Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1975

Analysis & Applications of the Delay Cycle for the M/M/c
Queueing System

K. Omahen

V. Marathe

Report Number:
75-165

Omabhen, K. and Marathe, V., "Analysis & Applications of the Delay Cycle for the M/M/c Queueing System"
(1975). Department of Computer Science Technical Reports. Paper 111.
https://docs.lib.purdue.edu/cstech/111

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.


https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Analysis § Applications of the Delay
Cycle for the M/M/c Queueing System

K. Omsghen
Department of Computer Science
Purdue University
W. Lafayette, IN 47907

and

V. Marathe
Department of Business Administration
University of Illinois
Urbana, IL 61801

CSD-TR 165

Keywords: Delay Cycle Analysis, Busy Period Analysis,

M/M/c Queueing System, Waiting Time Distributions,
Multiprocessor Models.




1. Introduction

This paper addresses the problem of solving multiple-server
queueing models through the use of busy-period analyses. In the
past, this technique of busy-period analysis has been extensively
used for the M/G/1 queueing system and found to be a powerful
tool for dealing with a great many complex scheduling rules, par-
ticularly those involving Preemptive and nonpreemptive priorities,

was first used by Cobhan [4] and later by Avi-Itzhak, Maxwell, and

Miller [5] and others; the text by Conway, Maxwell, and Miller [6]

contains many of the results obtained for the M/G/1 queueing

System through the pse of this technique. 1In order to motivate

the analysis to be Presented, the typical Sequence of steps in such
2 busy-period analysis will be briefly covered.

When the tern "busy-period" is used, we will be referring to an
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the theory of Semi-Markov brocesses [7]). The analysis typicallyl
begins by first finding the Laplace—Stieltjes Trans form (LST) for
the distribution of busy period length for each case and then

obtaining the LST for the flow time or waiting time conditioned upon




the arrival finding a specified type of busy-period in progress.
If jobs are generated by means of a Poisson source, the distribution
of system states at arrival epochs will be identical to the steady-
state distribution of system states (see Strauch [8]). Using this
result, the unconditional LST for the distribution of flow time or
waiting time may be directly obtained. In principle, the LST
completely describes a distribution, but the inversion of the trans-
form is usually so difficult as to require that a numerical transform
inversion software Package be employed. 1In most cases the first two
moments of a random variabie may be found from the LST without
excessive effort,

The system to be analyzed in this paper is the multiple-server
Poisson-ExponentiaI queue, commonly denoted as the M/M/c queueing
System. The model may be described as follows:

There are c identical servers, each capable of
performing one job at a time. The incoming jobs
have independent and exponentially distributed
processing requirements with mean 1/u. The inter-
arrival times are independent and exponentially
distributed with mean 1/). It 1s assumed that the
SeTvers process the jobs continuously as long as
there are jobs in the system.

For each of the busy period types to be defined in later sections
the LST and first two moments will be obtained. In additibn, the

LST and first moment will be derived for the waiting time of a
job conditioned upon the arrival finding a specified busy-period
in progress.

2. Busy Periods for the M/M/c Queueing System

In a single-server System, a "normal" busy period is usually
defined to be an interval which begins with the arrival of a job
to an empty system and which terminates when the system again
becomes idle; this busy period Tepresents the length of time that
the (single) server is busy. A similar type of busy period for a
multiple-server system may be defined which is an interval during

which one or more PTOCessors are busy; however, there are additional




busy periods which are of interest. Define the following type
of busy period for the M/M/c queueing system:
Tk =min|t . (k) jobs in S5ystem at time Oﬁ]
(k—l) " " 1r " time t
where integer k > 1.

which the number in system is greater than or equal to k; alternatively,
this variable Tepresents the length of time neécessary to achieve ap
overall reduction of jobs in system by one. Due to the memoryless
pProperty of the exponentia]l Processing times, the distribution of

Tk will not depend on whether Or not any of the k jobs have received

prior Processing. For each random variable Tk’ we also define:

H (t)

(s}

Pr[Tk < t] = cumulative distribution function (cdf) for Tk’

LST for the distribution of Tk.

The propertiés of Poisson Processes summarized in Appendix 1 wiil
often be cited ip the remainder of the paper, and the following
notation will be employed:

A= (Poisson) arrival rate for jobs,
= (Exponential) Processing rate for jobs,
" = denotes ‘distributed as!’ e.g. MY is interpreted to mean

that random Variable X has the same distribution as r.v. Y.

Before Proceeding into the analysis, a r.v. will be introduced which
simplifies the pPresentation; for 1 < k < ¢, define:
Pk = T.v. denoting an_interevent ti@e associated with anp _
dggregate of k Simultaneous Poisson processes, each with rate yu,
cdf for Pk’
LST for the distribution of Pk'

G; (P2
Yy (s}

Referring to Appendix 1, we easily find the following:

7 (8) = ku/(s+ku),
E(P) = 1/(ku),

2
E(PR) = 2/(ku)?.

Given the above results, we may next analyze the properties of busy
period Tk'




LEMMA 1. For the M/M/c queueing system, the distribution of
busy period Tk has the following characteristics:
(1) For k > ¢,

Tk W Tc.

(ii) For k =
n.(s) = T.(s + A —lnc(SJ),
E(Tc) = E(Pc)/[l —lE(PC)],
E(T2) = E(Pi)/[l —?«E(Pc)]3

(i1i)° For 1 <k < c,

m(s) =y (s + A =An (s)),

E(T) = E(B) + ME(PE(T, ),
E(T]) = E(PD) [em.0])* + ae@pET, ).

Proof. We divide the proof into three sections corresponding to
the statement of the lemma.

(i) It is trivial to verify that, for k > ¢, r.v. Tk has the
same distribution as r.v. T.. There will be exactly c processors
active throughout the duration of these busy periods, and these
busy periods also have identical arrival processes for jobs.

(ii) Note that busy period Tc consists of an integer number of
intervals which have the distribution of P . If no jobs arrive
during the initial interval, the busy per1od T completes., If N

arrivals occur during the initial interval (dlstrlhuted as P ],

the busy period also includes N subintervals as shown in Flgure 1.

——Pc—|— N+c-1——|~TN+c—2 B l——Tc——-

T
c

'Figure 1. Subintervals with a busy period Tc'

At the end of the initial interval there will be (N+c-1) jobs
in system, and the subintervals TN c-1 through T will be needed
to reduce the number in system to (c-1). These sublntervals

each have the same distribution as Tc(see part (1)), and from




the convelution property of the LST we have
e Mewy n
ne(s1Pepsli=n) = exp(-sp) [ (s3] .

Removing the conditioning on N and Pc, the unconditional
LST becomes

[ -] =]

p£0 Afo Elp)n/na exp(—lp)nc(sch=p,N=n) dGc(p),

n. (s)

Yc(s + A —Anc(s)).

The properties of the LST allow the first two moments for TE
to be found from —né (0) and ng(o), respectively. Solving the
resulting expressions for E(Tc) and E(Ti) Bives the desired results.
(iii) For 1 < k < ¢, each busy period Tk may be decomposed into
the intervals shown in Figure 2. The first of these intervals
is an interevent time for an aggregate of k Poisson processes,

each with rate p, and one Poisson arrival prccess with rate A.

Case 1: 'First Event' is an arrival.
arrival
I L < L T
Case 2: 'First Event' is a departure.
departure
L ¢

Figure 2. Intervals within.busy period Tk (1 <k < c).

Random variable Ik is therefore the time until the first

arrival or departure event in the busy period. If the 'first
event' is an arrival, the remainder of the busy period is
distributed as the sum of busy periods Tk+1 plus Tk' Otherwise,
the busy period ends if the 'first event' is a departure. The
probability of the 'first event' being an arrival is A/(A+ku)
and that of a service completion event is ku/(A+ky).. The LST
for the distribution of 1, 1s found from Appendix 1 to be

(A+ku)/(s+A+ku), and the convolution property of the LST gives:

m(s) = [Owin/soxia)] [0 0k dng, ;53 (5+ Cows Gavieny ]




Solving for nk(s), we obtain
nk(s) = ku/(ku+s+A-lnk+1(s)).

Noting that Yi(s) = ku/(ku+s), the above result may be written as
M (s} = v (s + 3 -any 5 (5)).

The first two moments for Tk are directly found by evaluating
—ni(O) and nE(D], Tespectively. Q.E.D.

Another type of busy period found to be useful in the analysis
of the M/G/1 system under non-preemeptive scheduling rules is the
delay cycle (cf. reference [6], Chapter 8). A delay cycle is a
generalized busy period which arises in situations where jobs
arrive while the processor is unavailable due to some feason; for
example, the processor(s) may be temporarily broken down or busy
servicing higher priority jobs. Figure 3 gives an example of a
delay cycle for the M/M/c queueing system.

system system
empty | empty
T T T
0— s ] p—
S~ N
delay C processors busy time until system empty

Te. |

S

Figure 3. Delay Cycle Te for the M/M/c queueing system.

The delay T, represents an amount of time during which-4Y1 ¢
processors are unavailable. At the conclusion of this delay, the
system will begin processing any jobs which arrived during the

initial interval. The remainder of the delay cycle is the sum of

two subintervals Tf and Tg during which jobs are serviced. Subinterval
Tf begins immediately after the delay and lasts until there are fewer
than ¢ jobs in system (this subinterval has length zero if less than

€ jobs arrive during the delay). Subinterval Tg begins immediately
after Tf and tepresents the time necessary to clear the system of jobs.

The following notation is introduced to deal with the delay cycle
described above:




T0 Delay during which the c processors are unavailable,
H (t) = ¢df for T0
0(5] = LST for the distribution of TO'
It is assumed that the LST and moments for r.v. T0 are given,
T =min [t: system empty at o .

delay interval Ty commences at 0

System again empty at time t > TD

He(t) = cdf for Te’
ne(s) = LST for the distribution of T :
T. =

¢ = length of interval commencing immediately after delay T0

and terminating when there are less than c jobs in system,

cdf for Tf

LST for the distribution of Tf;

Tg = interval which begins at the conclusion of Tf and which

lasts until the system is empty,
Hg(t) = cdf for Tg,

He(t)

ng(s)

'ng(s) = LST for the distribution of T
We next present a lemma describing the distributions for the
random variables given above.

LEMMA 2. The LST and first moment for random variables T

Tf, and Tg are given by:

c-~1

Te(s) = [ngls#r-n (s)) Jﬂ O R X0

+ nU(S'l-}L)El— n nj (5)] / [nc(sz] c-1 ]
j=1

+ :EI (-1)™ /n] g (s+3) TI n, (s)—[n . (s)] ﬁ (Sﬂc 1-nf{,
ngls) = E [-H™aY né“J )

+[ no(A-An_(s))- 2: -1)™ /n][n (S)]n n)m} . (s)]° ]




c-2 n
= + - nn ] (n)
NORENORE] (0™ mi] n SUENS
c=1 c-2
- M0y gl (n)
' 'J'T=T1 3 () [1 nfol-E D /n']no (1)],
E(Tg) = E(Ty) + E(Tg) + E(T,),

. Q= )
E(T,) = E(Tc){[AE(To) - n§0 n(-1)“1“/n§| né“) (A)]
c-1
_ (c—l)[l- n2=:0 [(—l)nAn/n!]nén)(A)]},
E(T,) = :Ei E(Tk){l - kz: [(-1)“x"xn:] né“) (J\)].
3 n:

Proof. The above LSTs are derived using similar techniques;

given the length of the delay and number of arrivals during

the delay, the conditional LST is found for each type of interval,
and the conditioning is then removed to find the final result.

Delay cycle Te consists of delay T pius the time (sub-

0
intervals Tf and Tg) needed to clear the system of all jobs.
Recall that a busy period Tk (k > 1) represents the time

necessary to reduce the number of jobs in system from k jobs

to (k-1} jobs. If N jobs arrive during the delay TO’ the

remainder of Te is the sum of busy periods Th through Tl' It ;
follows that the conditional LST for the distribution of T, equals é
n :
ne(s[T0=t,N=n) = exp(-st) JEE nj(s) forn > 0, é
exp(-st) for n = 0. |

Since nj(sj = nc(s] for all j greater than c, we have for n > ¢
c-1 ;
ne (s Ty=t,N=n) = exp(-st) ncts)] e | SO :
j=1

Removing the conditioning on the number of Poisson arrivals
during the delay and on the delay length, the unconditional
LST is found to be '

) o @ n : ] _ =
Ne(S) = tio nfo (it) /n.] exp( At)ne(slTo t,N=n){ dH, (t),




= ﬂ0(5+?\] + [[( l]nln/n] (n) (s+1) n n. (s)}

rﬂ n; (s)]/ n.(s)]" ”no(s'fl M (s))-ng (s+2)

) IE [( 1) .X/n][ (s)] 0(“3(s+x)]

In obtaining this resuit, it was necessary to make use of the
following property of the Laplace-Stieltjes Transofrm (see
reference [9] ,p. 57):

tzo exp(—st)tndHO(t) = (-1)nnén)(5)-

The expression fbf ne(s) is, with minor rearrangement of terms,
the desired LST for the distribution of Te.

We next derive the LSTs for Tf and Tg’ again conditioned
upon the number of arrivals during the delay and on the delay
length. Subinterval Te has length zero if there are fewer than
¢ arrivals during delay TO; if there are N arrivals, where N
1s greater than or equal to c, subinterval Tf consists of the
sequence of busy periods T,, N 1""’Tc' Since each of these ?
busy periods has the same distribution as T , the conditional
LST for the distribution of Tf becomes

nf(s|T0=t,N=n) =11 for 0 < n <,
ETC(S]]nhCH for c < n.
Subinterval Tg also has length zero if no jobs arrive during
the delay. If N jobs arrive during the delay, where N is some
positive integer less than c, subinterval Tg is the sum of
N-1?"""» Tl'
after a subinterval Tf having length greater than zero. Since

busy periods Tn, Otherwise, Tg begins immediately
subinterval Tf ends with (c-1} jobs in system, Tg is the sum

of busy periods Tc—l through Tl' The conditional LST for the
distribution of Tg is therefore given by

ng(s|T0=t,N=n) = 1 for n = 0, |
I |
§ TT n.(s) for 0 < n < c-1,
2] J —
J
c-1
n. (s) for ¢ < n.
b j=1
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\
The conditioning on numb:: of arrivals and on delay length for
the above can be removed . n exactly the same manner as used for
delay cycle Té, and the disired LSTs are obtained.

The expected values tue Tes Tf, and Tg follow directly from
_né(o), -n%(OJ, and —né{O), respectively. Q.E.D.

At first glance, the teims appearing in the expressions for
the expected lengths of inte:vals Te and Tg may seem somewhat

Puzzling. The terms are better understood if one notes that
. . . n
Pr [N:n arrivals during delay TO] = [(—1) An/n!]né )(1].

Since the arrival process i Poisson, the expected number of arrivals
during the delay is given by AE(TD); using this information we can
rewrite the expressions for the expected lengths of Tf and Tg as

shown below, where N = number of arrivals during TD:

E(Tg) = E(Tc)'Pr[N > cJENIN > ¢) - (c-l)Prl[fh' > c]}
and c-1

E(r) = Z E(‘I‘n)Pr[N > n].

n=1

The above interpretation is consistent with the type of result that
one intuitively expects.

3. Waiting Time Under the FCFS Discipline

Having obtained results pertaining to the distribution of the
two busy period types introduced in the previous section, we consider
the (conditional) waiting time for a job which arrives to find one of
these busy periods in progress. It is assumed that the First-Come-
First-Served (FCFS) discipline is employed and that the system is
not saturated. Define:

W = Waiting time for a job (i.e. time between the arrival of a
job and the instant that it first goes into service),

A(w) = cdf for random variable W,

as) = LST for the distribution of W.

In order to avoid repetitious derivations, a new type of delay
cycle Tb will be introduced; this delay cycle is of interest because
both a busy period Tc and a subinterval Tf (within a delay cycle Te)
are special cases of this type of interval. Define interval Tb
as given below:
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'I‘p =min | t: (c-1) jobs in system when L,delay T

commences at time 0 p,0

(c-1) jobs in system at time t, where t 3_Tb 0

That is, there are (c-1) "initial" jobs in system when T begins;
interval Tb then consists of a delay Tp,O which is assumed to have
a general distribution plus a "delay busy period" during which jobs
are serviced and for which ¢ or more jobs are in system.
THEQOREM 1. The conditional LST for the distribution of waiting
time W in the M/M/c system, given that a job arrives during a
delay cycle Tb, is egual to
a(s|arrival during TP) = [1—np,0(sﬂ /{E(Tb)[}yc(s)-x+%]]
where ”p,O(S) = LST for the distribution of delay Tp,O’ and the

expected value for the conditional waiting time is
E(W|arrival during T ) = AE( )/{2 [1 AE (P )]]

+E(T 0)/[2E(T )]

Proof. Interval Tp will be viewed as the sum of subintervals

T . where j > 0; Figure 4 illustrates the situation.

P,
___TP'O_LTP,I ] L II L

Figure 4. Subintervals with delay cycle Tb.

The initial subinterval is the delay Tp,O; at the conclusion of
this subinterval there will be the (c-1) initial jobs plus those
jobs which arrived during the delay. The number of jobs arriving
during any subinterval Tb y will be denoted by NJ, and each sub-
interval Tp 3 (where j > 0) is defined as the sum of NJ 1
event timeg P (i.e. the time for Nj_1 departures). For j >0,

inter-

define:

Tb j = dength of subinterval-j of delay cycle Tb,

H .(t) = cdf for T .
p,J() c ’

]

np j(s) = LST for the distribution of TP i
L] >
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The LST for the distribution of subinterval T j will now be
»
derived; using the convolution property of the Laplace-

Stieltjes Transform, we have
= =) < n .
%,j(slTp,j-l_t‘Nj—l n) [yc(s)] for j > 1.

The conditioning is easily removed to obtain

"€ - n, n
o, 5 (8) tL’JlnEO [(m /] exp(-at) YCCS)] I 46, (6

L=y _(5)).

I'Ip’j_
If the system is operating under nonsaturated conditions, there
will be a finite j for which TP.j is zero, and it will also be
true that

;:Elt np,j(s) =

A job which arrives during subinterval Tb j of busy cycle
' Tp will encounter the situation illustrated in Figure 5,

Arrival
W

Pl
Figure 5. Waiting time for a job arriving during
subinterval-j of delay cycle Tp'
The job arriving during subinterval Tp,j will be required
to wait in queue for an amount of time Y until) the end of the
subinterval plus an additional amount Z which represents the
time for N departures to occur, where N is the number of jobs
which arrived previously in time Tf,j-Y' Quantity Y is a
random modification (see Appendix 1), and r.v. Z is the sum of
N interevent intervals P.. The convolution property of the
Laplace—Stieltjes Transform gives the following conditional

LST for the waiting time distribution:
a(s|T, s=t,Y=y,Nen) = exp(-sy)[vc(S)]"

The conditioning on N can be easily eliminated because the

arrival process is Poisson; therefore, we obtain
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] = — - - - n 1 - - = - -
G(S,Tp'j-t,Y—)V) = n=20 [[A(t Y)] /n] exP( A(t )")JG(SITp,j'—t,Y-)’,N—n),

= exp(-syJexp(-A(t~y)JeXP(>«(t—y)-vc(s)).
Making use of the fact that Y is g random modification, we have
Pr[ <Y< +d,t<T_.<t+dt]=dH (t)dy/E(T_ ),
The conditional LST for the waiting time of g job, given that the

arrival occurs during the jth subintervaj of delay cyecle T » equals

. t
a(s|arrival during Tp,jJ = . yjo a(s]Tp’j=t,Y=y)dy dHP,j(tJ/E(T .?,

s

t=
= [np,j (A—}\yc(s))—np’ijJ:, /{E(Tp,jJ Ay, (5)-“5] }s
= [np,jﬂ(SJ—np,j(S):,/{E(Tp,jJ[AYC(SJ-A*'f]} :

The probability “j that a job arrives during subinterval Tb’
given that the arrival takes place during delay cycle T s 1s
equal to the S5teady-state Probability that interval T 3 is

in progress (see Strauch [8]).

ms o= Pr[%rrlval during Tb’j]Tb in progres%] = E(T ,.)/E(Tbj.

T is therefore equal to

o
a(s|arrival during T ) = 3 T.a(s|arrival during T ),
S P.j

-]

'Eo [”p,j+1 (5)-np,j(53] /{ E(T) [MC(SJ—MSJ},
j= :

[l-np,o(sJJ /{E(Tp) [Ayc(s)-hs] } .

The first moment for the condi tional waiting time ig found
by making use of 1} 'Hospital's Rule to evaluate —a'(D]arrival during T 3.
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a(s|arrival during T ) = [1v. 6] / ‘E(Tc] [lyc(s)-—hgﬂ},
and the expected value for the conditional waiting time is
E(Wlarrival during T ) = AE(P%)/ [2 [I—AE(PC)]]
B2y [e] -
Proof. Observe that busy period Tc is a special case of delay
cycle Tb in which the delay T ,0 ig an interevent time Pc.
Replacing np,o(s), E(TP'O) and E(T '0) inzTHEOREM 1 by the
corresponding terms Yc(s), E(Pc), and E(Pc), we obtain the
desired results. Q.E.D.
Given the LST and expectation associated with the waiting time
of a job conditioned upon its arrival during a busy period Tc’
sufficient information is available to determine corresponding
Tesults for busy period T, where 1 < k < c.
THEOREM 3. The conditional LST for the distribution of waiting
time W for a job in the M/M/c system which arrives during a
busy period Tk’ where 1 < k < ¢c-1, is given by

a(s|arrival during T) = 1 (k) + wz(kJa(slarrival during Thsp)

where nl(k) = E(Pk)/E(TkJ and nz(k) = E(Pk)E(Tk+1)/E(TkJ R
therefore, the expected value for the conditional waiting time is
E(W|arrival during Tk) = nz(k)E(W[arrival during Tk+1)'
Proof, puring busy period Tk’ the system will be in one of
two possible states:

State-1: exactly k jobs in system,

State-2: (k+1) or more jobs in systen.
Let nl(kJ and nz(k) denote the steady-state probability that the
System is in State-1 and State-2, respectively, given that busy
period Tk is in progress. Using LEMMA 1, we have

E(Tk) = E(Pk) + AE(Pk)E(Tk+1).
Observe that the first term on the right-hand side of the equation
Tepresents the expected time that the system is in State-1 during
interval Tk’ and the second term is the expected-time in State-2.
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'
Using the method described in Appendix 2, we obtain the
representation for (k) and = (k) given above,

Because a job arr1v1ng when the system is in State-1 can'
immediately go into service (i.e. k < c) on an available

processor, the waiting time of the job is zero, and therefore

the conditional LST is

'a(s]State—I) =

The conditional LST for jobs which arrive during State-2 is

a(s]arrival during Tk+lJ’ and the random property of Poisson

arrivals gives: )
a(s|arrival during Ti) = m3(k) + 7,y(K)a(s|arrival during Tee1) :
and the expected value for the waiting time conditioned upon

arrival during Tk is found to be

E(W[Tk) = T, (K)EW|Ty,,). Q.E.D.

Using THEOREM 2 and THEOREM 3, the expected values for the
conditional waiting time in the M/M/c system under the FCFS discipline
may be found for arrival during busy periods Tc’ Tc-l""’Tl in a
straightforward fashion. This completes the waiting time apalysis
for the first type of busy period introduced in the pPrevious section,
and we next examine the delay cycle Te'

THEOREM 4. Given a M/M/c system, the conditional LST for the

distribution of waiting time for a job which arrives during delay

Ty (within delay cycle T ) is given by

a(s|arrival during T o) =

={ [0 -2 s3]/ {[Y cs)] “Us-rx (si”

- 1y (520(0,5) + z [- AJ "l ng om0} ey,

where 6(n,s) = {1-[}A/(s-xj] - 1 “}/s

—{1—[-lvc ()/ (s-3] °‘1"“}/{ [v. () °‘1'“[s—x+xvc(s)]].

It follows that
F(W]arrlval during TO) = E(To)/ [?E(Toi]

ree) fead/ [Eag] - o - ena-ep).
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where

8 = { (c-2) (e-1)/2 - :E: [(-A)n/nzl ng“) ) [(c-2) (c-1)/2-(n-1) n/z]}/

[*E (To)]

, = {en - z: [0 a0 Eo1a] / fecr,) -

Proof. Recall that delay cycle Té starts with delay T0 and that

and

the system is initially empty of jobs. A job arriving during the
delay portion of the delay cycle encounters the situation shown
in Figure 6.

Arrival
| W

T,-Y < Y z
To—

Figure 6. Waiting time for a job arriving during delay T

Interval Y in the above diagram represents the time between the0
arrival of the job and the end of delay T,; because the arrival
Process is Poisson, interval Y has the distribution of a

" random modification (cf. Appendix 1). If N jobs arrived to the
system during TO—Y, interval Z represents the amount of time
that the job will be delayed due to jobs which arrived earlier
during the delay. Interval Z equals zero if N is less than the
necessary for N-(c-1) departures to occur, and this time is the
sum of N-(c-1) interevent times Pc. From the convolution

property of the Laplace-Stieltjes Transofrm, we have

u(s|T0=t,N=n) =] exp(-sy) for 0 <n < ¢c-2,
exp(-sy} [\r (s)] n-(c-1) for c-1 < n .

The conditioning on the number of arrivals N can be removed by
taking into, account the probability of any specified value of

N for the interval TO-Y.

a(s|T,=t,Y=y) = }:0 [(Jt(t-y})n/n!] ekp(-—l(t—)r_])u(slTO:t,Y:y,N:n) ,
n=
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-2

c-2 n.
- eplan) T [B-y™n] expi-(s-nyp)
ne .
* [re) T Dexp - v ) exp (- (s-aeav_(3y)
- (c-1) e n,;
A8 oP(3t) Z [0y (0"n] ew-(s-1y) .

Because interval Y is a random modification, the.conditioning

on Y and To‘may be removed to give

a(s|arrival during T,) = I [ als|Tg=t,Y=y)dy ai (t) /E(T,)
t=0 y=0

We first consider some terms which pose a problem in the f
evaluation of the above integral. Define Ql(t,n), where

0 <n < c-2, as shwon below:
sns< . :
SCORS [ 923" expl-(s-n1y) .
For n=0, we have
Q (2,0) = [L-exp(-(s-1)t]] /(s-1).

For 1 Xn < c-2, we obtain the following result by using

integration by parts:
G em = [0 m] 7 sy - /-9 tnen).

From this result it follows that

c-2 c-2
2 Qtn) =) T (- (s-an*
n=0 k=0
c-2 c-2-n X
JE (At) /n] E {(-2/(s-2)) ]/(s-l).

Noting that several partial sums of geometric series appear in

the above expression and substituting for Ql(t,OJ, we obtain:
c-2

Z Q(tm) = Qt,0) [1--a/¢s-1))* Y [i- (o2 s-a)]

n=0

+ (1/(s-1)) c?—‘.z [(xt)“/nﬂ [1-_(_;\/(5_”)‘:-1-11 /E-(—A/(s-x))]

= . exp( (s- A)t)[l - (A (s-a)¢ IJ/
+ E [(At) /n] [l (-A/ (s- )‘))c 1-] /s
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-

Define another function Qz(t,n) to be
t
Qem) = [ [Or () (e "n] expi-(s-nyyday -

Using the same procedure employed for the function Ql(t,n),
we obtain )

Ci'z Q,(t,n} = -BXP(—(s—k)t){l—[-l‘rc(S)/(s—AJ]C'I}/{s-AHYC(S)]

n=0
) + :éz [(ATC(S)t)n/HEI ’1—[-4\70[5)/(5—1)] c-l_n}/[s-Mch‘(s)'.

Returning to the evaluation of a(s]arrival during TOJ’ we have

a{s|arrival during T )
0 c-2

= f e T qem
y=0 0 ¢

= n=
et " exp-eay 1)) § et (soaenv (1m)ey

c-2

S [re6] " Pewrn 2 oym Jay ey

n=0

Substituting the results for the sums of functions Ql(t,n) and
Qz(t,n) into the above equation, the evaluation of the integral
may be completed. - Rearranging terms in the result gives the
desired expression for a(s|arrival during To) -

The expected value for the conditional waiting time is
found by making use of 1'Hospital's Rule to evaluate
-a' (0| arrival during TO)' Q.E.D.

Observing the result for E(W|arrival during TO), one sees certain
terms which are easily explained: €.g. we might anticipate that the
waiting time would consist of the expected length of the random
modification, E(Tg)/ [?E(Toi] » Which is the time between the arrival
of the job and the end of delay TD' The remaining terms in the
expression are explained by making the following observation: The
time interval between the start of the delay and the arrival of the
job whose progress we are following has the same distribution as
the random modification. Referring to Figure 6, this is equivalent

to stating that the distribution of interval TO-Y is identical to




-19-

that for interval Y. Define random varisble X as follows:

X = interval TO—Y in Figure 6,

T(s) = LST for the distribution of X.
Because X has the distribution of a random mbdification, we have

the following results from Appendix 1:
E() = E(T)/ [2E(T,]

[l—no(s]] / ESE(Tb)] .

We define a variable N to be

and

1(s)

N = Number of previous arrivals to the system during interval X.

A patient person can verify that the following equations are true:

c-2 : c-2 n (n)
Z n.Pr [N=n arrivals during x] = Z [(—JL) /ni] 7 (M) .n,
n=0 _ n=0
= 41
and
c-2 c-2
Zz Pr [N=n arrivals during X] = X (-l)n/n!]'r(n) ),
n=0 _ n=0
= ¢,-

If we interpret terms $1 and ¢ in the above manner, the expected
length of the conditional waltlng time becomes (cf. Figure 6)
E(W|arrival during Ty) = E(Y) + E(2) ,

where the expected length of interval Z is

E(Z) = E(P) [Pr [ 2 1 [eiin > c-1] - e-ypr [> c—l]}.

Thus, we have a satisfying explanation for all terms in the

expression for the expected value of the conditional waiting time.
THEOREM 5., Given a M/M/c system, the conditional LST for the
distribution of waiting time for a job which arrives during

interval Te (within delay cycle Te) is equal to

a(s|arrival during T) = [l-nf 0(5)] /[E(Tf) [AYC(SJ-A+5] ],
where ng (s) = czz [( -1) /n] (n) ()

+{HO(J\-1TC(S)) - [( '\Y (s)) /n (n)(}‘]] [_Y (b)]c 1
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i

The expected length of the conditional waiting time is given by
E(W|arrival during T,) = E(Pi)/ [2(1-x5(pc))]

+E(T§,0)/ [2E (Tf,o]]

where
(Tg o) = E(P | AE(T,) - [( -2) /n] (M) 3y n
! n= 0
- (e-1) [1- ciz [(-A) /n'] n(’”m]]
n=0- 0 ’
and s
2 = 2 - - - . EC LY {n})
E(Tf,o] [E(Pc)] lZ(c 1) [.\E(TO) n§0 (-2) /n] ng  (A)en

c-2
Ferg - 2 [0 o) @on

+ clc-1) [1- 2 [( ) /n] (“)m]l

+ E(Pi)'AE(TOJ - [( A) /n] n(“J (A)en
- {c-1) [1- E {-1) /n (n)(lJ]]

Proof. Interval T within delay cycle Te begins immediately
following delay T0 and lasts until there are (c-1) or fewer

jobs in system. This means that the interval has length zero if
there are fewer than c¢ arrivals during the delay. Interval Tf

can’' be represented as the sum of an infinite number of subintervals

Tf K’ where k > 0, as shown in Figure 7.
1]

T T T

£,0- f,2 £,n

£,1

Te

Figure 7. Subintervals of interval Tee

Define a variable N as follows:

= Number of jobs which arrive during delay TO'
Subinterval Tf'0 is the time necessary for N-(c-1) departures to
occur, where N > c-1. At the conclusion of Tf 0 there will be
(c-1) jobs in system (i.e. the jobs which arrived during the delay)

plus any jobs which arrived during Tf 0
»
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Interval Tf mey now be seen to be a special case of a
delay cycle Tp, and by replacing np 0(5), L(T 0], and E(Tp,0
in THEOREM 1 with corresponding terms nf O(s), E(T 0) and
E(Tf 0), respectively, we immediately find the cond1t1ona1
LST the waiting time of a job which finds 1qterval Tf

in progress. However, we have yet to derive the LST and
moments associated with subinterval Tf 0" The conditional LST
" for the distribution of Tf 0’ given the number of arrivals N

which occur during delay TO’ is given by
nf’ofs]T0=t,N=nJ = {1 for 0 < n < ¢-2 ,
E,'c(s)] m=-1) poren1 < n.

The conditioning on the number of arrivals and length of

delay T0 may be removed to give
"e,0) - § 0 z [(m /n] ne ols|Ty=t,Nen) a@n (e

jo :[(m "] ew(an) + [, (sn] T expt- v s1)0)

- n'=£0 IGAODRZY exp(-m” dH, (1),

[-2770] (M )

€2 n (n) c-1
+ln0(?\-?wc(5))- EO [(—JWC(S)) /nil Ry (k)]/ [YC(S]] -
=

The expressions for E(T 0) and E(Té 0) are found directly
from nf 0(O) and n (0)

The last theorem in this section deal with the waiting
time for a job arriving during delay cycle Te' This result has a
number of interpretations which will be discussed in the next section;
at this point we note that this result can arise in the analysis of
certain nonpreemptive priority disciplines in which there is a job
class whose resource requests are so large that no concurrent

processing is possible when that class of job is in service.
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THEOREM 6. Given a M/M/c system, the conditional LST for the

distribution of waiting time W of a job which arrives during
delay cycle Te is given by
a(s|arrival during T) = ﬂou(slarrival during T,)
+nfu(s|arriva1 during Tp)
c-1

+ 3 nku(slarrival during T
k=1

£

=

11

H

L)
=
I

= E(TO)/E(TEJ »

£ = E(Tf)/E(Te)s

=
1

and, for 1 < k < c-1,

k-1 '
n, . {n)
.- Ec'rk)[l- = [eon ] nd cx)]/EcTe)

=1
1

The expected waiting time for a job which arrives during delay
cycle Te is therefore equal to
E{W|arrival during T) = nOE(w[arrival during T,)

1
+ufE(H|arriva1 during T)

c-1
+ ¥ 7, E(W|arrival during T,).
k k
k=1
Proof. Given that a Poisson arrival occurs during interval Te’
the probability that the arriving job finds the system in a
particular state equals the steady-state probability of that
state within the delay cycle.
Delay cycle Te is the sum of delay T0 and two intervals
T

been previously defined. Recall that interval Tf starts

£ and Tg which constitute a delay busy period and which have

immediately after the delay and lasts until there are less than
¢ jobs in system. Interval Tg begins at the conclusion of Tf
and terminates when the system is empty. Interval Tg is the
sum of (c-1) subintervals Tg 5’ where 1 < j < c-1; these

»
subintervals are illustrated in Figure 8.

Tg,c_l__J_Tg'c_z_l o L

T
B

Figure 8. Subintervals within interval Tg'
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Subinterval Tg c-1 begins immediately after the conclusion of
)

Tf, and this subinterval ends when there are less, than c-1 jobs

in system.~ For 1 < j < ¢-2, interval Tg ; begins immediately

following subinterval T o1 and terminates when fewer than j

£,]

jobs remain in system. Subinterval Tg j has length zero if
»

less than j jobs arrive during the delay; otherwise, the length

of T
g

j has the distribution of a busy period T (cf LEMMA 1).

For 1 < j < ¢-1, define:

Tg'j = length of subinterval-j of Tg shown in Figure 8, 5
H . (t) = cdf for T .

g,j () = cdf for T, 5,

n_.(s) = LST for the distribution of T ..

8,) £]

The conditional LST for the distribution of Tg 3 given that N

jobs arrived during delay TO is equal to

.(s|T =t ,N=n) = . (s for j <n
ng,iITg ) lnjc) iz,

1 for n < j,

Removing the conditioning on the number of arrivals and length

of delay T0 gives the following result:

J -1
D n=j
1
(n}
[( A) /n no 0) [i-ny(sY + ).

By LEMMA 2, we have
E(T,) = E(Ty) *+ E(T;) + E(T ),

5 . E(T_ .)

= E(Tg) + E(Ty) + 2 Z Y

The steady-state probabilities that the system is in any given

state &uring delay cycle Te will be defined and calculated using
the method of Appendix 2:

m

0

Pr [delay Toldelay cyele T_ in progres{] ,
E(Ty)/E(T,);

= Pr [intarval Tfldelay cycle T, in progress] ,

E(T,)/E(T,);

[(m "/l exp(-atyen, (s) z [k /n] exp(-at)aH, (¢)




— Ly

' .
and, for 1 < j < ¢-1,

m.

Pr [suﬁinterval T .|delay cycle T in progress] ,
5 g,;ldelay cycle T in progress]

E(Tg,j)/E(Te)'

Evaluating —né j(O), the expected length of subinterval T
»

L]
is found to be

j-1
E(T, ;) = B(T) {1 - EU [(-A)“/n.'] né‘” (x)].
n=

Te.j
Substituting the above into the corresponding expression for
“j' we obtain the steady-state probabilities as given in the
statement of the theorem. By the random property of Poisson
arrivals, these probabilities will also be the probabilities
that an arrival finds the system in that particular state,

given that delay cycle Te is in progress. We therefore have
a(s|arrival during T,) = uoa(5|arriva1 during T)

* nfa(s|arrival during Tg)

c-1
+Z w.a(s|arrival during T.)}.
Pt j

The expected waiting time for a job arriving during delay

cycle Te follows directly from -a'(0|arrival during Te). Q.E.D.

4, Applications and Extensions of the Method

In this section we consider a representative sample of
applications for the results derived in previous portions of this
paper. Furthermore, a discussion is given of ways in which these
Tesults may be easily extended to deal with other M/M/c queueing

models as well.

4.1 Comparison With the M/G/1 Queueing System

We begin by pointing out similarities in certain results for
the M/G/1 and M/M/c queueing systems which have been noted by 2
number of authors. Consider a busy period T for the M/G/1 system
which is initiated by the arrival of a job to an empty system, and

define the following; .
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0 jobs in the M/G/1 system at time 0~
T=min [ t: 1 job in the M/G/1 system at time 0°
! 0 jobs in the M/G/1 system at time t

Poisson input rate for jobs to the M/G/1 system;

General Processing time for a job in the M/G/1 system.

If we examine results for busy period T given in reference [6]

Pp. 149-155, it may be seen from LEMMA 1 that busy period Tc in

the M/M/c System (with arrival rate A and interevent time Pc)
appears to have the same distribution as g busy period T in the
M/G/1 system when A is equal to A and where P has the same
distribution ag Pc. Let us use symbol '»' to denote that two

random variables have the Same distribution and symbol '=! ¢q

denote the equifalence of parameters. The above-mentioned situation
may then be described as given below:

'I‘c ~“ T when P Pc and A =

If we examine the expected waiting time for a job in the M/M/c¢
System which arrives to find busy period Tc in progress, it is again
found that the waiting time distribution is identical to that for an
arrival to the M/G/] System under the FCFS discipline which finds
busy period T taking place if again A = A and P - Pc' If we compare

to the M/M/c system as illustrated in the example given below.

Example. Waiting Time for the M/M/c System Under the LCFS Rule.

Consider a M/M/c System which employs the Last-Come-First-Served (LCFS)
discipline at the queue so that, at a scheduling epoch,-the most recent
arrival is chosen for servicing; we assume here that once a job goes
into service it is Processed to completion. Under both the LCFS and
FCFS rules a job arriving to find fewer than ¢ jobs in system
immediately goes into service and therefore encounters 4 waiting time
of zero, Jobs are required to wait only when arrival occurs during
an interval Tc’ and the distribution of busy period Tc is identical
under the FCFS and LCES rules,

Results for the M/G/1 system under the LCES rule given in
reference [6], Pp. 155-158 allow us to state the following for the
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M/M/c system (using the same notation as used for the M/M/c system
under the FCFS,rule but with subscripts denoting the scheduling rule):

[ne@] 7 {eey [smrv o]
E(P2)/ {20130 )) E’(Pc)] ;
B/ {3128, )) )
+A[E(P§)]2/ {Z[I—AE(PC)]SE(PCJ; .

be used to obtain the conditional

val during busy period Tk’ where
It also follows that for the M/M/c queueing s

have similar results to those for the M/G/1 system:

FLers) = Epcrg (W)

aLCFS(s[arrlval during T.)

ELCFS(W[arrival during T.)

E crs (Wlarrival during T))

The resﬁlts of THEOREM 3 may then

waiting time distribution for arri

1 <k<c. ystem we

and
2 2
Ercps (W) = Epepg(W )/[1-3E(P}].

This type of analysis can also be ap

distribution for the M/M/c system un
random Tule as well,

Plied to analyze waiting time

der other rules such as the

4.2 Variations Using Delay Cycles

Many modifications of a simple M/M/c qQueueing system seem to
include the concept of delay cycles in one wa

following are examples of such modifications.

Example. Multiprocessor Facility With

Y or another. The

'Down' Pauses at the Fnd

of Busy Periods.

Consider a multiprocessor service facility which can s

imultaneously
process up to ¢ jobs at one time.

Whenever the system is empty, all
C processors are assigned to some other obligation which takes a time
T0 having a general distribution.

in such a System is that for arriva
earlier (cf. THEOREMs 4,5,6).
of the interval Ty the queue is

The distribution of waiting time

1 during a delay cycle Té derived
We assume here that at the conclusion
examined and if empty another interval
Tb is initiated. This will guarantee that eve

Ty arrival to the system
finds a delay cycle Te in progress.
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Example. Multichannel Facility With 'Warm-Up' Time.

Consider a multichannel system in which the Processor, once 1ﬁle,
needs some warm-up time or a setup time TU’ of a general distribution,
after the arrival of the first job. After this time TO’ it starts
processing the Jobs and continues processing until the system is
empty. The analysis of this system is done essentially in the

same manner as for the delay cycle Te. The difference lies in the
small changes required to account for the first job which was already
in the system at the beginning of the delay T;. This job is the one
responsible for initiating the delay cycle in which the warm-up time
acts as the delay interval. Figure 9 illustrates the important

random variables involved in the analysis.

system initial system
empty arrival . empty
* L *
1 TD Tf T
* g
TAL
L

Figure 9. Busy-Idle Cycle and Subintervals.
The mod1f1ed delay cycle T is comprised of subintervals T {warm-up
time), Tf (during which ¢ or more jobs are in system), and T; defined
in a manner similar to the subintervals of delay cycle Te' Idle
period T is an exponentially distributed interarrival time with mean
1/, and busy-idle cycle L is the sum of an idle period I and a
modified delay cycle T;. It follows that

E(I) = 1/X ;

E(L) = E(I) + R(T,) ;

B(Ty) = R(Tp) + E(Ty) + B(T) ;

and the probabilities of an arrival finding an idle period I or

*
modified delay cycle Te, given that busy-idle cycle L is %p progress, are

"= Pr[idle period I in progress], K
= E(I}/E(L);
L
T = Pr{delay cycle Te in progress],
*
= E(Te)/E(L).
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:

Since every job arrives ?uring a busy-idle cycle L, the above are
also the unconditional steady-state probabilities. Assume that
the FCFS discipline is employed; a job arriving during idle period I

*
has waiting time equal to the warm-up time To, and the unconditional
expected waiting time is

L

% w
E(W) = nIE(TOJ + weE(W[arrival during Te)'

The ébnditional expected waiting time of a job arriving during
*
modified delay cycle Te can be obtained in essentially the same

manner as for delay cycle Te' Refer to the derivation and discussion

for LEMMA 2; if N jobs arrive during delay T;, the remainder of T;
is the sum of busy periods Tﬁ+l’ TN,...,T1 (rather than TN through
Tl as for delay cycie Te). The presence of the initiail job at the
start of interval Te Tequires thg changes shown below for the

expected length of subintervals T; and T;:
E(T;) = E(Tc) {Pr[ng—l] E(NlNip-l}{c-Z]Pr[sz-l]] ,
—FT)[AET*) T A n M 21c2—:2(A“/
= Er) | P M- 2 [0"ndng™ 0n) i) B (GOREY
(n)
no (A)]}’

E(T) = S5t E(T, )Pr[N>k-1] ,

c-1

k-2 n, .,y (n)
= E(Tl) + X E(Tk) 1- X [(-2) /n-']n0 (J\)} .
k=2 n=0

L 4

0
requires similar changes as compared to the results given in THEOREM 4

The expected conditional waiting time for an arrival during T

E(W|arrival during T)) - E((T;)z)/[ZE(T;)]

B | DECTY /BT - 50 [0Yni1e™ yn)

n=0

g Fc-z) [1 - :EZ [(-2)"/n!]c ™ (;\):” ,

where 1(s) = [l—no(é)]f[sE(T;)] and no(s) = LST for T, .

*
The expected conditional waiting times for arrival during Tf have the

Same representation as given in THEOREM § except that we must include

*
changes to the distribution of subinterval-0 of Tf. That is, we view




— -

* *
random variable Tf as being composed of subintervals Tf 3 (cf.
»

Figure 7) for j > 0. If N jobs arrive during the warm-up time T

*

0

&
(in addition to the first arrival which initiated TO), subinterval
. .

Tf 0 is the time needed for (N+1)-(c-1) departures to occur, assuming

that N is greater than or equal to (c-1). If we denote the number
. *

of arrivals during subinterval-j of Tf by Nj ( 7 > 0), subinterval

*

Tf j is the time needed for Nj—l departures to occur. Comparing
L

these definitions with those given for the subintervals of Tf of
THEOREM 5, we see that only the definitjon for subinterval-0 has

*

been changed. The waiting time analysis for Tf applies also to Tf

if we substitute results for subinterval-0 of T;. Denote the LST
* ”* *
for the distribution of Tf 0 (i.e. subinterval-0 of Tf) by LIPS (s);
) »
the conditional LST given that N arrivals occur during the warm-up

time T; is given as
* e
ne 0(5|T0=t,N=nJ ={ 1 if 0 <n < ¢-2,
[Yc(s)]“'(c_z)if n > c-2 .

Removing the conditioning we obtain

. c-3 . @)
ne g8 = 2 [(-n) /mtIng™ (A)
? n=0
c-3
+ fngdr (1) - Z [ )t ing™ )] /1y (21572,
n= :
The first two moments of T; p are directly found to be
* , *, c-3 n (n)
E(Te,0) = BC) [AE(TY) - 2 (-0)YntIn®™ ()
n=Oc_3 . -
= (e-2) 1 - 210/ ool
[- 2 0 0] |

" . c-3

B((Tg, ) = (5% f-2(c-2) fircry) - Z L0 /nting™ ()]
2 *_ 2 c-3 n (n)
* AETYY) - Z [)Vatln, (netn-1)
n=0
c-3
senEn - 2 e o)
n=0

N c-3
. E(Pﬁ){ BTy - 2 [-1)"/n1]n{™ (3).n

- (c-2) [1 .Y [t—ﬂ.J“/nrlwrﬂ"Jrﬂ}-

n={)
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and THFOREM 5 glves E(W]arrlval durlng TfJ by replacing E(T ) and
E(Tf 0) with E(Tf D) and E((T 0) ), Tespectively.
Random varlable Tg may be viewed as being a sequence of subinter-

*

*
vals Tg,c-l’ g,c—Z""’Té,l {defined as the subintervals of Tg given

in THEOREM 6). Given that T, has length greater than zero, T;,k
has the distribution of busy period T, In order to apply THEORFM 6,
we need only modify the probability L for 1 < k < ¢c-1, that an
arrival durlng T finds subinterval Tg’k_in progress; the expected

length of Tg X is given by

]

E(Tg’k) = E(T,)*Pr[N > k-1],

where N is the number of arrivals during T;.
It follows from THEOREM 6 that

L
E(W|arrival during T) = E(W[arrlval during TOJ

+ﬂfE(w|arr1val during Tf)
-1

+ E ﬂkE(w|arr1va1 during T
k=1
h W L * E *
where m, = E(TO)/E(Te), Te = E(Tf)/E(Te), L E(Tl)/E(T },

k-2

and for 2 < k < ¢-1, m, = E(T

k K

This completes the waiting time analysis for the example probhlem.
4.3 Variations Using Busy Periods

We next consider an example in which results for the busy period
Tk of LEMMA 1 find application. This will allow an analysis of the
waiting time results of THECREMS 2 and 3.

Example., Multiprocessor Facility With Start-Up Based on

Number in System.

Consider a multichannel system in which due to the high cost of
starting and servicing, the processor waits ;ntil its use is
warranted by a certain number, M, of jobs which have arrived to
the system. Once the processor starts processing, it continues
in operation until the system is empty. Let us assume that M < ¢
in the anaiysis which follows; Figure 10 illustrates various

random variables of interest for the given example problem.

- 2 1e0"nting o0 f /R,
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system first second Mth
empty arrival arrival arrival
I %) Ty I TM—l ‘ —-—Tl-—-
) T
L .

Figure 10. Busy-idle Cycle and Subintervals.

A busy period T in this case consists of the sum of busy perio&s

Tﬁ, T}LI""'TI (here it is appropriate to interpret Tk as the

time needed to achieve an overall reduction, by one, of the jobs
in system). We identify M idie periods, defined as given below
for 0 <J < M-1:

I. = idle period during which j jobs are in system; this
interval represents an interarrival time for a Poisson
Process with rate A and therefore E(Ij) = 1/,

Busy-idle cycle L is the sum of busy period T and the M idle periods,

from which it follows that
M-1 M

F(L} = X2 E(I))+ Z E(T,) , where E(T,} is given by LEMMA 1.
j:D J k=1 k k

A job arriving during idle period Ij becomes the (j+1)-st job in
system and so must wait unti] (M- (j+1) additional jobs arrive

before going into service. It follows that for 0 < j < M-1,
E(W|arrival during Ij) = (1/3) (M-j-1).

The unconditional waiting time is easily obtained by utilizing the
method of Appendix-2 to find the steady-state probability that an

arrival finds the system in any particular state.
M-1 -
E(W) = X [E(Ij)/E(L)]*E(W|arriva1 during Ij)
j=0

M
+ X [E(Tk)/E(L)]*E(W[arrival during )
k=1

where E{W|arrival during T, ) is found using THEOREMs 2 and 3.

4.4 Unequal Channel-Service-Rates

In some practical situations it is possible to have unequal
channel-service-rates in multichannel systems. For example, a
job with highest internal priority in a multiprogrammed computer

system receives preferential treatment and may in effect get a
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higher service rate.
Let the service-rate for channel-j be "j’ where 1 < j < ¢,

and let the channels be ordered such that

Hp Z¥p ZHg 2o 7 Ve ,

Assume that it is possible to have instantaneous switching of-channels

and that, when there are j jobs in service, the first j channels
will be servicing jobs. A new job, when started, receives the
highest available service rate. The service rate vy of a job,
being processed, is instantaneously changed to the higher rate
Hi_j as soon as this rate is available. Any rate u; is said to be
available when the job with that rate is either finished or when
that job's service rate is changed to a higher rate. For example,
consider a 3-channel system with all three servers busy. Suppose
that the job with rate ¥ is finished; the job with rate My will
then have rate Hys and the job with rate u3w111 then have rate M,y-
If the queue is not empty, the first job in the queue will have
its processing started and will receive service at rate Mg

The analysis of busy period Tk of LEMMA 1 and corresponding
conditional waiting time results given in THEOREMs 2 and 3 may be
easily modified to deal with this case. In LEMMA 1, THEOREM 2,
and THEOREM 3, it is only necessary to change the distribution of
random variable Pk (the aggregate of k Poisson processes associated

with the jobs in service) as shown below for 1 E_k.i c:
k k
G =12 "i] /[5 vz ”i] ’
i=i i=i
k
1/ [_E_Ui] s
i=i
” k
2 2
EC2) = 2/ {_E_ui) .
1=1

If it is not possible to have switching of service rates, the

B(P)

analysis quickly becomes cumbersome for increasing values of c,

although small values such as ¢ =2 can be readily handled.




5. Summary.

This paper has demonstrated that the method of busy period
analysis previously used for treating the M/G/1 queueing system
can be extended to deal with the M/M/c queueing system as well.
Closed-form results have been presented for the distribution of two major
types of busy periods arising in the M/M/c system and for the
distribution of waiting time (under the FCFS discipline)} for
an arriving job which finds a particular type of busy period in
pTogress.

A number of examples have been presented which show that
these results may be usefully applied and extended to deal with
a number of different models for multiprocessor systems. These
examples included the following:

--- M/M/c System Under the LCFS Rule.

--~ Multiprocessor Facility With 'Down' Pauses at the End of
Busy Periods.

--- Multichannel Facility With 'Warm-Up' Time.

--- Multiprocessor Facility With Start-Up Based on Number
of Jobs in System.

--- Multichannel System With Unequal Channel-Service-Rates.

It is the hope of the authors that the results in this paper
will serve not only to illustrate the usefulness of the method
of busy period analysis for M/M/c systems but also to give the
reader insights in the characteristics of this class of

multiprocessor queueing systems.
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APPENDIX-1 - ’
: PROPERTIES OF POISSON PROCESSES
9

Consider a Poisson process with rate X; such a process is

characterized by a ‘sequence of interevent times which are independent
and exponentially distributed. Define:
T = time between successive events for the Poisson process.
G(t) = Pr[T < t] =1 - exp(-At), t > 0. :
y(s) = LST for the distribution of T = A/ (s+1). | 3
The first and second moments for the distribution of interevent times are
E(T) = 1/, and E(T%) = 2/°. l

Define another random variable as follows:

N(t) = Number of events which take place during interval t
for a Poisson process with rate A.

The distribution for N(t) has the following characteristics:
Pr[N(t) = n] = [(At]"/n!] exp(-At) for integer n >0,
E(N(t)) = At for t > 0.

The Poisson process has many properties which are utilized in
the body of this paper; these properties are summarized below. The
proofs for these properties are available in a number of textbooks
(e.g. see Reference [6]).

Al.1 The Memoryless Property

Suppose that we are interested in the distribution for inter-
event time T, given that a certain amount of time y has already
passed without an event taking place. Poisson processes have the
unique property that

Pr[T < y+t|T > y] = 1 - exp(-At).

The process is memoryless in the sense that the distribution for
the remaining time until the next event does not depend upon the
amount of time which has passed without an event taking place.

Al.2 Aggregation and Branching of Poisson Processes

Al.2.1 Assume that there are n Poisson processes simultaneously in
progress and thﬁt events associated with the kth process are taking
place at rate Ak’ where k = 1,2,...,n. The aggregate of these processes
will be defined such that events associated with each of the n Poisson
processes will be considered to be events for the aggregate.9 The

n
aggregate of these Poisson processes is also Poisson with rate A = 2 A,
=i



Al.2.2 Consider the situation in which events associated with a
Poisson process with rate A are subjected to a decision process

whereby each event is (instantly) mapped into one 'of n classes. |

Every time an event occurs, the decision process maps the event

into class-k independently and with probability Ao where k = 1,2,...,n
and where the sum of these probabilities is equal to one. If we

define n processes, where the kth process consists of those events
mapped into class-k, each process constitutes a Poisson process

with rate Akf Therefore, we have the situation in which a Poisson
process branches into independent Poisson processes.

Al.2.3 As a consequence of Al.2.1 and Al.2.2, we obtain the following

result. Given that we have an aggregate of n Poisson processes and

an event occurs, the probability that the event is associated with the
kth Poisson process (1 < k < n) is equal to lk/A.

Al.3 The Random Property

Poisson events are frequently referred to as ''random events"
because of the property described below. Given that an event occurs
during an interval of length t, the instant at which the event takes
place is uniformly distributed over the length of the interval, i.e.

Pr(y i_instaﬁt of event occurrence :_y+dy|event in t]

= dy/t for 0 <y < t.
Al.4 The Random Modification

Assume that an event associated with a Poisson process takes
place during interval X. Consider the time Y between the occurrence
of the Poisson event and the end of interval X; this interval Y will

be called the random modification. Define:

X = length of scme interval having an arbitrary distribution,
G(x) = cdf for r.v. X,
yv(s) = LST for the distribution of X;
Y = length of random modification of variable X,
H(y) cdf for r.v. Y,
t(s) = LST for the distribution of Y.
We have the following results for the random modification:
(a) Prly <Y L y+dy, x < X < x+dx] = dG(x)dy/E(X), O<y<x, 0<x<w,
(b} dH(y) = [1-G(y)]dy/E(X) for 0 < y < w=.
(©) T(s) = [1-v()1/[E(X)], and E(Y") = EX*"1)/{0+DE) LK > 1.
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APPENDIX-2 .
A METHOD FOR DETERMINING STEADY-STATE PROBABILITIES

We will often be interested in determining the steady-state
probability that the system is in some specified state, given , that 5
an interval T is in progress. The possible states of the system
during interval T will be denoted by Sl’ 52, vee Sn.' Associated
With each state Siis a random variable Xy which represents the SN
amount of time that the system remains in state Sk upon a transition

to that state, where k = 1,2,...,n. For 1 <k < n, define:

Ny = [1 if Xy is in progress within interval T,
0 otherwise,

The steady-state probability that the system is in state Sk Biven
that interval T is in progress is therefore

Pr[Sle] =EM) for k=1,2,...,n,
If we examine the system operation only during those times that
intervals of type T are in progress, the intervals of type T appear
to be initiated at rate A given by

X = 1/E(T},
and intervals of type Xk appear to be initiated at rate Ak given as
lk = rkl,

where Ty is the relative rate at which intervals Xk are initiated
given that an interval T is in progress.
Using Little's Equation [10] ,we find
E(NkJ = AkE(xk),
rkE(Kk)/E(T);
therefore, we have the following result:
Pr[s,|T] = T E(X)/E(T).
If there are n mutually exclusive and exhaustive system states during T,

it will obviously be the case that

n n
> r,E(X)YE(M =1 or E(T) = 2 =rE(X) .
o1 KK k=l X F
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