May

1975), 212-220.

Bel66 Belady, L. A., "A study of replacement algorithms for virtual

storage computers," IBM Sys. J. 5, 2 (1966), 78-101.

BeP74 Belady, L. A., and Palermo, F. P., "On-line measurement of paging

behavior by the multilevel MIN algorithm," IBM J R & D 18, 1

(January 1974), 2-19.

Ch072 Chu, W. W., and Opderbeck, H., "The page fault frequency paging

algorithm," Proc. AFIPS Conf. (1972 FJCC), 597-609.

CoD73 Coffman, E. G. Jr., and Denning, P. J., Operating Systems

Theory, Prentice-Hall (1973).

CoR72 Coffman, E. G. Jr., and Ryan, T. A., "A study of storage parti-

tioning using a mathematical model of locality," Comm. ACM 15, 3

(March 1972), 185-190.

Cou77 Courtois, P. J., Decomposability, Academic Press (1977).

Den68 Denning, P. J., "The working set model for program behavior,"

Comm. ACM 11, 5 (May 1968), 323-333.

Den78 Denning, P. J., "Optimal multiprogrammed memory management,"

in Advances in Programming Methodology III (R. Yeh & K. M.

Chandy, Eds.), Prentice-Hall (1978), 300ff.

Den75 Denning, P. J., "The computation and use of optimal paging curves

Computer Science Dept., Purdue University, W. Lafayette, IN 47907

Technical Report CSD-TR-154 (June 1975).

30

DeG75 Denning, P. J., and Graham, G. S., "Multiprogrammed memory

management," Proc. IEEE 63, 6 (June 1975), 924-939.

DKL76 Denning, P. J., Kahn, K. C., Leroudier, J., Potier, D., and

Suri, R., "Optimal multiprogramming," Acta Informatica 7, 2

(1976), 197-216.

DeS72 Denning, P. J., and Schwartz, S. C., "Properties of the working

set model," Comm. ACM 15, 3 (March 1972), 191-198.

DeK75 Denning, P. J., and Kahn, K. C., "A study of program locality

and lifetime functions," Proc^ 5th ACM Symp. on Op. Syst. Princs.

(November 1975), 207-216.

EaB77 Easton, M. C., and Bennett, B. T., "Transient-free working set

statistics," Comm. ACM 20, 2 (February 1977), 93-99.

FGG78 Franklin, M. A., Graham, G. S., and Gupta, R. K., "Anomalies :

with variable partition paging algorithms," Comm. ACM 21, ; ci'a-t-™-

(1978),

GrD77 Graham, G. S., and Denning, P. J., "On the relative controllability

of memory policies," Proc. Int'l Symp. on Computer Performance

Modeling, Measurement, and Evaluation,Worth-Holland (August 1977),

111—428.

MaB76 Madison, A. W., and Batson, A. P., "Characteristics of program

localities," Comm. ACM 19, 5 (May 1978), 285-294.

MGS70 Mattson, R. L., Gecsei, J., Slutz, D. R., and Traiger, I. L.,

"Evaluation techniques for storage hierarchies," IBM Sys. J. 9, 2

(1970), 78-101.

31

PrF76 Prieve, B. G.t and Fabry, R. S., "VMIN - an optimal variable

space paging algorithm," Comm. ACM 19, 5 (May 1976), 295-297.

RaR76 Ragaz, N., and Rodriguez-Rosell, J., "Empirical studies of storage

management in a data base system," IBM Research Report RJ 1834

(May 1976).

Rod76 Rodriguez-Rosell, J., "Empirical data reference behavior in

data base systems," IEEE Computer 9, 11 (November 1976), 9-13.

Slu75 Slutz, D. R., "A relation between working set and optimal

algorithms for segment reference strings," IBM Research Report

RJ 1623 (July 1975).

S1T74 Slutz, D. R., and Traiger, I. L., "A note on the calculation

of average working set size, " Comm. ACM 17, 10 (October 1974),

563-565.

Smi76 Smith, A. J., "A modified working set paging algorithm," IEEE

Trans. Computers C-25, 9 (September 1976), 907-914.

SrK74 Sreenivasan, K., and Kleinman, A. J., "On the construction of

a representative synthetic workload," Comm. ACM 17 , 3 (March

1974), 127-132.

TQT75 Tran-Quoc-Te, "An open formulation of working set policies,"

Report 10, Project MIMOSA, Facultes Universitaires N.-D. de

la Paix, Belgium (December 1975).

	Generalized Working Sets for Segment Reference Strings
	Report Number:
	

	tmp.1307986960.pdf.c9KyZ

