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Abstract

This paper considers deterministic scheduling problems for systems

having a nUmber of different resource types and an arbJtrary number of

units of each resource. General results are obtained for preemptive­

resume scheduling rules under the condition of zero preemption costs.

Schedule completion time 15 the objective function considered, and the

paper examines the relative effect of demand scheduling and precedence
constraints on the minimum schedule completion time.
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Introduction

With the exception of multiple-server systems, few scheduling problems

arising from multiple-resource systems have been treated In the literature.

This paper attempts to offer Insights Into one cldss of muJtlpJe-resource

scheduling problems and to provide some general results as a by-product. A

formaJ description of the problem to be considered Is given below:
Problem.

We are given a system having the folloWing resource characterfstics:
I • No. of Types of Resources

R1 ... Amount" of Resource-Type-I In System, 1.1.2, ...•1.

A set of Jobs as described below are to be scheduled so as to minimize

schedule completion time (I.e., the tIme to fInish all jobs):
N a No. of Jobs to be scheduled.

J = Symbol denoting the nth Job, n. 1.2, •.• ,N.n _

Vn ... [rnl,rn2····,rnI] ... Vector describing the resource requl"rements

of J ; I.e., r 1 units of Resource-Type-I, r 2 units of Resource-n n - n
Type-2. etc.

Pn • Processing TIme for Jni this is the amount of time that the

resources V are s' mu' taneous 1y requ Ired. If the reSOurce re­n

qulrement V Is satisfIed. Job J progresses at unit rate.n n
The scheduling rule to be used Is assumed to be of the preemptive-resume

type with zero preemption costs, and the four cases to be considered are:

Case 1. No Precedence ConstraJnts, Non-Demand Sche~ulln9

Case 2. No Precedence Constraints, Demand Scheduling

Case 3. Precedence Constraints, Non-Demand Scheduling

Case 4. Precedence Constraints. Demand Scheduling

Problems examined In the past have assumed that the scheduling decision

involves choosing the next job to be scheduled; such a viewpoint Is a

reasonable one to take when developing heuristic rules but Ignores the

fundamental nature of the problem. This author believes that the following
alternative view Is more appropriate;

Viewpoint. Scheduling rules for multiple-resource systems shouJd, at

a schedUling epoch, be concerned with the choosing of some combination

of Jobs whose characteristics allow for simultaneous processing.



3

In order to demonstrate the utility of this approach, additional notation
must be introduced:

,
M• Number of distinct feasible Job combinations

C • N x I column vector denoting a feasible combination of Jobs,m

"" a subset of the set of Jobs {I
n
II ~ n ~ N},

Xml
Xm2

where Xmn
If I n Is Included In em'
otherwise.

For a job combination em to be "feaslble," we require that

N
E

J=I
r • 1,2, .•• ,1.

That Is, the total resources required of all Jobs In the combination

must not exceed the amount actually present In system.

If we pursue the vtewpoJnt that the scheduling rule should be concerned with

choosing combinations of Jobs for processing, we may denote a schedule S as

5 = [(Il'tll.(i2,t2), •.. ,(IK,tKl]

where each pair (Ik,tk) '5 lnterpreted to be a combination scheduling

Interval In which feasible combination with Index 'k Is to be serviced
for t k units of time.

The above notation specifies the first through Kth combination scheduling
intervals which constitutes the schedule.

Some Insights

Observe that It Is Immediately possible to make a statement concerning,
the mInimum schp.dule completion time for the situation In which there are

neither precedence constraints on the order In which jobs must be processed
nor any requirement for demand processing.

Lemma 1. The minimum schedule completion time T
I

for Case I (Preemptlve­

Resume Scheduling, No Precedence Constraints, Non-Demand Scheduling)

is the solution of the fOllowing linear Programming (lP) problem:



n=J,2" ..• N
x *t '" pmn m n

Tr .. Min

M
r

""'I

M
r

'"'"
Subject to the N equality constraints

where t
m

a .(non-negatlve) amount of time that the )E.th combinatIon,

C
m

, Is to be serviced In total to obtain the mInimum
schedule COmpletion time;

Pn a proCessing time for Job I

n

;

X
mn

a element of column matrIx C
m

Indicating Whether Job I

n
is present 10 the COmbination.

!r~, The schedule completion time Is the sum of the amount of time

spent In prOCessing each Possible combination of Jobs, and the conStraints
reflect the reqUirement that, for each Job, the amount of time spent

In combinations In Which the Job "progresses" must equal the proCesSingtime request of that Job. 0

""" ,."., '" ''''''' ~ ,.-, ,.. """ """ "''''''
,., ''''''. ">, ,., " ..... 0»,••• , " •• ,."'".,. ,••••J
for which t

m
has a non-Zero value WOuld be acceptable, Well-knOWn lP

results also Imply that no more than J of the combinations need be assigned
non-zero Values and that the Set of J column vectors, A, will be linearlyindependent, where

A • iC It> 0),m m

It should be ObvIOUs that ImpoSing demand schedulIng and/or precedence
constraints on the Set of Jobs Can neVer result In a smaller schedule

completion than WOuld be obtained Using lemma I. However, there might exist

Situations In Which the minimum schedUle cOmpletion time might be Increased
,

due to demand scheduling and/or precedence conStraints, and therefore thesefactors will be next examined.

for mUltiple-server sYstems, demand schedul'ng has been taken to mean
that no processor W/I' remain Idle If there Is some Job Which might be

serviced. for mUltiple-resource sYStems thIs defln'tlon Is not adequate

because ambigUities arise When there are many types of resOUrces in sYStem.
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If we consider a scheduJlng epoch to be the instant at which a differentcombinatIon of Jobs goes Into service, a" more suitable definition of demandscheduJ Ing may be given In terms of a "max lma l comblnatlon."
Maximal CombInation (when no precedence constraints): For a given setof Jobs In a multIple-resource system, each with resource-requirementsand (remaining) processing time requests, a (feasible) combination C.. IIs said to be a maximal comblnatl9" If there does not exist another(feasible) combinatIon CJ such that C1 Is properly contained In c)(i.e., such that every Job in C, Is also contained In e

j ).Having defIned a maxima) combination, demand ~chedullng may be better describedas shown belOn!.

Demand Scheduling:
(for the remaining

At each scheduling epoch, a maximal combination
Jobs In system) Is chosen for processing.

The next result to be presented will apply to Case 2 (I.e., withdemand scheduling Imposed on Case I); this result demonstrates that theminImum schedule completion time T
2 will always be the same as that possiblefor Case 1 where demand scheduling Is not required.

lemma 2. The minimum schedule completIon time T2 for Case 2 (Preemptive­Resume Rule, No Precedence Constraints, Demand SchedulIng) will alwaysbe equal to the value TI of lemma 1.
Proof. Given a schedule of minimum length 1 1 given by lemma I, aschedule which meets the requirements of demand scheduling may alwaysbe constructed using the algorIthm given In Appendix 1. I:J

Demand schedulIng has the effect of Imposing constraints on the order Inwhich combinations may be processed because, whenever a combination CI Isproperly contained In some combination C
J

, combination C, may be chosenfor servicing only if It Is impossfble to form combInation C
J

from the re­maining uncompleted Jobs In system.
Job precedence constraints specify a partla) ordering on the set ofjobs, where

I .; n

implies that the ith Job must be processed to completion before the servicing

I

\
!
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of the ~th Job can commence. The effect of an arbItrary set of Job prece­
dence constraints Is illustrated in the following lemma:

Lemma 3. The minimum schedule completion time T
3

for Case 3 (Pre­

emptive-Resume Rule. Precedence Constraints. Non-Demand Scheduling)

will always be greater than or equal to the value T) of Lemma 1.

Proof. Consider the effect of the Job precedence constraints on the

possible schedules that ,might be generated for Case 3.

(a) We mLlst ff rst eliminate from consideration any Job comblna­

t I on em such that J. E C , J E C • and J I < I
n

for I rI- n.
I m n m

(b) For the remaining job combinations. the job precedence re­

lations have the following effect:

(I) A combinatIon precedence relation between C
k

and em
will be denoted as Ck < em If each job precedence

relation between a job In Ck and one In C
m

Is of the

form J j < I n, where J I E Ck and I
n

E Cm.

(II) If J, < I n and JJ < JR. for some J 1 ,JR. E C
k

and JJ,J
n

E em'

then combinations Ck and Cm may not be present In the
sarre schedule. That Is,

t k > 0 Implies t
m

.. 0
and

t m > 0 Implies t
k

• 0

where t k and t m are combination processing times.

(IIi) If there are no precedence relations between any pair of

different jobs, one In combInation C
I

and the second In

combination em' there is no combination precedence rela­
tfon defined between C

i
and Cm.

The meanIng of a combinatIon precedence relation, C
I

< Cm' Is that a

scheduJe containing combination scheduling intervals for both C
l

and C
mmust be such' that the IntervaJ for C

f
precedes the one for Cmo The

proof Is compJeted as follows. A well-known LP result Is that the

solution to the minimization problem of Lemma lies at an extreme point

for which at most J combinations are assigned non-zero combination



7processing times. SItuations (a) and (b - II) descrIbed above Cause
one or more of the extreme points to be excluded due to the presence

of the Job precedence constraints, and It follows that 1
3 ~ T

t " [)
We complete the coverage of the four cases by constderSng the effect

of having both precedence constraInts and a requIrement for demand process­

ing (Case ~). The approach taken here Is sImIlar to that for Lemma 2 except

that It wilt be shown that. gIven a solution to the Case 3 sltuation t one

may always construct a demand schedule having t~e same completion time.

We again Interpret demand schedUlIng to mean that a max Sma 1 combination

(for the remaining Jobs in system) is chosen at each scheduling epoch. How­

ever, the presence of precedence constraints causes the definition of maximal

combInation to be modified:Maximal Comblnatlo~ (when precedence constraints): Given 8 set A of

jobs £Jnl having non-zero (rema1nlng) processing times, we consider

only those comblnatfons which can be formed from set S, a subset of A

having the followtng properties:B a {J IJ E A and a J =" (J < J and J E A))
-n n

m m n mThat Is (in the context of the Jobs In A), we consider only those
jobs for which either no precedence relations are defined or which
no Job precedes. A (feasible) combInation Cr Is said to be a maximal

combination If there does not exist any other (feasible) combination
C
J

such that C
j is properly contaIned In CJr where both C

j and C
J are,

formed from Jobs In B on1y.
Lemma %. The minimum schedule completion time T% for Case % (Pre­
emptlYe-Resume Rule, Precedence Constraints, Demand Scheduling) will

,
always be the same as the minimum schedule completion time 1

3 for
Case ).

Proof •. Given a mInimum length schedule for Case ), a schedule for

Case 4 may always be constructed uslng the same algortthm given rn
AppendIx 1. Further details of the algorithm as It applIes to the
case where both precedence constraints and demand schedUling are
present Is given In AppendIx 2.
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The preceding lenrnas wll J allow the following surrrnary to be gi Ven forthe relative effects of Job precedence constraints and demand schedulingon minimum schedule completIon time for preemptrve-resume rules for multl­resource systems.

Theorem. For a multiple-resource system with a set of N Jobs{Jnll ~ n ~ N} to be 5ched~led, where each Job I n has an associatedresource requirement Vn and processing time Po' let 1, denote theminimum schedule completion time possible under each alternatlve-i1isted below:

(I) Preemptive-Resume Rule, No Precedence Constraints, Non­Demand Scheduling
(2) Preemptive-Resume Rule, No Precedence Constrarnts, DemandScheduJ ing
(3) Preemptfve-Resume Rule, Precedence ConstraInts, Non-DemandSchedu1 Iog
(4) Preemptive-Resume Rule, Precedence Constraints, DemandScheduling

The relative values of T, are given by the following relations:T, • 1
2

; T I .::.. T3; T2 .::.. 1
3 ;

T, ~ 14 ; T2 ~ 1
4 ; T) • T~.

Proof. Inmedlately follows from lemmas 1-4. cNo mention has been made concerning the effect of non-preemptiveschedulfng; this has been avoided because non-preemptive disciplines con­siderably complicate matters. Non-preemptive schedulJng requires that onebecome aware of the aJlowable transitions between Job combfnatlons, andthe descrIption of such transitions 1s somewhat unwleJdy for the generalcase. It Is Interesting to note that no anomalies have been observed Inthe above theorem; this suggests that anomalies such as those observedfor multiple-server systems are due to the Interaction between the con­straJnts Imposed by nonpreemptfve schedulIng and those 'mposed by precedenceconstraJnts and demand scheduling.
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Summary

This paper considered the deterministic scheduling problem for a

multiple-resource system when preemptive-resume rules may be employed.

The suggestion was made that the proper viewpoint to be taken for such

a system Is that the scheduling rule shouJd be concerned with choosing

the next combination of Jobs to he serviced rather than with the seJec­

tlon of the next job for processing. Under the condItion that schedule

completion time Is taken to be the objective function to he minimized,

the followIng statements may be made when preemptive-resume rules are
employed:

Job precedence constrafnts may cause an Increase in the minimum

schedule completion time over that possible if the constraints
were not present.

Demand scheduling never causes the minimum sc~edule completion

time to be greater than that possIble If demand scheduling were
not required.

The problem of minimIzIng schedule completion time when there

are neither job precedence relations nor the requirement for

demand processing is a conventional Linear Programming problem

In which one determines the amount of tIme that each Job combina­
tion should be serviced.
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Jobs {J !P (k-I) > O.. n n
we proceed to (c).

Included in combination Ik but not

Job Indices defined as follows:

B • {n IJ E :: I' • J $ CI }
n k n k
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Appendix 1

Suppose that we are given a schedule 51 for Case 1 having minImum

completion time and that we wish to construct a schedule for Case 2.by

means of an ~Igorlthm whIch, at the ~th step, Insures that the combinatIon

chosen for the kth epoch meets the requirements of demand scheduling.
Define:

Pn(k) c remaining processIng. time for job I
n

after the completion

of the ~th comblnat~on scheduling Interval In schedule S2(k).

5Z(k) = [(Il'tl),(iZ·tZ)·····(IK·tK)]

- schedule which results after k steps of the algorithm given

below, where 52 (0) = 510 Note that K need not have the same
value for all 5

Z
(k).

The algorithm consists of repeating the following step for k = 1,2, ..• untIl
a demand schedule Is obtained.

Step - k: Assume that the first k-) combination scheduling Intervals

each satisfy the requirements of demand scheduling. Examine the kth

combination In schedule S2(k-l). i
k

:

(a) If i k Is a maximal combination for the set of

l.,::.n ~N}, S2(k) Is taken to be S2(k-l), and

Otherwise, go to (b).

(b) GIven C, Is properly contained In some maximal combination ell'
k k

we may redlstrlb~te the remaining processIng times of those Jobs

Let B denote a set of

We replace the kth combination scheduling Interval In S2(k-l),

(ik,tk), wIth the interval (ik,tk), where

t k' = min[tk.mln [p (k-1)]l).
nEB n

For each nEB, we systematically modIfy the remainder of the

schedule S2(k-l) so as to subtract the portIon of the processing
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(b) Continued.

times which are now Included In the kth Interval. The quantity

tic. represents the amount of processing time for Job I
n

which

must be subtracted off from the remaining combination scheduling

intervals. These remaining Intervals (I
k
+

1
,t

k
+

I
), etc. must be

sequentially examined and modified until thIs amount of processing

time tic. for Job I n has been properly subtracted. Suppose that we

are examining {I J ,tJ> for j > k and that w
n

represents the pro­

cessing time for Job J which has yet to be subtracted (w a
n n

tic. Initially). If I n e e
lJ

, we proceed to the next combination

Interval. Otherwise, one of the followrng actions takes place:

(I) If t J ~ wn ' we replace (IJ't
J

> In the schedule with

interval (Il.t j ), where ell'" C
i

- I
n

, Also, we
J J

decrement quantIty wn by amount t
j

.

(1) If t J > wn ' replace OJ't
J
) In the schedule with two

combInation schedulfng Intervals (Ij,wn),(lj.tj-w
n

)

where elj = e lj - I n. Also, quantity w
n

Is set to zero.

For a given value of n, additional combInation scheduling inter­

vals are examined & modIfied until the amount of processfng time

tk for job I n has been subtracted entIrely. ThIs process Js then

repeated until all values of n Included In the set of Indices B

have been treated. The reSUlting schedule Is then defined as S2(k}.

{e} Update the remaining processing tImes; I.e.,

P (k) a P (k-I) - X *t
k

for n • 1,2, •.• ,Nn n mn

where (Ik,tk) Is the kth combination scheduling Interval In 5
2

(k)
andm-I k•

This process' 15 guaranteed to termInate In a fInite number of steps, and

the final value of 52 (k) Is a demand schedule of the same length as 51

because the algorithm never causes the completion time to Increase and a

decrease In completion time would contradict the assumption that 51 Is of
minimum length.
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Appendix 2

The algorithm described In Appendix 1 works equally wetl when we are

given a schedule 53 for Case 3 haYI~g minimum completion time possible and

wish to construct the correspondl~g demand schedule 54 for Case 4. The

key to belIeving that the algorithm stili works properly Is to understand

the ImplicatIons of the definitIon of demand scheduling when precedence

constraints are present. As mentioned In the main body of the paper, the

Jobs included In a maxImal combination are not preceded by any of the

remaining Jobs In system. It Is this characteristic tha~ prevents any

conflicts In precedence constraints from arising when" the algorithm system­
atically modifies the scheduJe.

'.
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