
HAL Id: hal-01143832
https://hal.inria.fr/hal-01143832v2

Submitted on 17 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessing the Impact of Partial Verifications Against
Silent Data Corruptions

Aurélien Cavelan, Saurabh K. Raina, Yves Robert, Hongyang Sun

To cite this version:
Aurélien Cavelan, Saurabh K. Raina, Yves Robert, Hongyang Sun. Assessing the Impact of Partial
Verifications Against Silent Data Corruptions. [Research Report] RR-8711, INRIA Grenoble - Rhône-
Alpes; ENS Lyon; Université Lyon 1; Jaypee Institute of Information Technology, India; CNRS - Lyon
(69); University of Tennessee Knoxville, USA; INRIA. 2015. �hal-01143832v2�

https://hal.inria.fr/hal-01143832v2
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
87

11
--

FR
+E

N
G

RESEARCH
REPORT
N° 8711
April 2015

Project-Team ROMA

Assessing the Impact of
Partial Verifications
Against Silent Data
Corruptions
Aurélien Cavelan, Saurabh K. Raina, Yves Robert, Hongyang Sun

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Assessing the Impact of Partial Verifications
Against Silent Data Corruptions

Aurélien Cavelan∗†‡, Saurabh K. Raina§, Yves Robert∗‡¶,
Hongyang Sun∗‡

Project-Team ROMA

Research Report n° 8711 — April 2015 — 22 pages

∗ École Normale Supérieure de Lyon
† INRIA, France
‡ LIP laboratory, CNRS, ENS Lyon, INRIA, University Lyon 1
§ Jaypee Institute of Information Technology, India
¶ University of Tennessee Knoxville, USA

Abstract: Silent errors, or silent data corruptions, constitute a major threat on very
large scale platforms. When a silent error strikes, it is not detected immediately but only
after some delay, which prevents the use of pure periodic checkpointing approaches de-
vised for fail-stop errors. Instead, checkpointing must be coupled with some verification
mechanism to guarantee that corrupted data will never be written into the checkpoint
file. Such a guaranteed verification mechanism typically incurs a high cost. In this paper,
we assess the impact of using partial verification mechanisms in addition to a guaranteed
verification. The main objective is to investigate to which extent it is worthwhile to use
some light cost but less accurate verifications in the middle of a periodic computing pat-
tern, which ends with a guaranteed verification right before each checkpoint. Introducing
partial verifications dramatically complicates the analysis, but we are able to analytically
determine the optimal computing pattern (up to the first-order approximation), including
the optimal length of the pattern, the optimal number of partial verifications, as well as
their optimal positions inside the pattern. Performance evaluations based on a wide range
of parameters confirm the benefit of using partial verifications under certain scenarios,
when compared to the baseline algorithm that uses only guaranteed verifications.

Key-words: resilience, silent error, silent data corruption, partial/guaranteed verifica-
tion, checkpoint, recall, optimal pattern.

Sur l’impact des vérifications partielles face aux corruptions
de données silencieuses

Résumé : Les erreurs silencieuses, ou corruptions de données silencieuses, constituent
une menace majeure pour les plateformes à très grande échelle. Lorsqu’une erreur frappe,
elle n’est pas détectée immédiatement mais seulement après un certain laps de temps, ce
qui rend inutilisable l’approche à base de checkpoint périodique pur, recommandée pour
les pannes. A la place, il faut coupler les checkpoints à un mécanisme de vérification afin
de garantir qu’aucune donnée corrompue ne sera écrite dans le fichier de checkpoint. Un tel
mécanisme de vérification garantie est associé à un coût élevé. Dans ce rapport, nous étudions
l’utilisation de vérifications partielles en plus de vérifications garanties. L’objectif principal
est d’étudier jusqu’à quel point il peut être rentable d’utiliser un mécanisme de vérification à
faible coût mais moins précis au milieu d’un motif de calcul périodique, avec une vérification
garantie juste avant chaque checkpoint. L’introduction de vérifications partielles complique
considérablement l’analyse, mais nous sommes en mesure de calculer analytiquement le motif
de calcul optimal (avec une approximation du premier ordre), notamment la longueur opti-
male du motif, le nombre optimal de vérifications partielles ainsi que leur position optimale
respectives à l’intérieur du motif. Des simulations basées sur un large choix de paramètres
confirment les avantages des vérifications partielles dans certains scénarios, comparées à un
algorithme utilisant seulement des vérifications garanties.

Mots-clés : tolérance aux pannes, erreur silencieuse, corruption de donnée silencieuse,
vérification partielle/garantie, checkpoint, rappel, motif optimal.

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 4

1 Introduction

As the number of components proliferate in High-Performance Computing (HPC) systems,
resilience has become a major issue. Future exascale platforms are expected to be composed
of one million computing nodes [12]. Even if each individual node provides an optimistic
Mean Time Between Failures (MTBF) of, say 100 years, the whole platform will experience
a failure around every 50 minutes on average, which is shorter than the execution time of
many HPC applications. Failures will become part of the norm when computing at scaling,
and effective resilient protocols will be the key to achieving sustained performance.

The de-facto general-purpose error recovery technique in HPC is checkpoint and rollback
recovery [8, 15]. Such protocols employ checkpoints to periodically save the state of a parallel
application, so that when an error strikes some process, the application can be restored to one
of its former states. However, checkpoint and rollback recovery assumes instantaneous error
detection, and therefore applies to fail-stop errors. Silent errors (a.k.a. silent data corruptions)
constitute another source of error in HPC, whose threat can no longer be ignored [24, 28, 22].
The cause of silent errors could be soft faults in L1 cache or multiple bit flips due to cosmic
radiation. In contrast to a fail-stop error whose detection is immediate, a silent error is
identified only when the corrupted data is activated and/or leads to an unusual application
behavior. Such detection latency raises a new challenge: if the error struck before the last
checkpoint and is detected after that checkpoint, then the checkpoint is corrupted and cannot
be used to restore the application.

One approach to dealing with silent errors is by maintaining several checkpoints in mem-
ory [20]. This multiple-checkpoint approach, however, has three major drawbacks. First, it is
very demanding in terms of stable storage: each checkpoint typically represents a copy of the
entire memory footprint of the application, which may well correspond to several terabytes.
Second, the application cannot be recovered from fatal failures: suppose we keep k check-
points in memory, and a silent error struck before all of them. Then, all live checkpoints are
corrupted, and one would have to re-execute the entire application from scratch. Third, even
without memory constraints, we have to determine which checkpoint is the last valid one,
which is needed to safely recover the application from. However, due to the detection latency,
we do not know when the silent error has occurred, hence we cannot identify the last valid
checkpoint.

An arguably more effective approach is by employing some verification mechanism and
combining it with checkpointing [9, 25, 1]. The simplest protocol with this approach would
be to execute a verification procedure just before taking each checkpoint. If the verification
succeeds, then one can safely store the checkpoint. Otherwise, it means that an error has
struck since the last checkpoint, which was duly verified, and we can safely recover from
that checkpoint to resume the execution of the application. This simple protocol eliminates
the drawbacks of the multiple-checkpoint approach, provided that a guaranteed verification
mechanism can be efficiently implemented. Of course, one can also design more sophisticated
protocols by coupling multiple verifications with one checkpoint or even interleaving multi-
ple checkpoints and verifications [1, 4]. The optimal pattern (i.e., number of verifications
per checkpoint) in these protocols would be determined by the relative cost of executing a
verification compared to checkpointing.

In practice, not all verification mechanisms are 100% accurate and at the same time admit
fast implementations. In fact, to guarantee the accurate and efficient detection of silent errors
for scientific applications is one of the hardest challenges in extreme-scale computing [2]. In-

RR n° 8711

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 5

deed, thorough error detection is usually very costly and often involves expensive techniques,
such as replication [16] or even triplication [21]. For many parallel applications, alternative
techniques exist that are capable of detecting some but not all errors. We call these tech-
niques partial verifications. One example is the data dynamic monitor (DADYMO) [2], which
is a lightweight silent error detector designed to recognize anomalies in HPC datasets based
on physical laws and spatial correlations. A similar fault filter has also been designed to
detect silent errors in the temperature data of the Orbital Thermal Imaging Spectrometer
(OTIS) [10]. Although not completely accurate, these partial verification techniques never-
theless cover a substantial amount of silent data corruptions, and more importantly, they
incur very low overhead. These properties make them attractive candidates for designing
more efficient resilient protocols.

The objective of this paper is to assess the potential benefits of using partial verifications
against silent errors. The error detection accuracy of a partial verification is characterized by
its recall r, which is the ratio between the number of detected errors and the total number
of errors occurred during a computation. For example, the DADYMO tool has been shown
to have a recall around 50% measured on synthetic scientific benchmarks, with negligible
overhead [2]. Note that a guaranteed verification can be considered as a special type of
partial verification with a recall r = 1. Each partial verification also has an associated cost
V , which is typically much smaller than that of a guaranteed verification.

The problem under study can then be stated as follows: given the costs of checkpointing
C and guaranteed verification V ∗ for an application, as well as the recall r and cost V of a
partial verification, what is the optimal pattern that minimizes the expected execution time?
As checkpointing is usually more expensive in terms of both time and space required, to avoid
the risk of saving corrupted data, we only keep verified checkpoints by placing a guaranteed
verification right before each checkpoint. Hence, a pattern refers to a work segment that
repeats over time, and that is delimited by verified checkpoints, possibly with a sequence of
partial verifications in between. Figure 1 shows a periodic pattern with two partial verifica-
tions followed by a verified checkpoint.

Timew1 w2 w3 w1 w2 w3

V ∗ C V V V ∗ C V V V ∗ C

Figure 1: A periodic pattern (highlighted in red) with two partial verifications and a verified
checkpoint.

Intuitively, including more partial verifications in a pattern increases the error detecting
probability, thus reduces the waste due to re-executions, but that comes at the price of
additional overhead in an error-free execution. Therefore, an optimal strategy must seek a
good tradeoff between error-induced waste and error-free overhead. Of course, the length of a
pattern should also depend on the platform MTBF µ. For example, in the classical protocol
for fail-stop errors where verification is not needed, the optimal checkpointing period is known
to be

√
2µC as given by Young [27] and Daly [11]. A similar result is also known for silent

errors, and the optimal period in that case is
√
µ(C + V ∗) if only verified checkpoints are

used [4, 3]. These formulas provide first-order approximations to the optimal patterns in the
respective scenarios, and are valid when the resilient parameters satisfy C, V ∗ � µ.

In this paper, we focus on the design of resilient protocols for silent errors while embracing

RR n° 8711

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 6

partial verifications. Given the values of C, V ∗, V and r, and when the platform MTBF µ is
large in front of these parameters, we derive an optimal pattern that characterizes: (1) the
optimal length of the pattern; (2) the optimal number of partial verifications in the pattern;
and (3) the optimal position of each partial verification inside the pattern. Furthermore,
we determine the optimal configuration of a partial verification when its cost and recall can
be traded off with each other. These results provide important extensions to the classical
formulas in the field [27, 11, 4, 3], and to the best of our knowledge, are the first to include
partial verifications. Unlike in the classical case, however, a silent error may not be detected
by a partial verification and could get propagated to the subsequent work segments inside
a pattern, thus significantly complicating the analysis. Our evaluation results based on a
wide range of parameters also demonstrate that employing partial verifications indeed lead
to performance gains compared to the baseline algorithm that relies only on guaranteed
verifications.

The rest of this paper is organized as follows. Section 2 surveys the related work. Section 3
introduces the model, notations and assumptions. Section 4 derives the optimal pattern
using partial verifications and verified checkpoints. Performance evaluations are presented in
Section 5. Finally, Section 6 provides concluding remarks and hints for future directions.

2 Related Work

Most traditional resilient approaches maintain a single checkpoint. If the checkpoint file
contains corrupted data, the application faces an irrecoverable failure and must restart from
scratch. This is because error detection latency is ignored in traditional rollback and recovery
schemes, which assume instantaneous error detection (therefore mainly targeting fail-stop
errors) and are unable to accommodate silent errors. This section describes some related
work on detecting and handling silent errors. A more comprehensive list of techniques and
references is provided by Lu, Zheng and Chien [20].

Considerable efforts have been directed at detection techniques to reveal silent errors.
Hardware mechanisms, such as ECC memory, can detect and even correct a fraction of errors,
but in practice they are complemented with software techniques. Guaranteed error detection is
very costly, and usually involves expensive redundancy or replication techniques. The simplest
technique is triple modular redundancy and voting [21]. Elliot et al. [14] propose combining
partial redundancy and checkpointing, and confirm the benefit of dual and triple redundancy.
Fiala et al. [16] apply process replication (each process is equipped with a replica, and messages
are quadruplicated) in the RedMPI library for high-performance scientific applications. Ni et
al. [23] use checkpointing and replication to detect and enable fast recovery of applications
from both silent errors and hard errors.

Application-specific information can be very useful to enable ad-hoc solutions, which
dramatically decrease the cost of detection. Besides the fault filtering technique applied
in DADYMO [2] and OTIS [10] as mentioned previously, algorithm-based fault tolerance
(ABFT) [18, 6, 26] is another well-known technique, which uses checksums to detect up to
a certain number of errors in linear algebra kernels. Other techniques have also been advo-
cated. Benson, Schmit and Schreiber [5] compare the result of a higher-order scheme with
that of a lower-order one to detect errors in the numerical analysis of ODEs and PDEs. Sao
and Vuduc [25] investigate self-stabilizing corrections after error detection in the conjugate
gradient method. Heroux and Hoemmen [17] design a fault-tolerant GMRES capable of con-

RR n° 8711

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 7

verging despite silent errors, and Bronevetsky and de Supinski [7] provide a comparative study
of detection costs for iterative methods.

Theoretically, various protocols that couple verification and checkpointing have been stud-
ied. Aupy et al. [1] propose and analyze two simple patterns: one with k checkpoints and 1
verification, and the other with k verifications and 1 checkpoint. The latter pattern, which
needs to maintain only one checkpoint, is also analyzed in [3] to accommodate both fail-stop
and silent errors. Benoit, Raina and Robert [4] extend the analysis of [1] by including p
checkpoints and q verifications that are interleaved to form arbitrary patterns. All of these
results assume the use of guaranteed verifications only. In this paper, we provide the first
theoretical analysis that includes partial verifications.

3 Model

In this section, we state the problem and the assumptions, and present an analytical model
for assessing the performance of a pattern.

3.1 Problem Statement

Consider the execution of a parallel application on a platform subject to silent errors. Let
r denote the recall of a verification, which is defined as the fraction of detected errors over
the total number of errors. We distinguish a partial verification with recall r < 1 and the
guaranteed verification with recall r = 1. Then 1− r is the probability that an error remains
undetected by the partial verification, in which case the execution of the application goes
on and reaches the next partial verification, and possibly further on, eventually leading to a
rollback and recovery from the last valid checkpoint.

In this paper, we focus on the divisible-load application model, where checkpoints and
verifications can be inserted at any point in execution of the application. We enforce resilience
through the use of a periodic pattern as shown in Figure 1. A set of partial verifications can
be placed at arbitrary locations within the pattern, but the pattern should always end with
a verified checkpoint, that is, a guaranteed verification followed immediately by a checkpoint.
This is to ensure that only one checkpoint needs to be maintained and that it is always valid,
thereby ruling out the risk of a fatal failure.

Let C denote the cost of checkpointing, R the cost of recovery, V ∗ the cost of the guar-
anteed verification and V the cost of the partial verification with recall r. The objective is
to find an optimal pattern that minimizes the expected execution time (or makespan) of the
application. In particular, the optimal pattern should specify:

• The length of the pattern;
• The number of partial verifications in the pattern;
• The positions of partial verifications inside the pattern.

3.2 Assumptions

We assume that the platform MTBF µ is large in front of the resilience parameters C, R,
V and V ∗. This assumption is commonly made in the literature (see, e.g., [27, 11, 1, 3, 4]),
which allows to make first-order approximations in the analysis to obtain close-form solutions.

As in [1, 4], we assume that the length W of a pattern also satisfies W � µ, thus implicitly
ruling out the possibility that more than one error could occur in the same period, including

RR n° 8711

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 8

the re-executions. Moreover, the error distribution is assumed to be uniform inside a pattern,
which is again a consequence of the first-order approximation to the Poisson process typically
used to model the occurrence of failures.

Finally, we assume that errors only strike during computations, while verifications and
I/O transfers (checkpointing and recovery) are protected and are thus error-free.

3.3 Analytical Model

Suppose a pattern with work W contains m partial verifications. Thus, the total length of
the pattern is S = W +off, where off = mV +V ∗+C is the overhead in a fault-free execution.
The pattern is divided into n = m+1 segments, each followed by a partial verification, except
the last one, which is followed by a guaranteed verification.

Let Tbase denote the base time of the application without any overhead due to resilience
techniques (without loss of generality, assume unit-speed execution). First, imagine a fault-
free execution: for every pattern of length S, only W units of work get executed, so the
execution time Tff in a fault-free execution is given by Tff = S

W Tbase.
Now, let Tfinal denote the expected execution time (or makespan) of the application when

silent errors are taken into account. On average, errors occur every µ time units, where µ
denotes the platform MTBF. For each error, suppose F time units are lost on average (where
F will be computed later). Based on the first-order assumption, we expect Tbase

µ errors during
the entire execution of the application. Therefore, we derive that

Tfinal = Tff +
Tbase

µ
F =

(
S

W
+
F
µ

)
Tbase

=

(
1 +

off

W
+
F
µ

)
Tbase . (1)

It remains to determine F , the expected time loss due to each failure. The value of
F depends on the pattern used and it includes three components: re-executing a fraction
of the total work W of the pattern, recovering from the last checkpoint, and re-executing
some of the verifications in the pattern. Hence, the general form of F can be expressed as
F = freW +R+ β, where fre denotes the expected fraction of work that is re-executed, and
β is a linear combination of V and V ∗. Plugging the expression of F back into Equation (1),
we get

Tfinal =

(
off

W
+
fre

µ
W + 1 +

R+ β

µ

)
Tbase . (2)

For a given pattern, the optimal work length that minimizes Tfinal can then be computed from
Equation (2) as

W ∗ =

√
µ · off

fre
, (3)

and the optimal period is S = W ∗ + off. The expectation of the optimal execution overhead
H can be expressed as

H =
T ∗final − Tbase

Tbase
= 2

√
offfre

µ
+
R+ β

µ
.

RR n° 8711

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 9

When the platform MTBF µ is large in front of all resilience parameters, we can identify
the dominant term in the above expression. Indeed, in that case, the value R + β becomes
negligible in front of µ, and we have

H = 2
√
offfre

√
1

µ
+ o(

√
1

µ
) . (4)

Equation (4) shows that the optimal pattern when µ is large is obtained when the product
offfre is minimized. This calls for a tradeoff, as a smaller value of off with fewer verifications
leads to a larger re-execution time, thus a larger value of fre. In the next section, we show
how to compute fre for a given pattern, and use this characterization in terms of the product
offfre to derive the optimal pattern.

4 Optimal Pattern With Partial Verifications

We present the optimal pattern in this section. First, we compute the value of fre for a give
pattern (Section 4.1). Then, we derive the optimal positions of partial verifications (Section
4.2), followed by the optimal number of them in a pattern (Section 4.3). After that, we
determine the optimal tradeoff between the cost and recall of a partial verification (Section
4.4). We end this section with an example illustrating the benefit of using partial verifications
(Section 4.5).

4.1 Computing fre

Consider a pattern with W work, m partial verifications and a verified checkpoint. The
pattern is divided into n = m+ 1 segments, whose work sizes are denoted by w1, w2, . . . , wn.
For each segment i, we define αi = wi/W to be the fraction of its work in the pattern. Hence,
we have

∑n
i=1 αi = 1. The following proposition expresses the expected re-execution fraction

when an error occurs in the pattern.

Proposition 1. Suppose a pattern contains m partial verifications, thus n = m+1 segments,
followed by a verified checkpoint. Then, the expected re-execution fraction in case of an error
is given by

fre = αTAα , (5)

where α =
[
α1 α2 . . . αn

]T
is a vector containing the fraction of work of each segment

and A is the symmetric matrix defined by Aij = 1
2

(
1 + (1− r)|i−j|

)
.

Proof. First, note that if no error occurs during the execution of a pattern, then the execution
time is exactly the size of the pattern itself and there is no re-execution. When an error does
occur, we assumed in Section 3.2 that no other error would occur again in the same pattern,
including during the re-execution, because of the large platform MTBF µ. Moreover, the
occurrence of the error is uniformly distributed.

With partial verifications, an error occurred in a segment may not be detected immedi-
ately, and may propagate to the following segments, thereby increasing the execution time
until it gets eventually detected (in the worst case by the guaranteed verification at the end).
Once the error is detected, all the previous work is lost, and we have to recover from the last
checkpoint and re-execute the whole pattern again. Therefore, in order to express fre, we

RR n° 8711

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 10

need to compute the expected amount of time between the moment when the error strikes
and the moment when it is actually detected.

Consider the pattern given in Figure 1 as an example. Suppose an error strikes in the
pattern. We have the following scenarios:

• with probability α1, the error strikes in the first segment and we lose α1W work. With
probability 1 − r, the error is not detected by the first verification, so we further lose
α2W work executing the second segment. With probability (1− r)2, the error remains
undetected by the second verification; in this case, it propagates to the third and last
segment, where it is eventually detected by the guaranteed verification, so we lose an
additional amount of work α3W .

• with probability α2, the error strikes in the second segment and we lose (α1 + α2)W
work. With probability 1− r, the error is not detected by the second verification, so we
further lose α3W work executing the last segment.

• with probability α3, the error strikes in the third and last segment. In this case, the
error will be detected by the guaranteed verification, and the whole work pattern (α1 +
α2 + α3)W is lost.

Altogether, the total expected re-execution fraction for this pattern with three segments can
be expressed as

fre = α1

(
α1 + (1− r)α2 + (1− r)2α3

)
+α2 (α1 + α2 + (1− r)α3)

+α3(α1 + α2 + α3) .

More generally, for a pattern with m partial verifications and n = m + 1 segments, we can
derive

fre =

n∑
i=1

αi

 i∑
j=1

αj +

n∑
j=i+1

(1− r)j−iαj

 ,

which can be rewritten in the following matrix form:

fre = αTBα, (6)

where B is the following n× n Toeplitz matrix

B =

1 1− r (1− r)2 . . . (1− r)n−1

1 1 1− r . . . (1− r)n−2

...
...

...
. . .

...
1 1 1 . . . 1

 .

Replacing B by A = B+BT

2 in Equation (6), we have the same result, and we obtain

A = 1
2

2 1 + (1− r) . . . 1 + (1− r)n−1

1 + (1− r) 2 . . . 1 + (1− r)n−2

...
...

. . .
...

1 + (1− r)n−1 1 + (1− r)n−2 . . . 2

which concludes the proof.

RR n° 8711

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 11

4.2 Optimal positions of partial verifications

For a given number m of partial verifications to be used in a pattern, the following theorem
shows their optimal positions and the corresponding expected re-execution fraction.

Theorem 1. Consider a pattern with m partial verifications thus n = m+ 1 work segments.
Suppose the work fraction of the i-th segment is αi, so

∑n
i=1 αi = 1. Then, the expected

fraction of work fre that is re-executed in case of error is minimized when α = α∗, where

α∗i =

{
1

(n−2)r+2 for i = 1 and i = n
r

(n−2)r+2 for 2 ≤ i ≤ n− 1
, (7)

and the minimal re-execution fraction is

f∗re =
1

2

(
1 +

2− r
(n− 2)r + 2

)
. (8)

Somewhat unexpectedly, the n segments do not share the same length in the optimal
solution: the first and last segments are longer than the others. When r = 1, we retrieve
equal-length segments, which is in accordance with the results of [4].

Proof. The goal is to minimize fre = αTAα (from Equation (5)) subject to the constraint∑n
i=1 αi = 1. We rewrite the constraint as cTα = 1, where c =

[
1 1 . . . 1

]T
.

Hence, we have a quadratic minimization problem under a linear constraint. If the matrix
A is symmetric positive definite, it can be shown that this minimization problem admits a
unique solution

fopt
re =

1

cTA−1c
, (9)

which is obtained at

αopt =
A−1c

cTA−1c
. (10)

In the following, we first show that A is indeed symmetric positive definite. Then we prove
Equations (9) and (10). Finally, we prove that αopt = α∗ and fopt

re = f∗re, where α∗ and f∗re
are given by Equations (7) and (8). This will conclude the proof of Theorem 1.

4.2.1 A is symmetric positive definite (SPD)

In this section, we write An instead of simply A for a problem of size n (with n segments).
We know that An is symmetric by construction. To show that An is positive definite, we show
that all its principal minors are strictly positive. Recall that the principal minor of order k of
An is the determinant of the submatrix of size k that consists of the first k rows and columns
of An. But this submatrix is exactly Ak, the matrix for the problem of size k, so the result
will follow if we show that det(An) > 0 for all n ≥ 1. We prove by induction on n that

det(An) =
rn−1(2− r)n−2((n− 3)r + 4)

2n
. (11)

For n = 1, Equation (11) gives det(A1) = 1, which is correct. Assume that the result holds
up to n− 1. Computing the first coefficient (A−1

n)11 of the inverse of An using the co-factor
method, we get that (

A−1
n

)
11

=
det(An−1)

det(An)
.

RR n° 8711

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 12

And now comes the magic! It turns out that An is an extended KMS matrix (such that
Aij = u+ vσ|i−j| with u = v = 1

2 and σ = 1− r in our case). Dow [13, Section 1.5] provides
the inverse of such matrices and shows that they can be expressed using only seven coefficients.
In particular, we have (

A−1
n

)
11

=
2((n− 4)r + 4)

r(2− r)((n− 3)r + 4)
.

Thus, we can derive

det(An) =
det(An−1)(
A−1
n

)
11

=
det(An−1)r(2− r)((n− 3)r + 4)

2((n− 4)r + 4))

=
rn−2(2− r)n−3((n− 4)r + 4)r(2− r)((n− 3)r + 4)

2n−12((n− 4)r + 4)

=
rn−1(2− r)n−2((n− 3)r + 4)

2n
,

where the third line uses the inductive hypothesis for det(An−1). This shows that Equa-
tion (11) holds for det(An) and completes the proof that An is SPD.

4.2.2 Optimal solution

We aim at minimizing fre = αTAα subject to cTα = 1. Let αopt = fopt
re A−1c, where

fopt
re = 1

cTA−1c
, as in Equations (9) and (10). We check that cTαopt = fopt

re (cTA−1c) = 1, so
αopt is indeed a valid solution.

Because A is SPD, we have X = (α−αopt)TA(α−αopt) ≥ 0 for any valid vector α, and
X = 0 if and only if α = αopt. Developing X, we get

X = αTAα− 2αTAαopt + (αopt)TAαopt .

We have αTAαopt = fopt
re αT c = fopt

re because cTα = 1. Similarly, we get (αopt)TAαopt =
fopt

re . Hence, we derive that X = αTAα − fopt
re ≥ 0, with equality if and only if α = αopt.

This shows that the optimal value of fre is achieved at αopt, and is equal to fopt
re .

4.2.3 αopt = α∗ and foptre = f∗re

We now show that Aα∗ = f∗rec. From that we can directly derive α∗ = f∗reA
−1c and 1 =

cTα∗ = f∗re(c
TA−1c) hence fopt

re = f∗re, and finally αopt = α∗.
To show that Aα∗ = f∗rec, we proceed as follows. Since

α∗ =
1

(n− 2)r + 2

[
1 r . . . r 1

]T
=
rc + (1− r)d

Dn
,

where Dn = (n− 2)r + 2 and d =
[
1 0 . . . 0 1

]T
, we can compute

Aα∗ =
rAc + (1− r)Ad

Dn
.

RR n° 8711

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 13

For 1 ≤ i ≤ n, we get

(Ac)i =
1

2

 i−1∑
j=1

(
1 + (1− r)i−j

)
+

n−i∑
j=0

(
1 + (1− r)j

)
=

1

2

(
n+

(1− r)− (1− r)i

r
+

1− (1− r)n−i+1

r

)
and

r(Ac)i =
nr + (1− r)− (1− r)i + 1− (1− r)n−i+1

2
.

Then, we get

(Ad)i =
1 + (1− r)i−1 + 1 + (1− r)n−i

2

and

(1− r)(Ad)i =
2(1− r) + (1− r)i + (1− r)n−i+1

2
.

Finally, we can compute

(Aα∗)i =
nr + (1− r) + 1 + 2(1− r)

2Dn
=
nr + 3(1− r) + 1

2Dn

=
1

2
· (n− 3)r + 4

(n− 2)r + 2
=

1

2

(
1 +

2− r
(n− 2)r + 2

)
= f∗re .

This concludes the proof of Theorem 1.

4.3 Optimal number of partial verifications

The following theorem shows the number of partial verifications used in an optimal pattern.

Theorem 2. If r
2−r >

2V
C+V ∗ , then the optimal number of partial verifications in a pattern is

either bm∗c or dm∗e, where

m∗ = −2− r
r

+

√(
2− r
r

)(
C + V ∗

V
− 2− r

r

)
. (12)

If r
2−r ≤

2V
C+V ∗ , then the optimal pattern contains no partial verification.

Proof. Consider a pattern containing m partial verifications, thus n = m+ 1 work segments.
The fault-free overhead is off(m) = mV +V ∗+C. From Theorem 1, the minimum re-execution
fraction is

f∗re(m) =
1

2

(
1 +

2− r
(m− 1)r + 2

)
.

Define F (m) = off(m)f∗re(m). From the analysis outlined in Section 3.3, the optimal m should
minimize F (m).

RR n° 8711

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 14

Differentiating F (m) with respect to m and setting ∂F (m)/∂m = 0, we get

m2 + 2

(
2− r
r

)
m+ 2

(
2− r
r

)2

−
(

2− r
r

)(
C + V ∗

V

)
= 0 .

Solving the above equation gives us a critical point m∗ as shown in Equation (12), which is
positive (hence a potential solution) if r

2−r >
2V

C+V ∗ .
Now, taking the second-order derivative of F (m), we get

∂2F (m)

∂m2
=
r(2− r) ((C + V ∗)r − V (2− r))

(2 + (m− 1)r)3 ,

which is positive (hence ensures the solution is minimum) for all m ∈ [0,∞) if r
2−r >

V
C+V ∗ .

In practice, the number of partial verifications can only be an integer. Thus, the optimal
number, if m∗ > 0, is either dm∗e or bm∗c, whichever leads to a smaller F (m).

Altogether, we have completely characterized the optimal pattern of length S = W + off:
• The number m of partial verifications in the pattern is given by Theorem 2, so that
off = mV + V ∗ + C;

• The positions of these partial verifications within the pattern, together with the optimal
value of fre, are given by Theorem 1;

• The work length W of the pattern is given by Equation (3).

4.4 Optimal cost-recall tradeoff

Now, we determine the optimal tradeoff between the cost and recall of a partial verification.
Consider a partial verification, whose cost V and recall r could be traded off against each other
by adjusting the parameters of the verification mechanism. For instance, the error detection
capability of ABFT can be improved by adding more checksums to the matrices at the cost
of additional computations [19]. The question is to determine the optimal configuration in
order to minimize the execution overhead.

To find the optimal tradeoff, we define a = r
2−r to be the accuracy of the partial verifica-

tion, and define b = V
C+V ∗ to be its normalized cost. The following theorem states that the

optimal configuration is achieved when the accuracy-to-cost ratio (ACR) is maximized.

Theorem 3. Suppose the cost V and recall r of a partial verification can be traded off against
each other. Then, the minimum execution overhead is achieved when the accuracy-to-cost ratio
a/b is maximized.

Proof. Consider a partial verification configuration with fixed cost V and recall r.
Suppose r

2−r ≥
2V

C+V ∗ , then Theorem 2 gives the optimal number m∗ of partial verifications
that minimizes F (m) = off(m)f∗re(m). From Equation (12), we have

m∗ = −1

a
+

√
1

a

(
1

b
− 1

a

)
.

RR n° 8711

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 15

Plugging the above Equation into F (m) = off(m)f∗re(m) and simplifying, we can get the
optimal value of F as follows:

F ∗ = off(m∗)f∗re(m
∗)

=
C + V ∗

2
(bm∗ + 1)

(
1 +

1

am∗ + 1

)
=

C + V ∗

2

(√
1− b

a
+

√
b

a

)2

.

When the platform MTBF µ is large, the optimal execution overhead (ignoring the lower-order
term in Equation (4)) can then be expressed as

H∗ =

√
2(C + V ∗)

µ

(√
1− b

a
+

√
b

a

)
. (13)

Since r
2−r ≥

2V
C+V ∗ , we have 0 ≤ b/a ≤ 1/2. As the function f =

√
1− x +

√
x is

increasing in [0, 1/2], the minimum execution overhead in Equation (13) is achieved when b/a
is minimized, or equivalently when a/b is maximized.

We point out that the derivation in Theorem 3 is based on the fractional number m∗ of
partial verifications instead of the optimal integer value. As a result, the optimal configuration
and overhead are subject to rounding error. The magnitude of such error has been evaluated
numerically in Section 5.2 and is shown to be small for practical parameter settings.

4.5 An example

The analysis in the preceding subsections has completely characterized the optimal pattern
and configuration using partial verifications. To demonstrate the results, let us consider an
example.

Suppose a platform consists of 105 nodes, each with a MTBF of 100 years. Then, the
overall MTBF of the system is µ = 100× 365× 24× 3600/105 = 31536 seconds. Suppose the
costs of checkpointing and guaranteed verification are C = 600 seconds and V ∗ = 300 seconds,
respectively. A partial verification has three configurations with a cost-recall (V, r) tradeoff
given by (20, 0.5), (30, 0.8) and (50, 0.9). The following computes the optimal pattern.

First, we calculate the accuracy-to-cost ratio (ACR)

a

b
=
r(C + V ∗)

(2− r)V

for the three partial verifications, which are 15, 20, and 14.73, respectively. Theorem 3
suggests to configure the partial verification with the highest ACR, i.e., V = 30 and r = 0.8.
Then, Theorem 2 states that the minimum overhead in this configuration is achieved when
m∗ ≈ 5.0383, and the optimal integer number of partial verifications in a pattern is bm∗c = 5.
The optimal period, according to Equation (3), is computed to be W ∗ =

√
µ · off(5)/f∗re(5) ≈

7335 seconds, and Theorem 1 indicates that the six segments in the optimal pattern are
approximately 1411, 1128, 1128, 1128, 1128, 1411 seconds, respectively. Finally, Equation
(13) shows that the optimal expected overhead (ignoring the lower-order term) is about
28.6%.

RR n° 8711

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 16

When the application uses only guaranteed verifications, which is a special case of our
analysis with V = V ∗ and r = 1, the optimal pattern contains roughly

√
C/V − 1 equi-

distanced verifications followed by a verified checkpoint. In this example, the optimal pattern
uses either 0 or 1 guaranteed verification as intermediate verification. Both cases turn out
to lead to the same execution overhead around 33.8% with a checkpointing period of 5328
seconds.

This example illustrates that the use of partial verifications provides more than 5% im-
provement in the expected execution time of the application. This means saving 1 hour for
every 20 hours of execution on the platform, which is significant in terms of cost and resource
usage. In the next section, we will evaluate the impact of partial verifications with a wider
range of parameters.

5 Performance Evaluation

In order to assess the impact of partial verifications and to determine the performance im-
provement they can provide, we evaluate the performance of the optimal algorithm described
in the preceding section that employs partial verifications. Experiments are conducted using
Maple for two different scenarios exhibiting a wide and realistic gamut of parameters. The
usefulness of partial verifications is evaluated by comparing with the baseline algorithm that
uses only guaranteed verifications. Section 5.1 describes the experimental setup, including
the scenarios and range of parameter values. Section 5.2 presents the results through various
plots and highlights the improvements over the baseline algorithm.

5.1 Evaluation framework

We present two scenarios used for instantiating the performance model for the algorithm
with partial verifications. The target platform consists of 105 components whose individual
MTBF is 100 years, which depicts a typical large-scale platform. This amounts to a platform
MTBF of µ = 31536 seconds. The other parameters depend on the scenario. For scenario 1,
the checkpointing time is fixed at 600 seconds (10 minutes) and the guaranteed verification
mechanism (with recall r = 1) takes 300 seconds to detect all the errors. For this scenario,
performance is estimated by varying the cost V of partial verifications from 20 to 300 and
varying the recall r from 0.1 to 0.9. Scenario 2, being more optimistic, fixes the parameter
values at C = 100 seconds, V ∗ = 30 seconds and varies V from 3 to 30. For both scenarios,
we also conduct evaluations by varying the number m of partial verifications (from 0 up to
15) to be able to monitor the behavior of the overhead in its entirety.

Regarding the accuracy of the performance model, we point out that, for the considered
platform MTBF, the total length of the optimal interval S is always bounded by 0.3µ for
scenario 1 and by 0.1µ for scenario 2, thereby resulting in a high accuracy of approximation.

5.2 Results and analysis

Based on the above framework, we report the evaluation results through various plots high-
lighting the behavior of the overhead, and the improvements achieved by employing partial
verifications.

RR n° 8711

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

m

E
x

p
ec

te
d

 O
v

er
h

ea
d

r = 0.9

r = 0.7

r = 0.5

r = 0.3

r = 0.1

(a) Scenario 1: C = 600, V ∗ = 300 and V =
20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

m

E
x

p
ec

te
d

 O
v

er
h

ea
d

r = 0.9

r = 0.7

r = 0.5

r = 0.3

r = 0.1

(b) Scenario 2: C = 100, V ∗ = 30 and V = 3

Figure 2: Expected overhead for two scenarios with different recall r and number m of partial
verifications.

5.2.1 Impact of m

We first evaluate the impact of the number m of partial verifications on the expected execution
overhead. Figure 2 shows the overhead behavior when fixing the cost of the partial verification
to be V = 20 for scenario 1 and V = 3 for scenario 2. For both scenarios, the overhead is
greatly diminished by employing partial verifications, except when r = 0.1, in which case the
overhead almost overlaps with that of the baseline algorithm before rising. However, forcing
too many verifications eventually makes the error-free overhead rise, while forcing too few
increases the error-induced overhead. The range of m shows that the overhead indeed falls
down to the optimal value and then starts rising. A similar behavior can be observed among
the curves with different recall values. The plots indicate an improvement in overhead of
approximately 6% for scenario 1 and 3% for scenario 2 over the baseline algorithm for the
verification with the highest recall r = 0.9.

5.2.2 Impact of r and V

Figures 3 and 4 illustrate, for scenarios 1 and 2 respectively, as a function of r and V , the
optimal expected overhead (on the left) and the corresponding optimal number of partial
verifications (on the right). We can see in both 3D plots that the optimal overhead is the
same for many r, V combinations, which is obtained when no partial verification is used,
either due to an expensive cost or due to a low recall value. In such cases, the baseline
algorithm has better performance. On the other hand, there exist many cases where partial
verifications should be used. This is evident from the improvements in the expected overhead,
which in scenario 1 is up to 6.3% and in scenario 2 is up to 2.3%.

It can also be inferred from the contour plots that employing partial verifications in a
pattern is beneficial for scenario 1 in 40% of the cases and for scenario 2 in 60% of the cases.
For all these cases, the optimal pattern uses at least one partial verification. Although an
increase in verification cost adversely influences the optimal overhead and we quickly move to
the yellow region (representing all r, V combinations for which m = 0) in both scenarios, a
sufficiently high recall value would still offset that impact. For example, Figure 4 shows that,

RR n° 8711

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 18

Figure 3: Optimal expected overhead on the left and a contour plot on the right showing
the optimal number of partial verification(s) for varying r and V values when C = 600 and
V ∗ = 300. The contour plot also shows the r and V combinations for each value of the
optimal m.

Figure 4: Optimal expected overhead on the left and a contour plot on the right showing
the optimal number of partial verification(s) for varying r and V values when C = 100 and
V ∗ = 30. The contour plot also shows the r and V combinations for each value of the optimal
m.

for r ≥ 0.7, it is always beneficial to use partial verification(s) irrespective of its cost.

5.2.3 Impact of ACR

Figure 5 shows, for scenario 1, the expected execution overhead as a function of the accuracy-
to-cost ratio (ACR) discussed in Section 4.4. In Figure 5(a), both the optimal and worst-case
overheads are plotted as ACR is varied from 0 to 30. The optimal overhead is computed
based on Equation (13), which gives the ideal value by using the optimal fractional m∗ as
shown in Equation (12). However, since practical number of partial verifications can only be
an integer, the worst overhead reflects the maximum possible overhead for each ACR value.
This is obtained by varying r from 0.01 to 0.99 and V from 20 to 300, and by computing
among them the worst optimal integer solution. We can see that the two curves exhibit almost
negligible difference, especially for higher ACR values. This provides a strong support to the
result of Theorem 3 on the selection of optimal partial verification configuration.

RR n° 8711

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 19

(a) (b)

Figure 5: Optimal and worst overhead curves against accuracy-to-cost ratio (ACR) when
C = 600 and V ∗ = 300.

Figure 5(b) further shows, between the optimal and worst overhead curves, multiple over-
heads that can be obtained as scattered points. For the sake of clarity, the number of data
points has been reduced in the plot to show the configuration with m = 0 up to m = 5
only within the ACR range of 2 to 5. This plot shows, for each ACR value, the existence
of multiple configurations that lead to different expected overheads and number of partial
verifications. For example, for ACR = 2.85, one configuration results in an overhead of 33.8%
without using any partial verification while another configuration has an overhead of 33.4%
with three partial verifications. In this case, a difference of 0.4% is observed in terms of the
overhead, and the gap becomes smaller as ACR increases.

6 Conclusion and Future Work

In this paper, we have evaluated the impact of partial verifications in the detection of silent
data corruptions. Since silent errors are only identified when the corrupted data is activated,
enforcing some verification mechanism is a promising approach to tackling them. For many
parallel applications, partial verification offers a low-overhead alternative to the guaranteed
counterpart, at the expense of reduced error detection accuracy. By incorporating partial
verifications, we have derived the optimal pattern (up to the first-order approximation) in a
resilient protocol, including the optimal configuration, the optimal checkpointing period, the
optimal number of verifications, as well as their optimal positions inside the pattern. These
results provide dramatic extensions to the existing formulas in the field. Evaluations based
on a wide range of parameters confirm the benefit of using partial verifications in certain
scenarios, when compared to the baseline algorithm that uses only guaranteed verifications.

In future work, we will investigate the use of multiple configurations of a partial verification
with different costs and recalls. Note that Theorem 3 does not consider the case where
different configurations can be mixed together in a single pattern. The question is whether
better performance can be achieved by utilizing more than one configuration simultaneously.
Another direction is to consider “false positives”, which are present in many fault filters, such
as the ones described in [2, 10]. False positives are measured by the precision value, defined

RR n° 8711

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 20

as the number of actual errors over the total number of detected errors. Indeed, there exists a
tradeoff between the recall and precision by adjusting the range parameters, based on which
the computed data is examined by such filters. Analyzing the performance of verification
mechanisms in the presence of both false positives and false negatives will be a challenge.

Acknowledgment

This research was funded in part by the European project SCoRPiO, by the LABEX MILYON
(ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir”
(ANR-11-IDEX-0007) operated by the French National Research Agency (ANR), by the PIA
ELCI project, and by the ANR Rescue project. Yves Robert is with Institut Universitaire
de France.

References

[1] G. Aupy, A. Benoit, T. Hérault, Y. Robert, F. Vivien, and D. Zaidouni. On the com-
bination of silent error detection and checkpointing. In Proceedings of the 19th IEEE
Pacific Rim International Symposium on Dependable Computing (PRDC), pages 11–20,
2013.

[2] L. Bautista Gomez and F. Cappello. Detecting silent data corruption through data
dynamic monitoring for scientific applications. SIGPLAN Notices, 49(8):381–382, 2014.

[3] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Assessing general-purpose algorithms to
cope with fail-stop and silent errors. In Proceedings of the 5th International Workshop on
Performance Modeling, Benchmarking and Simulation of High Performance Computer
Systems (PMBS) held as part of Supercomputing (SC), 2014.

[4] A. Benoit, Y. Robert, and S. K. Raina. Efficient checkpoint/verification patterns for
silent error detection. ICL Research report RR-1403, 2014.

[5] A. R. Benson, S. Schmit, and R. Schreiber. Silent error detection in numeri-
cal time-stepping schemes. Int. J. High Performance Computing Applications, DOI:
10.1177/1094342014532297, 2014.

[6] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou. Algorithm-based fault tolerance
applied to high performance computing. J. Parallel Distrib. Comput., 69(4):410–416,
2009.

[7] G. Bronevetsky and B. de Supinski. Soft error vulnerability of iterative linear algebra
methods. In Proceedings of the International Conference on Supercomputing (ICS), pages
155–164, 2008.

[8] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of
distributed systems. ACM Transactions on Computer Systems, 3(1):63–75, 1985.

[9] Z. Chen. Online-ABFT: An online algorithm based fault tolerance scheme for soft error
detection in iterative methods. In Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 167–176, 2013.

RR n° 8711

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 21

[10] E. Ciocca, I. Koren, Z. Koren, C. M. Krishna, and D. S. Katz. Application-level fault
tolerance in the orbital thermal imaging spectrometer. In Proceedings of the 10th IEEE
Pacific Rim International Symposium on Dependable Computing (PRDC’04), pages 43–
48, 2004.

[11] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart dumps.
Future Generation Comp. Syst., 22(3):303–312, 2006.

[12] J. Dongarra, P. Beckman, P. Aerts, F. Cappello, T. Lippert, S. Matsuoka, P. Messina,
T. Moore, R. Stevens, A. Trefethen, and M. Valero. The international exascale software
project: a call to cooperative action by the global high-performance community. HJPCA,
23(4):309–322, 2009.

[13] M. Dow. Explicit inverses of toeplitz and associated matrices. ANZIAM J., 44(E):185–
215, 2003.

[14] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engelmann. Combining
partial redundancy and checkpointing for HPC. In Proceedings of the IEEE International
Conference on Distributed Computing Systems (ICDCS), pages 615–626, 2012.

[15] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Survey, 34:375–408,
2002.

[16] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R. Brightwell. Detection
and correction of silent data corruption for large-scale high-performance computing. In
Proc. SC’12, page 78, 2012.

[17] M. Heroux and M. Hoemmen. Fault-tolerant iterative methods via selective reliability.
Research report SAND2011-3915 C, Sandia National Laboratories, 2011.

[18] K.-H. Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix operations.
IEEE Trans. Comput., 33(6):518–528, 1984.

[19] J. Jou and J. Abraham. Fault tolerant matrix operations on multiple systems using
weighted checksums. In Proc. SPIE 0495, Real-Time Signal Processing VII, pages 94–
101, 1984.

[20] G. Lu, Z. Zheng, and A. A. Chien. When is multi-version checkpointing needed? In
Proc. 3rd Workshop on Fault-tolerance for HPC at extreme scale (FTXS), pages 49–56,
2013.

[21] R. E. Lyons and W. Vanderkulk. The use of triple-modular redundancy to improve
computer reliability. IBM J. Res. Dev., 6(2):200–209, 1962.

[22] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design, Modeling, and
Evaluation of a Scalable Multi-level Checkpointing System. In Proc. of the ACM/IEEE
SC Conf., pages 1–11, 2010.

[23] X. Ni, E. Meneses, N. Jain, and L. V. Kalé. ACR: Automatic Checkpoint/Restart for
Soft and Hard Error Protection. In Proc. SC’13. ACM, 2013.

RR n° 8711

Assessing the Impact of Partial Verifications Against Silent Data Corruptions 22

[24] T. O’Gorman. The effect of cosmic rays on the soft error rate of a DRAM at ground
level. IEEE Trans. Electron Devices, 41(4):553–557, 1994.

[25] P. Sao and R. Vuduc. Self-stabilizing iterative solvers. In Proceedings of the Workshop
on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA), 2013.

[26] M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Fault tolerant preconditioned con-
jugate gradient for sparse linear system solution. In Proceedings of the ACM International
Conference on Supercomputing (ICS), pages 69–78, 2012.

[27] J. W. Young. A first order approximation to the optimum checkpoint interval. Comm.
of the ACM, 17(9):530–531, 1974.

[28] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, and B. Chin. IBM experi-
ments in soft fails in computer electronics. IBM J. Res. Dev., 40(1):3–18, 1996.

RR n° 8711

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

