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1. Introduction
This paper addresses the problem of solving mUltiple-serverqueueing models through the use of busy-period analyses. In thepast, this technique of busy-period analysis has been extensivelyused for the M/G/I queueing system and found to be a powerfultool for dealing with a great many complex scheduling rules. par­ticularly those involving preemptive and nonpreemptive priorities.The results presented in this paper demonstrate that the methodof busy-period analysis can be extended to ~eal with certain in­stances of the MIMIc queueing system as well. In references (1,2),the authors independently made use of this general technique tosolve multiple-server.models for which jobs have simultaneousresource requirements; an overview of this work is contained inreference [3].

The method of analysis involving decomposition of busy periodswas first used by Cobham l4] and later by AVi-Itzhak, Maxwell, andMiller [5] and others; the text by Conway. Maxwell. and Miller [6]contains many of the results obtained for the M/G/l queueingsystem through the use of this technique. In order to motivatethe analysis to be presented, the typical sequence of steps in sucha busy-period analysis will be briefly covered.
When the tern "busy-period" is used, we will be referring to aninterval during which one or more jobs are in service. There willgenerally be a number of different busy-periods for a system, andsystem states will be defined so as to include the idle state and anumber of mutually exclusive and exhaustive busy states correspondingto these different types of busy-periods. The system states aredefined so that the state transition process is Markovian, and thelimiting probability of the system being in a particular state maybe determined in a straightforward manner (e.g. using results fromthe theory of Semi-Markov processes [7]). The analysis typicallybegins by first finding the Laplace-Stieltjes Transform (LST) forthe distribution of busy period length for each case and thenobtaining the LST for the flow time or waiting time conditioned upon
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the arrival finding a specified type of busy-period in progress.

If jobs are generated by means of a Poisson source~ the distribution

of system states at arrival epochs will be identical to the steady­

state distribution of system states (see Strauch [8]). Using this

result. the unconditional LST for the distribution of flow time or

wa1t1ng time may be directly obtained. In principle, the LST

completely describes a distribution, but the inversion of the trans­

form is usually so difficult as to require that a numerical transform

inversion software package be employed. In most cases the first two

moments of a random variable may be found from the LST without
excessive effort.

The system to be analyzed in this paper is the multiple-server

Poisson-Exponential queue, commonly denoted as the MIMic queueing

system. The model may be described as fallows:

There are c identical servers, each capable of
performing one job at a time. The incoming jobs
have independent and exponentially distributed
processing reqUirements with mean l/~. The inter­
arrival times are independent and exponentially
distributed with mean l/A. It is assumed that the
servers process the jobs continuously as long as
there are jobs in the system.

For each of the busy period types to be defined in later sections.

the LST and first two moments will be obtained. In addition, the..
LST and first moment will be derived for the waiting time of a

job conditioned upon the arrival finding a specified busy-period
in progress.

2. Busy Periods for the MIMIc Queueing System

In a single-server system, a lInormalll busy period is usually

defined to be an interval which begins with the arrival of a job

to an empty system and which terminates when the system again

becomes idle; this busy period represents the length of time that

the (single) server is busy. A similar type of busy period for a

multiple-server system may be defined which is an interval during

which one or more processors are busy; however. there arc additional



-3-

busy periods which are of interest. Define the fOllowing type
of busy period for the MIMic queueing system:

Tk = min [t : (k) jobs in
(k-l) n II

where integer k > 1.

system at time 0+]
lr " time t

~(t) = Pr[Tk ~ t] = cumUlative distribution function (cdf) for T
k

,

nk(s) = LST for the distribution of Tko

The random variable (r.v.) may be considered as an interval during

which the number in system is greater than or equal to k; alternatively,

this variable represents the length of time necessary to achieve an

overall reduction of jobs in system by one. Due to the memoryless

property of the exponential processing times~ the distribution of

Tk will not depend on whether or not any of the k jobs have received

prior processing. For each random variable T
k

, we also define:

The properties of POisson processes summarized in Appendix 1 will

often be cited in the remainder of the paper, and the following
notation will be employed:

A = (Poisson) arrival rate for jobs,

~ = (Exponential) processing rate for jobs,

~ = denotes 'distributed as' e.g. X~Y is interpreted to mean
that random variable X has the same distribution as r.v. Y.

Before proceeding into the analysis, a r.v. will be introduced which
simplifies the presentation; for 1 ~ k ~ c, define:

Pk = r.v. denoting an interevent time associated with an
aggregate of k simUltaneous Poisson processes, each with rate ~.

Gk(p) = cdf for P
k

,

yk(s) = LST for the distribution of P
k

.

Referring to Appendix 1. we easily find the following:

'k(s) = k./(s+k.J,

E(Pk) = l/(k.),

E(P~) = 2/(k.)2.

Given the above reSUlts, we may next analyze the properties of busy
period T

k
.
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LEMMA 1. For the MIMIc queueing system. the distribution of

busy period Tk has the following characteristics:
(i) For k > c.

T
k "'Te

(ii) For k = e,

n (5) = Y (s + A -An (5)),e e e
E(T ) = E(Pe)/(1 -AE(Pe)],e

E(T2) = E(P~JlP -AE(P
e
)]3.e

(iii) For 1 .::. k < c,

"k(5) ='Yk(5 + A -A"k+I(s)),

E(Tk ) = E(Pk) + AE(Pk)E(T
k

+
I
),

E(T~) = E(P~) [I+E(Tk+I)Y + AE(Pk)E(T~+I).
Proof. We divide the proof into three sections corresponding to
the statement of the lemma.

(i) It is trivial to verify that, for k > C. T.V. T
k

has the

same distribution as T.V. T. There will be exactly c processorse
active throughout the duration of these busy periods, and these

busy periods also have identical arrival processes for jobs.

(ii) Note that busy period Tc consists of an integer number of

intervals which have the distribution of P. If no jobs arrive
e

during the initial interval. the busy period T completes. If N
e

arrivals occur during the initilll interval (distributed as Pc)'

the husy period also includes N subintervals as shown in Figure 1.

Figure 1. Subintervals with a busy period T .
e

in system,

to reduce

At the end of the initial interval there will be (N+c-l) jobs

and the subintervals TN 1 through T will be needed+c- c
the number in system to (e-l). These subintervals

eaeh have the same distribution as T (see part (i)), and from
e
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unconditional

the convolution property of the L5T we have

ne(sIPe=p,N=n) = exp(-SPl[ne(s)]n

Removing the conditioning on Nand P • the
e

LST becomes

nets) = io (n~o ~AP)n/n~ eXp(-Ap) ne(s IPe=p,N=n)I
= y (5 + A -An (5)).e e

dG (p),
e

The properties of the LST allow the first two moments for T
e

to be found from -TIl (0) and fi" (D) • respectively. Solving thee e
resulting expressions for E(Te) and E(T~) gives the desired results.

(iii) For 1 ~ k < c. each busy period Tk may be decomposed into

the intervals shown in Figure 2. The first of these intervals

is an interevent time for an aggregate of k Poisson processes,

each with rate ~. and one Poisson arrival precess with rate A.

Case 1: 'First Event' is an arrival.
arrival

Llk + Tk+1-LTk: _

Case 2: 'First Event' is a departure.
departure

Llk-----y
foigure 2. Intervals within busy period T

k
(1 ~ k < c).

Random variable Ik is therefore the time until the first

arrival or departure event in the busy period. If the 'first

event' is an arrival, the remainder of the busy period is

distributed as the sum of busy periods T
k

+
l

plus T
k

. Otherwise,

the busy period ends if the 'first event' is a departure. The

probability of the 'first event' being an arrival is h/(A+ku)

and that of a service completion event is kU/(A+kU)." The LST

for the distribution of Ik is found from Appendix 1 to be

(A+ku)/(S+A+ku), and the convolution property of the LST gives:

"k(s) = ~A+k")/(S+A+k"il [cA/(A+k"))nk+l(S)nk(s)+(k"/(A+k")].
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Solving for nk(s), we obtain

nk (5) = k"!(k"+5+A-Ank+! (5)).

Noting that Yk(s) = k~/(k~+s). the above result may be written as

nk(5) = Yk(5 + A -Ank+!(5)).

The first two moments for T
k

are directly found by evaluating

-nk(O) and "keD), respectively. Q.E.D.

Another type of busy period found to be useful in the analysis

of the M/G/l system under non-preemeptive scheduling rules is the

delay cycle (cf. reference [6], Chapter 8). A delay cycle is a

generalized busy period which arises in situations where jobs

arrive while the processor is unavailable due to some reason; for

example. the processor(s) may be temporarily broken down or busy

servicing higher priority jobs. Figure 3 gives an example of a

delay cycle for the MIMIc queueing system.

system empty

system
empty

T:-....==:TD'--=:::;;;'-=:T~f~~:::;;'" ~===:T,-==:;:}"y- V ~
delay c proces~ors busy time until

system
empty

Figure 3.

L----- T
ee

_

Delay Cycle T for the MIMic queueing system.e

The delay TO represents an amount of time during which,.Tl c

processors are unavailable. At the conclusion of this delay, the

system will begin processing any jobs which arrived during the

initial interval. The remainder of the delay cycle is the sum of

two subintervals Tf and Tg during which jobs are serviced. Subinterval

Tf begins immediately after the delay and lasts until there are fewer

than c jobs in system (this subinterval has length zero if less than

c jobs arrive during the delay). Subinterval T
g

begins immediately

after Tf and represents the time necessary to clear the system of jobs.

The following notation is in~roduced to deal with the delay cycle
described above:
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TO = Delay during which the c processors are unavailable,
HO(t) = cdf for TO'

nOes) = LST for the distribution of TO.

It is assumed that the LST and moments for r.v. TO are given.

cdf

[t:T = mine system empty at 0- ]
delay interval TO commences at 0+
system again empty at time t ~ TO

for T
e

,

= LST for the distribution of T ;
e

Tf = length of interval commencing immediately after delay TO

and terminating when there are less than c jobs in system,
Hf(t) = cdf for T

f
>

nf(s) = LST for the distribution of T
f

;

Tg = interval which begins at the conclusion of T
f

and which
lasts until the system is empty.

Hg(t) = cdf for Tg >

Tf • and Tg are given by:

ng(s) = LST for the distribution of T
g

We next present a lemma dC$cribing the distributions for the
random variables given above.

LEMMA 2. The LST and first moment for random variables T •
e

c-l
[no(S+A-Anc(S)) }] "j(S)] I Ec(S)]C-I

+ nO(s+A) p-{[~ nj (S)] I [nc(S~ C-I}]

+ ci/ 1(_I)nAn/n !1 nO(S+A){.fr n.(sUn n. (s)l/fnc(sll c-I-n]
n=1 l' :J J=I J 'LJ=I J J L :J

ci
l

[(_I)nAn/n~ n~n) (A)
n=O

c-I
+InO(A-Anc(s))- n~o [(-l)nAn/njfc(S~nn6n)(A)}I[nc(sil c-I,
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c-2 n
+ 2: E-llnAn/ni'l"6nl(A) n ".(5)

n=l :J j=l)

"j (5l [1 :~: E-llnAn/n!]"~nl (Al],+
c-l
n

. j=1

= E(TOl + E(Tfl + E(Tgl,
c-l

= E(TCl{ [AE(TOl - n;o [n(_llnAn/n~"6nl (Al]
c-l

- (c-ll[l- n:o [c-llnAn/n~"6nl(A~},

c-l k-l
k:l E(Tkl{1 - n:o E-llnAn/n~ "6

nl
(Al}.E(T 1 =g

Proof. The above L5T5 are derived using similar techniques;

given the length of the delay and number of arrivals during

the delay, the conditional LST is found for each type of interval,

and the conditioning is then removed to find the final result.

Delay cycle Te consists of delay TO plus the time (sub­

intervals Tf and T
g

) needed to clear the system of all jobs.

Recall that a busy period Tk (k ~ 1) represents the time

necessary to reduce the number of jobs in system from k jobs

to (k-l) jobs. If N jobs arrive during the delay TO' the

remainder of Te is the sum of busy periods TN through T1" It

follows that the conditional LST for the distribution of T equals
e

exp (-5tl

exp (-stl

n

n
j=1

"j (5l for n > O.

for n = O.

Since nj(s) = nc(s) for all j greater than c,

"e(5ITo=t,N=nl = exp(-5tl ["c(51 n-c+l

we have for n
c-l
IT ". (5l .
j=1 J

> c

Removing the conditioning on the number of Poisson arrivals

during the delay and on the delay length, the unconditional

LST is found to be

"e(5) = JIi [CAtl"/n] exp (-At)"e(5!To=t,N=nl} dIlO(tl,
t=O n=O
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=

In obtaining this result, it was necessary to make use of the

following property of the Laplace-Stieltjes Transofrm (see
reference [9] • p. 57):

t!a exp(-st)tndHa(t)

for c <: n.

n

n ". (s)
j=l J

c-1n "j (5)
j=l

The expression for ne(s) is, with minor rearrangement of terms.

the desired LST for the distribution of T .
e

We next derive the LSTs for T
f

and T
g

• again conditioned

upon the number of arrivals during the delay and on the delny

length. Subinterval Tf has length zero if there are fewer than

c arrivals during delay TO; if there are N arrivals, where N

is greater than or equal to c, subinterval T
f

consists of the

sequence of busy periods TN' TN_1 •..••T
c

. Since each of these

busy periods has the same distribution as Te' the conditional

LST for the distribution of Tf becomes

-{I forO<n<c,
[nc (s)]n-c+l for c <: n.

Subinterval Tg also has length zero if no jobs arrive during

the delay. If N jobs arrive during the delay. where N is some

positive integer less than c. subinterval T
g

is the sum of

busy periods Tn' TN_i, ...• Tl . Otherwise. T
g

begins immediately

after a subinterval Tf having length greater than zero. Since

subinterval Tf ends with (c-l) jobs in system, T
g

is the sum

of busy per~ods TC_1 through Tl . The conditional LST for the

distribution of T
g

is therefore given by

"g(SITa=t,N=n) = {I for n = a,

for 0 <: n ~ c-l.

\
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The conditioning on nwnb ..· ~ of arrivals and on delay length for

the above can be removed:n exactly the same manner as used for

delay cycle T • and the d~sired LSTs are obtained .•
The expected values f~l Te , Tfo and T

g
follow directly from

-n~(O), -Tlf(OL and -T]8~·O), respectively. Q.E.D.

At first glance. the telms appearing in the expressions for
the expected lengths of inte~vals Tf and T

g
may seem somewhat

PUzzling. The terms are better understood if one notes that

Pr [N=n arrivals during delay TOJ = [C-l)"),"/n!]nan) (A).

Since the arrival process L> Poisson, the expected number of arri vals

during the delay is given by AE(Ta); using this information we can

rewrite the expressions for the expected lengths of T
f

and T
g

as

shown below, where N = number of arrivals during TO:

E(Tfl = E(TcJ{pr[N ~ c]E(NIN ~ cJ - (c-1JPrr ~ ~}.

and
E(T J =

g

Th. above interpretation is
on. intuitively expects.

3. Waiting Time Under the

consistent with the type of result that

FCPS Discipline

Having obtained results pertaining to the distribution of the

two busy period types introduced in the previous section. we consider

the (conditional) waiting time for a job which arrives to find one of

these busy periods in progress. It is assumed that the First-Come­

First-Served (FCFS) discipline is employed and that the system is
not saturated. Define:

W= Waiting time for a job (i.e. time ·between the arrival of a
job and the instant that it first goes into service).

A(w) = cdf for random variable W.

a(s) = LST for the distribution of W.

In order to avoid repetitious derivations. a new type of delay

cycle Tp will be introduced; this delay cycle is of interest because

both a busy period Tc and a subinterval Tf (within a delay cycle T
e

)

are special cases of this type of interval. Define interval T
pas given below:
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of waiting

during agiven that a job arrives

= [I-np,0(5~ I(E(Tp) [AYc (5)-A+5]}

distribution of delay T O. and the
p,

[to •

t~ TpJ

T = min (c-I) jobs in system when delay T 0P
commences at time 0+ P.

(c-I) jobs in system at time t, where

time Win the MIMIc system.

delay cycle T , is equal to
p

~(slarrival during T
p

)

where n O(s) = LST for thep,

That is, there are (c-l) "initial ll jobs in system when T begins;
p

interval T then consists of a delay T 0 which is assumed to havep p,
a general distribution plus a ·'delay busy period" during which jobs

are serviced and for which c or more jobs are in system.

THEOREM 1. The conditional LST for the distribution

expected value for the conditional waiting time is

E(Wlarrivai during Tp) = AE(P~)1(2[I-AE(Pc)]1

+ E(T~,o)/PE(Tp,O~·
Proof. Interval Tp will be viewed as the sum of subintervals

T . where j > 0; Figure 4 illustrates the situation.P,J, -

CT I T I-LT 2---J··· LT ~ ...1p,~p, p, p.n

----__Tp --.J

Figure 4. Subintervals with delay cycle T
p

.

The initial subinterval is the delay T 0; at the conclusion of
p,

this subinterval there will be the (c-l) initial jobs plus those

jobs which arrived during the delay. The number of jobs arriving

during any subinterval T . will be denoted by N.• and each sub-
P,J J

interval T . (where j > 0) is defined as the sum of N. 1 inter-
p,J J-

event times Pc (i.e. the time for N. 1 departures). For j > O.
J- -define:

T . = length of sUbinterval-j of delay cycle T
p

'p, J

= cdfH . (t)
Pol

"- . (5) =
Pol

LST

for T .,
P,J

for the distribution of T ..
P,J



-12-

The LST for the distribution of subinterval T . will now be
Pol

derived; using the convolution property of the Laplace-
Stieltjes Transform, we have

!L .(sIT . l=t,N. I=n) = [y (s)1 n for j > l.
p,J P,J- J- C J

The

dG • I(t)
P,J -

If the system is

will be a finite

true that

operating under nonsaturated conditions. there

j for which T . is zero. and it will also be
P, J

limit
j teo

n . (s) = l.
P,]

arriving during

A job which arrives during subinterval

T will encounter the situation illustrated
P

Arri val

I-__T .-Y-l--Y-__-_--iW~~~~2=J
Pol

L T .. _
P>J-

Figure S. Waiting time for a job
sUbinterval-j of delay cycle T

p
'

T . of busy cyclep, J
in Figure 5.

The job arriving during subinterval

to wait in queue for an amount of time Y
T . will be required
Pol

until the end of the
subinterval plus an additional amount Z which represents the

time for N departures to occur~ where N is the number of jobs

which arrived previously in time T .-Y. Quantity Y is a
Pol

random modification (see Appendix I), and r.v. Z is the sum of

N interevent intervals Pc. The convolution property of the

Laplace-Stieltjes Transform gives the following conditional

LST for the waiting time distribution:

'(siT .=t,Y=y,N=n) = exp(-sy)[y (s)1 n .
P~J c ]

The conditioning on N can be easily eliminated because the

arrival process is Poissonj therefore. we obtain
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o(slT .=t Y=y) •, P. J • 1:
0=0 [F (t-Y))"/n] exp(-A (t-y))o (5 /Tp,j.t, Y.y,N=n),

• eXP (-5y )exp(-A(t-y))exp(A(t_y)'Y
c

(5)).

Making use of the fact that Y is a random modification. we have

Prr
y

< Y < y+dy, t < T .. < t+dt' • dH . (t)dY/E(T .).l' - - - P,] - :J P,J P,]

The conditional LST for the waiting time of a job, given that the

arrival OCCurs during the jth subinterval of delay CYcle T J equals

o(5/arrival during T .). T1J O(5jT .•t'Y=Y)dyJ~1 .(t)/E(T .J,
Pd t=O y=o P,] Pd Pd;

= [n . (A-AY (5))-n . (5j! Ih(T ')[AY (5)-A+5]). .Pd C Pd 1 l P.] c

= [n . 1(5)-n .(5)1/IE(T .)[Ay (5)-h5' J.p.J+ P,] J l P,] c ]

The probability tr. that a job arrives during subinterval T "J

J Pdgiven that the arrival takes place during delay CYcle T • is
pequal to the steady-state probability that interval T . is

P,Jin progress (see Strauch [8J).

wj = pr[arrival during Tp,jlTp in progre5~ = E(Tp,j)/E(T
p

)'

The conditional LST for the waiting time of a job arriving during
T is therefore equal top

a(s!arrival during TpJ =
tr.a(s/arrival during T .),

J P,J

= 1:
j=O

1:
j'O

["P,j+l (5)-np ,j (5)J I( E(Tp ) PYC(5)-A+~ J'

T ).
P

= p-np ,o(5)] I (E(Tp ) [AY
C

(5)-A+5] }

The first moment for the conditional waiting time is found

by making use of 1 'Hospital's Rule to evaluate -al(O/arrival during

Q.E.D.
The above Theorem will now be used to obtain the conditional

LST and first moment for the distribution of waiting time for a
job which arrives during a busy period T .

c
THEOREM 2. The conditional LST for the distribution of the

waiting time Wof a job in the MIMIc system, given that the job
arrives during busy period T

c
is given by
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a(slarrival durit"g Tel = P-ve (S1 / (E(Tel [Ave(Sl-A+~J'

and the expected value for the conditional waiting time is

E(Wlarrival during Tel = AE(P~l/ [z [1-AE(Pel]]

+ E(P~)J [ZE(Pel] .

Q.E.D.

time Pc'

a special case of delay

interevent

Proof. Observe that busy period T is
e

cycle T in which the delay T a is an
p p, 2

Replacing n 0(5), E(T Ol and E(T Ol in THEOREM I by the
P. P. P. 2

corresponding terms y (5), E(P J. and E(P ). we obtain the
e e e

desired results.

Given the L~T and expectation associated with the waiting time

of a job conditioned upon its arrival during a busy period T
e

•

sufficient information is available to determine corresponding
results for busy period T

k
, where l < k < c.

THEOREM 3. The conditional LST for the distribution of waiting

time W for a job in the MIMIc system which arrives during a

busy period T1 , where 1 ~ k ~ c-l. is given by

a(s[arrival during Tk) = nl (k) + n2(k)~(slarrival during T
k

+
1
).

where "I (kl = E(Pkl/E(Tkl and "Z(kl = E(PklE(Tk+ll/E(Tkl

therefore. the expected value for the conditional waiting time is

E(Wlarrival during Tk) = n2 (k)E(W/arrival during T
k

+
l
).

Proof. ~uring busy period Tk• the system will be in one of
two possible states:

State-I: exactly k jobs in system.

State-2: (k+l) or more jobs in system.

Let nl (k) and nZ(k) denote the steady-state probability that the

system is in State-l and State-Z, respectively, given that busy

period Tk is in progress. Using LEMMA 1, we have

E(Tkl = E(Pkl + AE(PklE(Tk+ll.

Observe that the first term on the right-hand side of the equation

represents the expected time that the system is in State-l during

interval Tk, and the second term is the expected time in State-Z.
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•
Using the method described in Appendix 2, we obtain the

representation for nICk) and n2(k) given above.

Because a job arriving when the system is in State-l can

immediately go into service (i.e. k < c) on an available

processor, the waiting time of the job is zero, and therefore
the conditional LST is

·a(5/State-l1 = 1.

The conditional LST for jobs which arrive during State-2 is

a(s]arrival during Tk+1J, and the random property of Poisson
arrivals gives:

a(slarrival during Tk) = niCk) + u2 (k)a(s!arrival during T
k

+
I
)

and the expected value for the waiting time conditioned upon

arrival during T
k

is found to be

E(WITkl = rrZ(klE(WITK+1l. Q.E.D.

Using THEOREM 2 and THEOREM 3, the expected values for the

conditional waiting time in the MIMic system under the FCFS discipline

may be found for arrival during busy periods T
c

' Tc_1, ...• T
1

in a

straightforward fashion. This completes the waiting time analysis

for the first type of busy period introduced in the previous section.

and we next examine the delay cycle T
e

.

THEOREM 4. Given a MIMIc system. the conditional LST for the

distribution of waiting time for a job which arrives during delay
TO (within delay cycle Te ) is given by

a(s[arrival during TO) =

={["0 (A-AyC(51] I {[yC(5~ C-I[5_A+AYC(5~I
- "0(510(0,51 + cif [(-Aln/n~ "~nl(A10(n,51J IE(T01,

n=O

where 0(n,51 = {1-[-A/(S-Al] C-I-nI/5
- {1- [-AyC(511 (5 -Al] c-l-nJI { [ye (51] e-l-n[5_A+AYe (51] ) .

It follows that

E(W/arrival during TOl = E(T~ll [ZE(Tol]

+ E(Pel {AE(T~ll [ZE(Tol] - ~I (e-l1 (l-~zl) ,
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e-Z
1: f-A)n/n~ ngn) (A) [ce-Z)(e-I)/Z-(n-I) n/2]}1

n=O

/) and

.Z = ((e-I) ­

Proof. Recall

the system is

delay portion

in Figure 6.

e-Z
1: ~_A)n/n~ ngn) (A) ~-I-n] I ~E(TO)] .

n=O
that delay cycle Te starts with delay TO and that

initially empty of jobs. A job arriving dUring the

of the delay cycle encounters the situation shown

Figure 6. Waiting time for a job arriving during delay TO'

Interval Y in the above diagram represents the time between the

arrival of the job and the end of delay TO; because the arrival

process is Poisson, interval Y has the distribution of a

random modification (cf. Appendix 1). If N jobs arrived to the

system during TO-Y' interval Z represents the amount of time

that the job will be delayed due to jobs which arrived earlier

during the delay. Interval Z equals zero if N is less than the

necessary for N-(c-l) departures to Occur, and this time is the

sum of N-(c-I) interevent times Pc. From the convolution

property of the Laplace-Stieltjes Transofrm, we have

.(sITo=t,N=n) = (exp(-sy) for 0,,- n "- e-Z,

exp(-sy) [Ye(S~ n-(e-l) for e-I < n

The conditioning.on the number of arrivals N ~an be removed by

taking int~ account the probability of any specified value of

N for the interval TO-Y.
~

.(SITO=t,Y=y) = 1: ~A(t_y))n/n!] eXp(-A(t-y)).(sITO=t,Y=y,N=n) ,
n=O
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•
c-z ~

= exp(-At) }; [(A(t-y))n/nl] exp(-(S-A)y)
n"'Q ..

+ ry (S~ -(c-1)exp(_(A_AY (s))t)exp(-(S-A+AY (S))y)Lc ~ c c
, c-2

~C(S~ -(C-1)exp(_At) n:o [cA(t-y)yc(S))n/n~ exp(-(S-A)y)

dy.exp( - (S-A)y)

85 shwOD below:

= i ITA(t-y))n/n~
o

Because interval Y is a random modification, the. conditioning
on Y and To'may be removed to give

m t

.(s/arriva1 during TO) = 1 r .(S/TO=t,Y=y)dy &IO(t) IE(T
O

)'
t=O y=o

We first consider some terms which pose a problem in the

evaluation of the above integral. Define Ql(t.n). where
O~n.::c-2J

For n=O, we have

Q1 (t,O) = [l-exp(-(S-A)til I(s-A).

For 1 ~ n ~ c-2. we obtain the following result by using
integration by parts:

Q1 (t,n) = [(At)n/nJ I (S-A) - (A/(s-A))Q1 (t,n-1).

From this
c-2
};

n=O

result it follows that
c-2

Q1 (t,n) = Q1 (t,O) }; (-A/(S-A)/

(
c-z k=O c-Z-n }

+ n:1 [(At)n/n~ k:O (-V(S_A))k I(s-A).

Noting that several partial sums of geometric series appear in

the above expression and SUbstituting for Q
1

(t.O), we obtain:

Ci/ Q1 (t,n) = Q1 (t,O) [1_(_A/(S_A))C-1] &-H/(S-A))]
n=O 2 )I

+ (1/(S-A)) Cj; nAt)n/n~ [l_(_V(S_A))C-1-nYe-(-A/(S-A)~
n=1

= - exp(-(S-A)t)[l _ (-A/(S_A))C-1]/s

+ c:e ~At)n/n] [1_(_A/(s_A))C-1-n] Is .
n=O
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•
Define another function Q2(t~n) to be ,

t

Q2(t,n) = ! ~AYc(S)(t-y))n/n~ exp(-(s-A)y)dy

Using the same procedure employed for the function Q
l
(t.n).

we obtain
c-2

E Q2(t,n) = -exp(-(S-A)t){I-[-AY
c

(S)/(S-AJ]C-IJ/{S-A+AY
c

(S)J
n=O
~ c-2

+ n:o [cAYc(S)t)n/ll~ (1-[ -AYc(S)/(S-A~C-l-n}/{S_A+AYc'(S)}.

Returning to the evaluation of a(slarrival during TO)' we have
a(sjarrival during TO)

= r {exp(-AY) ci:.
2

Q
1

(t,n)
y=O n=O

t
+ [Yc(S~ -(c-l) eXP(-(A-AYc(S))t)! exp(-(S-A+AYc(S))y)dy

- [Yc(S~ -(C-l)exp(_At) :~: Q2(t,n) JdHO(t)/E(T
O

)

Substituting the results for the sums of functions Ql(t.n) and

Q2(t,n) into the above equation, the evaluation of the integral

may be completed .. Rearranging term5 in the result gives the

desired expression for a(s Iarrival during TO).

The expected value for the conditional waiting time is

found by making use of l'Hospital's Rule to evaluate

-a'(Olarrival during TO)· Q.E.D.

Observing the result for E(Wjarrival during TO)' one sees certain

terms which are easily explained; e.g. we might anticipate that the

waiting time would consist of the expected length of the random

modification, E(T~)I [2E(TO)] , which is the time between the arrival

of the job and the end of delay TO. The remaining terms in the

expression are explained by making the following observation: The

time interval between the start of the delay and the arrival of the

job whose progress we are following has the same distribution as

the random modification. Referring to Figure 6. this is equivalent

to stating that the distribution of interval TO-V is identical to
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that for interval Y. lJcfine random variable 'X as follows:

X = interval TO-V in Figure 6.

T(S) = LST for the distribution of X.

Because X has the distribution of a random modification. we have

the following results from Appendix 1:

E{X) = E{T~)/ [zE{T01 '

We define a variable N to be

arrivals during x] =n.Pr [N=n

N = Number of previous

A patient person can verify
c-2
2:

n=O

arrivals

that the

to the system during interval X.

following equations are true:
c-2
2: [{_A)n/n~ T{n)(A).n,

n=D

and
c-2
~ Pr [N=n arrivals during X] =

n=O

= ~2-

If w~ interpret terms $1 and $2 in the above manner. the expected

length of the conditional waiting time becomes (cf. Figure 6)

E{Wlarrival during TO) = E{Y) + F.(2) ,

where the expected length of interval Z is

E(Z) = E{Pc ) {Pr [N ~ c-~ [E(NIN ~ C-1~ - (c-1)Pr [N ~ C-1]J-

Thus, we have a satisfying explanation for all terms in the

expression for the expected value of the conditional waiting time.

THEOREM 5. Given a MIMic system. the conditional LST for the

distribution of waiting time for a job which arrives during

interval Tf (within delay cycle Te) is equal to

a(sjarrival

where nf 0 (s) =,
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The expected length of the conditional waiting time is given by

E(W[arrivai during Tfl = E(P~l/ [2(I-AE(P
cl il

+E(T;'ol/ [2E(Tf ,ol] ,
where

and

=E(PClIAE(TOl - :~: [c-Aln/n~ "cinl(Al'n

- (c-Il (1- :~:J-Aln/n~· ncinl (A~ J'

Proof. Interval Tf within delay cycle Te begins immediately

following delay TO and lasts until there are (c-l) or fewer

jobs in system. This means that the interval has length zero if

there are fewer than c arrivals during the delay. Interval T
f

can" be represented as the sum of an infinite number-of subintervals

Tf • k, where k ~ OJ as shown in Figure 7.

t=Tf,~LJf'I-t-Tf'2 '" LTf,n.-J· ../

Figure 7. Subintervals of interval Tf ·

Define a variable N as follows:

N = Number of jobs which arrive during delay TO.

Subinterval Tf •O is the time necessary for N-(c-l) departures to

occur, where N ~ c-l. At the conclusion of T
fJO

there will be

(c-l) jobs in system (i.e. the jobs which arrived during the delay)

plus any jobs which arrived during T
f

O.
•
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Interval Tf may now be seen to be a special case of a

delay cycle T , and by replacing" 0(5), B(T 0)' and E(T2 0)
P p, p, p,

in THEOREM 1 with corresponding terms nfJO(sl. E(T£.O) and

E(T~JO)' respectively, 'we innnediately find the conditional

LST the waiting time of a job' which finds i~terval T
f

in progress. However, we have yet to derive the LST and

moments associated with subinterval T£,O. The conditional LST

'for the distribution of Tr,O' given the number of arrivals N

which occur during delay TO' is given by

"f,O(S!TO=t,N=n) =

{ ~c (51
for o < n < c-2

n- (c-l)
for 'c-l < n.

The conditioning on the number of arrivals and length of

+ [Yc(s)] -(C-l){exp(-(A-AYc(s))t)

[(AYc (s)t)n/n3exp(-At)} JdIlO(t),

the w&iting

This result has a

c-l

delay TO may be removed to give
m m

"f,O(S) = .t!o /:0 [(At)n/n ] "f,o(sITo=t,N=n) dIlO(t)

= Jo{:~: [(At)n/n~ ."p(-At)

c-2
- l:

n=Oc-2
= n:o [(_A)n/n~ n~n) (A)

c-2 }
+{no(A-AYc(s))- n~o [(-AYc(S))"/nG "~n)(A) I [Yc(s~

The expressions for E(T£.O) and E(T~JO) are found directly

from -nf.O(O) and nfJO(O).

The last theorem in this section deal with

time for a job arriving during delay cycle T .
e

number of interpretations which will be discussed in the next section;

at this point we note that this result can arise in the analysis of

certain nonpreemptive priority disciplines in which there is a job

class whose resource requests are so large that no concurrent

processing is possible when that class of job is in service.
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THEOREM 6. Given a MIMic system. the conditional LST for the

distribution of waiting time Wof a job which arrives during

delay cycle Te is given by

a(slarrival during Te) ~ wOo(slarrival during TO)

'"f"(slarrival during Tf )

c-I
+ ~ wko(s!arrival during Tk),

k=1

where "0 = E(To)/E(T.),

"f = E(Tf)/E(T.),

and, for 1 -.::.k ~ c-l,

E(Tk) ( 1-
k-I

~_.)n/n~ n~n) (A) } /E(T.)
"k = 2: .

n=O

The expected waiting time for a job which arrives during delay

cycle T is therefore equal to•
E(Wlarrival during Te) = noE(W!arrival

+wt(Wlarrival

c-I
• 2: "kE(W!arrival during Tk).

k=1

Proof. Given that a Poisson arrival occurs during interval T Je
the probability that the arriving job finds the system in a

particUlar state equals the steady-state probability of that

state within the delay cycle.

Delay cycle Te is the sum of delay TO and two intervals

T
f

and T
g

which constitute a delay busy period and which have

been previously defined. Recall that interval Tf starts

immediately after the delay and lasts until there are less than

c jobs in system. Interval T begins at the conclusion of Tf. g
and terminates when the system is empty. Interval Tg is the

sum of (c-l) subintervals T 'J where 1 < j < c-l; these
gJJ - -

subintervals are illustrated in Figure 8.

f-_Tg'C_I--.-L-\:_2~ LTg'l-J

Figure 8. Subintervals within interval Tg.
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•

less than j

of T . has
g.J

For 1 ~ j

Subinterval T I begins immediately after the conclusion ofg,c-
Tf • and this subinterval ends when there are less, than c-I jobs,
in system. For 1 < j < c-2, interval T . begins immediately

- - g,J
following subinterval T . I and terminates when fewer than j

g,J+
jobs remain in system. Subinterval T . has length zero if

g.J
jobs arrive during the delay; otherwise, the length

the distribution of a busy period T. (cf. LEMMA 1).
].

< c-l. define:

T .' = length of subinterval-j of T shown in Figure 8,g,l g

H . (t) = cdf for T
g J j Jg,]

D . (s) = LST for the distribution of Tg,] g,i"
Th. conditional LST for the distribution of Tg.i given that N

jobs arrived during delay TO is equal to

n .(S/To=t,N=n) =[D.(S) for j .:en,g.] J

1 forn<j.

Removing the conditioning on the number of arrivals and length

of delay TO gives the following result:
~ j-I ~

ng,j(s) = f 2: [(At)n/n~ .xp(-At)+D.(S) 2: EAt)n/n] .xp(-At)dHO(t)
t=O n=O ] n=j
j-I

[(_A)n/n~ n (n) CA)= X p-nj (S~ + nj(s).
n=O 0

By LEMMA 2, we have

E(T.) = E(T
O

)

= E(T
O

)

+ E(Tf ) + ECT
g

) ,

+ E(T
f

) + C~I E(T .)
j=l g,]

the system is in any given

defined and calculated using

The steady-state probabilities that

state during delay cycle T will be•the method of Appendix 2:

Wo = Pr [delay Toldelay cycle T
e

in

= E(Ta)/E(T.);

progress] ,

Wf = Pr [interval Tfldelay cycle Te in progress] ,

= E(Tf)/E(T.);



•and, for 1 2 j < c-l.

uj = Pr [sutiinterval

= E(T .l/E(T).g,) e

Evaluating -Ill . (0). the
g,j

is found to be

E(T .) = E(T.) 11 -
g,] J

- ..... -

T .1 delay cycle T. in progress1
g,] J

expected length of subinterval T .
g,)

The expected waiting time

cycle T follows directly•

Substituting the above into the corresponding expression for

n., we obtain the steady-state probabilities as given in the
)

statement of the theorem. By the random property of Poisson

arrivals. these probabilities will also be the probabilities

that an arrival finds the system in that particular state.

given that delay cycle T
e

is in progress. We therefore have

a(slarrival during Te) = uoa(slarrival during TO)

+ ufa(slarrival during Tf )

c-l
+ ~ u.a(slarrival during T.).

j=1 ) )

for a job arrlvlng during delay

from -a'(Olarrival during T). Q.E.D.•
4. Applications and Extensions of the Method

In this section we consider a representative sample of

applications for the results derived in previous portions of this

paper. Furthermore. a discussion is given of ways in which these

results may be easily extended to deal with other MIMic queueing

models as well.

4.1 Comparison With the MIGII Queueing System

We begin by pointing out similarities in certain results for

the MIGII and MIMIc queueing systems which have been noted by a

number of authors. Consider a busy period T for the MIGII system

which is initiated by the arrival of a job to an empty system. and

define the following:,

,
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o jobs in the M/G/] system at time 0
1 job in the M/G/l system at time 0+
o jobs in the M/G/l system at time t

•

A = Poisson input rate for jobs to the M/G/] system;
P = General processing time for a joh in the M/G/! system.

If we examine results for busy period T given in reference (6]pp. 149-155, it may be seen from LEMMA 1 that busy period T in
cthe MIMic system (with arrival rate A and interevent time P )
cappears to have the same distribution as a busy period T in theM/G/l system when A is equal to A and where P has the samedistribution as P. Let us use symbol I~I to denote that twoc

random variables have the same distribution and symbol '=' todenote the equivalence of parameters. The above-mentioned situationmay then be described as given below:
T ~ T when P ~ P and A ~ Ac c

If we examine the expected waiting time for a job in the MIMicsystem which arrives to find busy period T in progress, it is againcfound that the waiting time distribution is identical to that for anarrival to the MIGll system under the FCFS discipline which findsbusy period T taking place if again A : A and P ~ Pc' If we comparethe derivations of these results for the MIGll and MIMic systems,it becomes obvious that other MIGll results may be easily extendedto the MIMic system as illustrated in the example given below.
EX~le. Waiting Time for the MIMic System Under the LCFS Rule.

Consider a MIMic system which employs the Last-Come-First-Served (LeFS)discipline at the queue so that, at a scheduling epoch, the most recentarrival is chosen for servicing; we assume here that once a job goesinto service it is processed to completion. Under both the LCFS andFCFS rules a job arriving to find fewer than c jobs in systemimmediately goes into service and therefore encounters a waiting timeof zero. Jobs are required to wait only when arrival occurs duringan interval T , and the distribution of busy period T is identicalc
cunder the FCFS and LCFS rules.

Results for the MIGII system under the LCFS rule given 1nreference [6]. pp. 155-158 allow us to state the following for the
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MIMIc s~stem (using the same notation as used for the MIMic system

under the FCFS rule but with subscripts denoting the scheduling rule):,
•

QLCFS (s Iarrival

ELGFSCW/arrival

ELCFS CWIarrl val

durlng Te) = [J-neCsil / (ECP
e

) [S.A-AYeCsil}

durlng T ) = ECP
2
)/ (2[l-AQp )] E·CP )} ;

c c c c

durlng T ) = ECP
3
)/ (3 [l-AECP)] 2ECP )}.

c c c c

.A[ECp
2
)]2/ (2[l-AECP )]3ECP )1

e e e

of TIiEORcM 3 may then be used to obtain the conditional
The results

waiting time distribution for arrival during busy period T
kJ

where

1 < k < c. It also follows that for the MIMIc queueing system we
have similar results to those for the M/G/! system:

ELGFSCW) = EFGFSCW)

and

TIlis type of analysis can also be applied to analyze waiting time

distribution for the MIMIc system under other rules such as the
random rule as well.

4.2 Variations Using Delay Cycles

Many modifications of a simple MIMic queueing system seem to

include the concept of delay cycles in one way or another. The

following are examples of such modifications.

Ex Ie. Multi rocessor Facilit With 'Down' Pauses at the f.nd
of Busy Periods.

Consider a mUltiprocessor service facility which can simultaneously

process up to c jobs at one time. Whenever the system is empty. all

c processors are assigned to some other obligation which takes a time

TO having a general distribution. The distribution of waiting time

in such a system is that for arrival during a delay cycle T derived
e

earlier (cf. THEOREMs 4.5.6). We assume here that at the conclusion

of the interval TO the queue is examined and if empty another interval

TO is initiated. This will guarantee that every arrival to the system
finds a delay cycle T

e
in progress.
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Example. Multichannel Facility With 'Warm-Upl Time.

Consider a multichannel system ip which the processor~ once idle,
•needs some warm-up time or a setup time TO' of a general distribution,

•after the arrival of the first job. After this time TO' it starts

processing the jobs and conti~ues processing until the system is

empty. The analysis of this system is done essentially in the

same manner as for the delay cycle Teo The difference lies in the

small changes required to account for the first job which was already
• iin the system at the beginning of the delay TO' This job is the one

responsible for initiating the delay cycle in which the warm-up time

acts as the delay interval. Figure 9 illustrates the important

random variables involved in the analysis.

system
empty

ini tial system
arrival empty

I-tT~f-_---L_-T;T-e-·-_-_-_~- T:_-1

L- L, ---'

Figure 9. Busy-Idle Cycle and Subintervals.
• •The modified delay cycle T is comprised of subintervals TO (warm-up

• e •
time), Tf (during which c or more jobs are in system), and T

g
defined

in a manner similar to the subintervals of delay cycle T. Idle
e

period I is an exponentially distributed interarrival time with mean

l/~, and busy-idle cycle L is the sum of an idle period I and a
•modified delay cycle T .
e

E(l) = 1/), ;
•E(L) = E(l) + feTe)

• • •
E(Te) = E(To) + E(T

f
)

It follows that

•
+ E(T )

g

and the probabilities of an arrival
•modified delay cycle T J given that
e

finding an idle period I or

busy-idle cycle L is in progress, are
'.Of

'1 = Pr[idle period I in progress] ,

= E(l)/f(L);
•, = Pr[delay cycle T in progress],e e

•
= E(T )/E(L).

e
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Since every job arrives during a bus~-idle cycle L. the above are, .
also the unconditional steady-state probabilities. Assume that

the FCFS discipline is employed; a job arriving during idle period I, .
has waiting time equal to the warm-up time TO' and the unconditional
expected waiting time is

c-2
-(C-2)[I- ~

n=O

•
T ).

e

job arriving during

essentially the same

~eE(Wlarrival during

•E(T )
g

The ~onditional expected waiting time of a
•modified delay cycle T can be ohtained in
e

manner as for delay cycle T. Refer to the derivation and discussion
e • •

for'LEMMA 2; if N jobs arrive during delay TO' the remainder of T
e

is the sum of busy periods TN+1J TN•... JT] (rather than TN through

TI as for delay cycle T). The presence of the initial job at the• e
start of interval T requires the changes shown below for the

e ••
expected len~th of subintervals T

f
and T

g
:

E(T;) = E(Tc ) {pr[N::c-I] E(NIN>C-I)-(c-2)pr[N::c_Ij}

c-2
= E(Tc ) {FE(T~)- n:o [c-A)n/n~ nan) (A)i

nan) (A)]},
c-I

, ~ E(Tk)Pr[N::k-lj ,
k,1

c-I k-2

, E(TI ) + k:2 E(Tk) {I - n:o [(-A)n/n!Jnan) (A) } .

•The expected conditional wa1tlng time for an arrival during TO

requires similar changes as compared to the results given in THF.OREM 4:

. - (c-2) [I -

where T(S) = •
, LST for TO

•The expected conditional waiting times for arrival during T
f

have the

same representation as given in TlffiOREM 5 except that we must include
•changes to the distri~ution of subinterval-O of Tfo That is, we view



•
nf, 0 (s)
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• •random variable Tf as being composed of subintervals T
f

. (cf.
oJ •Figure 7) for j > O. If N jobs arrive during the warm-up time TO

•(~n addition to the first arrival which initiated TO)' subinterval

Tf 0 is the time needed for (N+l)-(c-l) departures to occur. assuming, .
that N is greater than or equal ~o (c-l). If we denote the number

•of arrivals during sUbinterval-j of T
f

by N. ( j > 0). subintervRl
• J -

Tf . is the time needed for N. 1 departures to occur. Comparing
,J J-

these definitions with those given for the subintervals of T
f

of

THEOREM S. we see that only the definition for subinterval-a has
•been changed. The waiting time analysis for T

f
applies also to T

f•if we substitute results for subinterval-a of T
f

. Denote the LST
• • •for the distribution of Tf a (i.e. subinterval-a of T

f
) by n

f
0 (S)j, ,

the conditional LST given that N arrivals occur during the warm-up
•

time TO is given as

• •
nf,o(sITo=t.N=n) =( 1 if 0 < n < c-2.

[Y
c
(S)]n-(c-2)if n > c-2

Removing the conditioning we obtain
c-3

= 1: [(-A)n/nl]n~n)(A)
n=O

c-3 J
+ (no(A-AYc(S)) - n:o [(-AYc(S))n/n!]n~n)(A) /[Y

C
(5)]C-2 .

•The first two moments of Tf,O

E(T;,O) = E(Pc ) (AE(T~)

• 2
E((Tf,O) )

are directly found to be

c-3
1: [(-A)n/n!]n~n)(A).n

n=Oc_3

- (c-2) p. - /:0 [(-A)n/n!]n~n)(A1}

c-3
= [E(Pc)]2 (-2(C-2) [AE(T~) - n:o [(-A)n/nl]n~n)(A).n]

c-3 (n)
n1: [(-A) /n!]n

o
(A)n.(n-1)

n=O
c-3 ()}

+ (c-2)(c-1) [1 n:o [(-A)n/nl]no
n (A)]

c-3
1: [(_A)n/n!]n~n)(A).n

n=O
c-3

- (c-2) F- 1: [(-i)n/nlj',Jn)r')'J.
n=O :J
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..
•and THEOREM 5 gives E(W]arrival during Tfl by replacing E(T

f
0) and

2 .. * 2 J

E(Tf oj with E(Tf oj and E((Tf oj J, respectively.
• , * J

Random variable T may be viewed as being a sequence of subinter-
.,. * g * '

vals T l' T 2'·'. J T 1 (defined as the subintervals of T giveng,c- g,c- g • .,. g*
in llffiOREM 6). Given that T k has length greater than zero, T kg, g.

: has the distribution of busy period TkO In order to apply THEORFM 6,

we need only modify the probability ~kJ for 1 ~ k ~ c-l. that an
•

arrival during T finds subinterval r* .in progress; the expected.,. e g.k
length of T k is given byg,

•
E(Tg,kJ = E(TkJ*Pr[N ~ k-l],

•where N is the number of arrivals during TO'

It follows from THEOREM 6 that
•E(W!arrival during Te) = wOE (WI arrival during

+rrrE(Wlarrival during
c-l

+ ~ wkE(Wlarrival
k=l

This completes the waiting time analysis for the example prohlem.

4.3 Variations Using Busy Periods

We next consider an example in which results for the husy period

Tk of LEMMA 1 find application. This will allow an analysis of the

waiting time results of THEOREMS 2 and 3.

Example. Multiprocessor Facility With Start-Up Based on

Number in System.

Consider a multichannel system in which due to the high cost of

starting and servicing, the processor waits until its use is

warranted by a certain number. M. of jobs which have arrived to

the system. Once the processor starts processing, it continues

in operation until the system is empty. Let us assume that M < c

in the analysis which follows; Figure 10 illustrates various

random variables of interest for the given example problem.
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Figure 10. Busy-idle Cycle and Subintervals.

system first second
empty arri val arrival

. 10---1-11_-,:+ ...
L'- L

Mth
arrival.t Til L

T

TM_1-l

A busy period T in this case consists of the sum of busy periods

TM' TM_1J." • T1 (here it is appropriate tQ interpret T
k

as the

time needed to achieve an overall reduction, by one, of the jobs

in system). We identify Midle periods, defined as given below
for 0 2. j < M-I:

T. = idle period during which j jobs are in system; this
J interval represents an interarrival time for a Poisson

process with rate A and therefore E(I.) = l/A.
J

Busy-idle cycle L is the sum. of busy period T and the M idle periods.

from which it follows that
M-I M

F.(L) = E E(l.) + E E(Tk) • where F.(T
k

) is given by LEMMA I.
j=D J k=1

A job arriving during idle period T. becomes the (j+l)-st job in
J

system and so must wait until (M-(j+l) additional jobs arrive

before going into service. It follows that for 0 ~ j ~ M-l,

E(Wlarrival during I.) = (I/A) (M-j-I).
J

during I.)
J

[E(I.)/E(L)]*E(Wlarrival
J

The unconditional waiting time is easily obtained by utilizing the

method of Appendix-2 to find the steady-state probability that an
arrival finds the system in any particular state.

M-I
E(W) = E

j=D
M

• E [E(Tk)/E(L)]*E(Wlarrival during T
k

)
k=1

where E(Wjarrival during Tk) is found using THEOREMs 2 and 3.

4.4 Unequal Channel-Service.Rates

In some practical situations it is possible to have unequal

channel-service-rates in multichannel systems. For example, a

job with highest internal priority in a multiprogrammed computer

system receives preferential treatment and may in effect get a
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higher service rate.

Let the service-rate for channel-j be

and let the channels be ordered such that

1-1 where 1 < J" _< C,j ,

> ••• > lJ" •
C

Assume that it is possible to have instantaneous switching of~channels

and that, when there are j jobs in service, the first j channels

will be servicing jobs. A new job, when started. receives the

highest available service rate. The service rate lJ
i

of a job.

being processed, is instantaneously changed to the higher rate

lJ i _1 as socn as this rate is available. Any rate lJi is said to be

available when the job with that rate is either finished or when

that job's service rate is changed to a higher rate. For example,

consider a 3-channel system with all three servers busy. Suppose

that the job with rate 1-1} is finished; the job with rate ~2 will

then have rate ~l' and the job with rate ~3will then have rate ~2.

If the queue is not empty, the first job in the queue will have

its processing started and will receive service at rate ~3.

The analysis of busy period Tk of LEMMA 1 and correspond~ng

conditional waiting time results given in THEOREMS 2 and 3 may be

easily modified to deal with this case. In LEMMA 1, THEOREM 2,

and THEOREM 3, it is only necessary to change the distrihution of

'j

random variable Pk (the aggregate of k Poisson

with the jobs in service) as shown below for I

processes
•

< k < c:

associated

If it is not possible to have switching of service rates, the

analysis quickly becomes cumbersome for increasing values of c,

although small values such as c =2 can be readily handled.



s. Summary.

This paper has demonstrated that the method of busy period

analysis previously used for treating the MIGII queueing system

can be extended to deal with the MIMIc queueing system as well.

Closed-form results have been presented for the distribution of two major

types of busy periods arising in the MIMIc system and for the

distribution of waiting time (under the FCFS discipline) for

an arriving job which finds a particular type of busy period in
progress.

A number of examples have been presented which show that

these results may be usefully applied and extended to deal with

a number of different models for mUltiprocessor systems. These
examples included the following:

MIMIc System Under the LCFS RUle.

Multiprocessor Facility With I Down I Pauses at the End of
Busy Periods.

Multichannel Facility With 'Warm-Up I Time.

Multiprocessor Facility With Start-Up B~sed on Number
of Jobs in System.

Multichannel System. With Unequal Channel-Service-Rates.

It is the hope of the authors that the results in this paper

will serve not only to illustrate the usefUlness of the method

of busy period analysis for MIMIc systems but also to give the

reader insigh~ in the characteristics of this class of

multiprocessor queueing systems.



,

-34-

•
References

1. Omahen, K. J. Analytic mode~s of multiple resource systems.
Ph.D. Thesis, Committee on Information Sciences, University
of Chicago, June, 1973.

2. Marathe, V. P. Priority queueing systems with simultaneous
server requirements. Ph.D. Thesis, Operations Research,
Cornell University. May, 1972.

3. Omahen, K. and Marathe. V. A queueing model for a multi­
processor system with partitioned memory. Technical Report
CSD-TR 132, Dept. of Computer Science, Purdue University.
January, 1975.

4. Cobham, A. Priority assignment in waiting line problems.
,Op'Ee...ra"t"i~o"n"s,--"R"e=-s e"a",r~c"h,--=-2 • 1 (1954).

5. Avi-Itzhak. B., Maxwell, W. L., and Miller, L. W.
with alternating priorities. Operations Research

Queueing
13 (1965), 306-318.

6. Conway, R. W., Maxwell. W. L., and Miller. L. W. Theory of
SchedUling. Addison-Wesley, Reading, Massachusetts. 1967.

7. Cox, D. R. Renewel Theory. London: Methuen, 1962.

8. Strauch, R. E. When a queue
customer as to an observer.
140-141.

looks the same to an arriving
Management Science 17 (1970),

9. Widder, D. V. The Laplace Transform. Princeton University
Press, Princeton, New Jersey, 1946.

10. Little, J. D. C. A proof of the queueing formUla L = AW.
Qperations Research 9 (1961), 383-387.



-35-

,

;

APPENDIX"I

PROPERTIES OF POISSON PROCESSES,
Consider a Poisson process with rate A; such a process is

characterized by a'sequence of interevent times which are independent
and exponentially distributed. Define:

T = time between successive events for the Poisson process.

G(t) = Pr[T ~ t] = 1 - exp(-At), t ~ O.

yes) = LST for the distribution of T = A/CS+A).

The first and second moments for the distribution of interevent times are
E(T) = IIA, and E(T2) = 2/A 2.

Define another random variable as follows:

N(t) = NUmber of events which take place during interval t
for a Poisson process with rate A.

The distributlon for NCt) has the following characteristics:

Pr[N(t) = nJ = [(At)n/n !] exp(-At) for integer n ~ 0,
E(N(t)) = At for t > O. •

i=i

n
X A..

1

The Poisson process has many properties which are utilized in

the body of this paper; these properties are summarized below. The

proofs for these properties are available in a number of textbooks
(e.g. see Reference [6]).

AI.l The Memoryless Property

Suppose that we are interested in the distribution for inter­

event time T, given that a certain amount of time y has already

passed without an event taking place. Poisson processes have the
unique property that

Pr[T < y+tlT > y] = 1 - exp(-At).

The process is memoryless in the sense that the distribution for

the remaining time until the next event does not depend upon the

amount of time which has passed without an event taking place.

AI.2 Aggregation and Branching of Poisson Processes

AI.2.1 Assume that there are n Poisson processes simultaneously in

progress and that events associated with the ~th process are taking

place at rate Ak , where k = 1,2, ... ,n. The aggregate of these processes

will be defined such that events associated with each of the n Poisson

processes will be considered to be events for the aggregate.9 The

aggregate of these Poisson processes is also Poisson with rate A =
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Al.2.2 Consider the situation in which events.~ssociated with a

Poisson process with rate A are su~jected to a decision process

whereby each event is (instantly) mapped into one uf'n classes.

Every time an event occurs, the decision process maps the event

~nto class-k independently and with probability A
k

, where K = 1.2, ...•n

and where the sum of ,these probabilities is equal to one. If we

define n processes, where the kth process consists of those events

mapped into class-k, each process constitutes a Poisson process

with rate Alc" Therefore, we have the situation in which a Poisson

process branches into independent Poisson processes.

Al.2.3 As a consequence of AI.2.1 and Al.2.2, we obtain the following

result. Given that we have an aggregate of n Poisson processes and

an event occurs, the probability that the'event is associated with the

kth Poisson process (1 ~ k ~ n) is equal to Ak/A.

Al.3 The Random Property

Poisson events are frequently referred to as "random events"

because of the property described below. Given that an event occurs

during an interval of length t, the instant at which the event takes

place is uniformly distributed over the length of the interval, i.e.

Pr[y ~ instant of event occurrence ~ y+dylevent in t]

= dy/t for 0 ~ y ~ t.

AI.4 The Random Modification

Assume that an event associated with a

the end of interval X; this interval Y will

place during interval X.
of the Poisson event and

Consider the time

Poisson process takes

Y between the occurrence

be called the random modification. Define:

X = length of some interval haVing an arbitrary distribution,

G(x) = cdf for r.v. X,

yes) = LST for the distribution of X;

Y = length of random modification of variable X.
H(y) = cdf for r.v. Y,

T(S) = LST for the distribution of Y.

We have the following results for the random modification:

(a) Pr[y ~ y 2 y+dy, x ~X ~ x+dx] = dG(x)dy/E(X), o~<x. O~x<~.

(b) dH(y) = [l-G(y)]dy/E(X) for 0 < y < 00.

- k - k+l
(e) T(5) = [1-Y(5)]/[5E(X)], and E(Y ) = E(X )/{(k+1)E(X)),k ~ 1.
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APPENDIX-2

A METHOD POR DETERMINING STEADY-STATE PROBABILITIES

We will often be interested in determining the steady-state

probability that the system is in some specified state, given1that

an interval T is in progress. The possible states of the system

during interval T will be denoted by 51,52
, ... , So" Associated

with each state Skis a random variable Xk which represents the

amount of time that the system remains in state Sk upon a transition

to that state. where k = 1.2•... ,n. For 1 2 k ~ n. define:

Nk =(1 if Xk is in progress

o otherwise.

The steady-state probability that the system is in state Sk given

that interval T is in progress is therefore

Pr[SklTj = E(Nk) for k = 1,2, ... ,n.

If we examine the system operation only during those times that

intervals of type T are in progress. the intervals of type T appear

to be initiated at rate A given by

" = 1/E(T),

and intervals of type Xk appear to be initiated at rate A
k

given as

"k = r k",

where r k is the relative rate at which intervals Xx are initiated

given that an interval T is in progress.

Using Little's Equation [10] ,we find

E(Nk) = "kE(Xk),

= rkE(~)/E(T);

therefore, we have the following result:

Pr[Sk!Tj = rkE(Xk)/E(T).

If there are n mutually exclusive and exhaustive system states during T,

it will obviously be the case that

n
X rkE(~)/E(T) = !

k=1
or

n
E(T) • X rkE(Xk)

k=!
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