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Abstract

Thls paper considers deterministic scheduling problems for systems
having a number of different resource types and an arbitrary number of
units of each resource. General results are obtalned for preemptive-
resume scheduling rules under the condition of zero preemption costs.
Schedule completlion time Is the objective function considered, and the
Paper examines the relative effect of demand scheddllng and precedence
constraints on the minlImum schedule completion time.



Introduction

With the exception of multiple-server systems, few scheduling problems
arlsing from multiple~resource systems have been treated in the Titerature,
This paper attempts to offer inslghts into one class of multiple-resource
scheduling problems and to provlide some general results as a by-product. A
formal description of the problem to be considered is glven below:

Problem, -

We are given a system having the following resource characteristics:

I = No. of Types of Resources

T

A set of jobs as described below are to be scheduled so as to minimize
schedule completion time (f.e., the time to finish all jobs):

N = No. of Jobs to be scheduled.

Jn = Symbol denoting the nth Job, n = 1,2,,.. ,N.

R' 2 Amount of Resource-Type-I In System, | = i,Z

Vn = [rnl’rnZ""’rnI] = Vector describing the resource requirements

of Jn’ l.e., Fal. units of Resource~Type-1, Fn2 units of Resource-__
Type-2, etc.

Pn = Processing Time for Jn; this is the amount of time that the
resources Vn are simultaneously required. If the resource re-
quirement Vn Is satisfled, job Jn progresses at unit rate.

The scheduling rule to be used is assumed to be of the preemptive-resume
type with zero preemption costs, and the four cases to be considered are:

Case 1. No Precedence Constralnts, Non-Demand Scheduling

Case 2. No Precedence Constraints, Demand Scheduling
Case 3. Precedence Constraints, Non-Demand Scheduling
Case 4. Precedence Constraints, Demand Scheduling
Problems examined in the past have assumed that the scheduling decision
involves choosing the next Job to be scheduled; such a viewpoint is a
reasonable one to take when developing heuristic rules but Igneres the
fundamental nature of the problem. This author believes that the following
alternative view is more appropriate;
Viewpoint. Scheduling rules for multiple-resource systems should, at
a scheduling epoch, be concerned with the choosing of some combination
of jobs whose characteristics allow for simultaneous processing.



In order to demonstréte the utility of thls approach, additloral notation
must be introduced:
M = Number of distinct feasib]e Job combinations
Cm = N x | column vector denoting a feasible combinatlon of Jobs,
= a subset of the set of jobs 1 <n <Ny,

['xm]

*n2 1 1f J_ is included In ¢
= | where an e ‘ n '8 Include n m'

: 0 otherwise,

[ *m

For a job comblnation Cm to be '""feasible," we require that
N

E
I=1

That is, the total resources required of all Jobs in the combination

ij*rji SR P=1,2,...,1.

must not exceed the amount actually present in system.
If we pursue the viewpoint that the scheduling rule should be concerned with
choosing combinatlons of Jjobs for Processing, we may denote a schedute S as
s = [(I'!t])l(izitz)l""(lK!tK)]

where each pair (lk,tk) Is Interpreted to be a combination scheduling

Interval In which feasiblte combination with Index Ik Is to be serviced
for tk unlts of time.

The above notatlon specifles the first through Kth combination scheduling
intervals which constltutes the schedule,

Some Insights

Observe that It Is immediately possible to make a statement concerning
the minimum schedule complet}on time for the situation in which there are
neither precedence constraints on the order in which jobs must be processed
nor any requirement for demand processing.

Lemma 1. The minlmum schedule completion tIme TI for Case 1 (Preemptive-

Resume Scheduling, No Precedence Constraints, Non-Demand Schedul ing)

is the solution of the following Linear Programming (LP) problem:
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If we consider a scheduling epoch to be the instant at which a different
combination of jobs goes into service, a more Suitable deflnltlpn of demand
scheduling may be given in terms of a “"maximal combination.”

Maximal Comblnation {when no precedence constraints): For a glven set
of jobs in a multiple~resource system, each wlth resource-requirements
and (remaining) Processing time requests, a (feaslble) comblnation Ci
s sald to be a max[ma | combinatlion if there does not exist another
(feasible) combinatlion C_ such that C; Is properly contained in C
(i.e., such that every job in CI Is also contained in c.).

Having defined a maximal combination, demand scheduling may be better described g
as shown below. '

i

Demand Scheduling:' At each scheduling epoch, a maximal combination

(for the remaining Jobs [n system} is chosen for Processing.

The next result to be presented will apply to Case 2 (i.e., with
demand scheduling Imposed on Case 1); thls result demonstrates that the
minimum schedule completion time T2 wWill always be the $ame as that possijble
for Case 1| where demand schedullng Is not required.

Lemma 2. The minImum schedule completlion time T2 for Case 2 (Preemptive-
Resume Rule, No Precedence Constraints, Demand Schedullng) will always
be equal to the value Tl of Lemma 1.

Proof. Given a schedule of minimum length TI glven by Lemma I, a
schedule which meets the requirements of demand scheduling may always
be constructed using the algorithm glven In Appendix 1. U

Demand scheduling has the effect of Imposing constralnts on the order In

which combinations may be processed because, whenever a combination C, g

properly contained in some combination ¢,, comblnation Ci may be chos;n
for servicing only if it is impossible to form comblnation CJ from the re-
maining uncompleted Jobs in system.
Job precedence constralnts specify a partial ordering on the set of
Jjobs, where ‘
Jl < Jn i ¥ n

implies that the dth Job must be Processed to completion before the servicing



of the nth job can commence. The effect of an arbitrary set of Job prece-
dence constralnts Is illustrated in the following lemma:

Lemma 3. The minImum schedule completion time T3 for Case 3 {Pre-
emptive-Resume Rule, Precedence Constraints, Non-Demand Scheduling)

will always be greater than or egual to the value TI of Lemma 1.

Proof. Consider the effect of the Job precedence constraints on the
possible schedules that might be generated for Case 3.
(a) We must first eliminate from conslderation any job combina-
tion Cm such that Ji c Cm, Jne Cm, and JI < Jn for i # n.

(b} For the remaining job comblnétions, the Job precedence re-
lations have the following effect:

(i) A combinatlon precedence relation between Ck and B
wll]l be denoted as Ck < C if each job precedence
relatlon between a job In Ck and one In C Is of the
formJ.<J,whereJ ec andJ EC

(1i) 1If J < J and Jj < J for some JI'J [ Ck and JJ,J e l: .
then comblnatlons Ck and C may not be present In the
same schedule. That is,
tk >0 Iimplies tm = 0
and
trn >0 Tmplles tk =0
where t, end t, are combination processing times.

(11%) If there are no precedence relations between any pair of
different Jobs, one in comblnat(on Cl and the second in

combination € 0 there is no combination Precedence rela-
tion deflined between Ci and C .

The meanlng of a comblnation precedence relation, CI < m’ is that a
schedule containing combination scheduling intervals for both ci and C
must be such’ that the Interval for L‘.i precedes the one for C « The
proof Is completed as follows. A well-known LP result Is that the
selution to the minimizatlon problem of Lemma | lies at an extreme point
for which at most J combinations are assigned non-zero combinatlon



¢omb

» the Presence of Precedence constralnts Causes the deflnltlon of maxima}

ination to be Mod|fjed-:

Maximal Combfnatlon (when Precedence constrafnts): Given 5 set A of
\-
Jjobs fJn} having

hon-zerq (remalnlng) processlng times, we cons [der
only those comblnationg which can be formed from set B, a Subset of 2

B= {_Jn[JneA and aJ atJm <, and J € A))

combination If there does no¢ exlst any other (feasible) combination
Fj such that Ci Is Properly Contalned |p ik where both Ci and CJ are
formed from Jobs in g only,

Case 4 may élways be Constructed Using the Same algorithy glven Ipn
Append] x l. Further detalls of the algor! thm a5 It applies to the




resource systems,
Theorem. For 4 multlple-resource System with a set of N jobs
Wl <n <N} to be Scheduled, where each Job J_ has an associated
resource requirement Vn and Processing time Pn’ let Ti denote the
min i mum schedule completion time possible under each alternative-j
listed below:
(1) Preemptive-Resume Rule, No Precedence Constraints, Non-
Demand Scheduling
(2) Preemptlve-Resume Rule, No Precedence Constrafnts, Demand
Scheduling _
(3) Preemptive-Resume Rule, Precedence Con;tralnts, Non-Demand

Schedullng )
(4) Preemptive-Resume Rule, Precedence Constraints, Demand
Schedul Ing
The relat|ve values of T, are glven by the followlng relations
TI = T2, T £_T3, T2 < T3;

Proof. Imediate)y follows from Lemmas 1-4, D

No mentilon has been made concerning the effect of non-preemptive
scheduling; this has been avoided because non-preemptive disclplines con-
siderably complicate matters, Non-preemptlve scheduling requires that one
become aware of the allowable transitions between Job combinations, and



Summarz

This paper consldered the deterministic scheduling problem for a
multlple-resource system when preemptive~resume rules may be employed.
The suggestion was made that the proper viewpoint to be taken for such
a system |s that the scheduling rule should be concerned with chooslng
the next combination of Jobs to be serviced rather than with the selec-
tion of the next job for processing. Under the condltion that schedule
completion time Is taken to be the objective function to be minimized,
the following statements may be made when preemptive-resume rules are
employed:

=== Job precedence constraints Mmay cause an fncrease in the mlnimum

schedule completion time over that possible if the constralnts
were not present. _

=== Demand scheduling never causes the minimum schedule completion

time to be greater than that possible If demand schedul Ing were
not required.

=== The problem of minimizing schedule completion time when there

are neither job precedence relations nor the requirément for
demand processing is a conventiconal Linear Programming problem

in which one determines the amount of time that each job combina-
tion should be servlced.
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Appendix 1

Suﬁpose that we are given a schedule S] for Case 1 having minlmum

completion tIme and that we wish to construct a schedule for Case 2 by

means of an algorithm which, at the kth step, Insures that the combinatlon ' '

chosen for the kth epoch meets the requirements of demand schedul ing.

Define:

P (k)

s, (k)

The algori

= remaining processing.time for job Jn after the completion
of the kth combInation scheduling Interval in schedule S, (k).

[(Il’tl)!(iz’tz)l""(iK’tK)]

schedule which results after k steps of the algorithm given
below, where 32(0) = 5,. Note that K need not have the same
value for all Sz(k).

thm consists of repeating the following step for k = 1,2;... untT1l

a demand schedule s obtained.

Step - k: Assume that the flrst k-1 combination scheduling intervals

each

comb |

(a)

(b)

satisfy the requlrements of demand schedullng. Examine the kth
nation In schedule Sz(k-l), ik:

3 ik Is a maxImal combination for the set of jobs {Jn]Pn(k-I) >0,
1 < n < N}, Sz(k) is taken to be Sz(k-l), and we proceed to (c).
Otherwise, go to (b).

‘s
'k

we may redistribute the remaining processing times of those Jobs

Given CI Is properly contained Iin some maxImal comblpatlon ¢
k

included in combination IL but not iIn ik. Let B denote a set of

Job indices defined as follows:

B = {n,JnG ul:( ’ JI'I $Clk}

We replace the kth combination schedullng Interval iIn Sz(k-l),
(ik,tk), with the interval (i&,ti), where

= minlty oo 7 (k1)10).
n

For each n € B, we systematically modIfy the remalnder of the

I
tx

schedule Sz(k-l) so as to subtract the portion of the processing



(b) Continued.
times which are now Included In the kth interval. The quant|ty
té represents the amount of processing time for job Jn which
must be subtracted off from the remaining combination scheduling
intervals. These remaining intervals (ik+]’tk+l)’ etc. must be
sequentially examined and modified unti) this amount of processing
time té for job Jn has been properly subtrécted. Suppose that we
are examlning (lj,tj) for j > k and that W represents the pro-
cessing time for job Jn which has yet to be subtracted (wn =
t, Initially). If Jo & C, » we proceed to the next comblnation

interval. Otherwise, one of the following actions takes place:
(1y 1If tj < W, we replace (IJ,tJJ In the schedule with

1 = -
interval (IJ,tJJ, where CIj cij Jn' Alsc, we

decrement quantity W by amount tj'

(§1) ¢f tl > W, replace ('j'tj) in the schedule with two
combination scheduling intervals (ij,wn),(lj,tl-wn)

where CI' = c, - Jn. Also, quantity W Is set to zero.

] J

For a given value of n, additional combination scheduling inter-
vals are examined & modified until the amount of processing time

ti for job Jn has been subtracted entirely. Thls process Is then
repeated until all values of n Included In the set of indices B
have been treated. The resulting schedule Is then defined as Sz(k).

(c}) Update the remalning processing times; i.e.,
= - - * |
Pn(k) Pn(k 1} Xon t, forn=1,2,...,N

where (Ik,tk) s the kth combinatlon schedul Ing interval In Sz(k)
and m = Ik‘

This process:ls guéranteed to terminate in a fintte number of steps, and
the final value of Sz(k) Is a demand schedule of the same length as 5I
because the algorithm never causes the completion time to Increase and a
decrease In completion time would contradict the assumption that S] is of
minimum length,
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Appendix 2
The algorithm described In Appendix 1 works equally well when we are

glven a schedule 53 for Case 3 having minimum completion time possible and
wish to construct the corresponding demand schedule Sy for Case 4. The
key to belleving that the algorithm still works properly Is to understand
the implications of the definltlion of demand scheduling when precedence
constraints are present. As mentioned in the main body of the paper, the
jobs included in a maximal combination are not preceded by any of the
remaining jobs In system. It Is this characteristic that prevents any
conflicts In precedence constralnts from arising when the algorithm system-
atically modifles the schedule.
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