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ABSTRACT

A relatively high level analytical model for computer systems serving
both bat~ and interactive users is presented. The model is unusual in
its employment of an endogenous priority scheme to represent a class of
strategies for controlling service to the two types of customers.
Numerical methods developed by V. L. Wallace are used to generate steady
state probability distributions for the infinite state Markov chain formed
by the model. Data from the Michigan Terminal System. which includes a
load controlling mechanism of the type modelled, is used to validate the
model. Finally, additional parameter studies indicate that the model
reflects the dynamic behavior of such system in a reasonable way.



I. INTRODUCTION

An increasing number of computer systems provide both batch and inter­

active service to their users. In such systems, conflicts may arise between

the two modes of service, since jobs of both types compete for the same set

of resources. In particular, if the batch load is substantial, it can cause

response times for interactive jobs to become intolerable. This effectively

reduces the interactive-batch system to a batch-only one unless some control

is placed on the load imposed by the batch subsystem. conversely, if jobs in

the interactive subsystem are given absolute priority, turnaround for batch

jobs may become unacceptably high.

From the operating system's point of view, it is desirable that all jobs

actually competing for the processor be treated equally, regardless of whether

the computing request was initiated from an interactive terminal or a card

reader. The actual resource requirements of jobs at a particular time provide

a better basis for discriminating among them than their sources, s~nce, for

example, a heavily compute bound (or I/O bound) request may be initiated either

interactively or via the batch stream. Nonetheless, it must be recognized that

admitting a single additional batch job into ~ompetition for the processor will

generally load the system much more heavily than admitting an additional inter­

active job: for the batch job, "think times" will be zero and input/output

times will generally be shorter than for the interactive job. Moore [13] found

that the load imposed by a single batch job was roughly equivalent to that of

5 to 15 terminal jobs. These points suggest that a reasonable way to balance

service between interactive and batch jobs is to control the entry of jobs into

the race for the processor at least partially on the basis of the source of the

job as well as on the current level of performance of the system.

In some respects this type of control algorithm corresponds to manipulat­

ing the degree of mUltiprogramming in order to keep the system from becoming

saturated. Previous work directed toward this end is primarily represented by

the development of the working set pOlicy (5, 6, 7) in which the degree of

multiprogramming at a given time is controlled by the size of the balance set,

that is, the set of jobs all of whose working sets will fit into real memory

at a given time. Although a number of approximations to working set replace­

ment pOlicies have been implemented (8, 14, 16), currently available hardware

makes precise measurements of working set size difficult. More recently, an

analytical model which includes a control switch to regulate the degree of



multiprogramming has been developed (3, 4) and extended to include an adaptive

control (1). This extended version was simulated, but no additional analytic

results were presented. Both the working set and. control switch models, how­

ever, allow only one class of jobs and both contain more low level system

detail than the model investigated below.

This paper presents a Markovian queueing model which allows two types of

arrivals, representing batch and interactive jobs. The server discipline re­

flects a control algorithm such that good response to interactive requests is

maintained while a minimal level of batch throughput is ensured. There is a

strong emphasis on keeping the model simple and general, for purposes of wider

applicability (10). Parameter values obtained from the Michigan Terminal

System are used to conduct studies with the model, and the results of the

studies are compared with actual system measurements.

II. STRUCTURE OF THE MODEL

2.

The primary goal of this model is to represent a control algorithm for

admi tting jobs of two different types into the race for the processor, so the

actual processor scheduling algoritlun (that is, the algorithm for sharing the

processor among the jobs which have been allowed to compete for it) will not,
be presented in detail. Admission of a job to the server in this model could

thus correspond to the entrance of the job into the ready list of a more de­

tailed model. All of the processing that takes place on a job after it enters

the ready list will be represented here by a simple exponentially distributed

service time. Since the control algorithm we will be concerned with generally

main tains terminal response at the expense of batch turnaround time I the

statistics of primary interest are the mean system residence time and queue

length for batch jobs. Consequently, the assumption of a single server with

service expontential for each job should not bias results unrealistically.

The basic structure of the model is shown in Figure 1. A finite capacity

queue is used to represent the current number of terminals active in the system;

the capacity of the queue can be thought of as corresponding to the (finite)

number of input ports which the system supports. An infinite capacity queue

is used to model batch jobs waiting for service. Since there are two queues

and only one server, an algorithm is required to define from which queue the

server chooses the next job to be serviced. In most queueing models, priorities

are defined strictly by the type of the job (9): for example, all interactive
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jobs are serviced before all batch jobs, or vice versa. This type of priority

discipline is called exogenous, since the order of service is defined strictly

by the externally defined priorities of the jobs. The discipline used in this

model, however, will be endogenous: the next job to be serviced will be deter­

mined on the basis of the state of the server, the lengths of the two queues,

and a specified decision algorithm.

The server state is defined to be the number of consecutive interactive

jobs which have been serviced (up to a finite limit, L-l). Thus, at each service

state) defines the state of the entire

possible states, and there are n
T

jobs

jobs in the batch queue. The triple

L

If we introduce the additional assumptions ofdeparture epoch.

completion the server is in one of

in the interactive terminal queue and DB

(where S denotes the server(nT' DB'S)

system at a

(nT' n
S

' S) + (min (nT+I,M) , n
B

, S)

where M is the capacity

Poisson arrivals to each queue with rates AT and As and exponential service

times with rates V
T

and VB for terminal and batch jobs, respectively, then

the model defines an infinite state Markov chain.

In order to complete the specification of the model, the transition function

among states must be defined. Transitions due to job arrivals are specified as:

batch arrival: (nT' ns ' S) 4 (nT' nB+I, S)

interactive
tenninal
arrival:

b. The
s

b has the value
L-l

be non-decreasing, although

s, there is a breakpoint

values is expected to

defined to be zero, and the last,b , is
o

The vector of breakpoint

first breakpoint,

of the terminal queue

State transitions at departures are more complicated to specify, since when a

service completion occurs, the decision algorithm must pe used to determine

whether a terminal or batch job will be chosen for service. We will now define

this algorithm and indicate the motivation for it.

Associated with each server state

this is not a requirement. At a service completion, the server obeys the

following algorithm:

1. If both queues are non-empty and the server is in state s,

then

a. If n
T

> b
s

' select the next job to be serviced

from the interactive terminal queue and set



,5:

5+ 5 + L (The next state is (n -1 n
B

,
T '

min (5 + 1, L - 1) ) .
b. If n < b , choose the next job from the batchT s

queue and set 5 + O. (The next state is

(nT' nB_1 , 0) ).

2. If only the terminal queue is non-empty, choose a job from

it and set 5 + min (5 + I, L - 1). (The next state

is (nT_I' 0, min (5 + 1, L - 1) ).

3. If only the batch qu~ue is non-empty, choose a job

from it and set 5 + O. (The next state is

(0, n
B

_
l

, 0) ).

4. If both queues are empty, set 5 + 0 and enter a

distinguished idle state until the next arrival.

At the time of the arrival, reapplying this

algorithm.

The motivation for this scheme is the requirement that the batch stream

receive varying degrees of service depending on the size of the terminal load

at a given time. A minimum level of service for the batch stream is guaranteed

by the fact that, even under saturated conditions, one batch job will be pro-

b = "").
L-1

to represent

cessed for every L - 1 terminal jobs (since

breakpoint vector and priority a1goritluns is

The effect of the

the server as query-

ing and responding to the system state after each departure: if 5 terminals

have been serviced in a row and the terminal queue still equals or exceeds

b
5

, the current breakpoint, (Le., the terminal queue is "too long") service

another tenninal and increment S. Otherwise, service a batch job and reset

S to zero, indicating that a batch job has entered service. A policy under

this algorithm corresponds to fixing the number of server states, L, and the

values of the breakpoints b
o

' b
l

, ••. , b
L

_
l

• By changing the policy used,

different control algorithms may be modelled.

In (10) the-numerical techniques developed by Wallace (17) are shown to

be applicable to the detennination of the steady state probability distribution

of the modeL The mean queue lengths for batch and terminal jobs can be

determined from this distribution, and by applying Little's theorem (12) the

mean system residence times can also be defined. The derivations of these

results are omitted for the sake of brevity. A program has been written in­

corporating these techniques and this program was used to generate the results
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given below.

III. APPLICATION OF THE MODEL TO THE MICHIGAN TERMINAL SYSTEM

In order to assess the usefulness of this relatively general, high-level

model, it has been used to represent the Michigan Terminal System. This large

scale interactive and batch system, which has been ~rnplernented on the IBM

360/67 and 370/168, is described in (2, 10, 13, 15). It includes a load level­

ing algorithm which controls the number of batch streams (batch job initiators)

on the basis of current system performance. Measurements of CPU activity,

paging activity, and disk and channel I/O activity are combined in a weighted

sum which defines a current load factor for the system. This load factor is

combined with weighted values of the last several load factors computed to

provide exponential smoothing of the final load factor. The system decides,

on the basis of this final load factor, whether to increase, decrease, or leave

unchanged the number of batch initiators. (In fact, the algorithm is more

complex than this, since batch initiators are not all identical: each initiator

looks for a certain class of batch jobs to initiate, based on execution time

estimates) •

Statistics from 15 different periods, ranging from three to eight hours

in length, were gathered in order to determine reasonable values for arrival,
and service rate parameters in the model and to provide a yardstick for the

model's predictions. Details of the collection methods and values observed

can be found in (10, 11) and will not be repeated here. We note that system

behavior seemed to fall into three general categories, defined by mean CPU

utilization and batch queue length:

1. Lightly loaded: 0% < CPU ~ 60%; Batch Queue = a

2. Moderately loaded: 60% < CPU < 90%; a < Batch Queue < 5

3. Heavily loaded: 90% ~ CPU; Batch Queue> 5

For each of the 15 measurement periods, the arrival and service rates of

batch and terminal jobs were determined. Service rates were based on observed

job CPU requirements only, since the system being measured was in fact generally

CPU-limited. The values for M (capacity of the terminal queue), L (number

of server states), and the breakpoints were determined on the basis of pre­

liminary studies. Since the cost of computing the analytic solution is pro­

portional to the product of M and L, there was a strong motivation to keep

these two model parameters as small as possible without introducing too much



'l'able 1 Summary of Parameter STudies

.7.

Data 11ilX ,
From fTerm non- Std.

Period 'M) 'T '. "T I'D E(WaJ idle ElLa) Dav.

1 5 .01063 .02465 .07524 .20454 '.4 26.2 .206 .53

2 5 .01014 .02063 .05739 .1741. 11. 3 29.6 .233 .59

3 5 .01509 .03028 .06717 .13116 18.2 45.5 .552 1.02

• 5 .02319 .03542 .OS8!lO .17083 30.8 59.8 1.09 1.95

5 5 .026)) .04994 .11210 .14 83 1 lB.8 57.1 .938 1. 4 7

6 5 .03269 .0676'.1 .1085 .lB]59 23.9 66.9 1. 62 2.39

7 5 .0370 .03522 .08522 .10421 55 . ., 76.1 1, ':15 L 72
10 64.5 77.4 2. :27 3.26, 5 .04926 .03111 .09279 .11338 53. ., 78.2 1. 66 2.35

9 5 .04324 .04056 .07724 .11227 145.2 89.1 5.89 7.09
10 251. 5 91.8 10.2 12. )

10 5 .04833 .0)826 .11354 .07448 184.8 91. 8 7.07 7.94
10 290.1 93.9 1l.1 12.2

11 10 .04565 .03426 .08602 .09284 180.7 89.7 6.19 7. 7)

12 10 .04'.106 .04778 .08846 .11962 36 B. 4 95.1 17.6 18. B

13 10 .04517 .03772 .08646 .OllG50 280.5 94.<1 1).4 15.1

14 10 .04552 .03622 .08509 .0801;11 911.1 97.8 33.0 32.0

15 10 .0<1544 .03526 .07779 .08594 1173.5 98. G 41.<1 ]8.9

For all cases
L " •Breakpoints = 1,2,3,'"

Parameter Studies

Single Node Nodel



~'able 2 Analytic Model,-System Data Comparison

B.

% CPU Mean ·Std. Dev.

Collection Non-idle Datch Q Batch Q

Period Data Hodel Data ~lodcl Data Model

1 26.31 26.2 .37'1 .206 .65 .S)

2 29.52 29.6 .405 .233 .63 .59

3 48.90 45.5 .823 .552 1. 23 1.02

• 60.33 59.8 2.08 1.'09 ].68 1.95

5 57.36 57.1 1. 65 .938 1. 88 1.47

, 66.91 66.9 2.27 1. 62 3.51 2.39

7 79.1 77.4 3.39 2.27 5.64 3.26

8 80.51 78.2 1.80 1.66 L 76 2.35

9 91.95 91.8 12.2 10.2 9.46 12. ]

10 93.95 93.9 10.34 11.1 B.84 12.2

11 90.02 89.7 19.4 6.19 16.1 7.73

12 95.32 95.1 25.8 17.6 14 .4 18.8

13 94.67 94.4 27. ) 13.4 26.0 15.1

14 98.30 97.8 50.1 3).0 37.8 32.0

15 99.43 9 B. 6 13. a 41. 'I 9.' 38.9

Analytic Hodel - System D<J.ta

Comparison
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error into the results. The values finally chosen are shown in Table 1. For

the heavily loaded periods, L = 4 and M = 10 were chosen, and a reduction to

M = 5 for the lightly loaded periods proved to yield sufficiently accurate

results.

The values predicted by the model for the mean and the standard deviation

of the batch queue length are shown in Table 2, next to the observed values.

Since the analytical results for percent non-idle CPU depend only on the

arrival and service rates (which were derived from the data) the close agree-

ment between model and data for this parameter indicates that the finite'

length of the terminal queue in the model did not seriously bias the results.

The mean batch queue lengths predicted by the analysis show the same trends

as the observed values, although they tend to underestimate them. Figures 2,

3, and 4 detail the correspondence between the predicted and observed values.

In Figure 2, arrows point from predicted to observed values. When CPU utili­

zation is below 90%, the absolute error is not large, although there is a

consistent underestimate of batch queue lengths in the predictions. In the lightly

loaded periods, this tendency to underestimate is due in part to the single

server assumption. Since the statistics were in fact collected from a dual­

processor system, the single server in the model is defined to have twice the

service rate of the actual CPU's. In lightly loaded periods, the actual system

will have only one CPU busy, which will have a service rate half that of the

model.

When the CPU utilization is above 90%. the observed data become much more

difficult to predict, and the values projected by the model vary in both

directions from observed statistics. Figure 3 shows the data points with error

bars indicating distances of one standard deviation in each direction from the

observed means. From this point it is clear both that the predicted means all

fall within one standard deviation of the observed means and that the standard

deviations observed, especially in the heavily loaded regions, are quite large.

Two explanations are possible for these observations. First, the mean

batch queue length may not be describable as a simple function of the CPU

utilization. This is particularly true when the load is heavy, since other

bottlenecks may appear in the system. In this case, the mean batch queue

length may increase while CPU utilization stays fixed. secondly, when the

system is heavilY loaded, the basic existence "of a steady state distribution

is called into question. A look at the actual structure of MTS heavy periods
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indicates that they are often characterized by a rising demand for interactive

terminal service for several hours, during which time the batch queue grows in

length, followed by' a decrease in terminal use (around dinner time, for example.)

As the arrival rate of terminal jobs declines, the batch queue is processed

more quickly by the system, so the CPU utilization remains high until the batch

queue is depleted. Thus, the heavily loaded periods may be dominated by several

transient processes.

Finally, Figure 4 contrasts a smooth curve which fits the predicted data

values with a jagged line produced by connecting the data points defined by

the system measurements. Despite the differences in detail, the model does

reflect the global characteristics of the system.

IV ADDITIONAL PARAMETER STUDIES

After validating the model, several parameter studies were made to relate

the expected system residence time (turnaround) for batch jobs to the arrival

rates for batch and tenninal jobs. The mean system residence time for batch

jobs (E(WB» can be obtained from the mean number in system via Little's

Theorem (L = AW). In each case, arrival and service rates were first deter­

mined from system statistics and the arrival rate for batch jobs was then

varied. Statistics chosen for these studies included two light, three moderate,

and two heavy periods.

Figure 5 shows the results of these studies. This graph discloses a sharp

division of the system's performance into two apparent regions of operation.

The first region, illustrated by the three steeply rising curves, corresponds

to periods in which E(W
B

) is very sensitive to changes in batch arrival rate.

This sensitivity is due to the relatively havey interactive load on the system;

so that if the batch arrival rate is ~~creased, the queue lengths (and hence

residence times) grow rapidly. Conversely, in those cases in which E (W
B

) is

relatively insensitive to the batch arrival rate, the interactive load is light

and the system, as a whole, is underloaded. At such times, additional batch

arrivals can be handled with only a small increase in E(W
B
).

It is also noteworthy that those cases originally classified as moderate

periods fall in both regions of operation, indicating that the initial division

of system states into three categories is finer than required. The resulting

division of the operating region of the system into "good turnaround" and

"bad turnaround" regions has considerable intuitive appeal, since MrS batch
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users often observe that turnaround is either vary short (a few minutes) or

else relatively long (an hour or more) •

This bifurcation of the operating region suggests that, if similar

studies were run in which the terminal, rather than batch, arrival rate were

varied and E(WB) observed as a function of this variation, the resulting

plot would contain a knee. The knee would correspond to that point at which

terminal service would begin to saturate the systemi batch waiting times would

rise rapidly beyond this point, because of the priority placed on terminal

service.

Two such studies were made, one corresponding to a lightly loaded period

during which the terminal arrival rate was gradually increased, and the other

using data from a heavily loaded period, successively decreasing the terminal

arrival rate. The results of these studies are shown in Figure 6. In both

cases, the curve for E(W
B

) begins to rise sharply as the arrival rate becomes

greater than .030 jobs per· second. Since only the control algorithm was

specified in the design of the model, this result demonstrates the model's

ability to realistically reflect the system's behavior.

V. CONCLUSION

That the model developed here is capable of representing computer systems

which include algorithms for controlling service delivered to batch and inter­

active users has been demonstrated by the validation and parameter studies.

This has been shown to be true despite the model's relatively high level and the

numerous assumptions made to ensure its mathematical tractability. Although

the primary control algorithms portrayed in the model design are those which

favor terminal service over batch as the interactive load increases, the model

can easily be adapted to represent other priority schemes. Finally, the endog­

enous priority mechanism presented here can be used to study those lower level

portions of computing hardware where more than one class of requests is served

but priorities are not determined solely as a function of the request class.
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