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Abstract1

Given two coprime polynomials P and Q in Z[x, y] of degree bounded by d and bitsize2

bounded by τ , we address the problem of solving the system {P,Q}. We are interested in3

certified numerical approximations or, more precisely, isolating boxes of the solutions. We are4

also interested in computing, as intermediate symbolic objects, rational parameterizations of5

the solutions, and in particular Rational Univariate Representations (RURs), which can easily6

turn many queries on the system into queries on univariate polynomials. Such representations7

require the computation of a separating form for the system, that is a linear combination of the8

variables that takes different values when evaluated at the distinct solutions of the system.9

We present new algorithms for computing linear separating forms, RUR decompositions10

and isolating boxes of the solutions. We show that these three algorithms have worst-case bit11

complexity ÕB(d6 + d5τ), where Õ refers to the complexity where polylogarithmic factors are12

omitted and OB refers to the bit complexity. We also present probabilistic Las-Vegas variants13

of our two first algorithms, which have expected bit complecity ÕB(d5 + d4τ). A key ingredient14

of our proofs of complexity is an amortized analysis of the triangular decomposition algorithm15

via subresultants, which is of independent interest.16

1 Introduction17

There are numerous alternatives for solving algebraic systems. Typically, isolating boxes of the18

solutions can be computed either directly from the input system using numerical methods (such19

as subdivision or homotopy) or indirectly by first computing intermediate symbolic representations20

such as triangular sets, Gröbner bases, or rational parameterizations. However, only little work21

analyzes the bit complexity of isolating the solutions without any restriction, in particular for22

non-generic or non-radical systems. We address in this paper the problem of solving systems of23

bivariate polynomials with integer coefficients and we focus on the bit complexity of these methods24

in the RAM model. We focus in particular on the worst-case bit complexity in a deterministic25

setting and on the expected bit complexity in a probabilistic Las-Vegas setting. Recall that, in26

Las-Vegas algorithms, the sequence and number of operations are probabilistic but the output27

is deterministic, unlike Monte-Carlo algorithms in which the output is only correct with some28
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probability. We consider throughout the paper input polynomials of total degree at most d with29

integer coefficients of bitsize at most τ .30

A classical approach for solving a system of polynomials with a finite number of solutions is to31

compute a rational parameterization of its solutions. A rational parameterization is a representation32

of the (complex) solutions by a set of univariate polynomials and associated rational one-to-one33

mappings that send the roots of the univariate polynomials to the solutions of the system. With34

such a representation, many queries on the system can be transformed into queries on univariate35

polynomials, which ease the computations. For instance, isolating the solutions of the system can36

be done by isolating the roots of the univariate polynomials of the rational parameterization and by37

computing the image of the resulting intervals through the associated mappings. Similarly, quering38

whether a polynomial P vanishes at the solutions of the system can be done by substiting in P the39

variables by their images in each of the one-to-one mappings and by testing whether this resulting40

univariate polynomial vanishes at the roots of the associated univariate polynomial in the rational41

parameterization.42

The core of the algorithms that compute such rational parameterizations (see for example43

[ABRW96, BSS03, DET09, GLS01, GVEK96, Rou99] and references therein) is the computation of44

a so-called linear separating form for the solutions, that is, a linear combination of the coordinates45

that takes different values when evaluated at different solutions of the system. Then, a shear of46

the coordinate system using such a linear form ensures that the system is in generic position, in47

the sense that no two solutions are vertically aligned. Since a linear form chosen randomly in48

a sufficiently large finite set is separating with probability close to one, probabilist Monte-Carlo49

algorithms can avoid this computation by considering a random linear form. However, when it50

comes to deterministically computing a linear separating form, or even to check that an arbitrary51

(e.g. random) linear form is separating, this, surprisingly, was until very recently the bottleneck in52

the computation of rational parameterizations, even for bivariate systems, as discussed below.53

For arbitrary multivariate systems, Rouillier [Rou99] gives an algorithm for deterministically54

computing a separating form, which computes the number of solutions of a system with the rank of55

the Hermite’s quadratic form of a quotient algebra. The complexity of this computation dominates56

the one that follows for computing the rational representation. Considering the special case of57

systems of two bivariate polynomials of total degree bounded by d with integer coefficients of58

bitsize bounded by τ , another approach, based on a triangular decomposition, has been presented59

by Gonzalez-Vega and El Kahoui [GVEK96] for computing a separating linear form together with60

a rational parameterization of the solutions. The best-known bit complexity of this approach,61

analyzed by Diochnos et al. [DET09, Lemma 16 & Theorem 19]1, shows a bit complexity in ÕB(d10+62

d9τ) for computing a separating form and a bit complexity in ÕB(d7 + d6τ) for computing the63

corresponding rational parameterization. The computation of a separating linear form was still64

the bottleneck in the computation of the rational parameterization. An algorithm using modular65

arithmetic was then introduced by Bouzidi et al. [BLPR15] reducing the complexity to ÕB(d8+d7τ).66

This algorithm was later simplified and improved by transforming the problem into the computation67

of a separating form for the critical points of a curve, which improved the bit complexity to ÕB(d7+68

d6τ) in the worst case and to ÕB(d5 + d4τ) in a probabilistic Las Vegas setting [BLP+14]. Bouzidi69

et al. [BLPR15] also showed that, given such a separating linear form, an alternative rational70

parameterization called Rational Univariate Representation (RUR) [Rou99] can be computed using71

ÕB(d7 +d6τ) bit operations. For the first time, the worst-case bit complexities of computing linear72

1The overall bit complexity stated in [DET09, Theorem 19] is ÕB(d12 + d10τ2) because it includes the isolation
of the solutions of the system. Note, however, that the complexity of the isolation phase, and thus of the whole
algorithm, decreases to ÕB(d10 + d9τ) using Pan [Pan02] results on the complexity of isolating the real roots of a
univariate polynomial.
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separating forms and rational parameterizations (even RURs) of bivariate systems were both in73

the same class of complexity ÕB(d7 + d6τ) and, also for the first time, the expected bit complexity74

for computing linear separating forms, in a Las-Vegas setting, was in a smaller class of complexity,75

ÕB(d5 + d4τ).76

Very recently, Kobel and Sagraloff [KS15b] presented an algorithm of worst-case bit complexity77

ÕB(d6 + d5τ) for computing isolating boxes of the solutions of bivariate systems. Their approach78

is based on resultant computations, projecting the solutions on the x and y-axes, thus defining79

a grid of candidate solutions. Then, approximate evaluations combined with adaptive evaluation80

bounds enable to identify the solutions from the grid. This method does not need the knowledge of81

a separating form, but once the solutions are isolated with enough precision, such a separating form82

can be computed in ÕB(d6 + d5τ) bit operations [KS15b]. This approach for computing separating83

linear forms has the best known worst-case complexity. However, it would be surprising that84

computing a separating form with such complexity would require to first isolate the solutions of the85

system, since separating forms are precisely instrumental for solving systems in parameterization-86

based approaches. The present work indeed demonstrates that separating linear forms and rational87

parameterizations (including RURs) can be directly computed with this ÕB(d6 +d5τ) state-of-the-88

art worst-case bit complexity, and that the solutions of the system can be isolated from the RUR89

in the same worst-case complexity.90

Main results. Let P and Q be two coprime polynomials in Z[x, y] of degree bounded by d and91

bitsize bounded by τ . We present three algorithms, one for each of the main steps of solving a92

bivariate system {P,Q} via RURs, that is, computing (i) a linear separating form, (ii) a RUR93

decomposition of the system, and (iii) isolating boxes of the solutions. Each of these algorithms94

has worst-case bit complexity ÕB(d6 + d5τ) and we also present Las-Vegas variants of expected bit95

complexity ÕB(d5 + d4τ) of our two first algorithms (see Theorems 28, 29, 45, 46, 61). We do not96

present a Las-Vegas variant of our last algorithm for computing isolating boxes but it should be97

noticed that the complexity of that subdivision-based algorithm actually depends on the distances98

between the solutions and thus its worst-case complexity is not always reached; moreover, we do99

not know whether our ÕB(d6 + d5τ) worst-case upper bound is tight for step (iii).100

Our algorithm for computing a separating linear form is based on the one presented in [BLP+14],101

while improving its worst-case bit complexity by a factor d. Furthermore, its Las-Vegas variant102

is simpler than the one presented in [BLP+14] and it has the same expected bit complexity. As103

mentioned above the worst-case complexity of this new algorithm also matches the recent one104

by Kobel and Sagraloff [KS15b]. Our algorithm for computing a RUR decomposition of {P,Q}105

improves by a factor d the state-of-the-art worst-case bit complexity [BLPR15]. Furthermore, our106

Las-Vegas variant is, up to our knowledge, the first Las-Vegas algorithm whose expected complexity107

is asymptotically better than the worst-case complexity and, as a result, our Las-Vegas algorithm108

improves the state-of-the-art expected bit complexity by a factor d2. For the isolation problem109

from the RURs, we improve the state-of-the-art complexity by a factor d2 [BLPR15, Proposition110

35], while matching the resultant-based complexity presented by Kobel and Sagraloff [KS15b].111

Last but not least, we present an amortized analysis of the classical triangular decomposition112

via subresultants of bivariate systems [GVEK96], proving that the decomposition can be computed113

in ÕB(d6 + d5τ) bit operations in the worst case (Proposition 16), which improves by a factor d114

the state-of-the-art analysis [DET09, Proof of Theorem 19]. This result, while instrumental for the115

worst-case complexity analyses of our algorithms, is also of independent interest.116

We first present a detailed overview of our contributions in Section 2. Notation and prelim-117

inaries are then introduced in Section 3. We present in Section 4 our amortized analysis of the118

triangular decomposition and a related luckiness certificate which is a key feature of the following119
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multi-modular algorithms. Sections 5, 6 and 7 present respectively our algorithms for computing120

separating forms, RUR decompositions and isolating boxes of the solutions.121

2 Overview122

We present in this section a detailed overview of our contributions and strategies. Recall that P123

and Q denote two coprime polynomials in Z[x, y] of total degree at most d and maximum bitsize τ .124

2.1 Triangular decomposition and luckiness certificate125

We first recall in Section 4.1 the classical subresultant-based algorithm for computing the triangular126

decomposition of a zero-dimensional bivariate system {P,Q}. This decomposition appears, for127

instance, for solving bivariate systems [LMMRS11] or for the computation of the topology of curves128

[GVEK96]. This triangular decomposition algorithm will be used in our algorithm for computing129

a RUR decomposition of {P,Q}.130

We then present in Section 4.2 a straightforward variation on this algorithm, which only com-131

putes the degree of this triangular decomposition (see Definition 11). This variation decreases the132

expected bit complexity of the algorithm and it is critical for our Las-Vegas algorithm for computing133

a separating linear form.134

We then present in Section 4.3 another variation on the triangular decomposition algorithm,135

which computes a luckiness certificate for this triangular decomposition. A luckiness certificate of136

{P,Q} is an integer such that if a prime µ does not divide it, then µ is lucky for the triangular137

decomposition of {P,Q} that is, the degree of the decomposition is preserved by the reduction138

modulo µ and the decomposition commutes with the reduction modulo µ (see Definition 13). Our139

deterministic algorithms for the separating form and the RUR computations will both use this140

luckiness certificate.141

In Section 4.4, we prove that the worst-case bit complexities of these three algorithms are142

in ÕB(d6 + d5τ) and that the expected bit complexity of the one for computing the degree of143

the triangular decomposition is in ÕB(d5 + d4τ) (Proposition 16). The worst-case complexity is144

obtained by considering amortized bounds on the degrees and bitsizes of factors of the resultant and145

it improves by a factor d the state-of-the-art complexity for computing the triangular decomposition146

[DET09, Proof of Theorem 19]. Besides of being of independent interest, these improvements are147

critical for the complexity analysis of the following algorithms.148

2.2 Separating linear form149

In Section 5, we present a new algorithm for computing separating linear forms for a bivariate150

system {P,Q}. We actually present two algorithms, a deterministic one of worst-case bit complex-151

ity ÕB(d6 + d5τ) and a probabilistic Las-Vegas variant of expected bit complexity ÕB(d5 + d4τ)152

(Theorems 28 and 29).153

Our approach is based on the algorithms presented in [BLPR15] and [BLP+14] while improving154

the worst-case bit complexity by one order of magnitude. We briefly recall the essence of these155

algorithms. The first step of the algorithm presented in [BLPR15] is to compute the number156

of distinct solutions and a so-called lucky prime for the system. Such a lucky prime is, roughly157

speaking, a prime such that the system has the same number of distinct solutions as its image158

modulo µ (see Definition 18). In a second step, all polynomials and computations are considered159

modulo µ. The algorithm then considers iteratively a candidate separating form x + ay with an160

integer a incrementing from 0. The algorithm computes the number of distinct solutions after161
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projection along the direction of the line x+ay = 0 and stops when a value a is found such that the162

number of distinct projected solutions equals that of the system. The worst-case bit complexity of163

this algorithm is in ÕB(d8 + d7τ).164

The main additional ideas introduced in [BLP+14] are that it is sufficient to compute a sepa-165

rating form for the system {H, ∂H∂y } of critical points of a curve H associated to the input system166

{P,Q} (see Section 5.2) and that the number of critical points can easily be computed as the differ-167

ence between the degrees of the triangular decompositions of the systems {H, (∂H∂y )2} and {H, ∂H∂y }168

(see Definition 11). This improves the worst-case bit complexity of the algorithm to ÕB(d7 + d6τ).169

In Section 5.3, we show how these algorithms can be again improved by one order of magnitude170

in the worst-case. The main ideas of these improvments are as follows. First, in Section 5.3.1, we171

show how our improvment on the complexity analysis of triangular decompositions presented in172

Section 4.4 improves the complexity of the computation of the number of solutions of {H, ∂H∂y }.173

In Section 5.3.2, we present a new algorithm for computing a lucky prime for the system174

{H, ∂H∂y } using the luckiness certificates for triangular decompositions presented in Section 4.3.175

More precisely, we compute a lucky prime for {H, ∂H∂y } by computing a prime µ that, essentially,176

does not divide the product of the luckiness certificates of the two systems {H, ∂H∂y } and {H, (∂H∂y )2}.177

By definition of the luckiness certificates, the degrees of the triangular decompositions of these two178

systems are the same over Z and Zµ. The difference of these degrees, which is the number of179

solution of {H, ∂H∂y }, is thus also the same over Z and Zµ, which essentially yields that µ is lucky180

for {H, ∂H∂y }.181

The last ingredient of our algorithm is to show, in Section 5.3.3, how, given the number of182

solutions and a lucky prime for the system {H, ∂H∂y }, the bit complexity of the algorithm presented183

in [BLPR15] for computing a separating linear form for {H, ∂H∂y } can be improved from ÕB(d8+d7τ)184

to ÕB(d6 +d5τ) by using multipoint evaluation and changing the organization of the computations.185

In Section 5.4, we wrap up these results, which prove that we can compute a separating linear186

form for the input system {P,Q} in ÕB(d6 + d5τ) bit operations in the worst case (Theorem 28).187

Finally, we show in Section 5.5 that our determinitic algorithm can be modified in a straight-188

forward manner into a probabilistic Las-Vegas algorithm of expected bit complexity ÕB(d5 + d4τ)189

(Theorem 29). This is done by choosing randomly a linear form x+ ay and a prime µ for the sys-190

tem {H, ∂H∂y }, until the number of distinct solutions of {H, ∂H∂y } is equal to the number of distinct191

solutions of that system modulo µ and after projection along the direction of the line x+ ay = 0.192

This new algorithm is similar to one presented in [BLP+14] and it has the same expected193

bit complexity, while its worst-case counterpart is improved by a factor d. Furthermore, this new194

algorithm is simpler because, in particular, (i) we choose random values for a and µ together instead195

of first computing a lucky prime and only then a separating form and (ii) we avoid the explicit196

computation of the constant in the asymptotic upper bound on the number of unlucky prime.197

2.3 Multimodular RUR decomposition198

We present in Section 6 a new algorithm for computing a rational parameterization of the solutions199

of a bivariate system {P,Q}. As in Section 5, we actually present two algorithms, a determinitic200

one of worst-case bit complexity ÕB(d6 +d5τ) and a probabilistic Las-Vegas variant of expected bit201

complexity ÕB(d5 + d4τ) (Theorems 45 and 46). We consider here that a separating form x + ay202

has been computed for {P,Q} as shown in Section 5.203

Recall that the two algorithms with best known bit complexity for computing rational param-204

eterizations of the solutions are those by Gonzalez-Vega and El Kahoui [GVEK96] and by Bouzidi205

et al. [BLPR15], both of complexity ÕB(d7 + d6τ). The former algorithm first shears the input206
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polynomials according the separating form (to ensure that no two solutions are vertically aligned)207

and then computes a parameterization of the solutions of every system of the triangular decompo-208

sition of the sheared system; the multiplicities of the solutions of {P,Q} are thus not preserved.209

The latter algorithm computes a single RUR of {P,Q}, which preserves the multiplicities of the210

solutions (see Proposition 35). In this latter approach, the input bivariate polynomials are formally211

sheared using an additional variable that parameterizes a generic linear form, and the resultant of212

these (trivariate) polynomials is computed. The polynomials of the RUR are then expressed (and213

computed) as combinations of this resultant and its partial derivatives, specialized at the value a214

associated with the given linear separating form.215

Here, we combine in essence these two approaches and compute a RUR for every system of216

the triangular decomposition of the sheared input system. However, in order to obtain the claimed217

complexities, we do not compute a RUR of every triangular system using the approach of [BLPR15].218

Instead, Algorithm 6 works as follows. First, we compute the triangular decomposition of the219

sheared input system as in [GVEK96]. We then show that the radical ideals of the triangular220

systems can easily be obtained (Lemma 39). Using the simple structure of these radical ideals, we221

derive formulas for their RURs (Lemma 40). For complexity issues, we do not use these formulas to222

directly compute RURs over Q but we use instead a multi-modular approach. For that purpose, we223

use known bounds on the size of the RUR coefficients and the luckiness certificate of the triangular224

decomposition introduced in Section 4.3 to select the primes.225

Finally, we show in Section 6.3 how our determinitic algorithm can be transformed into a226

probabilistic Las-Vegas one of expected bit complexity ÕB(d5 + d4τ). In order to obtain this227

complexity, we cannot compute the triangular decomposition as described above. Instead, we show228

in Section 6.3.1 that we can only compute the coefficients of these triangular systems that are229

needed for obtaining their radicals, within the targeted bit complexity. We also choose randomly230

the primes in the multi-modular computation described above. This can be done in a Las-Vegas231

setting because we show that we can choose good primes with sufficiently high probability and that232

we can check whether the primes are good within the targeted complexity.233

2.4 Computing isolating boxes from a RUR decomposition234

Section 7 introduces Algorithm 9 computing isolating boxes for the complex solutions from a235

RUR. By definition, the RUR of an ideal I defines a mapping between the roots of a univariate236

polynomial and the solutions of I. A RUR is hence naturally designed to compute isolating boxes237

using univariate isolation and interval evaluation.238

An algorithm with bit complexity ÕB(d8+d7τ) was presented in [BLPR15, §5.1 and Proposition239

35] for the isolation of the real solutions of a system {P,Q} of two bivariate polynomials of degree240

bounded by d and bitsize bounded by τ . Section 7.2 presents a modified algorithm that isolates all241

complex solutions. Using several amortized bounds for the roots of polynomials (Section 7.1), we242

show that Algorithm 9 applied to a RUR decomposition of a system {P,Q}, isolates all complex243

solutions in ÕB(d6 + d5τ) (Theorem 61).244

3 Notation and preliminaries245

We introduce notation and recall some classical material about subresultants, gcds, lucky primes246

for gcd computations, and multiplicities. Experienced readers can skip this classical material at247

first and later return to it for reference.248

The bitsize of an integer p is the number of bits needed to represent it, that is blog pc +249

1 (log refers to the logarithm in base 2). The bitsize of a rational is the maximum bitsize of250
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its numerator and its denominator. The bitsize of a polynomial with integer coefficients is the251

maximum bitsize of its coefficients. As mentioned earlier, OB refers to the bit complexity and Õ252

and ÕB refer to complexities where polylogarithmic factors are omitted, i.e., f(n) ∈ Õ(g(n)) if253

f(n) ∈ O(g(n) logk(n)) for some k ∈ N.254

In this paper, we consider algorithms both in the worst-case and the probabilistic Las-Vegas255

setting. Recall that in Las-Vegas algorithms the sequence and number of operations are probabilistic256

but the output is deterministic. The expected complexities of these algorithms refer to average257

number of bit operations that are performed for distributions of random variables considered in258

the process of the algorithms; these expected complexities hold without any assumption on the259

distribution of the input.260

In the following, µ is a prime number and we denote by Zµ the quotient Z/µZ. We denote by261

φµ: Z → Zµ the reduction modulo µ, and extend this definition to the reduction of polynomials262

with integer coefficients. We denote by D a unique factorization domain, typically Z[x, y], Z[x],263

Zµ[x], Z or Zµ. We also denote by F a field, typically Q, C, or Zµ and by FD the fraction field of D.264

For any polynomial P in D[x], let Lcx(P ) denote its leading coefficient with respect to the265

variable x and dx(P ) its degree with respect to x. The degree of a polynomial refers to its total266

degree, unless specified otherwise. For any curve defined by H(x, y) in D[x, y], we call the critical267

points of H with respect to x or more shortly the critical point of H, the points that are solutions of268

the system {H, ∂H∂y }. In this paper, the solutions of a system of polynomials are always considered269

in the algebraic closure of FD.270

Subresultant and gcd. We first recall the concept of polynomial determinant of a matrix which271

is used in the definition of subresultants. Let M be an m × n matrix with m 6 n and Mi be272

the square submatrix of M consisting of the first m − 1 columns and the i-th column of M , for273

i = m, . . . , n. The polynomial determinant of M is the polynomial defined as det(Mm)yn−m +274

det(Mm+1)yn−(m+1) + · · ·+ det(Mn).275

Let P =
∑p

i=0 aiy
i and Q =

∑q
i=0 biy

i be two polynomials in D[y] and assume, without loss of276

generality, that apbq 6= 0 and p > q.277

The Sylvester matrix of P and Q, Syly(P,Q) is the (p + q)-square matrix whose rows are278

yq−1P, . . . , P, yp−1Q, . . . , Q considered as vectors in the basis yp+q−1, . . . , y, 1.279

Syly(P,Q) =

p+q columns︷ ︸︸ ︷

ap ap−1 · · · · · · a0
ap ap−1 · · · · · · a0

. . .
. . .

ap ap−1 · · · · · · a0
bq bq−1 · · · b0

bq bq−1 · · · b0
. . .

. . .

. . .
. . .

bq bq−1 . . . b0



 q rows

 p rows

280

For i = 0, . . . ,min(q, p− 1), let Syly,i(P,Q) be the (p+ q − 2i)× (p+ q − i) matrix obtained from281

Syly(P,Q) by deleting the i last rows of the coefficients of P , the i last rows of the coefficients of282

Q, and the i last columns.283

Definition 1. ([EK03, §3]). For i = 0, . . . ,min(q, p − 1), the i-th polynomial subresultant of P284

and Q, denoted by Sresy,i(P,Q) = sresy,i(P,Q)yi + sresy,i,i−1(P,Q)yi−1 + · · ·+ sresy,i,0(P,Q) is the285

polynomial determinant of Syly,i(P,Q).286
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For practical consideration, when q = p, we define the q-th polynomial subresultant of P287

and Q as Q.2 The polynomial Sresi(P,Q) has degree at most i in y and it can be written as288

sresy,i(P,Q)yi + sresy,i,i−1(P,Q)yi−1 + · · · + sresy,i,0(P,Q), where the coefficient of its monomial289

of degree i in y, sresi(P,Q), is called the i-th principal subresultant coefficient. Unless specified290

otherwise, the subresultants are always considered with respect to the variable y and then, for291

simplicity, we do not explicitly refer to the variable in the notation. Note that Sres0(P,Q) =292

sres0(P,Q) is the resultant of P and Q with respect to y, which we also denote by Resy(P,Q).293

Again, when the resultant is considered with respect to y, we omit the reference to the variable294

and denote it by Res(P,Q).295

The matricial definition of subresultants implies the so-called specialization property of subre-296

sultants, that is φ(Sresi(P,Q)) = Sresi(φ(P ), φ(Q)) for any morphism φ between D and another297

unique factorization domain D′ such that none of the leading coefficients of P and Q vanishes298

through φ. More generally, the equality holds up to a non-zero multiplicative constant in D′ when299

only one of the leading coefficients vanishes [EK03, Lemmas 2.3, 3.1].300

We state in Lemma 2 a fundamental property of subresultants which is instrumental in the301

triangular decomposition algorithm. For clarity, we state this property for bivariate polynomials302

P =
∑p

i=0 aiy
i and Q =

∑q
i=0 biy

i in D[x, y], with p > q. This property is a direct consequence303

of the specialization property of subresultants and of the gap structure theorem; see for instance304

[EK03, Lemmas 2.3, 3.1 and Cor. 5.1].305

Before stating Lemma 2, we recall that a greatest common divisor (gcd) of P and Q is a306

polynomial in D[x, y] that divides P and Q such that any common divisor of P and Q also divides307

the gcd in D[x, y]. The greatest common divisor is unique only up to the multiplication by an308

invertible element of D. When D is equal to Z, the gcd of P and Q is unique up to its sign and we309

refer to any of them as the gcd for simplicity. On the other hand, when D is a field, we refer to the310

monic gcd (with respect to a given ordering of the variables) as to the gcd. Furthermore, in the311

sequel, we sometimes compare gcds defined in Zµ[x, y] and the reduction modulo µ of gcds defined312

in Z[x, y]; for simplicity, we often say they are equal if they are equal up to the multiplication by313

a non-zero constant in Zµ. Note finally that if P and Q are coprime in Z[x, y], then they define a314

zero-dimensional system.315

Lemma 2. For any α such that ap(α) and bq(α) do not both vanish,3 the first subresultant poly-316

nomial Sresk(P,Q)(α, y) (for k increasing) that does not identically vanish is of degree k, and it is317

the gcd of P (α, y) and Q(α, y) (up to the multiplication by a non-zero constant in the fraction field318

of D(α)).319

We recall complexity results, using fast algorithms, on subresultants and gcd computations.320

Lemma 3 ([BPR06, Prop. 8.46] [Rei97, §8] [vzGG13, §11.2]). Let P and Q be in Z[x1, . . . , xn][y]321

(n fixed) with coefficients of bitsize at most τ such that their degrees in y are bounded by dy and322

their degrees in the other variables are bounded by d.323

• The coefficients of Sresi(P,Q) have bitsize in Õ(dy τ).324

• The degree in xj of Sresi(P,Q) is at most 2d(dy −i).325

2 It can be observed that, when p > q, the q-th subresultant is equal to bp−q−1
q Q, however it is not defined when

p = q. In this case, El Kahoui suggests to extend the definition to b−1
q Q assuming that the domain D is integral.

However, b−1
q does not necessarily belong to D, which is not practical. Note that it is important to define the q-th

subresultant to be a multiple of Q so that Lemma 2 holds when P (α, y) and Q(α, y) have same degree and are
multiple of one another.

3Note that this property is often stated with a stronger assumption, that is, that none of the leading coefficients
ap(α) and bq(α) vanishes.
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• For any i ∈ {0, . . . ,min(dy(P ), dy(Q))}, the i-th Bézout’s relation i.e. the polynomi-326

als Sresi(P,Q), Ui and Vi can be computed in Õ(dn dn+1
y ) arithmetic operations and327

ÕB(dn dn+2
y τ) bit operations. These complexities also hold for the computation of the se-328

quence of principal subresultant coefficients sresi(P,Q).4329

In the univariate case, we need a refinement of the previous lemma in the case of two polyno-330

mials with different degrees and bitsizes. In addition, we often consider the gcd of two univariate331

polynomials P and Q and the gcd-free part of P with respect to Q, that is P
gcd(P,Q) . Note that when332

Q = P ′, the latter is the squarefree part of P . Since the gcd and gcd-free part can be computed via333

subresultants, we summarize all these complexity results in the following lemma. Since we do not334

know a proper reference for these results in the case of different degrees and bitsizes, we provide a335

proof.336

Lemma 4 ([LR01] [vzGG13, §11.2]). Let P and Q be two polynomials in Z[y] of degrees p and337

q 6 p and of bitsizes τP and τQ, respectively.338

• The coefficients of Sresi(P,Q) have bitsize in Õ(pτQ + qτP ).339

• Any subresultant Sresi(P,Q) as well as the sequence of principal subresultant coefficients340

sresi(P,Q) can be computed in Õ(p) arithmetic operations, and ÕB(p(pτQ + qτP )) bit opera-341

tions.342

• In Z[y], the gcd of P and Q has bitsize O(min(p + τP , q + τQ)) and it can be computed in343

Õ(p) arithmetic operations, and ÕB(p(pτQ+qτP )) bit operations. The gcd-free part of P with344

respect to Q has bitsize O(p+ τP ) and it can be computed in the same complexities.345

Proof. Using the well-known half-gcd approach, the algorithm in [LR01] computes any polynomial346

in the Sylvester-Habicht and cofactors sequence in a softly-linear number of arithmetic operations,347

and it exploits Hadamard’s inequality on the Sylvester matrix to bound the size of the coefficients.348

The Sylvester-Habicht sequence is a signed variant of the subresultant sequence thus the same349

complexity bounds apply for both. The same approach is also used in [vzGG13, §11] to compute350

the sequence of principal subresultant coefficients.351

When the two input polynomials have different degrees and bitsizes, Hadamard’s inequality352

reads as Õ(pτQ + qτP ) instead of simply Õ(dτ) when both polynomials have degree bounded by d353

and bitsize bounded by τ . Using the Chinese Remainder Algorithm, the algorithms in [LR01] and354

in [vzGG13, §11] hence compute any subresultant polynomial as well as the sequence of principal355

subresultant coefficients in ÕB(p(pτQ + qτP )) bit operations instead of simply Õ(d2τ). One subre-356

sultant and a cofactor are, up to integer factors, the gcd and gcd-free part of P and Q ([BPR06,357

Prop. 10.14]). These polynomials in Z[y] are thus computed in ÕB(p(pτQ + qτP )) and have bitsize358

in Õ(pτQ + qτP ). On the other hand, Mignotte’s lemma (see e.g. [BPR06, Corollary 10.12]) gives359

the stated better bounds for the bitsize of the gcd and the gcd-free part. Thus, dividing the com-360

puted polynomials by the gcd of their coefficients, which can be done with ÕB(p(pτQ + qτP )) bit361

operations, yields the primitive parts of the gcd and gcd-free part in Z[y] (when input polynomials362

are not primitive, the gcd is obtained by multiplying this primitive gcd by the gcd of the contents363

of the input polynomials).364

We also state the following complexity on the computation of the gcd and gcd-free parts of365

bivariate polynomials, whose proof is a minor refinement of one in [MSW15].366

4The complexity of computing the sequence of principal subresultant coefficients is stated in [vzGG13, §. 11.2]
only for univariate polynomials, however, one can use the binary segmentation technique described in [Rei97, §8] to
generalize the latter to multivariate polynomials.
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Lemma 5. Given P and Q in Z[x, y] of maximum degree d and maximum bitsize τ , their gcd and367

the gcd-free parts can be computed in ÕB(d5 + d4τ) bit operations in the worst case.368

Proof. [MSW15, Lemma 13] proves that G, the gcd of P and Q, can be computed in ÕB(d6 + d5τ)369

bit complexity. More precisely, they prove a complexity in ÕB(d5 +d4τ) plus that of computing the370

whole subresultant sequence of two bivariate polynomials of total degree O(d) and bitsize O(d+ τ)371

(that is of P and Q sheared so that their leading coefficients in y is in Z). However, only the first372

non-zero subresultant is needed and the bit complexity of this computation is in ÕB(d5 + d4τ) by373

Lemma 3.374

We now consider P and G, the gcd of P and Q, as polynomials in y with coefficients in Z[x].375

The gcd-free part of P with respect to Q is the quotient of the Euclidean division between P and376

G. This division can be run in Z[x][y]. Indeed, since the leading coefficient of G divides that of P ,377

it also divides the leading coefficient of each intermediate remainder ri = P − qiG where qi refers378

to the i-th truncation (with respect to y) of the quotient of P by G. Moreover, since G divides P379

and by Mignotte’s lemma (see e.g. [BPR06, Corollary 10.12]), the polynomials qi have coefficients380

of degree in O(d) in x and bitsize in O(d + τ), and so as for the intermediate remainders ri. The381

Euclidean division can thus be done using O(d2) additions and multiplications and O(d) exact382

divisions between polynomials in Z[x] of degree in O(d) and bitsize in O(d+ τ), which yields a bit383

complexity in ÕB(d4 + d3τ).384

Note that, alternatively, the gcd-free parts of P and Q could be obtained almost directly as i-th385

subresultant cofactors of P and Q (see [BPR06, Proposition 10.14 & Corollary 8.32 & §1.2]).386

Lucky primes for gcd computations. We use in this paper three notions of lucky primes. We387

recall here the definition of lucky primes for gcds and we later introduce the definition of lucky388

primes for algebraic systems (Definition 18) and for triangular decompositions (Definition 13). Let389

A and B be polynomials in Z[x].390

Definition 6 ([Yap00, §4.4]). A prime number µ is lucky for the gcd of A and B if391

• φµ(Lc(A) · Lc(B)) 6= 0, and392

• gcd(A,B) has the same degree as gcd(Aµ, Bµ).393

Lemma 7 ([Yap00, Lemmas 4.11 and 4.12]). A prime number is lucky for the gcd of A and B if394

and only if it divides the leading coefficient of neither A, nor B, nor Sresd(A,B) where d is the395

degree of gcd(A,B). When µ is lucky for the gcd of A and B, then φµ(gcd(A,B)) = gcd(Aµ, Bµ)396

(up to a non-null factor in Zµ).397

Multiplicities. We define the two notions of multiplicities that we use for the solutions of a398

system and show an inequality that they satisfy, which is used for the amortized complexity analysis399

of the triangular decomposition (Proposition 15).400

Definition 8. Let I be an ideal of D[x, y] and denote by F the algebraic closure of D. To each401

zero (α, β) of I corresponds a local ring (F[x, y]/I)(α,β) obtained by localizing the ring F[x, y]/I at402

the maximal ideal 〈x− α, y − β〉. When this local ring is finite dimensional as F-vector space, this403

dimension is called the multiplicity of (α, β) as a zero of I and is noted mult((α, β), I)[CLO05,404

§4.2].405

We call the fiber of a point p = (α, β) the vertical line of equation x = α. The mul-406

tiplicity of p in its fiber with respect to a system of polynomials {P,Q} in F[x, y], noted407

multfiber((α, β), {P,Q}), is the multiplicity of β in the univariate polynomial gcd(P (α, y), Q(α, y)).5408

(This multiplicity is zero if P or Q does not vanish at p.)409

5The gcd is naturally considered over F(α)[y], the ring of polynomials in y with coefficients in the field
extension of F by α.
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Lemma 9. The multiplicity of any solution in its fiber with respect to the system {P,Q} is smaller410

than or equal to its multiplicity in {P,Q}.411

Proof. Let (α, β) be a solution of the system {P,Q}. We have the inclusion of ideals412

〈P (x, y), Q(x, y)〉 ⊆ 〈P (x, y), Q(x, y), x− α, gcd(P (α, y), Q(α, y))〉
⊆ 〈P (α, y), Q(α, y), x− α, gcd(P (α, y), Q(α, y))〉
⊆ 〈x− α, gcd(P (α, y), Q(α, y))〉.

Indeed, the first and last inclusions are trivial and the second one follows from the fact that413

P (x, y) ∈ 〈P (α, y), x−α〉 since P (x, y) can be written as P (α, y)+
∑

i>1
∂iP (α,y)
∂xi

(x−α)i. This ideal414

inclusion implies that the multiplicity of (α, β) in 〈P,Q〉 is larger than or equal to its multiplicity in415

〈x− α, gcd(P (α, y), Q(α, y))〉, which is equal to the multiplicity of β in gcd(P (α, y), Q(α, y)) since416

x − α is squarefree. The latter is by definition the multiplicity in its fiber of the solution (α, β)417

with respect to the system {P,Q}.418

4 Triangular decomposition and luckiness certificate419

This section presents an improved complexity analysis of the classical triangular decomposition via420

subresultants and two variants of this algorithm that we will need in the following sections. The421

improvement comes from new amortized bounds on the degree and bitsize of factors of the resultant,422

which we prove in Proposition 15. Besides of being of independent interest, this improvement is423

critical for the complexity analysis of our two variants of this algorithm.424

In Section 4.1, we recall Algorithm 1, the classical algorithm for computing the triangular decom-425

position of a zero-dimensional bivariate system {P,Q}. In Section 4.2, we present Algorithm 1’,426

a variant that only computes the “degree’’ of the triangular decomposition. In Section 4.3, we427

present Algorithm 2, another variant that computes a luckiness certificate (see Definition 13) for428

the triangular decomposition. Finally, in Section 4.4, we present an amortized complexity analysis429

of these algorithms.430

4.1 Triangular decomposition via subresultants431

The idea is based on Lemma 2 which states that, after specialization at x = α, the first (with432

respect to increasing i) non-zero subresultant Sresi(P,Q)(α, y) is of degree i and is equal to the433

gcd of P (α, y) and Q(α, y). This induces a decomposition into triangular subsystems {Ai(x),434

Sresi(P,Q)(x, y)} where a solution α of Ai(x) = 0 is such that the system {P (α, y), Q(α, y)} admits435

exactly i roots (counted with multiplicity), which are exactly those of Sresi(P,Q)(α, y). Further-436

more, these triangular subsystems are regular chains, i.e., the leading coefficient of the bivariate437

polynomial (seen in y) is coprime with the univariate polynomial. We recall in Algorithm 1 how438

this decomposition is computed. Note that this algorithm performs Õ(d4) arithmetic operations.439

Indeed, the computation of the subresultant sequence has complexity Õ(d4) and there are at most440

11



Algorithm 1 Triangular decomposition [GVEK96, LMMRS11]

Input: P,Q in D[x, y] coprime such that Lcy(P ) and Lcy(Q) are coprime
Output: Triangular decomposition {(Ai(x), Bi(x, y))}i∈I such that the set of solutions of {P,Q}

is the disjoint union of the sets of solutions of {(Ai(x), Bi(x, y))}i∈I
1: If needed, exchange P and Q so that dy(Q) 6 dy(P )
2: Compute the subresultant sequence of P and Q with respect to y: Bi = Sresi(P,Q)
3: G0 = squarefree part(Res(P,Q)) and T = ∅
4: for i = 1 to dy(Q) do
5: Gi = gcd(Gi−1, sresi(P,Q))
6: Ai = Gi−1/Gi
7: if dx(Ai) > 0, add (Ai, Bi) to T
8: return T = {(Ai(x), Bi(x, y))}i∈I

Algorithm 1’ Degree of the triangular decomposition

Input: P,Q in D[x, y] coprime such that Lcy(P ) and Lcy(Q) are coprime
Output: The degree of the triangular decomposition of {P,Q}

1: If needed, exchange P and Q so that dy(Q) 6 dy(P )
2: Compute the sequence of principal subresultant coefficients of P and Q with respect to y:

sresi(P,Q)
3: G0 = squarefree part(Res(P,Q))
4: for i = 1 to dy(Q) do
5: Gi = gcd(Gi−1, sresi(P,Q))
6: return

∑
i∈I(dx(Gi−1)− dx(Gi)) i

d gcd computations each of complexity Õ(d2) (see e.g. [BLPR15, Lemma 15] for details). The next441

lemma summarizes the main properties of this triangular decomposition.442

Lemma 10 ([GVEK96, LMMRS11]). Algorithm 1 computes a triangular decomposition {(Ai(x),443

Bi(x, y))}i∈I such that444

• the set of distinct solutions of {P,Q} is the disjoint union of the sets of distinct solutions of445

the {Ai(x), Bi(x, y)}, i ∈ I,446

•
∏
i∈I Ai is squarefree,447

• for any root α of Ai, Bi(α, y) is of degree i and equals gcd(P (α, y), Q(α, y)) (up to a constant448

factor),449

• Ai is coprime with Lcy(Bi) = sresi(P,Q).450

4.2 Degree of a triangular decomposition451

Definition 11. The degree of a triangular decomposition {(Ai(x), Bi(x, y))}i∈I of is the sum of452

the degrees of these systems, that is453 ∑
i∈I

dx(Ai(x)) dy(Bi(x, y))

where dx refers to the degree of the polynomial with respect to x and similarly for y. For simplicity,454

we refer to the degree of the triangular decomposition of {P,Q} as to the degree of the triangular455

decomposition computed by Algorithm 1 on {P,Q}.456
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Algorithm 2 Luckiness certificate

Input: P,Q in Z[x, y] coprime such that Lcy(P ) and Lcy(Q) are coprime
Output: A luckiness certificate of {P,Q}, that is, an integer Π such that if µ does not divide Π,

then µ is lucky for the triangular decomposition of {P,Q} according to Definition 13
1: If needed, exchange P and Q so that dy(Q) 6 dy(P )
2: Compute the sequence of principal subresultant coefficients of P and Q with respect to y:

sresi(P,Q)
3: G0 = squarefree part(Res(P,Q))

4: SG0 = sresx,k(Res(P,Q), ∂ Res(P,Q)
∂x ) the first non-null principal subresultant coefficient (for k

increasing)
5: for i = 1 to dy(Q) do
6: SGi = sresx,k(Gi−1, sresi(P,Q)) the first non-null principal subresultant coefficient (for k

increasing)
7: Gi = gcd(Gi−1, sresi(P,Q))

8: Π = Lcx(Lcy(P )) · Lcx(Lcy(Q)) · Resx(Lcy(P ),Lcy(Q)) · dx(Res(P,Q)) ·
∏dy(Q)
i=0 SGi ·

Lcx(sresi(P,Q))
9: return Π

Algorithm 1’, a straightforward variant of Algorithm 1, computes the degree of triangular457

decomposition of {P,Q}. The difference with Algorithm 1 is that we do not compute (in Line 2)458

the whole subresultant sequence but only the sequence of their principal coefficients. In other459

words, we do not compute the bivariate polynomials Bi(x, y) of the triangular decomposition but460

only their leading terms (seen as polynomials in y). Furthermore, we do not compute the univariate461

polynomials Ai(x) of the decomposition but only their degrees. This simplification does not modify462

the worst-case bit complexity of the algorithm but it decreases its expected bit complexity (see463

Proposition 16 and its proof). This simplification is thus not needed in the deterministic version464

of our algorithm for computing a separating linear form but it is needed in our randomized version465

(see Section 5.5).466

Lemma 12 (Correctness of Algorithm 1’). Algorithm 1’ computes the degree of the triangular467

decomposition of {P,Q}.468

Proof. Let {(Ai(x), Bi(x, y))}i∈I denote the triangular decomposition of {P,Q}. By Lemma 10,469

Bi(x, y) is of degree i in y. On the other hand, Ai(x) is defined in Algorithm 1 Line 6 as Gi−1/Gi470

thus its degree is dx(Gi−1)− dx(Gi). It follows that the degree of the triangular decomposition is471 ∑
i∈I(dx(Gi−1)− dx(Gi)) i.472

4.3 Lucky primes for a triangular decomposition473

In this section, we define the lucky primes for the triangular decomposition of Algorithm 1 and474

introduce Algorithm 2 that computes a luckiness certificate i.e. an integer that is divisible by all475

the unlucky primes.476

Definition 13. A prime µ is lucky for the triangular decomposition of Algorithm 1 applied477

to P and Q if the decomposition commutes with the morphism φµ and its degree is invariant478

through φµ.6479

6More precisely, if {(Ai, Bi)}i∈I = Algorithm 1(P,Q) and {(Aµi , Bµi )}i∈Iµ = Algorithm 1(φµ(P), φµ(Q)), then
I = Iµ, φµ(Ai) = Aµi , φµ(Bi) = Bµi for every i ∈ I and the two triangular decompositions have the same degree.
Note that (P,Q) and (φµ(P ), φµ(Q)) are also required to satisfy the hypotheses of Algorithm 1.
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Lemma 14 (Correctness of Algorithm 2). The integer Π output by Algorithm 2 is a luckiness480

certificate of {P,Q}, that is, if µ does not divide Π, then it is lucky for the triangular decomposition481

of {P,Q}.482

Proof. For convenience, we simply denote by φ the morphism φµ that performs a reduction modulo483

µ. Let P and Q be two coprime polynomials in Z[x, y] such that Lcy(P ) and Lcy(Q) are coprime.484

Let Gi, Ai, Bi be the polynomials computed in Algorithm 1 on the input P and Q, and Gµi , Aµi ,485

Bµ
i be the polynomials computed in Algorithm 1 on the input φ(P ) and φ(Q).486

We first prove that φ(P ) and φ(Q) satisfy the conditions of Algorithm 1, that is that they are487

coprime and that their leading coefficients are coprime. Observe first that φ(Lcy(P )) = Lcy(φ(P ))488

since µ does not divide Lcx(Lcy(P )), and similiraly for Q. Furthermore, since µ does not di-489

vide the leading coefficients of Lcy(P ) and Lcy(Q), their resultant and φ commute. Hence,490

φ(Resx(Lcy(P ),Lcy(Q))) = Resx(Lcy(φ(P )),Lcy(φ(Q)))) and, since the left-hand-side term is non-491

zero by assumption, so is the right-hand side, which means that that the leading coefficients of492

φ(P ) and φ(Q) are coprime. Furthermore, since µ does not divide sres0(P,Q) = Res(P,Q), we also493

have that Res(φ(P ), φ(Q)) 6≡ 0. We have proved that φ(P ) and φ(Q) have a non-zero resultant and494

that their leading coefficients are coprime, which implies that φ(P ) and φ(Q) are coprime. Hence,495

they satisfy the conditions of Algorithm 1.496

We now prove that φ(Ai) = Aµi , φ(Bi) = Bµ
i and dx(Ai) = dx(Aµi ) for all i > 0. Since µ divides497

neither the leadings of P nor Q, the specialization property of the subresultant polynomials writes498

as φ(Bi) = φ(Sresi(P,Q)) = Sresi(φ(P ), φ(Q)) = Bµ
i . We now show by induction on i > 0 that499

φ(Gi) = Gµi and dx(Gi) = dx(Gµi ), which implies that φ(Ai) = Aµi and dx(Ai) = dx(Aµi ) for i > 0500

since Ai = Gi−1/Gi.501

Case i = 0. µ is lucky for the gcd of sres0(P,Q) and ∂ sres0(P,Q)
∂x by Lemma 7. Indeed, first, µ502

does not divide the leading coefficient Lcx(sres0(P,Q)) of sres0(P,Q). It follows that µ does not503

divide the leading coefficient of ∂ sres0(P,Q)
∂x since µ does not divide dx(Res(P,Q)) = dx(sres0(P,Q)).504

Finally, µ does not divide SG0. It follows, still by Lemma 7, that φ and gcd commute on sres0(P,Q)505

and ∂ sres0(P,Q)
∂x . Hence, φ(G0) = Gµ0 by the specialization property of the subresultants since the506

leading coefficients of P , Q do not vanish modulo µ.507

We now prove that dx(G0) = dx(Gµ0 ), which is now equivalent to proving that dx(G0) =508

dx(φ(G0)). Since the image through φ of any polynomial does not increase its degree, dx(φ(G0)) 6509

dx(G0). Furthermore, dx(φ(G0)) > dx(G0), because G0 = Res(P,Q)

gcd(Res(P,Q),
∂ Res(P,Q)

∂x
)

and Res(P,Q)510

and its image through φ have the same degree (since µ does not divide the leading coefficient of511

Res(P,Q)).512

Case i > 0. We assume that φ(Gi−1) = Gµi−1 and dx(Gi−1) = dx(Gµi−1). By Lemma 7, µ is lucky513

for the gcd of Gi−1 and sresi(P,Q). Indeed, µ divides none of the leading coefficients of Gi−1 and514

sresi(P,Q) (since Gi−1 is a factor of sresi−1(P,Q)), and µ does not divide SGi either. This implies,515

still by Lemma 7, that φ(Gi) = φ(gcd(Gi−1, sresi(P,Q))) = gcd(φ(Gi−1), φ(sresi(P,Q))). This is516

also equal to gcd(Gµi−1, sresi(φ(P ), φ(Q))) = Gµi by the induction hypothesis and the property of517

specialization of the subresultants. Hence, φ(Gi) = Gµi . Furthermore, since µ is lucky for the gcd518

of Gi−1 and sresi(P,Q), this gcd, which is Gi by definition, and gcd(φ(Gi−1), φ(sresi(P,Q))) = Gµi519

have the same degree by Definition 6. This concludes the proof of the induction.520

We have proved that φ(Ai) = Aµi , φ(Bi) = Bµ
i and dx(Ai) = dx(Aµi ) for all i > 0. The latter521

property directly implies that I = Iµ. Now, for i ∈ I = Iµ, the degrees in y of Bi and Bµ
i are522

equal to i by Lemma 10 (and Definition 1). This implies that the degrees of the decompositions523

{(Ai, Bi)}i∈I and {(Aµi , Bµ
i )}i∈Iµ are the same, which concludes the proof.524

525
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4.4 Amortized complexity analysis526

For the analysis of Algorithms 1, 1’ and 2, we first prove amortized bounds on the degree and527

bitsize of the factors Gi of the resultant in the triangular decomposition.528

Proposition 15. For i = 0, . . . ,dy(Q)− 1, let di and τi be the degree and bitsize of the polynomial529

Gi in the triangular decomposition of P and Q computed in Algorithm 1. We have:530

• di 6 d2

i+1 and τi = Õ(d
2+dτ
i+1 ),531

•
∑dy(Q)−1

i=0 di 6 d2 and
∑dy(Q)−1

i=0 τi = Õ(d2 + dτ).532

Proof. Let {(Ai(x), Bi(x, y))}i∈I be the sequence of triangular systems output by Algorithm 1 on533

P and Q. By the properties of the triangular decomposition (Lemma 10), for any root α of Ai,534

dy(Bi(α, y)) = i and Bi(α, y) = gcd(P (α, y), Q(α, y))

up to the multiplication by a constant factor.535

By Definition 8, the multiplicity of (α, β) in its fiber with respect to system {P,Q}, denoted by536

multfiber((α, β), {P,Q}), is the multiplicity of β in the univariate polynomial gcd(P (α, y), Q(α, y)).537

Thus, for any root α of Ai,538 ∑
β s.t. Bi(α,β)=0

multfiber((α, β), {P,Q}) = i.

According to Lemma 9, the multiplicity of a solution in its fiber is smaller than its multiplicity in539

the system thus, for any root α of Ai,540

i 6
∑

β s.t. Bi(α,β)=0

mult((α, β), {P,Q}).

This latter sum is the multiplicity of α in the resultant Res(P,Q) because the set of solutions of541

{P,Q} is the disjoint union of the sets of solutions of the {(Ai(x), Bi(x, y))}i∈I (Lemma 10). Hence542

the multiplicity in Res(P,Q) of any root α of Ai is at least i and since Ai is squarefree (Lemma 10),543

Aii divides Res(P,Q). In addition, the Ai are pairwise coprime thus
∏dy(Q)
i=1 Aii divides Res(P,Q).544

On the other hand, Gi =
∏
j>iAj by construction, thus

∏dy(Q)−1
i=0 Gi =

∏dy(Q)
i=1 Aii divides Res(P,Q).545

The bound on the degrees,
∑dy(Q)−1

i=0 di 6 dx(Res(P,Q)) 6 d2, is then a consequence of Bézout’s546

bound on the system {P,Q}. In addition, Aii divides Res(P,Q) implies that Gi+1
i =

∏
j>iA

i+1
j also547

divides Res(P,Q), which yields di 6 d2

i+1 .548

For proving the bounds on the bitsize of Gi, we introduce Mahler’s measure. For549

a univariate polynomial f with integer coefficients, its Mahler measure is M(f) =550

|Lc(f)|
∏
zi s.t. f(zi)=0 max(1, |zi|), where every complex root appears with its multiplicity. Mahler’s551

measure is multiplicative: M(fg) = M(f)M(g) and, since it is at least 1 for any polynomial with in-552

teger coefficients, f divides g implies that M(g) >M(f). We also prove two inequalities connecting553

the bitsize τ and degree d of f and its Mahler measure M(f).554

(i) τ 6 1+d+logM(f). Indeed, [BPR06, Prop. 10.8] states that ||f ||1 6 2dM(f), thus ||f ||∞ 6555

2dM(f) and log ||f ||∞ 6 d+ logM(f), which yields the result since τ = blog ||f ||∞c+ 1.556

(ii) logM(f) = O(τ + log d). Indeed, [BPR06, Prop. 10.9] states that M(f) 6 ||f ||2, thus557

M(f) 6
√
d+ 1||f ||∞ and logM(f) 6 log

√
d+ 1 + log ||f ||∞.558
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The fact that Gi+1
i divides Res(P,Q) implies that M(Gi)

i+1 6 M(Res(P,Q)) and thus that559

logM(Gi) 6
logM(Res(P,Q))

i+1 . Inequality (i) together with di 6 d2

i+1 then yields560

τi 6 1 +
d2

i+ 1
+

logM(Res(P,Q))

i+ 1
.

Inequality (ii) then yields τi = Õ(d
2+dτ
i+1 ) since the bitsize of Res(P,Q) is in Õ(dτ). The bound on561

the sum of the bitsizes is then straightforward using the fact that
∑dy(Q)−1

i=0
1
i+1 = O(log d).562

Proposition 16. If P,Q in Z[x, y] have degree at most d and bitsize at most τ , Algorithms 1, 1’563

and 2 perform ÕB(d6 + d5τ) bit operations in the worst case. Algorithm 1’ performs ÕB(d5 + d4τ)564

bit operations on average. The integer Π output by Algorithm 2 has bitsize Õ(d4 + d3τ).565

Proof. By Lemma 3, the sequence of the subresultants Sresi(P,Q) can be computed in ÕB(d5τ)566

bit operations and the sequence of their principal coefficients sresi(P,Q) (including the resultant)567

can be computed in ÕB(d4τ) bit operations. Thus, Line 2 has complexity ÕB(d5τ) in Algorithm 1568

and ÕB(d4τ) in Algorithms 1’ and 2.569

By Lemma 3, each of the principal subresultant coefficients sresi (including the resultant) has570

degree O(d2) and bitsize Õ(dτ). Thus, by Lemma 4, in Line 3 of all three algorithms and in Line 4571

of Algorithm 2, G0 and SG0 can be computed in ÕB((d2)2(dτ)) = ÕB(d5τ) bit operations.572

In their loops, the three algorithms perform (in total) the computations of at most d gcd (or573

sequences of principal subresultant coefficients) between polynomials Gi−1 and sresi. Polynomial574

sresi has bitsize Õ(dτ) and degree O(d2), and denoting by τi and di the bitsize and degree of575

Gi, Lemma 4 yields a complexity in ÕB(d2(d2τi−1 + di−1dτ)) for the computation of Gi and SGi.576

According to Proposition 15, these complexities sum up over all i to ÕB(d6 + d5τ). Finally, in577

Line 6 of Algorithm 1, the division of Gi−1 by Gi can be done in a bit complexity of the order578

of the square of their maximum degree times their maximum bitsize [vzGG13, Theorem 9.6 and579

subsequent discussion], that is in OB(d2
i τi) (or actually OB(d2

i +diτi) according to [vzGG13, Exercise580

10.21]). By Proposition 15, di 6 d2 and τi = Õ(d
2+dτ
i+1 ), thus

∑
iOB(d2

i τi) = ÕB(d6 + d5τ). Hence581

the worst-case bit complexity of all three algorithms is in ÕB(d6 + d5τ).582

We now show that the expected bit complexity of Algorithm 1’ is in ÕB(d5 + d4τ). As above583

the worst-case bit complexity of Line 2 is in ÕB(d4τ). The rest of the algorithm performs O(d) gcd584

computations and one exact division (in Line 3) between polynomials of degree O(d2) and bitsize585

Õ(dτ). Each of these operations can be done with an expected bit complexity of ÕB((d2)2 +d2 ·dτ)586

(the squared degree plus the degree times the bitsize) [vzGG13, Corollary 11.14 & Exercice 9.14].587

The expected bit complexity of Algorithm 1’ is thus in ÕB(d5 + d4τ).588

Concerning the last claim of the lemma, recall that

Π = Lcx(Lcy(P )) ·Lcx(Lcy(Q)) ·Resx(Lcy(P ),Lcy(Q)) · dx(Res(P,Q)) ·
dy(Q)∏
i=0

SGi ·Lcx(sresi(P,Q)).

Since P and Q have degree at most d and bitsize at most τ , the first two terms have bitsize at most589

τ and, by Lemma 4, Resx(Lcy(P ),Lcy(Q)) has bitsize Õ(dτ). Furthermore, as noted above, every590

sresi(P,Q) (including the resultant of P and Q) has degree has degree O(d2) and bitsize Õ(dτ). In591

particular the bitsize of dx(Res(P,Q)) is in O(log d) and that of Lcx(sresi(P,Q)) is in Õ(dτ). In592

addition, still by Lemma 4, SG0 has bitsize Õ(d2 · dτ). On the other hand, by Lemma 4, for i > 1,593

SGi has bitsize Õ(d2τi−1 + di−1dτ) with di and τi the degree and bitsize of Gi. By Proposition 15,594

these bitsizes sum up to Õ(d4 + d3τ). The bitsize of Π is bounded by the sum of all these bitsizes595

and is thus in Õ(d4 + d3τ).596
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Remark 17. Following the proof for the expected complexity of Algorithm 1’, we directly get that597

Algorithm 1, except for Line 2, performs ÕB(d5 +d4τ) bit operations on average. This will be useful598

for the proof of complexity of Algorithm 6’.599

5 Separating linear form600

This section presents a new algorithm of worst-case bit complexity ÕB(d6 + d5τ) for computing a601

separating linear form for a bivariate system of two coprime polynomials P,Q in Z[x, y] of total602

degree at most d and maximum bitsize τ (Theorem 28). We also present a randomized version of603

this algorithm of expected bit complexity ÕB(d5 + d4τ) (Theorem 29).604

As mentionned in Section 2, this algorithm is based on those presented in [BLPR15] and605

[BLP+14]. In Section 5.2, we improve a result from [BLP+14] showing that computing a separating606

linear form for a system {P,Q} is essentially equivalent (in terms of asymptotic bit complexity) to607

computing a separating linear form for the critical points of a curve. Section 5.3 then presents our608

algorithm for computing a separating linear form for the critical points of such a curve. In Sec-609

tion 5.4, we gather our results for deterministically computing separating linear forms of bivariate610

systems. Finally, in Section 5.5, we present the randomized version of our algorithm.611

5.1 Notation and definitions612

We first introduce some notation and formally define lucky primes for a system. Given the two613

input polynomials P and Q, we consider the “generic” change of variables x = t − sy, and define614

the “sheared” polynomials P (t− sy, y), Q(t− sy, y), and their resultant with respect to y,615

R(t, s) = Res(P (t− sy, y), Q(t− sy, y)).

We introduce the following notation for the leading coefficients of these polynomials;616

LP (s) = Lcy(P (t− sy, y)), LQ(s) = Lcy(Q(t− sy, y)). (1)

Note that these polynomials do not depend on t.617

Definition 18 ([BLPR15, Definition 8]). A prime number µ is said to be lucky for a zero-618

dimensional system {P,Q} if {P,Q} and {φµ(P ), φµ(Q)} have the same number of distinct619

solutions (in their respective algebraic closures), µ > 2d4 and φµ(LP (s)) φµ(LQ(s)) 6≡ 0.620

Note that we consider µ in Ω(d4) in Definition 18 because, in Algorithm 5, we want to ensure621

that there exists, for the system {φµ(P ), φµ(Q)} (resp. {P,Q}), a separating form x + ay with a622

in Zµ (resp. 0 6 a < µ in Z). The constant 2 in the bound 2d4 is an overestimate, which simplifies623

some proofs in [BLPR15].624

Definition 19. Let H be a polynomial in Z[x, y]. A separating form for the curve defined by625

H is a separating form for the system {H, ∂H∂y } of critical points of the curve.626

Remark that shearing the critical points of a curve (with respect to x) is not the same as taking627

the critical points of a sheared curve. In particular, given a separating form x+ ay for a curve, it628

is possible that the shearing (x, y) 7→ (x′ = x+ay, y) does not shear the curve in a generic position629

in the sense of Gonzalez-Vega et al. [GVEK96], that is the critical points (with respect to x′) of630

the sheared curve may be vertically aligned.631
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5.2 From a system to a curve632

We prove here Proposition 22, which states that it is essentially equivalent from an asymptotic bit633

complexity point of view to compute a separating linear form for a system {P,Q} and to compute634

a separating linear form for the critical points of a curve H. According to Definition 19, we refer to635

the latter as a separating linear form for H. The proof essentially follows that of [BLP+14, Lemma636

7] but we improve by a factor d the complexity of computing the curve H.637

The critical points of a curve of equation H are the solutions of the system {H, ∂H∂y }, thus638

computing a separating linear form for a curve amounts, by definition, to computing a separating639

linear form for a system of two equations. Conversely, a separating linear form for the curve PQ640

is also separating for the system {P,Q} since any solution of {P,Q} is also solution of PQ and of641

∂PQ
∂y = P ∂Q

∂y + ∂P
∂yQ.642

However, it may happen that the curve PQ admits no separating linear form even if {P,Q}643

admits one. Indeed, {P,Q} can be zero-dimensional while PQ is not squarefree (and such that the644

infinitely many critical points cannot be separated by a linear form). Nevertheless, if P and Q are645

coprime and squarefree, then PQ is squarefree and thus it has finitely many singular points. Still646

the curve H = PQ may contain vertical lines, and thus infinitely many critical points, but this647

issue can easily be handled by shearing the coordinate system.648

We analyze in the next lemma the complexity of computing a proper shearing of the coordinate649

system. Then, in the following lemma, we prove that the product of the squarefree parts of the two650

sheared polynomials does indeed define a curve for which separating linear forms exist and are all651

separating of the input system. Proposition 22 gather these two results.652

Lemma 20. Given P and Q in Z[x, y] of maximum degree d and maximum bitsize τ , we can653

compute a shearing of the coordinate system from (x, y) to (t = x + αy, y) with α an integer in654

[0, 2d], such that the sheared polynomials P̃ and Q̃ have coefficients of bitsize Õ(d + τ) and have655

their leading coefficients Lcy(P̃ ) and Lcy(Q̃) in Z. This computation can be done with ÕB(d4 +d3τ)656

bit operations in the worst case.657

Proof. We consider a generic shearing of the coordinate system from (x, y) to (t = x+sy, y) in order658

to find a value s = α so that the sheared curves P̃ (t, y) = P (t− αy, y) and Q̃(t, y) = Q(t− αy, y)659

have no vertical asymptote, that is Lcy(P̃ ) and Lcy(Q̃) are in Z.660

The leading coefficient of P (t− sy, y) (seen as a polynomial in y) is a polynomial of degree at661

most d in Z[s] (t does not appear in the leading term); furthermore an expanded form of P (t−sy, y)662

can be computed in complexity ÕB(d4 + d3τ) and the coefficients have bitsize Õ(d + τ) (see e.g.663

[BLPR15, Lemma 7]). Finding an integer value s = α where the leading coefficient does not664

vanish can thus be done in d evaluations of complexity ÕB(d(d + τ)) each [BLPR15, Lemma 6]665

and such α can be found in [0, d]. Then, computing P (t − αy, y) can be done by evaluating each666

of the coefficients of P (t − sy, y) at s = α, which can again be done with O(d2) evaluations of667

complexity ÕB(d(d + τ)) each. Thus, we can shear the curve in complexity ÕB(d4 + d3τ) so that668

the leading coefficient of the resulting polynomial P̃ (t, y) = P (t − αy, y) (seen as a polynomial in669

y) is a constant. These computations can trivially be done for P and Q simultaneously and α670

in [0, 2d].671

Lemma 21. Let P and Q be two coprime polynomials in Z[x, y] of maximum degree d, maximum672

bitsize τ , and with Lcy(P ) and Lcy(Q) in Z. The product, H, of the squarefree parts of P and Q673

is squarefree, it has degree at most 2d, bitsize Õ(d+ τ), with Lcy(H) in Z, and it can be computed674

using ÕB(d5 + d4τ) bit operations in the worst case. System {H, ∂H∂y } is zero-dimensional and its675

separating forms are also separating for {P,Q}.676
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Algorithm 3 Number of critical points of H

Input: H in Z[x, y] squarefree such that Lcy(H) is in Z
Output: The number of critical points of H

1: return Algo 1’(H, (∂H∂y )2) - Algo 1’(H, ∂H∂y )

Proof. The squarefree parts of P and Q can be computed in ÕB(d5 + d4τ) bit complexity (by677

Lemma 5) and they have bitsizes in Õ(d + τ) by Mignotte’s lemma (see e.g. [BPR06, Corollary678

10.12]). The sum of O(d2) terms of bitsize Õ(d+ τ) increases the bitsize bound by O(log d2), thus679

H has coefficients of bitsizes Õ(d + τ). Thus, the O(d4) arithmetic operations for computing all680

these coefficients can be done in ÕB(d4(d+ τ)) bit operations in the worst case.681

Every solution of {P,Q} is trivially solution of {H, ∂H∂y }, thus any separating linear form for682

{H, ∂H∂y } is separating for {P,Q}. Furthermore, since P and Q are coprime with constant leading683

terms, H is squarefree with a constant leading term, which implies that H has finitely many critical684

points, that is {H, ∂H∂y } is zero-dimensional.685

We can summarize the last two lemmas in the following proposition.686

Proposition 22. Let P and Q be two coprime polynomials in Z[x, y] of maximum degree d and687

maximum bitsize τ . We can compute a shearing of the coordinate system from (x, y) to (t =688

x+ αy, y), with α an integer in [0, 2d], and a squarefree polynomial H in Z[t, y] of degree at most689

2d, bitsize Õ(d+ τ), with Lcy(H) in Z, so that any separating linear form for the zero-dimensional690

system {H, ∂H∂y } is also separating for {P,Q} after being sheared back. The worst-case complexity691

of this computation is in ÕB(d5 + d4τ).692

5.3 Separating linear form of a curve693

In this section, we consider an arbitrary curve defined by H in Z[x, y] of degree d and bitsize τ ,694

squarefree and with a constant leading coefficient in y. In particular, the polynomial H defined in695

Proposition 22 satisfies these two last conditions, which yield that the curve has a finite number of696

critical points. We show in the following three subsections that computing (i) the number of the697

critical points of H, (ii) a lucky prime for the system of critical points {H, ∂H∂y } (see Definition 18),698

and finally (iii) a separating form for the curve H (Definition 19) can be done with a bit complexity699

in ÕB(d6 + d5τ).700

5.3.1 Number of critical points701

Algorithm 3 computes the number of critical points of a curve H as the difference between the702

degrees of the triangular decompositions of the systems {H, (∂H∂y )2} and {H, ∂H∂y }. This algorithm703

is identical to the one we presented in [BLP+14, Algorithm 4], however, our improvement on704

the complexity analysis of the triangular decomposition (Proposition 16) immediately improves705

the complexity of this counting algorithm. The correctness and complexity of Algorithm 3 follows706

directly from that of [BLP+14, Algorithm 4] and from Proposition 16. For the reader’s convenience,707

we explicit this proof here.708

Proposition 23. If H in Z[x, y] has degree d and bitsize τ , Algorithm 3 computes the number of709

distinct critical points of H in ÕB(d6 + d5τ) bit operations in the worst case and ÕB(d5 + d4τ) bit710

operations on average.711
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Proof. The complexity analysis of the algorithm directly follows from Proposition 16 noticing that712

∂H
∂y and (∂H∂y )2 have degrees at most 2d and bitsizes O(τ + log d) (since ∂H

∂y has bitsize O(τ + log d)713

and that the sum of O(d2) terms of such bitsizes adds O(log d2) to the bitsize bound, and that714

(∂H∂y )2 can be computed from ∂H
∂y in complexity ÕB(d2τ) [vzGG13, Cor. 8.28].715

We now prove the correctness of the algorithm. Observe that systems {H, ∂H∂y } and {H, (∂H∂y )2}716

satisfy the input requirements of Algorithm 1’ since H is squarefree and Lcy(H) is in Z.717

We first prove that for any critical point (α, β) of H, the multiplicity of β in718

gcd(H(α, y), (∂H∂y )2(α, y)) is greater by one than the multiplicity of β in gcd(H(α, y), ∂H
∂y (α, y)).719

Since (α, β) is a critical point of H, it is solution of both the systems {H, ∂H∂y } and {H, (∂H∂y )2}.720

This implies that β is a root of both gcd(H(α, y), ∂H∂y (α, y)) and gcd(H(α, y), (∂H∂y )2(α, y)). If m721

is the multiplicity of β in H(α, y) then β has multiplicity m− 1 in ∂H
∂y (α, y) and thus, that it has722

multiplicity 2m − 2 in (∂H∂y )2. It follows that β has multiplicity m − 1 in gcd(H(α, y), ∂H∂y (α, y))723

and m in gcd(H(α, y), (∂H∂y )2(α, y)) because m 6 2m − 2, that is m − 1 > 1, since β is solution of724

∂H
∂y (α, y).725

We denote the multiplicity of β in gcd(P (α, y), Q(α, y)) as mult(β, gcd(P (α, y), Q(α, y))). Sum-726

ming over all the critical points of H and noticing that the set VH of distinct solutions of {H, ∂H∂y }727

is the same as that of {H, (∂H∂y )2}, we obtain that the number of critical points is728

#VH =
∑

(α,β)∈VH

mult(β, gcd(H(α, y), (
∂H

∂y
)2(α, y)))−

∑
(α,β)∈VH

mult(β, gcd(H(α, y),
∂H

∂y
(α, y))).

It remains to prove that this difference is equal to the difference of the degrees of the decom-729

positions of {H, (∂H∂y )2} and {H, ∂H∂y }. More generally, we prove that the degree of the triangular730

decomposition of {P,Q} is equal to the sum, over all distinct solutions (α, β) of {P,Q}, of the mul-731

tiplicities of β in gcd(P (α, y), Q(α, y)). Indeed, by Lemma 10, the sets of solutions of the systems732

of the triangular decomposition of Algorithm 1 are disjoint and polynomials Ai are squarefree. The733

degree of the triangular decomposition of {P,Q} is thus734 ∑
i∈I

dx(Ai(x)) dy(Bi(x, y)) =
∑

(α,β)∈V

mult(β,Bi(α, y)),

where V is the set of solutions of {P,Q} and mult(β,Bi(α, y)) denotes the multiplicity of β in735

Bi(α, y). The claim follows since Bi(α, y) = gcd(P (α, y), Q(α, y)) by Lemma 10 and this concludes736

the proof of correctness of the algorithm.737

5.3.2 Lucky prime for the system of critical points738

Let Π = Algo 2(H, ∂H∂y ) · Algo 2(H, (∂H∂y )2) be the product of the luckiness certificates output by739

Algo 2 for the triangular decompositions of {H, ∂H∂y } and {H, (∂H∂y )2}. Lemma 24 shows that we740

can easily check using a divisibility test on Π whether a prime number is lucky for the system741

{H, ∂H∂y } (see Definition 18). Algorithm 4 finds such a lucky prime by an iterative application of742

this divisibility test. To keep the complexity in the desired bound, the primes to be tested are743

grouped and a remainder tree is used for the computation of the reduction of Π modulo all the744

primes in a group. In the following, LH(s) and L ∂H
∂y

(s) are defined similarly as in Section 5.1.745

Lemma 24. Let µ be a prime such that µ > 2d4 and φµ(LH(s)) φµ(L ∂H
∂y

(s)) 6≡ 0. If µ does not746

divide Π then µ is lucky for the system {H, ∂H∂y }.747
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Algorithm 4 Lucky prime for {H, ∂H∂y }

Input: H in Z[x, y] of degree d and bitsize τ , squarefree such that Lcy(H) is in Z and Π = Algo
2(H, ∂H∂y ) · Algo 2(H, (∂H∂y )2)

Output: A lucky prime µ for the system {H, ∂H∂y }
1: Compute LH(s) and L ∂H

∂y
(s) (defined as in Section 5.1)

2: m = 2d4

3: while true do
4: Compute the set B of the first d4 + d3τ primes > m
5: for all µ in B do
6: Compute the reduction mod. µ of Π, LH , L ∂H

∂y

7: if φµ(Π) φµ(LH(s)) φµ(L ∂H
∂y

(s)) 6≡ 0 then

8: return µ
9: m = the largest prime in B

Proof. If µ does not divide Π then it is a lucky prime for the triangular decompositions of {H, ∂H∂y }748

and {H, (∂H∂y )2} (by Lemma 14). By definition of a lucky prime for a triangular decomposition749

(Definition 13), the degrees of the decompositions are the same over Z or Zµ. Algorithm 3 computes750

the number of solutions of the system {H, ∂H∂y } only from these degrees and thus the results are the751

same over Z or Zµ. Together with the assumptions that µ > 2d4 and φµ(LH(s)) φµ(L ∂H
∂y

(s)) 6≡ 0,752

this yields that µ is lucky for the system {H, ∂H∂y }.753

Proposition 25. Given H in Z[x, y] of degree d and bitsize τ , Algorithm 4 computes a lucky prime754

of bitsize O(log dτ) for the system {H, ∂H∂y } using ÕB(d4 + d3τ) bit operations.755

Proof. The correctness of Algorithm 4 follows directly from Lemma 24 since the condition in Line 7756

(together with µ > 2d4) matches exactly the assumptions of Lemma 24.757

We now analyze the complexity of this algorithm. It is straightforward that, in Line 1, LH(s)758

and L ∂H
∂y

(s) can be computed with ÕB(d4 + d3τ) bit operations and that they have coefficients of759

bitsizes Õ(d+ τ) (see e.g. [BLPR15, Lemma 7]). Furthermore, since Π has bitsize Õ(d4 + d3τ) (by760

Proposition 16), the number of prime divisors of Π, LH(s), and L ∂H
∂y

(s) is in Õ(d4 + d3τ). Hence,761

the number of iterations of the loop in Line 3 is polylogarithmic in d and τ .762

Each iteration of this loop consists in testing, for the d4 +d3τ primes in B, the non-vanishing of763

the reduction of the integer Π and of the two polynomials LH(s), L ∂H
∂y

(s). The product of Π and of764

all these coefficients has bitsize Õ(d4 +d3τ) and it can be computed in bit complexity ÕB(d4 +d3τ).765

The reduction of this product modulo all the primes in B can be computed via a remainder tree766

in a bit complexity that is soft linear in the total bitsize of the input [MB74, Theorem 1], which is767

in Õ(d4 + d3τ) because the sum of the bitsizes of the d4 + d3τ primes in B is also in Õ(d4 + d3τ)768

since each of these primes has bitsize O(polylog(dτ)) (since there are O(polylog(dτ)) iterations of769

the loop in Line 3). Hence, the bit complexity of one iteration of the loop of Line 3 is ÕB(d4 +d3τ)770

and since at most O(polylog(dτ)) iterations are performed, the overall bit complexity of Algorithm771

4 is in ÕB(d4 + d3τ).772

Finally, the bitsize of every considered prime is in O(log(d4 + d3τ)). Indeed, the number of773

loop iterations is in O(polylog(dτ)), thus the algorithm considers the first O((d4 +d3τ)polylog(dτ))774
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Algorithm 5 Separating form of a curve

Input: H in Z[x, y] of degree d and bitsize τ , squarefree and such that Lcy(H) is in Z
Output: A separating linear form x+ ay of the curve H, with a < 2d4

1: Compute N = Algorithm 3(H), the number of distinct (complex) critical points of H
2: Compute Π = Algo 2(H, ∂H∂y ) · Algo 2(H, (∂H∂y )2), the product of the luckiness certificates output

by Algo 2 for the triangular decompositions of {H, ∂H∂y } and {H, (∂H∂y )2}
3: Compute µ =Algorithm 4(H,Π), a lucky prime for {H, ∂H∂y }
4: Compute H(t− sy, y) and ∂H

∂y (t− sy, y)
5: Compute Υµ(s) the reduction modulo µ of LH(s) · L ∂H

∂y
(s)

6: Compute the resultant Rµ(t, s) of the reductions modulo µ of H(t− sy, y) and ∂H
∂y (t− sy, y)

7: Compute Rµ(t, a) for all a in {0, . . . , 2d4} using multipoint evaluation
8: a = 0
9: repeat

10: Compute the degree Na of the squarefree part of Rµ(t, a)
11: a = a+ 1
12: until Υµ(a) 6= 07 and Na = N
13: return The linear form x+ ay

first primes. The largest considered prime is thus in Õ(d4 + d3τ) [vzGG13, Theorem 18.10] and its775

bitsize is thus in O(log dτ).776

5.3.3 Separating linear form of a curve777

In this section, we assume that we have already computed, using Algorithms 3 and 4, the number778

of distinct (complex) critical points of a curve and a lucky prime µ for the system of critical points.779

With this information, Algorithm 4 of [BLPR15] computes a separating form with a bit complexity780

ÕB(d8 + d7τ). In this section, we slightly modify this algorithm to improve its complexity to781

ÕB(d6 + d5τ).782

More precisely, Algorithm 4 of [BLPR15] computes a separating linear form for a system {P,Q}783

by considering iteratively linear forms x+ay, where a is an integer incrementing from 0 and by com-784

puting the degree of the squarefree part of the reduction modulo µ of R(t, a) until this degree is equal785

to the (known) number of distinct solutions of the system and such that φµ(LP (a)) φµ(LQ(a)) 6= 0.786

Doing so, the algorithm computes a separating form for the system modulo µ, which, under the787

hypothesis of the luckiness of µ, is proven to be also separating for the system {P,Q} [BLPR15,788

Proposition 9].789

Specialized to the system of critical points, Algorithm 5 follows the same approach except for790

the way the reductions modulo µ of the R(t, a) are computed.791

Proposition 26. Given H in Z[x, y] of degree d and bitsize τ , Algorithm 5 computes, with a worst-792

case bit complexity ÕB(d6 + d5τ), an integer a in [0, 2d4 − 2d] such that the linear form x + ay is793

separating for the the system {H, ∂H∂y } of critical points of the curve H = 0.794

Proof. We first prove the correctness of Algorithm 5 which essentially follows from [BLPR15, Al-795

gorithm 4]. The only relevant difference for the correctness is the way to compute Rµ(t, s). In796

[BLPR15], Rµ(t, s) is computed by computing the resultant R(t, s) of H(t−sy, y) and ∂H
∂y (t−sy, y),797

7Υµ(s) ∈ Zµ[s] and we consider Υµ(a) in Zµ.

22



and reducing it modulo µ. Here, we first reduce the polynomials modulo µ before computing the798

resultant. This yields the same result since µ is known to be lucky for the system {H, ∂H∂y }, thus it799

does not divide the leading terms LH(s) and L ∂H
∂y

(s). This proves the correctness of Algorithm 5.800

Note, furthermore, that the correctness of [BLPR15, Algorithm 4] also implies that the value a801

output by our algorithm is less than 2d4 − 2d.8802

We now prove the complexity of our algorithm. First, observe that, as argued in the proof of803

Proposition 23, ∂H
∂y and (∂H∂y )2 have degrees at most 2d, bitsizes O(τ + log d), and that they can804

be computed in complexity ÕB(d2τ). Furthermore, in Lines 1–3, the input of Algorithms 2, 3, and805

4 satisfy the requirements of these algorithms, since H is squarefree with Lcy(H) in Z. The bit806

complexity of Lines 1–3 is thus in ÕB(d6 + d5τ) by Propositions 16, 23, 25.807

It is straightforward that, in Line 4, the sheared polynomials H(t − sy, y) and ∂H
∂y (t − sy, y)808

can be computed in bit complexity ÕB(d4 + d3τ) and that their bitsizes are in Õ(d + τ) (see e.g.809

[BLPR15, Lemma 7]). In Lines 5 and 6, the polynomials to be reduced modulo µ, in one or three810

variables, have degree at most d and bitsize Õ(d + τ). The reduction of each of their O(d3)811

coefficients modulo µ can be done in a bit complexity that is softly linear in the maximum bitsizes812

[vzGG13, Theorem 9.8], that is in a total bit complexity of ÕB(d4 + d3τ). Then, computing in813

Line 5 the product of φµ(LH(s)) and φµ(L ∂H
∂y

(t−sy,y)(s)) amounts to computing O(d2) arithmetic814

operations in Zµ.815

The resultant in Line 6 can be computed in O(d5) arithmetic operations in Zµ (see Lemma 3).816

In Line 7, Rµ(t, s) is a polynomial of degree O(d2) in t with coefficients in s of degree O(d2).817

The arithmetic complexity, in Zµ, of the evaluation of one such coefficient at s = a is linear in818

its degree (using for instance Horner’s scheme) but, using multipoint evaluation, the arithmetic819

complexity of the evaluation of one such coefficient at O(d2) values is in Õ(d2) [vzGG13, Corollary820

10.8]. It follows that the evaluation of all the O(d2) coefficients of Rµ(t, s) at d2 values of a can be821

done with Õ(d4) arithmetic operations in Zµ. The overall arithmetic complexity of Line 7 is thus822

Õ(d6). In Line 10, since Rµ(t, a) has degree O(d2), its squarefree part can be computed with Õ(d2)823

arithmetic operations in Zµ (see Lemma 4) and, in Line 12, each evaluation of Υ(a) can be done in824

O(d) arithmetic operations since Υ has degree O(d). Furthermore, since the algorithm stops with825

a < 2d4, the arithmetic complexity of the whole loop is in Õ(d6).826

We have shown that Lines 6 to 12 perform Õ(d6) arithmetic operations in Zµ. Since µ has827

bitsize O(log dτ), the bit complexity of these lines is in OB(d6polylog(dτ)), which concludes the828

proof.829

Remark 27. From a worst-case complexity point of view, the knowledge of the number N of830

(distinct) complex critical points of the input curve in Algorithm 5 is not mandatory since one831

could instead compute the number of solutions Na of Rµ(t, a) for all integers a smaller than 2d4
832

and output a value of a that maximizes Na. However, knowing N , the algorithm can stop as soon833

as a value of a is found such that Na = N , which improves the expected complexity of the algorithm834

in a Las-Vegas setting, as discussed in Section 5.5.835

5.4 Separating linear form of a system836

Propositions 22 and 26 directly yield the following theorem where the separating form is obtained837

by shearing back the separating form output by Algorithm 5.838

8[BLPR15, Theorem 19] is stated with a < 2d4 but its proof establishes a 6
(
d2

2

)
+ 2(d2 + d) which is less than

2d4 − 2d for d > 1. This refined bound will be convenient for yielding the simple bound of 2d4 when shearing back
the separating form in Theorem 28.
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Algorithm 5’ Separating form of a curve – Las-Vegas version

Input: H in Z[x, y] of degree d and bitsize τ , squarefree and such that Lcy(H) is in Z
Output: A separating linear form x+ ay of the curve H, with a < 2d4

1: Compute N = Algorithm 3(H), the number of distinct (complex) critical points of H
2: Compute H(t− sy, y), ∂H

∂y (t− sy, y), and Υ(s) = LH(s) · L ∂H
∂y

(s)

3: M = 2d4

4: repeat
5: M = 2M
6: Choose uniformly at random an integer a in [0, 2d4 − 2d] and a prime µ in (2d4,M)
7: Compute Υµ(a) = φµ(Υ)(a)
8: Compute φµ(H(t− ay, y)), φµ(∂H∂y (t− ay, y)) and their resultant Rµ,a(t) with respect to y

9: Compute the degree9 Na of the squarefree part of Rµ,a(t)
10: until Υµ(a) 6= 07and Na = N
11: return The linear form x+ ay

Theorem 28. Let P,Q in Z[x, y] be of total degree at most d and maximum bitsize τ . A separating839

linear form x+ by for {P,Q} with an integer b in [0, 2d4] can be computed using ÕB(d6 + d5τ) bit840

operations in the worst case. Furthermore, b is such that the leading coefficients of P (t− by, y) and841

Q(t− by, y) in y are in Z.842

Proof. The first statement of the theorem follows directly from Propositions 22 and 26 where843

the integer b is the sum of the integers α and a defined in these propositions. We prove below844

the second statement. The integer a computed by Algorithm 5 is such that Υ(a) 6= 0 and thus845

LH(a) 6= 0. Since LH(a) ∈ Z is non-zero, it is the leading coefficient in y of the sheared polynomial846

H(t− ay, y). H is the product of the squarefree parts of the sheared polynomials P̃ and Q̃ where847

P̃ (t, y) = P (t− αy, y) and similarly for Q̃ (see Lemmas 20 and 21). Hence, the leading coefficient848

in y of the sheared polynomial P̃ (t−ay, y) = P (t−ay−αy, y) = P (t− by, y) divides LH(a), which849

is an integer. Similarly for Q̃.850

5.5 Las-Vegas algorithm851

We show here that the algorithm presented above for computing a separating linear form can852

easily be transformed into an efficient Las-Vegas algorithm.853

Theorem 29. Let P,Q in Z[x, y] be of total degree at most d and maximum bitsize τ . A separating854

linear form x + by for {P,Q} with an integer b in [0, 2d4] can be computed with ÕB(d5 + d4τ)855

bit operations on average. Furthermore, b is such that the leading coefficients of P (t − by, y) and856

Q(t− by, y) in y are in Z.857

Our Las-Vegas algorithm is obtained from our deterministic version by only modifying Algo-858

rithm 5 into a randomized version, Algorithm 5’. The main difference between these two versions859

is that, in Algorithm 5’, we choose randomly a candidate separating linear form x + ay and a860

candidate lucky prime µ for {H, ∂H∂y } (Definition 18) until the degree Na of the squarefree part of861

9We use the convention that the degree of the zero polynomial is +∞ because we want Na to be the
number of distinct roots of Rµ,a(t). Note that in Algorithm 5, this issue was not relevant because µ was
known to be lucky for the zero-dimensional system {H, ∂H∂y }, implying by Definition 18 that the system

{φµ(H), φµ(∂H∂y )} was zero dimensional and thus that Rµ(t, a) 6≡ 0.
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Rµ(t, a) is equal to the known number of solutions N . If a and µ are chosen randomly in sufficiently862

large sets, the probability that x + ay is separating and that µ is lucky is larger than a positive863

constant, which implies that the expected number of such choices is a constant.864

This modification yields a major simplification: since we do not compute anymore a lucky865

prime in a deterministic way, we do not need Algorithm 4 (Lucky prime), which again implies that866

Algorithm 2 (Luckiness certificate) is not needed. Furthermore, note that, in Algorithm 5’, we867

do not need anymore to use multipoint evaluation for evaluating Rµ(t, s) at a since the expected868

number of choices of a is a constant. Note finally that we choose the candidate lucky prime µ869

in increasingly larger sets. The reason is that, if we wanted to compute a unique set for which a870

random prime would be lucky with probability at least some constant, we would need an explicit871

upper bound (without Õ notation) on the number of unlucky primes and such a computation is872

highly unappealing.873

We now prove the correctness and complexity of Algorithm 5’ in the two following lemmas and in874

Proposition 33, which, together with Proposition 22, yield Theorem 29 similarly as for Theorem 28.875

Lemma 30 (Correctness of Algorithm 5’). Algorithm 5’ terminates if and only if the values of the876

random variables a and µ are such that Υµ(a) 6= 0, µ is lucky for {H, ∂H∂y } and x+ ay is separating877

for {φµ(H), φµ(∂H∂y )}, which implies that x+ ay is also separating for {H, ∂H∂y }.878

Proof. The proof relies on Lemma 10 and Propositions 9 and 12 in [BLPR15] which, together,879

require the hypotheses that Υµ(a) 6= 0, a < µ, 2d4 < µ, and {φµ(H), φµ(∂H∂y )} is zero dimensional.880

We first prove that these hypotheses are satisfied when either side of the if-and-only-if claim holds881

in the statement of the lemma.882

First, Υµ(a) 6= 0 follows from Line 10 if Algorithm 5’ terminates and it appears in the right883

hand side of the if-and-only-if claim. Second, a 6 2d4 < µ by definition of a and µ (Line 6). Finally,884

if Algorithm 5’ terminates, {φµ(H), φµ(∂H∂y )} is zero dimensional because, otherwise, Rµ,a(t) ≡ 0,885

thus Na = +∞ cannot be equal to N in Line 10 (since {H, ∂H∂y } is zero dimensional). On the other886

hand, if µ is lucky for {H, ∂H∂y } then {φµ(H), φµ(∂H∂y )} is zero dimensional since it has the same887

number of solution as {H, ∂H∂y }.888

We can now apply Lemma 10 and Proposition 12 in [BLPR15], which state889

dt(squarefree part(Rµ(t, a))) 6 #V (Iµ) 6 #V (I)

where Rµ(t, s) refers to the resultant with respect to y of φµ(H)(t−sy, y) and φµ(∂H∂y )(t−sy, y), and890

#V (I) and #V (Iµ) are the number of distinct solutions of the systems {H, ∂H∂y } and {φµ(H), φµ(∂H∂y )},891

respectively.892

Assume for now that Rµ(t, a) = Rµ,a(t) (as defined in Line 8). This implies that893

dt(squarefree part(Rµ(t, a))) = Na (Line 9). Since N = #V (I) by definition (Line 1), the al-894

gorithm terminates if and only if a and µ are such that Υµ(a) 6= 0 and Na = N (Line 10), which895

is equivalent to Υµ(a) 6= 0 and896

dt(squarefree part(Rµ(t, a))) = #V (Iµ) = #V (I).

The first equality holds if and only if x+ay is separating for {φµ(H), φµ(∂H∂y )} [BLPR15, Lemma897

10] and the second equality holds if and only if µ is lucky for the system {H, ∂H∂y } (Definition 18).898

This proves the if-and-only-if claim of the lemma (assuming that Rµ(t, a) = Rµ,a(t)). Furthermore,899

when both equalities hold, x + ay is also separating for the system {H, ∂H∂y } by Proposition 9 in900

[BLPR15].901
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It remains to show that Rµ(t, a) = Rµ,a(t), that is that the resultant commutes with the902

evaluation at s = a in the following way:903

Res(φµ(H)(t− sy, y), φµ(
∂H

∂y
)(t− sy, y))

∣∣
s=a

= Res(φµ(H(t− ay, y)), φµ(
∂H

∂y
(t− ay, y))).

This equality holds if the polynomials in the left-hand side resultant are such that their leading904

coefficients (in y) Lφµ(H)(s) and Lφµ( ∂H
∂y

)(s) do not vanish at s = a. This follows from the hypothesis905

that Υµ(a) 6= 0. Indeed, Υµ(a) 6= 0 implies φµ(LH(a)) 6= 0. Then, φµ(LH(s)) 6≡ 0 implies906

φµ(LH(s)) = Lφµ(H)(s) and thus Lφµ(H)(a) 6= 0. Similarly for ∂H
∂y , Lφµ( ∂H

∂y
)(a) 6= 0, which concludes907

the proof.908

Lemma 31. The expected number of iterations of the loop in Algorithm 5’ is in O(log dτ). More909

precisely, after O(log dτ) iterations, the probability that the algorithm terminates is at least 1/8 at910

every iteration.911

Proof. The number of unlucky primes for {H, ∂H∂y } is in Õ(d4 + d3τ) [BLPR15, Proposition 13].912

Let K(d, τ) in Õ(d4 + d3τ) be an upper bound on the number of unlucky primes, which we denote913

for simplicity by K. If the algorithm terminates with a value of M such that M/2
2 lnM/2 6 2K, the914

number of loop iterations is in O(log dτ). Indeed, the number of iterations is less than logM which915

is in O(logK) since
√
M/2 < M/2

lnM/2 6 4K. It is thus sufficient to prove that, for any iteration such916

that M/2
2 lnM/2 > 2K, the probability that Υµ(a) 6= 0 and Na = N (Line 10) is at least 1/8. Note that917

this implies that the expected number of such iterations is at most 8 and thus that the expected918

number of all iterations in the loop is in O(log dτ).919

We can thus assume that, in Line 6, µ is chosen uniformly at random in a set of primes of920

cardinality at least 2K. Indeed, µ is chosen in (2d4,M) ⊇ (M/2,M) and the number of primes in921

(M/2,M) is at least M/2
2 lnM/2 [vzGG13, Theorem 18.7 (see also Exercise 18.18)].922

By Lemma 30, the algorithm terminates if and only if a and µ are such that Υµ(a) 6= 0, µ is923

lucky for {H, ∂H∂y } (Definition 18) and x+ ay is separating for {φµ(H), φµ(∂H∂y )}. Let P denote the924

probability that these three events simultaneously occur. We have925

P = Pr(µ is lucky for {H, ∂H∂y } and x+ ay is separating for {φµ(H), φµ(∂H∂y )})

· Pr(Υµ(a) 6= 0 | µ is lucky for {H, ∂H∂y } and x+ ay is separating for {φµ(H), φµ(∂H∂y )})

= Pr(µ is lucky for {H, ∂H∂y })

· Pr(x+ ay is separating for {φµ(H), φµ(∂H∂y )} | µ is lucky for {H, ∂H∂y })

· Pr(Υµ(a) 6= 0 | µ is lucky for {H, ∂H∂y } and x+ ay is separating for {φµ(H), φµ(∂H∂y )}).

The probability that µ is lucky for {H, ∂H∂y } is at least 1/2 since, as argued above, µ is chosen926

uniformly at random in a set of primes of cardinality at least 2K and there are at most K unlucky927

primes.928

The conditional probability that x+ ay is separating for {φµ(H), φµ(∂H∂y )} is also at least 1/2.929

Indeed, we prove that the conditional probability that x + ay is not separating for that system is930

at most 1/2. For any choice of a lucky µ, {φµ(H), φµ(∂H∂y )} is zero dimensional since it has the931

same number of distinct solutions as {H, ∂H∂y }, number which is at most d2 solutions by Bézout’s932

bound. Thus, for any choice of a lucky µ, there are at most
(
d2

2

)
< d4 − d directions in which two933

distinct solutions of {φµ(H), φµ(∂H∂y )} are aligned, that is, at most d4−d values of a for which x+ay934
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is not separating for that system. Since a is chosen uniformly at random in a set of cardinality935

2d4 − 2d+ 1, the conditional probability that x+ ay is not separating for {φµ(H), φµ(∂H∂y )} is thus936

at most d4 − d times the number of choices of a lucky µ over the number of choices of couples of a937

and a lucky µ. In other words, it is at most d4 − d over 2d4 − 2d + 1, which is less than 1/2, and938

thus proves the claim.939

Finally, we show that the conditional probability that Υµ(a) 6= 0 is also at least 1/2. Given940

that µ is lucky, Υµ(s) 6≡ 0, by Definition 18. Thus, for any given lucky µ, Υµ(s) has degree at most941

2d and it vanishes for at most 2d values of a. The conditional probability that Υµ(a) = 0 is thus at942

most 2d times the number of choices of a lucky µ over the number of choices of couples of a lucky µ943

and a value a such that x+ ay is separating. This probability is thus equal to 2d over the number944

of choices of such values a. The number of such choices for a is at least d4 since a is considered in945

[0, 2d4− 2d] and there are at most
(
d2

2

)
< d4− 2d choices for which x+ ay is not separating. Hence946

the conditional probability that Υµ(a) = 0 is at most 2d/d4, which is less that 1/2 for d > 2. This947

proves the claim that the conditional probability that Υµ(a) 6= 0 is at least 1/2 and concludes the948

proof.949

The next lemma factorizes a technical part of the expected complexity analysis of Proposi-950

tions 33 and 50.951

Lemma 32. If a while-loop is such that (i) the expected bit complexity of the i-th iteration is952

ÕB(A ik) where A is a polynomial in the input parameter sizes and (ii) the probability that the loop953

ends at the i-th iteration, given that it has not stopped before, is at least a constant c > 0, then the954

expected bit complexity of the entire loop is ÕB(A).955

Proof. Let xj > c be the probability that the loop stops at the j-th iteration given that it has not956

yet stopped before. The probability that the loop stops at the i-th iteration is xi
∏i−1
j=1(1 − xj) 6957

(1− c)i−1. On the other hand, the total expected bit complexity of all the iterations until the i-th958

is ÕB(A ik+1). Hence the total expected bit complexity of the entire loop is959

∞∑
i=1

ÕB(A ik+1(1− c)i−1) = ÕB(A

∞∑
i=1

ik+1(1− c)i−1).

The series
∑∞

i=0W (i)λi is convergent for any polynomial W and 0 < λ < 1. Indeed, |W (i)| < δi for960

any 1 < δ < 1
λ and i sufficiently large, which implies |W (i)λi| < (δλ)i with 0 < δλ < 1. Therefore,961

the expected bit complexity of the entire loop is in ÕB(A).962

Proposition 33. Given H in Z[x, y] of degree d and bitsize τ , Algorithm 5’ computes, with an963

expected bit complexity ÕB(d5 + d4τ), an integer a in [0, 2d4 − 2d] such that the linear form x+ ay964

is separating for the critical points of H.965

Proof. By Proposition 23, Line 1 has expected complexity ÕB(d5 + d4τ). In Line 2, similarly as966

in Line 4 of Algorithm 5, H(t − sy, y) and ∂H
∂y (t − sy, y) have coefficients of bitsize Õ(d + τ) and967

they can be computed with ÕB(d4 + d3τ) bit operations (see the proof of Proposition 26). Still in968

Line 2, Υ(s) can be computed with O(d2) arithmetic operations on integers of bitsize O(τ + log d),969

and thus with ÕB(d2τ) bit operations. The worst-case bit complexity of Lines 1 and 2 is thus in970

ÕB(d5 + d4τ).971

Consider now one iteration of the loop in Algorithm 5’ and let IM denote the interval (2d4,M).972

In Line 6, we can compute a prime µ by choosing uniformly at random an integer in IM and testing973

whether it is prime until a prime is found. Finding a random integer smaller than M amounts974
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to computing a sequence of logM random bits, which we assume can be done in OB(logM) bit975

operations. A random integer smaller than M is larger than 2d4 with probability at least 1/2,976

thus a random integer in IM can be computed in OB(logM) bit operations. The number of primes977

in (M/2,M) ⊆ IM is at least M/2
2 lnM/2 [vzGG13, Theorem 18.7 (see also Exercise 18.18)]. The978

probability that a randomly chosen integer in IM is prime is thus at least 1
4 lnM/2 and a prime is979

thus found after at most 4 lnM/2 trials on average. Testing whether an integer in IM is prime980

can be done with a polynomial bit complexity in the bitsize of M , ÕB(log7.5M) [AKS04]. The981

expected bit complexity of computing a prime in Line 6 is thus in ÕB(log8.5M). Furthermore,982

since a random integer a in [0, 2d4] can be computed in ÕB(log d) bit operations, the expected bit983

complexity of one iteration of Line 6 is in ÕB(log8.5M).984

In Line 7, O(d) coefficients of bitsize O(τ + log d) are reduced modulo µ. Each reduction can985

be done in a bit complexity that is softly linear in the maximum bitsizes [vzGG13, Theorem 9.8],986

that is in a total bit complexity of ÕB(d(τ + log d + logM)). Evaluating Υ(s) at a can then be987

done with O(d) arithmetic operations in Zµ and thus with ÕB(d logM) bit operations. The total988

bit complexity of one iteration of Line 7 is thus in ÕB(d(τ + logM)).989

In Line 8, first notice that φµ(H(t−ay, y)) = φµ(H(t−sy, y))
∣∣
s=a

. Similarly as above, the O(d3)990

coefficients of H(t− sy, y) of bitsize Õ(d+ τ) can be reduced modulo µ with ÕB(d3(d+ τ + logM))991

bit operations in total. The evaluation at s = a in Zµ then amounts to evaluating O(d2) univariate992

polynomials in s of degree O(d). Similarly as above, this can be done with O(d3) arithmetic993

operations Zµ and thus with ÕB(d3 logM) bit operations. Thus, φµ(H(t − ay, y)) and similarly994

φµ(∂H∂y (t−ay, y)) can be computed with ÕB(d3(d+τ+logM)) bit operations in the worst case. By995

Lemma 4, their resultant Rµ,a(t) has degree O(d2), and it can be computed with Õ(d3) arithmetic996

operations in Zµ and thus with ÕB(d3 logM) bit operations. The bit complexity of one iteration997

of Line 8 is thus in ÕB(d3(d+ τ + logM)) in the worst-case.998

In Line 9, the squarefree part of Rµ,a(t), and thus its degree, can be computed with Õ(d2)999

arithmetic operations in Zµ (by Lemma 4) and thus with ÕB(d2 logM) bit operations in the worst1000

case.1001

Hence, the expected bit complexity of one iteration of the loop is in ÕB(d3(d + τ + logM) +1002

log8.5M), which is also in ÕB(d3(d+ τ + log9M)). More precisely, at the end of the j-th iteration1003

of the loop, M = 2j+1d4, thus the expected bit complexity of the j-th iteration of the loop is1004

in ÕB(d4 + d3τ + d3j9). The expected bit complexity of the entire loop is thus ÕB(d4 + d3τ), by1005

Lemmas 31 and 32. Summing up with the complexity of Lines 1 and 2, we obtain that the expected1006

bit complexity of the algorithm is in ÕB(d5 + d4τ).1007

6 RUR decomposition1008

In this section, we consider that a separating form for the bivariate system {P,Q} as been computed1009

as shown in Section 5 and we focus on the computation of Rational Univariate Representations of1010

the solutions. We present a new algorithm of worst-case bit complexity ÕB(d6 +d5τ) for computing1011

a RUR decomposition of {P,Q}, that is a sequence of RURs that encodes the solutions of {P,Q} (see1012

Definition 36 and Theorem 45). This algorithm is multi-modular and it relies on both the triangular1013

decomposition and the luckiness certificate of Section 4. We also present a Las-Vegas version of1014

this algorithm, of expected bit complexity ÕB(d5 + d4τ) (Theorem 46), which only computes some1015

coefficients of the above triangular decomposition and avoids computing the luckiness certificate.1016

In Section 6.1, we first recall the definitions and main properties of RURs. We present our1017

deterministic algorithm and its complexity analysis in Section 6.2 and its Las-Vegas version in1018
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Section 6.3.1019

6.1 RUR definition and properties1020

Definition 34 ([Rou99, Definition 3.3]). Let I ⊂ Q[x, y] be a zero-dimensional ideal, V (I) = {σ ∈1021

C2, v(σ) = 0, ∀v ∈ I} its associated variety, and let (x, y) 7→ x + ay be a linear form with a in Q.1022

The RUR-candidate of I associated to x + ay (or simply, to a), denoted RURI,a, is the following1023

set of four univariate polynomials in C[t]1024

fI,a(t) =
∏

σ∈V (I)

(t− x(σ)− ay(σ))µI(σ)

fI,a,v(t) =
∑

σ∈V (I)

µI(σ)v(σ)
∏

ς∈V (I),ς 6=σ

(t− x(ς)− ay(ς)), for v ∈ {1, x, y}
(2)

where, for σ in V (I), µI(σ) denotes the multiplicity of σ in I. If (x, y) 7→ x + ay is injective on1025

V (I), we say that the linear form x + ay separates V (I) (or is separating for I) and RURI,a is1026

called a RUR (the RUR of I associated to a).1027

The following proposition states fundamental properties of RURs, which are all straightforward1028

from the definition except for the fact that the RUR polynomials have rational coefficients [Rou99,1029

Theorem 3.1].1030

Proposition 35 ([Rou99, Theorem 3.1]). If I ⊂ Q[x, y] is a zero-dimensional ideal and a in Q, the
four polynomials of the RUR-candidate RURI,a have rational coefficients. Furthermore, if x + ay
separates V (I), the following mapping between V (I) and V (fI,a) = {γ ∈ C, fI,a(γ) = 0}

V (I) → V (fI,a)
(α, β) 7→ α+ aβ(

fI,a,x
fI,a,1

(γ),
fI,a,y
fI,a,1

(γ)

)
←[ γ

is a bijection, which preserves the real roots and the multiplicities.1031

Next, we define a RUR decomposition of an ideal.1032

Definition 36. Let I ⊂ Q[x, y] be a zero-dimensional ideal, V (I) = {σ ∈ C2, v(σ) = 0,∀v ∈ I}1033

its associated variety, and let (x, y) 7→ x + ay be a linear form with a in Q. A RUR-candidate1034

decomposition of I is a sequence of RUR-candidates, associated to x + ay, of ideals Ii ⊇ I, i ∈ I1035

such that V (I) is the disjoint union of the varieties V (Ii), i ∈ I. If x+ ay separates V (Ii) for all1036

i ∈ I, the RUR-candidate decomposition is a RUR decomposition of I.1037

The following proposition recalls an upper bound on the bitsize of a RUR of an ideal containing1038

two coprime polynomials P and Q, that is a RUR parameterizing a subset of the solutions of1039

the system {P,Q}. This bound applies to the RURs of our RUR decomposition and is used in1040

Algorithm 6.1041

Proposition 37 ([BLPR15, Proposition 28]). Let P and Q in Z[x, y] be two coprime polynomials1042

of total degree at most d and maximum bitsize τ , let a be a rational of bitsize τa, and let J be any1043

ideal of Z[x, y] containing P and Q. The polynomials of the RUR-candidate of J associated to a1044

have degree at most d2 and bitsize in Õ(d2τa + dτ).1045
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Note that according to Theorem 28, a separating form x+ ay can be computed with an integer1046

a of bitsize O(log d) and the bound in Proposition 37 becomes Õ(d2 + dτ). In addition, even if1047

Proposition 37 only states an asymptotic upper bound, an explicit upper bound C(d2 + dτ) logk dτ1048

with C, k ∈ Z can be obtained from straightforward, although unappealing, computations following1049

the proof of that proposition. Indeed, this proof is based on Hadamard’s inequality and Mignotte’s1050

lemma, which both state explicit bounds.1051

Proposition 37 also yields the following bound on the total bisize of any RUR decomposition.1052

Corollary 38. Let P and Q in Z[x, y] be two coprime polynomials of total degree at most d and1053

maximum bitsize τ , and let a be a rational of bitsize τa. The sum of the bitsizes of all coefficients1054

of any RUR-candidate decomposition of 〈P,Q〉, associated to x+ ay, is in Õ(d4τa + d3τ).1055

Proof. By Definition 36, the ideals Ii defining a RUR-candidate decomposition of 〈P,Q〉 are such1056

that (i) the solutions of Ii (counted with multiplicity) are included in those of 〈P,Q〉 (since Ii ⊇1057

〈P,Q〉) and (ii) the sets V (Ii) of (distinct) solutions of Ii are pairwise disjoint. Hence, the sum1058

over all i of the number of solutions of Ii, counted with multiplicity, is at most d2, the Bézout1059

bound of {P,Q}. By Definition 34, the sum over all i of the degrees of the first polynomial of the1060

RUR-candidate of Ii is thus also at most d2. Moreover, still by Definition 34, the degree the first1061

polynomial of a RUR-candidate bounds from above the degrees of the other polynomials of the1062

RUR-candidate. Hence, the total number of coefficients of the RUR-candidate decomposition is1063

O(d2). The result then follows from Proposition 37.1064

6.2 Decomposition algorithm1065

Algorithm 6 computes a RUR decomposition of a zero-dimensional system {P,Q}, by first1066

computing a separating form x + ay as shown in Section 5 (Line 1). We then use this separating1067

form to shear the system in generic position (Line 2) and compute the radical of a triangular1068

decomposition of this system (Line 3). Then, using a multimodular approach, we compute RURs1069

of each of the resulting radical systems (Lines 4–10) and return these RURs after a shear back1070

(Line 11).1071

The section is organized as follows. We first prove some preliminary lemmas that are instrumen-1072

tal for the proof of correctness of Algorithm 6. We show in Lemma 39 that the ideals we compute1073

in Line 3 are the radicals of the ideals output by the triangular decomposition of Algorithm 1.1074

We then determine in Lemma 40 formulas for the RURs of these radical ideals. These formulas1075

are valid over the rationals but, for complexity issues, we use these formulas in a multimodular1076

setting, in Lines 4 to 10. For this purpose, Lemma 41 states conditions on primes µ under which the1077

reductions modulo µ of the RURs of these ideals are equal to the RURs of the reductions modulo1078

µ of these ideals. We also show in Lemma 42 how to compute the image of the computed RURs1079

through the reverse shearing of the one performed in Line 2. With these lemmas, we prove in1080

Propositions 43 and 44 the correctness and complexity of Algorithm 6. Theorem 45 finally gathers1081

these results.1082

Lemma 39. The radical T̂i of ideal Ti is 〈Ai, i sresi(P̃ , Q̃) y+sresi,i−1(P̃ , Q̃)〉 where Ai is squarefree1083

and coprime with sresi(P̃ , Q̃).1084

Proof. Since x + ay separates the solutions of {P,Q}, the system {P̃ , Q̃} is in generic position in1085

the sense that no two of its solutions are vertically aligned. The systems Ti = {Ai(t), Bi(t, y)} of1086

the triangular decomposition of {P̃ , Q̃} are thus also in generic position (since the set of solutions1087

of {P̃ , Q̃} is the disjoint union of those of the Ti by Lemma 10). Bi(t, y) = sresi(P̃ , Q̃) yi +1088

sresi,i−1(P̃ , Q̃) yi−1 + · · · is of degree i in y and its leading coefficient sresi(P̃ , Q̃) is coprime with1089
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Algorithm 6 RUR decomposition

Input: P,Q coprime in Z[x, y] of degree at most d and bitsize at most τ
Output: RUR decomposition of {P,Q} of total bitsize Õ(d4 + d3τ)

1: Compute a separating form x+ay for {P,Q} with a ∈ Z of bitsize O(log d) such that the leading
coefficients of P (t− ay, y) and Q(t− ay, y) with respect to y are coprime (see Theorem 28)

2: Compute P̃ (t, y) = P (t− ay, y) and Q̃(t, y) = Q(t− ay, y), and let d̃ and τ̃ be their maximum
degree and bitsize

3: Compute {Ti}i∈I = Algorithm 1(P̃ , Q̃)
Recall that Ti = {Ai(t), Bi(t, y)} with Bi(t, y) = sresi(P̃ , Q̃)(t) yi+ sresi,i−1(P̃ , Q̃)(t) yi−1 + · · ·
Let T̂i = 〈Ai, i sresi(P̃ , Q̃) y + sresi,i−1(P̃ , Q̃)〉 be the radical ideal of Ti (see Lemma 39)

4: LetK = dC(d̃2 + d̃τ̃) logk d̃τ̃e be an integer that bounds from above the bitsize of the coefficients
of the RURs of the systems T̂i (see Proposition 37 and subsequent discussion) and let Π =
Algorithm 2(P̃ , Q̃). Compute the set L of the 2K first prime numbers that are larger than d̃
and that do not divide Π. Let ΠL be the product of all primes in L.

5: for all i in I do
6: for all µ in L do
7: Compute φµ(T̂i) by reducing modulo µ the polynomials Ai, sresi(P̃ , Q̃) and sresi,i−1(P̃ , Q̃)

8: Compute RURµ
i the RUR in Zµ of φµ(T̂i) associated to the separating form (t, y) 7→ t (see

Lemma 40)
9: Lift {RURµ

i }µ∈L to RURΠL
i in ZΠL using the Chinese Remainder Algorithm

10: Compute RURQ
i , the RUR in Q of T̂i associated to the separating form (t, y) 7→ t, with a

rational reconstruction from RURΠL
i (see the proof of Proposition 43)

11: return the image of RURQ
i , i ∈ I, through the reverse shearing from (t, y) to (x, y) (see

Lemma 42)

Ai (by Lemma 10). Hence, for any α solution of Ai(t), Bi(α, y) has a unique root, which is of1090

multiplicity i. This multiple root is thus also root of the (i − 1)-th derivative of Bi(α, y), which1091

is i! sresi(P̃ , Q̃)(α) y + (i − 1)! sresi,i−1(P̃ , Q̃)(α). Hence, the distinct solutions of Ti are exactly1092

those of T̂i. Finally, T̂i is radical because Ai(t) is univariate and squarefree (by Lemma 10) and1093

i sresi(P̃ , Q̃) y + sresi,i−1(P̃ , Q̃) has degree one in the other variable, y.1094

The next lemma states formulas for the RURs of the radical ideals T̂i. We state this lemma in1095

general form because we also use it for computing the RURs of φµ(T̂i).1096

Lemma 40. Let F be a field, A,B0, B1 be three polynomials in F[t] and let I = 〈A(t), B1(t) y+B0(t)〉1097

be an ideal such that A is squarefree and coprime with B1. The linear form (t, y) 7→ t is separating1098

for that ideal and its associated RUR is given by10
1099

fI = A
Lc(A) fI,1 = f ′I fI,t = t fI,1 rem A fI,y = −B0 U fI,1 rem A

where U ∈ F[t] is the inverse of B1 modulo A, defined by Bézout’s identity UB1 + V A = 1 and1100

where f rem g denotes the remainder of the Euclidean division of f by g.1101

Proof. By Definition 34, the first polynomial of the RUR of I associated to the form (t, y) 7→ t1102

is the unique monic polynomial that encodes the t-coordinates of the solutions of I, counted with1103

10We omit in the subscript of the polynomials of the RUR the reference to the parameter, 0, of the separating form
(t, y) 7→ t+ 0y.
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multiplicity in I. Since A is squarefree and coprime with B1, the solutions of I have multiplicity one1104

and their t-coordinates are exactly the roots of A. Hence, since A is squarefree, the first polynomial1105

of the RUR is fI = A
Lc(A) . It also follows from the definition of the RUR that if fI is squarefree1106

then fI,1 = f ′I .1107

By Proposition 35,
fI,t
fI,1

(α) = α for any root α of fI = A
Lc(A) , since the separating form is1108

(t, y) 7→ t. Hence, fI,t(t) = t fI,1(t) mod A. It follows that fI,t = t fI,1 rem A since fI,t has the1109

degree of A minus 1 by Definition 34.1110

We also have by Proposition 35 that fI,1 y− fI,y is in I. Multiplying it by B1 and substracting1111

fI,1 (B1 y + B0), which is also in I, we obtain that B1 fI,y + fI,1B0 is in I. This polynomial is1112

univariate in t, hence it is equal to zero modulo A. On the other hand, since A and B1 are coprime,1113

by Bézout’s identity, there exists a pair (U, V ) of polynomials in F[t] such that UB1 + V A = 1,1114

and we have that UB1 = 1 mod A. It follows that fI,y + U fI,1B0 = 0 mod A and thus that1115

fI,y = −U fI,1B0 rem A since fI,y has the degree of A minus 1 by Definition 34.1116

Even if the bitsize of the RUR of T̂i is known to be in Õ(d̃2 + d̃τ̃) = Õ(d2 + dτ) (Proposition 371117

and [BLPR15, Lemma 7]), the naive computation of these RURs using the above formulas over1118

the rationals would suffer from large intermediate bitsizes.11 To overcome this difficulty, we use in1119

Algorithm 6 a classical multimodular technique, which consists in first computing the polynomials1120

modulo a set of primes whose product is larger than the bitsize of the output coefficients, then lifting1121

the result using the Chinese Remainder Algorithm and finally performing a rational reconstruction.1122

However, to output a correct result, this technique requires that, for any selected prime µ, the1123

formulas of Lemma 40 commute with the reduction modulo µ. We show in Lemma 41 how to1124

satisfy this requirement using the luckiness certificate output by Algorithm 2. This lemma is1125

instrumental for the proof of correctness of Algorithm 6.1126

Lemma 41. Let µ > i be a prime that does not divide Π. The ideals T̂i and φµ(T̂i) satisfy the1127

hypotheses of Lemma 40. In particular, the linear form (t, y) 7→ t is separating for both ideals. For1128

this linear form, the RUR of φµ(T̂i) is equal to the reduction modulo µ of the RUR of T̂i.1129

Proof. By Lemma 39, the ideal T̂i = 〈Ai, i sresi(P̃ , Q̃) y+sresi,i−1(P̃ , Q̃)〉 is such that Ai is squarefree1130

and coprime with sresi(P̃ , Q̃). Lemma 40 thus applies and yields that the linear form (t, y) 7→ t is1131

separating for ideal T̂i and that the associated RUR can be computed with the given formulas.1132

In the following, we assume that µ > i is a prime that does not divide Π. We first show that1133

the ideal φµ(T̂i) = 〈φµ(Ai), i φµ(sresi(P̃ , Q̃)) y + φµ(sresi,i−1(P̃ , Q̃))〉 also satisfies the hypotheses1134

of Lemma 40. Recall the notation used in the proof of Lemma 14: let (Aµi (t), Bµ
i (t, y)) be the1135

triangular systems computed by Algorithm 1 applied to φµ(P̃ (t, y)) and φµ(Q̃(t, y)). Lemma 141136

implies that µ is lucky for the triangular decomposition of {P̃ , Q̃}, hence φµ(Ai) = Aµi and φµ(Bi) =1137

Bµ
i , the latter being equivalent to φµ(Sresi(P̃ , Q̃)) = Sresi(φµ(P̃ ), φµ(Q̃)). We thus have that1138

gcd(φµ(Ai), i φµ(sresi(P̃ , Q̃))) = gcd(Aµi , i sresi(φµ(P̃ ), φµ(Q̃))), which a non-zero constant in Zµ by1139

Lemma 10. In addition, Lemma 10 implies that φµ(Ai) = Aµi is squarefree. Lemma 40 thus applies1140

to the ideal φµ(T̂i). Hence, the linear form (t, y) 7→ t is separating for φµ(T̂i) and the associated1141

RUR can be computed with the formulas of Lemma 40.1142

Second, we prove that µ does not divide any denominator of the rational coefficients of the1143

polynomials of the RUR of T̂i and thus that the images of these polynomials by φµ are well defined.1144

11More precisely, the computation of the RURs using the formulas of Lemma 40 over the rationals would require
ÕB(d8 + d7τ) bit operations for each triangular system and ÕB(d9 + d8τ) for all of them. This bit complexity

corresponds roughly to the cost of multiplications and divisions involving the inverse of sresi(P̃ , Q̃) rem Ai, which is

a polynomial of degree O(d2) and bitsize in Õ(d4 + d3τ).
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By definition, Ai divides the resultant of P̃ and Q̃, which is equal to sres0(P̃ , Q̃). It follows that1145

µ does not divide Lc(Ai) because µ does not divide Lc(sres0(P̃ , Q̃)) by definition of Π. Thus µ1146

does not divide any denominator of the coefficients of the RUR polynomials f
T̂i

= Ai
Lc(Ai)

and1147

f
T̂i,1

= f ′
T̂i

. On the other hand, if F is a polynomial in Q[t] such that µ does not divide the1148

denominators of its coefficients, then µ does not divide the denominators of the coefficients of1149

F rem Ai (the denominator of a coefficient of the remainder is the product of Lc(Ai) and some1150

denominators of coefficients of F ). It follows that µ does not divide the denominators of the1151

coefficients of f
T̂i,t

= tf
T̂i,1

rem Ai. Similarly, to prove that µ does not divide the denominators1152

of the coefficients of f
T̂i,y

= −sresi,i−1(P̃ , Q̃)U f
T̂i,1

rem Ai, it is sufficient to prove the µ does1153

not divide the denominators of the coefficients of U , the inverse of i sresi(P̃ , Q̃) modulo Ai (since1154

sresi,i−1(P̃ , Q̃) has integer coefficients). By definition of Π, µ does not divide Lc(sresi(P̃ , Q̃)).1155

In addition, we have shown that µ does not divide Lc(Ai), Ai and i sresi(P̃ , Q̃) are coprime by1156

Lemma 39 and we have shown above that φµ(Ai) and φµ(i sresi(P̃ , Q̃)) are also coprime. It follows1157

that µ is lucky for gcd(Ai, i sresi(P̃ , Q̃)) (Definition 6). Thus, by Lemma 7, µ does not divide1158

res = Rest(Ai, i sresi(P̃ , Q̃)). By [BPR06, Prop. 8.38.a] and since Ai and i sresi(P̃ , Q̃) are coprime,1159

there exist u, v in Z[t] such that, dt(u) < dt(A) and u i sresi(P̃ , Q̃)+vAi = res, which is equivalent to1160

u
res i sresi(P̃ , Q̃)+ v

resAi = 1. By unicity of Bézout’s coefficients in Q[t], U the inverse of i sresi(P̃ , Q̃)1161

modulo Ai is equal to u
res and µ does not divide any denominator of its coefficients.1162

It is now clear that the image by φµ of the RUR polynomials f
T̂i
, f
T̂i,1

, f
T̂i,t

are those1163

of the RUR of φµ(T̂i). For f
T̂i,y

= −sresi,i−1(P̃ , Q̃)U f
T̂i,1

rem Ai, since we have shown1164

that φµ(Sresi(P̃ , Q̃)) = Sresi(φµ(P̃ ), φµ(Q̃)), it is sufficient to show that φµ(U) is the inverse1165

of φµ(i sresi(P̃ , Q̃)) modulo φµ(Ai). As shown above, φµ(U) is well defined and the relation1166

φµ( u
res)φµ(i sresi(P̃ , Q̃)) +φµ( v

res)φµ(Ai) = 1 implies that it is the inverse of φµ(i sresi(P̃ , Q̃)) mod-1167

ulo φµ(Ai).1168

Lemma 42. Let {fI , fI,1, fI,t, fI,y} be the RUR10 of an ideal I in Q[t, y] associated to the separating1169

linear form (t, y) 7→ t. Let J in Q[x, y] be the image of I through the mapping (t, y) 7→ (x = t−ay, y).1170

The linear form (x, y) 7→ x+ ay is separating for J and its associated RUR is given by1171

fJ,a = fI , fJ,a,1 = fI,1, fJ,a,x = fI,t − a fI,y, fJ,a,y = fI,y.

Proof. By Definition 34, the RURs of I and J are defined by1172

fI(t) =
∏

σ∈V (I)

(t− t(σ))µJ (σ) fI,v(t) =
∑

σ∈V (I)

µI(σ)v(σ)
∏

ς∈V (I),ς 6=σ

(t− t(ς))

for v ∈ {1, t, y},

fJ,a(t) =
∏

σ′∈V (J)

(t− x(σ′)− ay(σ′))µJ (σ
′) fJ,a,v(t) =

∑
σ′∈V (J)

µJ(σ′)v(σ′)
∏

ς′∈V (J),ς′ 6=σ′

(t− x(ς ′)− ay(ς ′))

for v ∈ {1, x, y}.

The change of coordinates (t, y) 7→ (x = t − ay, y) induces an affine transformation of the1173

solutions that preserves their multiplicities, such that, for every solution σ of I, there exists a unique1174

solution σ′ of J with the same multiplicity and satisfying x(σ′) = t(σ) − ay(σ) and y(σ′) = y(σ).1175

This directly implies all four equalities of the lemma.1176

We finally prove the correctness and analyze the complexity of Algorithm 6 in the following two1177

propositions.1178
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Proposition 43 (Correctness of Algorithm 6). Algorithm 6 computes a RUR decomposition of1179

{P,Q} of total bitsize Õ(d4 + d3τ).1180

Proof. The correctness of Line 1 follows directly from Theorem 28. In particular, the sheared1181

polynomials P̃ and Q̃ are coprime and their leading coefficients with respect to y are also coprime.1182

In Line 3, Algorithm 1 can thus be applied to compute the ideals Ti. By Lemma 39, T̂i is the1183

radical ideal of Ti and, since both ideals have the same (distinct) solutions, the set of solutions of1184

{P̃ , Q̃} is the disjoint union of the sets of solutions of all T̂i, by Lemma 10.1185

In Line 4, the upper bound K can be computed according Proposition 37 and the subsequent1186

discussion.1187

In Line 8, the RUR of φµ(T̂i) can be computed using the formulas of Lemma 40 (which applies1188

by Lemma 41). Moreover, by Lemma 41, the RUR of φµ(T̂i) is the reduction modulo µ of the RUR1189

of T̂i. Thus, in Line 9, by the Chinese Remainder Theorem, RURΠL
i is the reduction modulo ΠL1190

of the RUR of T̂i.1191

Finally, in Line 10, we use a rational number reconstruction [vzGG13, Section 5.10] with pa-1192

rameter 2M with M = 2K : for any coefficient c of RURΠL
i in ZΠL a rational number r

t with r, t in1193

Z is computed such that gcd(r, t) = 1, gcd(t,ΠL) = 1, rt−1 = c mod ΠL, |r| < 2M , 0 < t 6 ΠL
2M .1194

According to [vzGG13, Theorem 5.26 (iv)], there exists at most one solution such that |r| < M . On1195

the other hand, RURQ
i , the RUR of T̂i computed in Q defines such a solution for each coefficient.1196

Indeed, let r̃/t̃ be the coefficient in RURQ
i corresponding to c, with gcd(r̃, t̃) = 1 and t̃ > 0. By def-1197

inition, M is larger than |r̃| and t̃. In Line 4, ΠL is defined such that ΠL > 2M2 (indeed, ΠL is the1198

product of 2K primes and with K > 1 at least one is larger than 4 thus ΠL > 22K+1 = 2M2), thus1199

0 < t̃ < M < ΠL
2M . On the other hand, we prove in Lemma 41 that, modulo a prime µ > i that does1200

not divide Π, the reduction of RURQ
i is well defined, thus gcd(t̃,ΠL) = 1. Finally, since, as shown1201

above, RURΠL
i is the reduction modulo ΠL of RURQ

i , the RUR of T̂i, we have that c = φΠL(r̃/t̃),1202

that is r̃t̃−1 = c mod ΠL. The unique solution of the rational reconstruction of RURΠL
i is thus1203

well defined and equal to the RUR of T̂i in Q.1204

At the end of Line 10, we have thus computed the sequence of RURs of T̂i associated to the1205

separating form (t, y) 7→ t, for all i ∈ I. This is a RUR decomposition of 〈P̃ , Q̃〉 since as shown1206

above, the set of solutions of {P̃ , Q̃} is the disjoint union of the sets of solutions of all T̂i and since1207

〈P̃ , Q̃〉 ⊆ Ti ⊆ T̂i by Lemma 10.1208

By definition of P̃ and Q̃, the images of these RURs through the mapping (t, y) 7→ (x =1209

t− ay, y) yield a RUR decomposition of 〈P,Q〉 associated to the form (x, y) 7→ x+ ay. This RUR1210

decomposition is computed in Line 11 using the formulas of Lemma 42.1211

Finally, the total bitsize of Õ(d4 +d3τ) of all the coefficients of this RUR decomposition follows1212

from Corollary 38 since the bitsize of a is in O(log d) by Theorem 28.1213

Proposition 44. Algorithm 6 computes a RUR decomposition of {P,Q} with ÕB(d6 + d5τ) bit1214

operations in the worst case.1215

Proof. The bit complexity of Line 1 is ÕB(d6 + d5τ) by Theorem 28. In Line 2, since a has bitsize1216

in O(log d), the sheared polynomials P̃ and Q̃ can be computed in bit complexity ÕB(d4 +d3τ) and1217

their maximum degrees d̃ and bitsizes τ̃ are in O(d) and Õ(d+ τ), respectively (see e.g. [BLPR15,1218

Lemma 7]).1219

In Lines 3 and 4, the bit complexities of Algorithms 1 and 2 applied on {P̃ , Q̃} are in ÕB(d̃6+d̃5τ̃)1220

by Proposition 16. In Line 4, computing K has bit complexity ÕB(log d̃τ̃) (since the constants C1221

and k are known according to the discussion following Proposition 37). Still in Line 4, computing1222

L can be done by (i) computing the first 2K + dlog Πe primes larger than d̃, then (ii) reducing Π1223
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modulo these primes using a remainder tree [MB74] and (iii) keeping the first 2K primes that do1224

not dividing Π (there exists at least 2K primes that do not dividing Π since the number of primes1225

that divide Π is smaller than dlog Πe). The bit complexity of computing the r first prime numbers1226

is in ÕB(r) and their maximum is in Õ(r) [vzGG13, Theorem 18.10]. Hence, since Π has bitsize1227

Õ(d̃4 + d̃3τ̃) by Proposition 16, phase (i) has bit complexity Õ(d̃4 + d̃3τ̃), every prime has bitsize1228

O(log d̃τ̃) and their product has bitsize Õ(d̃4 + d̃3τ̃). Phase (ii) can be computed in a bit complexity1229

that is soft linear in the total bitsize of the input [MB74, Theorem 1], hence in Õ(d̃4 + d̃3τ̃) bit1230

operations. Therefore, the bit complexity of Lines 3 and 4 is Õ(d̃4 + d̃3τ̃).1231

In Lines 5 and 6, the cardinality of I is O(d̃) (see Algorithm 1) and the cardinality of L is1232

2K = Õ(d̃2 + d̃τ̃).1233

In Line 7, every subresultant of P̃ and Q̃ (including the resultant) has degree O(d̃2) in t and its1234

coefficients have bisize Õ(d̃τ̃) by Lemma 3. Furthermore, Ai is factor of Res(P̃ , Q̃) by construction,1235

hence the bitsize of its coefficients is in Õ(d̃2 + d̃τ̃) by Mignotte’s lemma (see e.g. [BPR06, Corollary1236

10.12]). Hence, in Line 7, Ai, sresi(P̃ , Q̃) and sresi,i−1(P̃ , Q̃) have degree O(d̃2) and coefficients of1237

bisize Õ(d̃2 + d̃τ̃). For every i, the reductions of each of these coefficients modulo the Õ(d̃2 + d̃τ̃)1238

primes µ (of bitsize O(log dτ)) in L can be done, using again a remainder tree, in bit complexity1239

ÕB(d̃2 + d̃τ̃). The reductions of all O(d̃2) coefficients for all O(d̃) i ∈ I and all µ ∈ L can thus be1240

done in bit complexity ÕB(d̃5 + d̃4τ̃).1241

In Line 8, for every i and µ, we compute RURµ
i using the formulas of Lemma 40 where the input1242

polynomials are A = φµ(Ai), B1 = φµ(sresi(P̃ , Q̃)) and B0 = φµ(sresi,i−1(P̃ , Q̃)) in Zµ[t]. Following1243

these formulas, computing RURµ
i can be done with O(1) additions, multiplication and inverse1244

computations in Zµ[t]/〈A〉 once B0 and B1 are reduced in Zµ[t]/〈A〉. These reductions amount1245

to computing the remainders of the divisions of B0 and B1 by A, whose arithmetic complexity1246

in Zµ is softly linear in their degrees O(d̃2) [vzGG13, Theorem 9.6]. Furthermore, the arithmetic1247

complexity in Zµ of every operation in Zµ[t]/〈A〉 is softly linear in the degree O(d̃2) of A [vzGG13,1248

Corollary 11.11]. Summing over all i ∈ I and all µ ∈ L, the Õ(d̃3 + d̃2τ̃) RURµ
i can be computed1249

with Õ(d̃5 + d̃4τ̃) arithmetic operations in Zµ∈L. Finally, since every µ ∈ L has bitsize O(log d̃τ̃),1250

the total bit complexity of Line 8 is ÕB(d̃5 + d̃4τ̃).1251

In Line 9, for any given i, the complexity of lifting {RURµ
i }µ∈L to RURΠL

i in ZΠL is the1252

complexity of lifting its O(d2) coefficients. Every coefficient reconstruction in ZΠL can be done1253

using the Chinese Remainder Algorithm with ÕB(log ΠL) = ÕB(d̃2 + d̃τ̃) bit operations [vzGG13,1254

Theorem 10.25]. Summing over all coefficients and all i, the total bit complexity of Line 9 is thus1255

in ÕB(d̃5 + d̃4τ̃).1256

In Line 10, for any given i, the complexity of the rational reconstruction of RURQ
i from RURΠL

i1257

is the complexity of the rational reconstructions with parameter 2M = 2K+1 of the O(d2) rationals1258

coefficients of RURQ
i from those of RURΠL

i (see the proof of Proposition 43 for details). The rational1259

reconstruction r/t ∈ Q of c ∈ ZΠL with parameter 2M is the cost of computing the first line of the1260

Extended Euclidean Algorithm (EEA) for ΠL and c such that the remainder is smaller than 2M1261

[vzGG13, Theorem 5.26]. Using binary search, we can compute at most a logarithmic number of1262

lines of the EEA. Since the total number of lines of the EEA and the bit complexity of computing1263

one line of the EEA are (at most) softly linear in the bitsize of the input [vzGG13, Corollary 11.9],1264

the rational reconstruction of one rational has bit complexity ÕB(d̃2 + d̃τ̃). Summing over all1265

coefficients and all i, the total bit complexity of Line 10 is thus in ÕB(d̃5 + d̃4τ̃).1266

In Line 11, for every i, the image of RURQ
i through the reverse shearing can be computed1267

with O(d̃2) arithmetic operations on integers of bitsize Õ(d̃2 + d̃τ̃) by Lemma 42. Hence, the bit1268

complexity of Line 11 is trivially ÕB(d̃5 + d̃4τ̃). (Note that in Lines 9, 10 and 11 an amortized1269

analysis yields a complexity of ÕB(d̃4 + d̃3τ̃) by observing that the degrees d̃i ∈ O(d2) of the first1270
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Algorithm 6’ RUR decomposition – Las-Vegas version

Input: P,Q coprime in Z[x, y] of degree at most d and bitsize at most τ
Output: RUR decomposition of {P,Q} of total bitsize Õ(d4 + d3τ)

1: Compute a separating form x+ay for {P,Q} with a ∈ Z of bitsize O(log d) such that the leading
coefficients of P (t− ay, y) and Q(t− ay, y) with respect to y are coprime (see Theorem 29)

2: Compute P̃ (t, y) = P (t− ay, y) and Q̃(t, y) = Q(t− ay, y), and let d̃ and τ̃ be their maximum
degree and bitsize

3: Compute the coefficients sresi(P̃ , Q̃)(t) of subresultant sequence of P̃ and Q̃ with respect to y
and, for i such that sresi(P̃ , Q̃) 6≡ 0, compute sresi,i−1(P̃ , Q̃)(t) (see Corollary 52)

Compute the polynomials Ai(t), i ∈ I, of the triangular decomposition of P̃ and Q̃ following
Algorithm 1.
Let T̂i = 〈Ai, i sresi(P̃ , Q̃) y + sresi,i−1(P̃ , Q̃)〉, i ∈ I, be the radicals of the ideals output by

Algorithm 1(P̃ , Q̃) (see Lemma 39 and note that, in Algorithm 1, sresi(P̃ , Q̃) 6≡ 0 for i ∈ I)
4: LetK = dC(d̃2 + d̃τ̃) logk d̃τ̃e be an integer that bounds from above the bitsize of the coefficients

of the RURs of the systems T̂i (see Proposition 37 and subsequent discussion). Let U = 8K
and L = ∅

5: repeat
6: Double U , choose uniformly at random 8K primes in [1, U ], and let P be the resulting set
7: For all i ∈ I, µ ∈ P, reduce Ai and i sresi(P̃ , Q̃) modulo µ (using remainder trees)
8: Add in L the µ ∈ P such that, ∀i, φµ(Ai) is squarefree and coprime with φµ(i sresi(P̃ , Q̃))
9: until L contains at least 2K distinct primes

10: return the image of RURQ
i , the RUR of T̂i, i ∈ I, through the reverse shearing from (t, y) to

(x, y), as in Algorithm 6, Lines 5-11

polynomials of RURµ
i sum up, over all i, to at most d̃2.)1271

Finally, since d̃ and τ̃ are in O(d) and Õ(d + τ), the total bit complexity of Algorithm 6 is1272

in ÕB(d̃6 + d̃5τ̃).1273

Propositions 43 and 44 directly yield the following theorem.1274

Theorem 45. Let P,Q in Z[x, y] be of total degree at most d and maximum bitsize τ . Algorithm 61275

computes, with ÕB(d6 + d5τ) bit operations in the worst case, a RUR decomposition of {P,Q} of1276

total bitsize Õ(d4 + d3τ).1277

6.3 Las-Vegas algorithm1278

We show here that the algorithm presented above for computing a RUR decomposition can1279

easily be transformed into an efficient Las-Vegas algorithm. We prove here the following.1280

Theorem 46. Let P,Q in Z[x, y] be of total degree at most d and maximum bitsize τ . Algorithm 6’1281

computes, with ÕB(d5 + d4τ) bit operations on average, a RUR decomposition of {P,Q} of total1282

bitsize Õ(d4 + d3τ).1283

Algorithm 6’, our Las-Vegas version of Algorithm 6, is obtained from the latter with only three1284

modifications. First, in Line 2, we use the Las-Vegas version of our algorithm for computing a1285

separating linear form for {P,Q}, described in Section 5.5.1286

Second, in Line 3, we modify the way we compute the radicals T̂i of the ideals Ti output by1287

Algorithm 1(P̃ , Q̃). We still use the formula T̂i = 〈Ai, i sresi(P̃ , Q̃) y+sresi,i−1(P̃ , Q̃)〉 of Lemma 391288
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for computing these radical ideals, but instead of computing the Ti with Algorithm 1, we show in1289

Section 6.3.1 that the subresultant coefficients sresi(P̃ , Q̃) and sresi,i−1(P̃ , Q̃) can be computed1290

more efficiently.1291

Third, we modify the way we compute in Algorithm 6, Line 4, a set L of 2K prime numbers1292

µ > d̃ that do not divide Π = Algorithm 2(P̃ , Q̃). Here, in Line 9, we weaken the constraints on1293

these primes and we avoid, in particular, computing Π.1294

We prove Theorem 46 by first proving its correctness in Proposition 47 and then its complexity1295

in Proposition 50.1296

Proposition 47 (Correctness of Algorithm 6’). Algorithm 6’ computes a RUR decomposition of1297

{P,Q} of total bitsize Õ(d4 + d3τ).1298

Proof. As described above, Algorithm 6’ is obtained with only three modifications from Algorithm 6,1299

whose correctness is proved in Proposition 43. The first two modifications do not jeopardize the1300

correctness of Algorithm 6’ since we compute the same objects as in Algorithm 6 (in particular,1301

we use the same formula for T̂i, i ∈ I). However, in the third modification, we weaken the1302

constraints on the primes of L. In the proof of correctness of Algorithm 6, the constraints on the1303

primes of L (that µ > d̃ does not divide Π) are only used in Lemma 41. Furthermore, in proof of1304

Lemma 41, these constraints are only used for proving that φµ(T̂i) = 〈φµ(Ai), φµ(i sresi(P̃ , Q̃)) y+1305

φµ(sresi,i−1(P̃ , Q̃))〉 satisfies the hypotheses of Lemma 40, that is that φµ(Ai) is squarefree and1306

coprime with φµ(i sresi(P̃ , Q̃)), which are the constraints on µ we impose in Line 8 of Algorithm 6’.1307

The correctness of Algorithm 6’ thus follows from that of Algorithm 6.1308

We now analyse the complexity of Algorithm 6’. A key step of this algorithm is the computation,1309

in Line 3, of sresi(P̃ , Q̃) and sresi,i−1(P̃ , Q̃), which we postpone to Section 6.3.1. Before proving1310

Proposition 50, which states the complexity of Algorithm 6’, we prove two lemmas. The first one1311

bounds the number of primes that are rejected in Line 8 and the second one will be instrumental1312

for bounding the probability that the loop ends in Line 9.1313

Lemma 48. There are Õ(d̃5+d̃4τ̃) primes that are unlucky for gcd(Ai, i sresi(P̃ , Q̃)) or gcd(Ai, A
′
i),1314

for some i. Furthermore, if prime µ is lucky for these two gcds, for some i, then φµ(Ai) is squarefree1315

and coprime with φµ(i sresi(P̃ , Q̃)).1316

Proof. By Lemma 7, the unlucky primes for the gcd of two polynomials A and B in Z[t] are1317

exactly the divisors of their leading coefficients and the divisors of sresd(A,B) where d is the degree1318

of gcd(A,B). In order to bound the number of unlucky primes, we bound the bitsizes of the relevant1319

coefficients.1320

By Lemma 10, Ai divides the resultant Res(P̃ , Q̃). Thus, Ai has degree O(d̃2) and coefficients1321

of bitsize Õ(d̃2 + d̃τ̃), as shown in the proof of Proposition 44. It follows that the same bounds also1322

apply to A′i. On the other hand, i sresi(P̃ , Q̃) has degree O(d̃2) and coefficients of bitsize Õ(d̃τ̃),1323

by Lemma 3. Still by Lemma 3, the coefficients of the subresultant polynomials of any two of these1324

polynomials have bitsize Õ(d̃2(d̃2 + d̃τ̃)). The number of primes divisor of any such coefficient is1325

thus also in Õ(d̃4 + d̃3τ̃). Since i varies from 1 to at most d̃ (see Algorithm 1), the number of1326

unlucky primes is in Õ(d̃5 + d̃4τ̃).1327

Finally, for any i, both gcd(Ai, i sresi(P̃ , Q̃)) and gcd(Ai, A
′
i) are equal to constants, by Lemma 10.1328

Furthermore, if µ is lucky for these gcds, these gcds commute with φµ, by Lemma 7. Hence, φµ(Ai)1329

is squarefree and coprime with φµ(i sresi(P̃ , Q̃)).1330

Lemma 49. Let n2p be the random variable that represents the number of distinct elements obtained1331

by choosing uniformly at random 2p elements among n with replacement. If n > 2p > 4, then the1332

probability that n2p > p is larger than 1
2 .1333
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Proof. Consider one of the
(
n
d

)
sets of d distinct elements among n. Denote it by Sd, denote the1334

set of p random elements by S and its cardinal by |S|. The probability that S ⊆ Sd, which is the1335

probability that the p random elements in S are all in Sd is
(
d
n

)p
. On the other hand, Pr(|S| 6 d)1336

is less than the sum of all Pr(S ⊆ Sd) for the
(
n
d

)
choices of sets Sd. Hence, Pr(|S| 6 d) <

(
n
d

) (
d
n

)p
1337

and Pr(|S| > d) > 1−
(
n
d

) (
d
n

)p
.1338

Setting p = 2 d and using Stirling’s approximation
√

2π nn+1/2e−n 6 n! 6 e nn+1/2e−n, we
obtain that (

n

d

)(
d

n

)2d

=
n!

d!(n− d)!

d2d

n2d
(3)

6
e nn+ 1

2 e−n

2πdd+ 1
2 e−d(n− d)n−d+ 1

2 e−(n−d)

d2d

n2d
=

e

2π

nn+ 1
2
−2ddd−

1
2

(n− d)n−d+ 1
2

. (4)

Replacing n by kd with k > 2, we get1339

(
n

d

)(
d

n

)2d

6
e

2π

(
k
k−1

)(k−2)d+ 1
2

d
1
2 (k − 1)d

(5)

and the derivative with respect to d of the right-hand side of the inequality is1340

e

2π

(
k
k−1

)(k−2)d+ 1
2

d
3
2 (k − 1)d

(
−1 + 2d ln

kk−2

(k − 1)k−1

)
. (6)

It is straightforward to prove that the function k 7→ kk−2

(k−1)k−1 is decreasing for k > 2, hence1341

ln kk−2

(k−1)k−1 is negative for k > 2 and (6) is negative for k > 2. It follows that, for d > 2, the right-1342

hand side of (5) is smaller than e
2π

( k
k−1)

2k− 7
2

√
2(k−1)2

. It is straightforward to show that this is decreasing1343

for k > 2 and it is thus less than e
2π

√
2√
2

= e
2π <

1
2 . Therefore, for n > 2d and d > 2,

(
n
d

) (
d
n

)2d
< 1

21344

and thus Pr(|S| > d) > 1
2 .1345

Proposition 50. Algorithm 6’ computes a RUR decomposition of {P,Q} with ÕB(d5 + d4τ) bit1346

operations on average.1347

Proof. The expected bit complexity of Line 1 is ÕB(d5+d4τ) by Theorem 29 and, as in Algorithm 6,1348

the (worst-case) bit complexity of Line 2 is ÕB(d4 + d3τ) and P̃ and Q̃ have maximum degree1349

d̃ ∈ O(d) and maximum bitsize τ̃ ∈ Õ(d+ τ) (see the proof of Proposition 44).1350

In Line 3, the sequence of coefficients sresi(P̃ , Q̃) and, for those that do not identically vanish,1351

the coefficients sresi,i−1(P̃ , Q̃) can be computed in ÕB(d̃4τ̃) bit operations by Corollary 52. Hence,1352

the sequence of polynomials Ai can be computed in ÕB(d̃5 + d̃4τ̃) bit operations by Remark 17.1353

We thus get, in Line 3, the sequence of ideals T̂i in ÕB(d̃5 + d̃4τ̃) bit operations.1354

In Line 4, the complexity of computing K and U is ÕB(log d̃τ̃), as in Algorithm 6.1355

In Line 6, we choose uniformly at random, one at a time, 8K primes in [1, U ]. Some primes1356

might be chosen more than once and thus the resulting set of primes, P, may be of cardinality1357

smaller than 8K. The analysis is similar to the one in Proposition 33. A random integer in [1, U ]1358

can be computed in OB(logU) bit operations. There are at least U
lnU primes in [1, U ] [vzGG13,1359
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Theorem 18.7]. The probability that a randomly chosen integer in [1, U ] is prime is thus at least 1
lnU1360

and a prime is thus found after at most lnU trials on average. Testing whether an integer in [1, U ]1361

is prime can be done with a polynomial bit complexity in the bitsize of U , ÕB(log7.5 U) [AKS04].1362

The expected bit complexity of computing a prime in Line 7 is thus ÕB(log8.5 U) and the expected1363

bit complexity of computing 8K ∈ Õ(d̃2 + d̃τ̃) primes in Line 7 is thus in ÕB((d̃2 + d̃τ̃) log8.5 U).1364

In Line 7, each of the O(d̃) polynomials Ai and i sresi(P̃ , Q̃) have O(d̃2) coefficients of bitsize1365

Õ(d̃2 + d̃τ̃), as shown in the proof of Lemma 48. Using remainder trees [MB74], the reductions of1366

one coefficient modulo all the primes in L can be done in a bit complexity that is softly linear in1367

the maximum bitsize of the coefficient and the product of the primes, that is in ÕB((d̃2 + d̃τ̃) +1368

(d̃2 + d̃τ̃) logU). Hence, the bit complexity of Line 7 is ÕB((d̃5 + d̃4τ̃) logU).1369

In Line 8, for any i, gcd(φµ(Ai), φµ(i sresi(P̃ , Q̃))) and gcd(φµ(Ai), φµ(A′i)) can be computed1370

in ÕB(d4 logU) bit operations, by Lemma 4, since the polynomials have degree O(d̃2) and µ has1371

bitsize O(logU). Hence, the bit complexity of Line 8 is ÕB(d̃5 logU). (Note that considering the1372

degrees di of the Ai, which sum up to O(d2) yields a finer bound of ÕB(d̃4 logU).)1373

We have shown that the expected bit complexity of one iteration of the loop in Lines 5 to 9 is in1374

ÕB((d̃5 + d̃4τ̃) log9 U). At the end of the j-th iteration of the loop, U = 2j · 8K, thus the expected1375

bit complexity of the j-th iteration of the loop is in ÕB((d̃5 + d̃4τ̃)j9).1376

We now bound the total expected bit complexity of all the iterations of the loop in Lines 5 to 9.1377

By Lemma 48, the primes that are rejected in Line 8 are unlucky for some gcd(Ai, i sresi(P̃ , Q̃)) or1378

gcd(Ai, A
′
i) and there are less than Γ = C ′(d̃5+d̃4τ̃) logk

′
d̃τ̃ such unlucky primes for some constants1379

C ′ and k′. We refer in the rest of the proof to these unlucky primes simply as unlucky primes.1380

It follows that the probability that the loop ends in Line 9 is larger than the probability that P1381

contains at least 2K distinct lucky primes. Furthermore,1382

Pr(P contains 2K lucky primes) > Pr(P contains 2K lucky primes and 4K primes)

> Pr(P contains 4K primes)

· Pr(P contains 2K lucky primes | P contains 4K primes).

As seen above, [1, U ] contains at least U
lnU primes. Thus, when U

lnU > 8K, P contains at least1383

4K distinct primes with probability at least 1
2 , by Lemma 49. On the other hand, the primes in1384

P are chosen uniformly at random among at least U
lnU primes, thus if U

lnU > 2Γ, the primes in P1385

are lucky with probability at least 1
2 . Thus, if U

lnU > 2Γ, given that P contains at least 4K primes,1386

the probability that P contains at least 2K lucky primes is at least 1
2 . We thus have proved that,1387

if U
lnU > max(8K, 2Γ), the loop ends in Line 9 with probability at least 1

4 .1388

There are O(log d̃τ̃) loop iterations that are performed while U
lnU is smaller than max(8K, 2Γ).1389

Indeed, logU ∈ O(log d̃τ̃) while U
lnU < max(8K, 2Γ) ∈ Õ(d̃5 + d̃4τ̃) since

√
U < U

lnU . The overall bit1390

complexity of these iterations is thus in ÕB(d̃5 + d̃4τ̃). It follows that the expected bit complexity1391

of the entire loop is in ÕB(d5 + d4τ), by Lemma 32.1392

Summing up the complexities of all lines and since d̃ ∈ Õ(d) and τ̃ ∈ Õ(d+ τ), we obtain that1393

the expected bit complexity of the algorithm is ÕB(d5 + d4τ).1394

6.3.1 Computation of subresultant coefficients1395

A key step of Algorithm 6’ is the computation of the coefficients sresi(P̃ , Q̃) and the computation1396

of sresi,i−1(P̃ , Q̃) when sresi(P̃ , Q̃) 6≡ 0. We show that all these coefficients can be computed in1397

ÕB(d4τ) bit complexity in Theorem 51 and Corollary 52. This result generalizes [vzGG13, Corollary1398

11.18] to the case where one wants to compute the k terms of greater degrees in the sequence of1399

remainders in the Euclidean algorithm.1400
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Given two polynomials P,Q ∈ F[y] such that deg(P ) > deg(Q), we denote by rj and qj the1401

polynomials appearing in the Euclidean algorithm such that r0 = P, r1 = Q and ri−1 = qiri + ri+1.1402

For any polynomial P ∈ F[y] and any integer n, we denote by P|n the coefficient of its term of1403

degree deg(P ) − n, if any, and 0 otherwise. It follows that ri|j denotes the coefficient of the term1404

of ri of degree deg(ri)− j.1405

Theorem 51. Let k be an integer and P,Q ∈ F[y] be two polynomials with d = deg(P ) > deg(Q).1406

We can compute, for all 0 6 j 6 k and for all the remainders ri appearing in the Euclidean1407

algorithm, the coefficients ri|j in O(k2d + M(d) log d) arithmetic operations, where M(d) is the1408

complexity of the multiplication of degree d polynomials.1409

Proof. First, all the quotients qi appearing in the remainder sequence can be computed in
O(M(d) log d) arithmetic operations ([vzGG13, Corollary 11.9]). Then, for k = 0, we have di-
rectly the coefficients r0|0 and r1|0, and from the formula

ri−1 = qiri + ri+1 such that deg(ri+1) < deg(ri)

we deduce that ri|0 =
ri−1|0
qi|0

. Thus we can compute by recurrence all the ri|0 with less than d1410

divisions.1411

Assume now that we have computed the coefficients ri|j for all i and 0 6 j 6 k − 1. We show1412

that in this case, we can compute the coefficients ri|k, for all i, in O(kd) arithmetic operations.1413

From the recurrence formula in the Euclidean algorithm, we can derive the following equality:

ri−1|k = ri|kqi|0 + · · ·+ ri|0qi|k + ri+1|l

where l = k + deg(ri+1)− deg(ri−1) < k. Thus,

ri|k =
ri−1|k − ri|k−1qi|1 − · · · − ri|0qi|k − ri+1|l

qi|0
,

which yields ri|k from the values of ri−1|k, ri|j , ri+1|l, with j, l 6 k−1, in 2k+2 arithmetic operations.1414

Thus, given the coefficients ri|j for all i and 0 6 j 6 k − 1, we can compute the ri|k, for all i, in1415

O(kd) arithmetic operations, which trivially concludes the proof.1416

We can now state the corollary that we use in the analysis of Algorithm 6’.1417

Corollary 52. Let P,Q ∈ Z[x, y] be of degree at most d with coefficients of bitsize at most τ . We1418

can compute in ÕB(d4τ) bit operations in the worst case the sequence of all subresultant coefficients1419

sresi(P,Q) and, for i such that sresi(P,Q) 6≡ 0, the coefficients sresi,i−1(P,Q).1420

Proof. We compute the subresultant coefficients using multimodular and interpolation techniques.1421

First, we select pairs (µ, k) with µ prime and k a value in Zµ satisfying the specialization property of1422

the subresultants. Second, we compute the subresultant coefficients sresi(P,Q) and sresi,i−1(P,Q)1423

evaluated at x = k in Zµ. Third, we interpolate the results in Zµ[x] and apply the Chinese remainder1424

algorithm to recover the final results in Z[x].1425

To use the specialization property of subresultants, the leading coefficients of P and Q seen1426

as polynomials in y, Lcy(P ) and Lcy(Q), must not vanish when evaluated at x = k in Zµ. The1427

coefficients of P and Q being of bitsize at most τ , there are at most 2τ primes µ such that Lcy(P )1428

or Lcy(Q) identically vanish modulo µ. When both do not identically vanish modulo µ, they are1429

polynomials of degree at most d, hence there are at most 2d values in Zµ at which one of them1430

vanishes. In Zµ, we will compute the subresultant coefficients via evaluation and interpolation.1431
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The number of evaluation values must be larger than the degrees of the subresultant coefficients1432

sresi(P,Q) and sresi,i−1(P,Q), which are at most 2d2. It is sufficient to consider primes µ larger1433

than 2d2 + 2d because, then, there are at least 2d2 values in Zµ such that none of Lcy(P ) and1434

Lcy(Q) vanishes modulo µ. For lifting the subresultants using the Chinese remainder algorithm,1435

the sum of the bitsizes of the primes must be larger than the bitsizes of the subresultants coefficients1436

sresi(P,Q) and sresi,i−1(P,Q), which are at most N = 2d(τ + 2 log d) [BPR06, Proposition 8.46].1437

According to [vzGG13, Theorem 18.10], we can compute the M first primes µj ∈ Z of bitsizes τj1438

in ÕB(M) bit operations and their maximum bitsize is in O(logM). Among this set, the constraint1439

for the specialization property of subresultants discards at most 2τ primes, and the constraint for the1440

interpolation discards at most the first 2d2+2d primes. ChoosingM = N+2d2+2d+2τ = O(d2+dτ)1441

is thus sufficient to select a set of N primes satisfying these constraints. In addition, the sum of1442

the bitsizes of these N primes is larger than N and in O(N logM) = Õ(dτ).1443

We now analyze the complexity of selecting N primes µj satisfying the above constraints and1444

specializing P and Q at 2d2 values x = k in Zµj [y]. The reduction of one coefficient of P and Q1445

modulo all the N + 2τ primes larger than 2d2 + 2d can be computed via a remainder tree in a1446

bit complexity that is soft linear in the total bitsize of the input [MB74, Theorem 1], which is in1447

Õ(dτ). The reductions of all the O(d2) coefficients of P and Q can hence be done in ÕB(d3τ) bit1448

operations. We select N primes µj such that Lcy(P ) and Lcy(Q) do not identically vanish modulo1449

µj . For a given prime µj , the evaluation of the reduction of P (x, y) in Zµj [x, y] at 2d2 + 2d values1450

x = k` ∈ Zµj involves O(d2) evaluations of O(d) polynomials of degree O(d) in Zµj [x]. For a given1451

prime µj , this can be done using multi-evaluation in Õ(d3) arithmetic operations in Zµj [vzGG13,1452

Corollary 10.8] and thus with ÕB(d3τj) = ÕB(d3 logM) = ÕB(d3 log dτ) bit operations. For all1453

N primes, the total bit complexity of these evaluations is thus in ÕB(Nd3 log dτ) = ÕB(d4τ). For1454

each prime µj , we select 2d2 values k`, among the 2d2 + 2d values considered in Zµj , at which1455

neither Lcy(P ) nor Lcy(Q) vanishes when evaluated at x = k` in Zµj .1456

In this paragraph, all polynomials are considered evaluated at x = k and in Zµj [y] and, to1457

clarify the presentation, any polynomial K̃ refers to K(k, y) mod µj . Then computing, for all1458

i, sresi(P̃ , Q̃) can be done in a total of ÕB(dτj) bit operations [vzGG13, Corollary 11.18]. If1459

sresi(P̃ , Q̃) 6= 0, let r be the remainder of degree i appearing in the Euclidean algorithm of P̃1460

and Q̃. We know that r and Sresi(P̃ , Q̃) are equal up to a constant [BPR06, Corollary 8.34],1461

thus Sresi(P̃ , Q̃) =
Lcy(Sresi(P̃ ,Q̃))

Lcy(r) r = sresi(P̃ ,Q̃)
r|0

r, which directly implies that sresi,i−1(P̃ , Q̃) =1462

sresi(P̃ ,Q̃)
r|0

r|1. Using Theorem 51, we can compute r|0 and r|1 in Zµj [y] in ÕB(dτj) bit operations,1463

which yields sresi,i−1(P̃ , Q̃).1464

Thus, for a given µj , computing the two first subresultant coefficients sresi(P̃ , Q̃) and1465

sresi,i−1(P̃ , Q̃) for 2d2 values of k in Zµj costs ÕB(d3τj) bit operations. Then using fast interpola-1466

tion [vzGG13, Corollary 10.12], we can recover sresi(P,Q) mod µj and sresi,i−1(P,Q) mod µj in1467

ÕB(d3τj) = ÕB(d3 log dτ) bit operations, which sums up to ÕB(d4τ) for all N = Õ(dτ) values of1468

µj . Finally, recovering all the O(d3) coefficients of sresi(P,Q) and sresi,i−1(P,Q) (whose bitsizes1469

are smaller than N) can be done with ÕB(d3N logM) = ÕB(d4τ) bit operations with the Chinese1470

remainder algorithm [vzGG13, Theorem 10.25].1471

7 Computing isolating boxes from a RUR decomposition1472

By definition, the RUR of an ideal I defines a mapping between the roots of a univariate poly-1473

nomial and the solutions of I. Based on this mapping, Algorithm 9 computes isolating boxes1474
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using univariate isolation and approximate polynomial evaluation. Section 7.1 recalls or proves1475

several complexity results on isolation and evaluation of univariate polynomials. In Section 7.2,1476

the isolation algorithm using fast approximate multipoint evaluation is presented and analyzed in1477

Theorem 61.1478

7.1 Preliminaries1479

We start with some basic definitions. In addition, we recall some bounds on univariate polynomial1480

roots and their separation (for a single root and also amortized over all the roots), the complexity1481

of isolating the roots of a univariate polynomial, and elementary results on approximate polynomial1482

evaluation.1483

For an arbitrary complex value x, we define M(x) = max(1, |x|). In addition, let L be an
arbitrary positive integer. Then, we define x̃ ∈ Q+iQ to be an absolute dyadic L-bit approximation
of x (or just L-bit approximation for short) if x̃ is of the form x̃ = (m< + im=) · 2−L−2, with
m<,m= ∈ Z, and |x − x̃| < 2−L. Notice that an L-bit approximation x̃ = (m< + im=) · 2−L−2 of
some point x ∈ C naturally defines a box

B(x̃) =
[m< − 4,m< + 4]

2L+2
+ i · [m= − 4,m= + 4]

2L+2
⊂ C (7)

of width 2−L+1 in C that contains x.1484

For a complex root γ of a polynomial f ∈ Z[x] and an arbitrary positive integer L, we say that a1485

connected region D in C (typically, we consider a disk or a box) is isolating for γ (or that D isolates1486

γ) if it contains γ but no other root of f . We define the separation of γ (with respect to f), denoted1487

sep(γ, f), to be the minimal distance between γ and any root γ′ of f , with γ′ 6= γ. The separation1488

of f is defined as sep(f) = minγ:f(γ)=0 sep(γ, f). The same notions for a zero-dimensional ideal of1489

Z[x, y] are also naturally defined.1490

We now recall some well-known facts about the separations and the magnitudes of the complex1491

roots of a univariate polynomial f of degree d with integer coefficients of bitsize at most τ .1492

Lemma 53 ([Yap00, §6.2 Lemma 6.5)]). For any root γ ∈ C of f , M(γ) = 2O(τ).1493

Lemma 54 ([SY11]). If f is squarefree,
∏
{γ root of f}min(1, sep(γ, f)) = 2−Õ(dτ).1494

Lemma 55 ([Yap00, Lemma 6.34]). Let f and g be coprime polynomials of degree at most d with1495

integer coefficients of bitsize at most τ . Then, for any root γ ∈ C of f , |g(γ)| = 2−O(d(τ+log d)).1496

Lemma 56 ([MSW15, Theorem 5]). We can compute isolating disks Di with radius ri <
sep(γi,f)

64d1497

for all complex roots γi of f using ÕB(d3 + d2τ) bit operations. For an arbitrary positive integer1498

L, we can compute corresponding L-bit approximations γ̃i for all roots using ÕB(d3 + d2τ + dL) bit1499

operations.1500

Proof. The first part follows directly from [MSW15, Theorem 5]. In addition, [MSW15, Theorem1501

5] also states that we can further refine the disks Di such that each of them has radius less than1502

2−L−2 using ÕB(d3 + d2τ + dL) bit operations. In addition, the centers of the disks are computed1503

in dyadic form. We can thus round the center of each disk Di to an absolute precision of size1504

2−L−2 to obtain an L-bit approximation γ̃i of each root γi of f . The bit complexity of rounding1505

all the disks’ centers is linear in the total bitsize of the dyadic coordinates, which is bounded by1506

ÕB(d3 + d2τ + dL), the complexity of the algorithm that computes them.1507
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We further remark that there also exist dedicated real root isolation and refinement meth-1508

ods [SM15, KS15a] that compute isolating intervals of size 2−L for all real roots of f with a number1509

of bit operations that is comparable to the bound stated in Lemma 56. When computing the solu-1510

tions of a bivariate system (see Section 7.2), the choice of an efficient univariate solver is critical,1511

and thus we propose to use a dedicated method for real root finding if only the real solutions of1512

the bivariate system are asked for.1513

Now, suppose that we want to approximately evaluate a polynomial g ∈ Z[x] of degree dg with1514

integer coefficients of bitsize τg at all roots of f . More precisely, for a given positive integer L, we1515

are aiming for L-bit approximations ỹi of the values yi = g(γi), where γ1, . . . , γd denote the roots1516

of f . For this, we use fast approximate multipoint evaluation.1517

Lemma 57 ([KS15b, Theorem 22]). Let x1, . . . , xdg ∈ C such that, for each of them, an L′-1518

bit approximation can be accessed in OB(L′) bit operations. For any positive integer L, we can1519

compute L-bit approximations of all values yi = g(xi) using ÕB(dg(L + τg + dgΓ)) bit operations,1520

where Γ > 1 is an upper bound on the maximum of all values logM(xi). For the computation, we1521

need L′-bit approximations of all points xi, where L′ = L+ Õ(τg + dgΓ).1522

We remark that the multipoint evaluation algorithm from [KS15b] uses certified interval arith-1523

metic based on fixed-point computations. It adaptively increases the (absolute) working precision1524

L′ during the computation. That is, in each iteration, it asks for L′-bit approximations x̃i of the1525

points xi, and if it does not succeed to compute L-bit approximations ỹi of the values yi, it doubles1526

the precision and restarts. Hence, the algorithm might also succeed with a smaller precision than1527

the precision predicted in the worst-case.1528

Lemma 58. Let f ∈ Z[x] be a polynomial of degree d with integer coefficients of bitsize at most1529

τ and let γ1, . . . , γd denote the roots of f . Let g ∈ Z[x] be a polynomial of degree dg = O(d) with1530

integer coefficients of bitsize at most τg. Then, for any given positive integer L, we can compute1531

L-bit approximations of all values g(γi) using a number of bit operations bounded by ÕB(d3 +d2τ +1532

d (L+ τg)).1533

Proof. Applying Lemma 57 dd/dge times, L-bit approximations of d values g(xi) can be computed1534

with ÕB(dd/dgedg(L+ τg + dgΓ)) bit operations assuming that we can access each L′-bit approxi-1535

mation of xi in OB(L′) bit operations. Moreover, as mentionned above, the L-bit approximations1536

of the g(xi) are computed iteravely by doubling L′ at every iteration and the algorithm stops with1537

L′ = L+ Õ(τg + dgΓ). Thus, the number of iterations is in O(log(L+ τg + dgΓ)).1538

By Lemma 56, L′-bit approximations of the d roots of f can be computed in ÕB(d3 +d2τ +dL′)1539

bit operations. Thus, these approximations can be computed for all iterations in ÕB(d3 + d2τ +1540

d(L+ τg + dgΓ)) bit operations.1541

The total complexity is thus in ÕB(dd/dgedg(L+ τg + dgΓ)) + ÕB(d3 + d2τ + d(L+ τg + dgΓ)).1542

The result follows since dg = O(d) and since Γ = O(τ) by Lemma 53.1543

We can further extend the above result to the evaluation of a fraction G = g1
g2

at the roots γi1544

of f , where g1 and g2 are both polynomials of degree bounded by O(d) with integer coefficients of1545

bitsize less than τG, and g2 is coprime with f .1546

Lemma 59. Let G = g1
g2

, with g1, g2 ∈ Z[x] polynomials of degree at most dG = O(d) with co-1547

efficients of bitsize at most τG. Suppose that g2 does not vanish at any of the roots γ1, . . . , γd1548

of f . Then, for any given positive integer L, we can compute L-bit approximations of all values1549

yi = G(γi) using a number of bit operations bounded by ÕB(d3 + d2(τ + τG) + dL).1550
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Proof. According to Lemma 55, it holds that |g2(γi)| = 2−Õ(d(τ+τG)) for all i. Now, in a first step,
we compute L′-approximations ỹ2,i of all y2,i = g2(γi) for L′ = 1, 2, 4, . . . until |ỹ2,i| > 2−L

′+1, and

thus 2|ỹ2,i| > |y2,i| > |ỹ2,i|/2. Notice that we succeed in doing so for an L′ = L′0 in Õ(d(τ + τG)).
Then, for an L′ > L′0, we can compute L′-approximations ỹ1,i = 2−L

′−2 · (m1,i + i · n1,i) and ỹ2,i =
2−L

′−2 · (m2,i+ i ·n2,i) of the values y1,i = g1(γi) and y2,i, respectively, with m1,i,m2,i, n1,i, n2,i ∈ Z.

Notice that each of the latter integers has bitsize Õ(d(τ + τG)) as |g1(γi)|, |g2(γi)| 6 (dG + 1) · 2τG ·
M(γi)

dG 6 2O(log d+τG+dτ) for all i. Hence, we conclude that∣∣∣∣ ỹ1,i

ỹ2,i
−G(xi)

∣∣∣∣ =
|ỹ1,i · y2,i − y1,i · ỹ2,i|

|y2,i · ỹ2,i|
6
|ỹ1,i − y1,i| · |y2,i|+ |y1,i| · |y2,i − ỹ2,i|

|y2,i · ỹ2,i|

6 2−L
′ · 4

|ỹ2,i|2
· (dG + 1) · 2τG ·M(γi)

dG = 2−L
′ · 2Õ(d(τ+τG)).

Notice that the above bound on the approximation error is explicit (i.e. computable). Thus, we1551

can directly estimate the error from the given values L′, |ỹ2,i|, dG, τG, and M(γi). Hence, we1552

may consider L′ = L′0, L
′
0 + 2, L′0 + 4, . . . until we can guarantee that

∣∣∣ ỹ1,iỹ2,i
−G(xi)

∣∣∣ < 2−L−2. For1553

this, we need to increase L′ at most O(log(d(τ + τG))) many times, and we succeed for an L′ in1554

Õ(L+d(τ + τG)). Then, we approximate each fraction
ỹ1,i
ỹ2,i

=
m1,i+i·n1,i

m2,i+i·n2,i
by a corresponding (L+1)-1555

bit approximation to obtain an L-bit approximation of G(xi). Due to Lemma 58, the total bit1556

complexity for computing the fractions
ỹ1,i
ỹ2,i

is in ÕB(d3 + d2τ + d (L+ d(τ + τG) + τG)) = ÕB(d3 +1557

d2τ + d2τG + dL), whereas the total bit complexity for computing the (L+ 1)-bit approximations1558

of the fractions
ỹ1,i
ỹ2,i

is in ÕB(d2(τ + τG) + dL). Indeed, using fast integer division, computing an1559

L-bit approximation from a rational has a bit complexity that is softly linear in L and the bitsize1560

of the rational.1561

7.2 Isolating boxes1562

We now give a method for computing disjoint isolating boxes for the solutions σ ∈ C2 of a zero-1563

dimensional system P = Q = 0, where P,Q ∈ Z[x, y] are coprime polynomials of total degree1564

at most d with integer coefficients of bitsize at most τ . More specifically, for a given L, we first1565

compute L-bit approximations12 σ̃i,j of the solutions σi,j = (xi,j , yi,j), 1 6 j 6 di = deg fi, of each1566

factor RURi = (fi, fi,1, fi,x, fi,y) in the RUR decomposition (RURi)i6d of {P,Q} as computed by1567

Algorithm 6 or 6’. This is achieved by first computing sufficiently small isolating disks for the roots1568

γi,j of the univariate polynomial fi ∈ Z[x] in RURi, and then evaluating the fractions
fi,x
fi,1

and
fi,y
fi,1

1569

at the roots γi,j to an absolute error less than 2−L. From the corresponding L-bit approximations1570

x̃i,j and ỹi,j , we can then derive boxes Bi,j = B(σ̃i,j) = B(x̃i,j) × B(ỹi,j) ⊂ C2 of width 2−L+1
1571

containing all solutions of RURi; see (7) for the definition of B(x̃i,j) and B(ỹi,j). If, for all i and1572

j, the boxes Bi,j do not overlap, then they are already isolating for the solutions of P = Q = 0.1573

Otherwise, we have to increase L until the boxes do not overlap. We give details in Algorithm 9.1574

In order to bound the complexity of the above approach, we first need to derive bounds on the1575

separations of the solutions σi,j = (xi,j , yi,j) of the factor RURi. In addition, we derive amortized1576

bounds on the separations of all solutions of the system P = Q = 0.1577

Lemma 60. Let P,Q ∈ Z[x, y] and RURi = (fi, fi,1, fi,x, fi,y), i ∈ I, be as defined in the input of1578

Algorithm 9 and let di and τi be the maximum degree and bitsize of the polynomials in RURi. In1579

12We extend the definition of an L-bit approximation x̃ of a point x ∈ C to that of an L-bit approximation (x̃, ỹ)
of a point (x, y) ∈ C2 by requiring that both x̃ and ỹ are L-bit approximations of x and y, respectively.
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addition, let Ii ⊇ I = 〈P,Q〉 be the ideal corresponding to RURi and V (Ii) be the corresponding set1580

of solutions. Then,1581

(a)
∑

σ∈V (Ii)
logM(sep(σ, Ii)

−1) = Õ(diτi) = Õ(di(d
2 + dτ)) = Õ(d4 + d3τ),1582

(b) logM(|σ|) = Õ(dτ) for all σ = (σx, σy) ∈ V (Ii), where |σ| = max(|σx|, |σy|),1583

(c)
∑

σ∈V (I) logM(sep(σ, I)−1) = Õ(d4 + d3τ).1584

Proof. Let (x, y) 7→ x + ay be the separating form for {P,Q} with a ∈ Z of bitsize O(log d),1585

as computed by Algorithm 6 or 6’ as part of the input of Algorithm 9. This separating1586

form defines a one-to-one mapping from the set of solutions σ ∈ V (Ii) to the set of roots1587

γ of fi. Now let σ = (σx, σy) ∈ V (Ii) and σ′ = (σ′x, σ
′
y) ∈ V (Ii) be two solutions with1588

sep(σ, Ii) = |σ − σ′|, and let γ and γ′ be the corresponding roots of fi. Then, we have1589

sep(γ, fi) 6 |σx − σ′x| + |a| · |σy − σ′y| 6 (|a| + 1) sep(σ, Ii), or equivalently sep(σ, Ii)
−1 61590

(|a|+ 1) sep(γ, fi)
−1. We thus have logM(sep(σ, Ii)

−1) 6 log(|a|+ 1) + logM(sep(γ, fi)
−1). On the1591

other hand, fi is squarefree since it is the first polynomial of the RUR of a radical ideal (see Algo-1592

rithm 6 or 6’). Thus, Lemma 54 yields that
∏
{γ root of fi}min(1, sep(γ, fi))

−1 = 2Õ(diτi) and thus1593 ∑
{γ root of fi} logM(sep(γ, fi)

−1) = Õ(diτi). Part (a) follows directly since a has bitsize O(log d)1594

and, by Theorem 37, di 6 d2 and τi = Õ(d2 + dτ).1595

Part (b) follows directly from the fact that each coordinate of a solution σ is a root of either the1596

resultant polynomial Sresx,0(P,Q) ∈ Z[y] or Sresy,0(P,Q) ∈ Z[x], and both of these polynomials1597

have integer coefficients of bitsize Õ(dτ) by Lemma 3. For part (c), notice that, by definition of1598

RUR decompositions (Definition 36), the roots of f =
∏
i fi are exactly the images of the solutions1599

of {P,Q} through the mapping (x, y) 7→ x+ ay. The degree of f is thus at most d2. Furthermore,1600

the fi are monic (by Definition 34), thus f is monic and the bitsize of its coefficients is at most that1601

of the resultant of the sheared polynomials P (t− ay, y) and Q(t− ay, y) with respect to y, which1602

bitsize is in Õ(d2 + dτ) (see e.g. [BLPR15, Lemma 7]). Hence, the same argument as for the proof1603

of part (a) yields that sep(γ, f) 6 (|a|+ 1) sep(σ, I) and then the result.1604

The following theorem analyzes the complexity of the isolation of a system {P,Q} from a RUR1605

decomposition as computed in Section 6.1606

Theorem 61. Let P,Q ∈ Z[x, y] be coprime polynomials of degree at most d with integer coefficients1607

of bitsize at most τ . Algorithm 9 computes isolating boxes for all complex solutions of P = Q = 01608

using ÕB(d6 + d5τ) bit operations.1609

Proof. As argued at the end of the proof of Lemma 60, f is a polynomial of degree at most d2
1610

with coefficients of bitsize Õ(d2 + dτ), and thus the bit complexity of Step 2 in Algorithm 9 is1611

ÕB(d6 + d5τ) (Lemma 56). In addition, the degree of all polynomials fi,y and fi,1 is at most the1612

degree di of fi (Definition 34), and the bitsize of their coefficients is in Õ(d2 + dτ) (Theorem 37).1613

According to Lemma 60(c), the distance between any two solutions of P = Q = 0 is lower bounded1614

by 2−Õ(d4+d3τ), which implies that Algorithm 9 terminates with L in Õ(d4 + d3τ). We also have1615

that the loop in Line 5 is executed logL = O(log dτ) times and thus, ignoring the polylogarithmic1616

factors, it is sufficient to study the complexity of the last call to this loop. From Lemma 59, the1617

bit complexity of computing the L-bit approximations σ̃γ,x and σ̃γ,y for all roots of the factor fi1618

in Step 8 is in ÕB(d3
i + d2

i (d
2 + dτ) + di(d

4 + d3τ)) = ÕB(d3
i + di(d

4 + d3τ)). Summing over all1619

i yields the bound ÕB(d6 + d5τ) for the total bit complexity of this step, since the sum of all di1620

is at most d2. In Step 9, consider a fixed pair (γ, γ′) of distinct roots of f and let σ and σ′ be1621
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Algorithm 9 Isolating boxes for the solutions of P = Q = 0

Input: P,Q coprime in Z[x, y] of degree at most d and bitsize at most τ and (RURi)i∈I =
(fi, fi,1, fi,x, fi,y)i∈I the RUR decomposition of {P,Q} as computed computed by Algorithm 6
or 6’

Output: Isolating boxes for all solutions of P = Q = 0
1: f =

∏
i∈I fi

2: Compute isolating disks Dγ ⊂ C for all complex roots γ of f
3: S = {(γ, γ′) | γ and γ′ distinct roots of f}
4: L = 1
5: repeat
6: L = 2L
7: for i ∈ I do
8: For all roots γ of fi, compute L-bit approximations σ̃γ,x and σ̃γ,y of σγ,x =

fi,x(γ)
fi,1(γ) and

σγ,y =
fi,y(γ)
fi,1(γ) , respectively (Lemma 59)

9: until for all pairs (γ, γ′) ∈ S, |σ̃γ,x − σ̃γ′,x| > 2−L+2 or |σ̃γ,y − σ̃γ′,y| > 2−L+2

10: return {B(σ̃γ,x)×B(σ̃γ,y) | γ root of f}

the corresponding solutions in I = 〈P,Q〉. From Definition (7) of the box associated to an L-bit1622

approximation, the inequalities |σ̃γ,x − σ̃γ′,x| > 2−L+2 or |σ̃γ,y − σ̃γ′,y| > 2−L+2 imply that the1623

boxes B(σ̃γ,x)×B(σ̃γ,y) and B(σ̃γ′,x)×B(σ̃γ′,y) do not overlap, which implies the correctness of the1624

algorithm. Testing these inequalities can be done in OB(log(M(|σ|) +M(|σ′|)) + logM(|σ−σ′|−1))1625

bit operations (where |σ| = max(|σx|, |σy|)) because, for each comparison, the first term bounds1626

the number of bits before the binary point, and in the case where these bits coincide, the second1627

term bounds the number of bits after the binary point that need to be considered. Notice that1628

the sum of logM(|σ − σ′|−1) over the O(d4) pairs (σ, σ′) is at most d2
∑

σ∈V (I) logM(sep(σ, I)−1).1629

Thus, summing over the O(d4) pairs and using Lemma 60 yields the bound ÕB(d6 + d5τ) for the1630

total bit complexity of Step 9, which concludes the proof.1631

Remark 62. Algorithm 9 computes isolating boxes for only the solutions of one specific RURi if1632

we set f = fi in Step 1. Following the proof of Theorem 61, it is straightforward to prove that the1633

bit complexity of the algorithm then decreases to ÕB(d2
i (d

2 + dτ)) where the degree di of RURi can1634

be much smaller than d2.1635

Remark 63. In order to isolate only the real solutions of P = Q = 0, it suffices to iterate in1636

Algorithm 9 over the real roots of f since the separating form (x, y) 7→ x + ay is a one-to-one1637

mapping between the real solutions of P = Q = 0 and the real roots of f (see Proposition 35). Note1638

that, in this case, it is preferable to consider a dedicated real root isolation method in Step 2 for1639

computing the real roots of f .1640

Remark 64. In order to achieve the complexity bound ÕB(d6 +d5τ) in Step 8, we used an asymp-1641

totically fast method for the evaluation of a polynomial at many points (in Lemma 57). In practice,1642

such methods have not proven to be very efficient, and thus sequential evaluation is typically used1643

instead. Without detailling the proof, we claim that a more careful analysis would show that even1644

sequential evaluation yields the same complexity bound. The main reason is that, for each solutions1645

σ of P = Q = 0, it suffices to compute a box of a size that is not much smaller than the separation1646

sep(σ, I) of σ. Hence, in the algorithm, it is sufficient to stop the refinement of the approximation1647
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of σ as soon as the corresponding box is already isolated from all other boxes. Then, using amortized1648

bounds instead of those given in Lemmas 53 and 55 yields the claimed bound.1649

8 Conclusion1650

We have studied the problem of solving a bivariate system of two polynomials of degree bounded1651

by d and bitsize bounded by τ via a combination of triangular decomposition and RUR. We have1652

designed algorithms of worst-case complexity ÕB(d6 + d5τ) for all the steps: finding a separating1653

linear form, computing a RUR decomposition and computing isolating boxes of the solutions. This1654

worst-case upper bound is not likely to be easily improved since it is also the best one known for the1655

isolation of the roots of the resultant of the input polynomials [MSW15, Theorem 5]. However, one1656

hope to improve this complexity is to consider an adaptive complexity that depends on geometric1657

parameters such as the minimal distance between two roots, as in [KS15a] for example.1658

In the Las Vegas setting, we also proposed an algorithm of expected complexity ÕB(d5 + d4τ)1659

for finding a separating form and computing a RUR decomposition. In the radical and generic1660

case, the Monte-Carlo algorithm of [LMS13] computes a modified equiprojectable decomposition1661

that coincides in this case to a RUR. Even if it restricted to the radical case, this algorithm is1662

remarkable since its complexity is ÕB(d4+ε + d3+ετ), for ε > 0 arbitrarily small, which almost1663

matches the upper bound Õ(d4 + d3τ) on the size of the output (see Corollary 38) which is most1664

likely tight in the worst case. One natural question is whether it is possible to achieve such a1665

complexity in the Las Vegas setting.1666

Finally, we note that, for computing a separating linear form of an arbitrary system {P,Q},1667

the algorithm presented here is likely to be purely theoretical because (i) considering the system1668

{PQ, ∂PQ∂y } instead {P,Q} essentially doubles the degree of the input polynomials, and (ii) the1669

shearing of the coordinate systems, done to avoid vertical asymptotes, spoils the sparsity of the1670

coefficients and increases their bitsize, which is not efficient in practice. However, for the problem1671

of computing the critical points of a curve, there is some hope that our algorithm can be efficient1672

not only in theory but also in practice.1673
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