
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1967

Solving Sequential Conditions by Finite State Strategies Solving Sequential Conditions by Finite State Strategies

J. Richard Buchi

Lawrence H. Landweber

Report Number:
67-014

Buchi, J. Richard and Landweber, Lawrence H., "Solving Sequential Conditions by Finite State Strategies"
(1967). Department of Computer Science Technical Reports. Paper 88.
https://docs.lib.purdue.edu/cstech/88

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Solving Sequential Conditions by Finite State Strategies
J. Richard Buchi and Lawrence H. Landweber

September 1967

CSD TR 14

SOLVING SEQUENTIAL CONDITIONS BY
FINITE STATE STRATEGIES*

J. Richard Buchi and Lawrence H. Landweber**
Purdue University, Lafayette, Indiana

Our main purpose is to present an algorithm which decides
whether or not a condition C(X,Y) stated in sequential calculus
admits a finite automata solution, and produces one if it exists.
This solves a problem stated in [4] and contains, as a very
special case, the answer to case 4 left open in [6]. In an
equally appealing form the result can be restated in the terminology
of [7^10,15] » Every oi-game definable in sequential calculus Is
determined. Moreover the player who has a winning strategy, in
fact, has a winning finite state strategy, that is one which can
effectively be played in a strong sense. The main proof, that of
the central Theorem 1, will be presented at the end. We begin with
a discussion of its consequences. •

1. CONDITIONS ON SEQUENTIAL OPERATORS
Let C(X,Y) be a condition (i. e. , binary relation) on

aj-sequences X = XO, XI, X2,... and Y = YO, Yl, Y2,... of members of
the finite sets I and J. Let Y=A(x) be an operator which maps
I-sequences into J-sequences. We will say that the operator A

*
This research was sponsored by the National Science Foundation
(Contract 4730-50-395)- The main result was announced in [13].

** Presently at the University of Wisconsin, Madison Wisconsin.

solves the condition c(X,T) for Y or that A is a solution of
C for Y, if (\r X) C(X,A(X)) or equivalently,

(1) (VXY)-Y=A(X)3 C(;:,Y)

If no further requirement is imposed on solutions, then the
axiom of choice states: (V x) (3Y)C(X,Y) is the solvability con-
dition of C for Y. The solvability question becomes more
interesting if one requires the solution A to be continuous in the
sense of the natural Can^r topology on the set of all cu-sequences
over the alphabets I and J. Let I* denote the set of all
finite sequences (v:ords) over The members of I* form a tree
if all words wa, a e I are taken as direct successors of w e I*,
to-sequences over I are represented by infinite paths through the
tree. Let U be the set of all those paths X which contain w
(as an initial segment). The finite unions U ... U are

W1 n
then the open-closed sets of the totally disconnected space of all
I-sequences. An operator Y=A(X; is continuous if it may be given
in the form,

(2) l?t = 0(x(?t))

whereby Xz stands for the word Xz, 0 is a map from ai
into to and 0 maps I* into J.

Among the continuous operators there are those for which the
entries in the sequence '_'=A(X) can in fact be computed, if
sufficient information about the entries in X is provided. The
recursiveioperators (RO) are those presentable in form (2),
whereby both $ and 4> are recursive.

A particularly simple class of recursive operators are the
finite automata operators (FAO), that is those operators which
may be presented in the form,

ZO = H[XO]
(3) Zt' = L[Xt',Zt]

YT = W[Zt]

Here Z varies over co-sequences from a finite set K. H,L and W
are functions from I into K, I x K into K, and K into J.
A system <CK,H,L,W)> is called a finite automaton with input
states I, output states J, and (internal) states K. Finite
automata were first studied by Kleene [12]. Also see [3>5,l6].
Besides being recursive, FAO1s are deterministic in the sense that
the state of Y at time t can be calculated without anticipating
future states of the input X. More precisely, a continuous
operator (2) is deterministic (DO) if 0t < t. I.e., if it can
be given in the form,

(4) Yt = 3>(Xt)

Thus we use the term deterministic in the sense familiar from physics.j
j

Note that a DO is continuous but need not be recursive.
A FAO is a recursive deterministic operator (RDO). Furthermore,
one easily proves: The DO given by (4) is a FAO if and only if
the right congruence u v on words, defined by (Vw)$(uw)=<I>(vw),

i

has finite index. This explains in just which way a finite automaton j
is limited in its ability to memorize the input history Xt at
time t. To be a FAO is a very strong requirement on a RDO.

The operator (2) might be called h-shift in case 0t = 0
for t < h, 0t = t-h for h t. The deterministic operators now
appear as O-shift 3 1-shift ^ 2-shift £ In particular
CO is a O-shift operator and a 1-shift operator is one of form

whereby X(-l) stands for the enqity word. Furthermore, the FAO
defined by (3) is a O-shift FAO, while a 1-shift FAO can always be
presented in the form

whereby c e K is called the initial state of the 1-shift
automaton <K,c,L,W)>.

DEFINITION 1, A condition C is called determined if, either there
exists a O-shift deterministic solution Y=A(x) of C(X,Y) for Y
or else there exists a 1-shift deterministic solution X=B(Y) of
~C(X,Y) for X.

It is interesting to contemplate this notion in the context of
the Cantor topology; say for example, if C is a Borel set in the
product of the two spaces. This is studied in a game theoretic
context in [7,10,15]- If C is determined, it either contains the
graph of a continuous function Y = A (x), or else <~C contains the
graph of a continuous function X = B(Y).

(4-) Yt = $(X(t-l))

(3')
ZO = c

Zt' = L[xt,zt]
Yt = W[Zt]

5-

LEMMA 1. Let C be an arbitrary condition. There cannot both
exist a O-shift deterministic solution Y=A(x) of C(X,Y) for Y
and a 1-shift deterministic solution X=B(Y) of ™C(X,Y) for X.

PROOF. Suppose Y=A(x) is a O-shift solution of C for Y,
given by Yt = 3>(Xt), and X=B(Y) is a 1-shift solution of ~C
for X, given by Xt = ^(Y(t-l)). The system of equations
Yt = <J>(Xt), Xt = ¥(Y(t-l)) can be viewed as a simultaneous course-
of-value induction, defining a pair x

dJ y
0 satisfying both

equations, for all values of t. But then Y Q = A(XQ) and
Xq = B(Y). Therefore, if A solves G for Y and B solves
~C for X, we have C(X ,Y) and ~C(X ,Y), which is x o o o o

contradictory.
Q. E. D.

2. FINITE STATE CONDITIONS, THE u>-BEHAVIOR OF FINITE AUTOMATA
Let Z = E(X,Y) be a FAO from cu-sequences on I x J into

ai-sequences on S, given by the recursions,

ZO = so
(5)

Zt' = fl[Xt,Yt,Zt].

Here sq is a member of S and H maps I x J x S into S-
Furthermore, let U be a class of subsets of S, called the output
condition. Let sup Z denote the set of all states taken infinitely
often by Z. I. e. ,

(6) sesup Z . = . (Vx)(3t)[x< t A Zt = s]

DEFINITION 2. The tu-behavior of <S,SQ,H,U> (of the FAO E with
output condition U) is the relation c(X,Y) which holds for X
and Y if Z = E(X,Y) satisfies sup Z e U. I. e. ,

(7) C(X,Y). =. (3 Z) [Z0=SQ A (Vt)Zt' =H[Xt,Jt,Zt] A sup Z e U]

By a finite state condition we mean one which is the a>-behavior
of some FAO with output condition. Our basic result may be stated
thus,

THEOREM 1. Fcr every finite state condition C(X,Y) is determined.
Moreover, either there is a O-shift FAO which solves C for Y
or else there is a 1-shift FAO which solves for X.

The proof is contained in section 5- Actually we obtain there a
constructive version of Theorem 1. In section 3 we discuss a game.
theoretic form of this theorem which was conjectured by McNaughton.
The purpose of section 4 is to show that a surprisingly wide class
of formulas C in fact define finite state conditions. We thereby
extend the applicability of Theorem 1. An important step in this
extension is provided by a recent result of McNaughton [14], which.
can truly be called the fundamental lemma of finite automata behavior,
It can be stated as follows.

In place of the initial state s we assume a set of initial o
states K c S. In place of the function H from I x J x S into
S we consider a relation L on I x J x S x S. An aj-sequence Z
on S is called a transition sequence of the transition system
(sometimes called non-deterministic finite automaton) if

K[ZO]
(5')

L[Xt,Yt,Zt,Zt«], for all t.

7.

The notion of co-behavior naturally generalizes to transition
systems. Namely ,

DEFINITION 2'. The co-behavior of the transition system <S,K,L,U>
with output condition is the relation c(X,Y) which holds for X
and Y if there is a transition sequence Z such that sup Z e U.
I. e. ,

(71) C(X,Y).«. (3 Z) [K[ZO] /v (Vt)L[Xt,Yt,Zt,Zt'] A sup Z e U]

The fundamental lemma now states that co-behaviors of transition
systems are still finite state conditions. More precisely,

FUNDAMENTAL LEMMA (McNaughton). To every transition system with
output condition L = <S,K,L,l£> on the input states I x J one can
effectively construct a finite automaton with output condition
H = <S' ,so,H,W> on I x J, such that L and H have the same
co-behavior.

Thus Theorem 1 remains true if C(X,Y) is the co-behavior of a
transition system. A further extension is discussed in section 4.

3. co-GAMES AND SEQUENTIAL CONDITIONS
McNaughton has observed a close relationship between the notion

of a deterministic solution of a condition C(X,Y) and that of a
winning strategy in purely combinatorial co-games studied in the
literature [7,10,15]. While this game terminology is not really
needed for our purpose, it puts both the solvability problems of
automata theory and game theory into a wider context, and adds
appealing flavors to each. For example, the notion of determinate-
ness (Definition l) is very natural in terms of games, but did not

arrive independently in automata theory. Indeed we could have
avoided all reference to solutions of ^C(Xj) for X, in a
presentation of our solvability algorithm. But this would clearly
be hiding important information.

A condition c(x,Y) can be viewed as a game for two, player I
and player J. Intuitively, a play of the game C(X,Y) goes as
follows. At any time t = 0,1,2,... player I makes a move Xt by
selecting a member of I. Then player J follows up with a move Yt
from J. The play "(XjŶ is completed when all oi moves
X0,Y0,X1,Y1,... have been made. Player J wins if C(X,Y), else
player I wins. It is intended that a time t, player I has complete
information about all previous moves ?(t-l) of his opponent, and
player J has complete information about all previous moves Xt
of his opponent. More rigorously this can be stated thus,

DEFINITION 3. A strategy for player l(for player J),
in a game C(X,Y), is a deterministic 1-shift operator X=B(Y)
(deterministic O-shift operator Y=A(X)). If <B,A> is a pair of
such strategies, then the play produces the pair ^ ^ j Y ^
such that A(XQ) = Yq and B(YQ) = Xq. The strategy A (of
player J) beats the strategy B (of player I) in case C(Xq,Yo).
Otherwise B beats A. A winning strategy for either player is one
which beats all strategies of the opponent.

That the play <CB,A> exists has been pointed out in the proof
of Lemma 1. We leave it to the reader to verify.

9-

LEMMA 2. An operator Y=A(X) (X=B(Y)) is a winning strategy for
player J (player I) in the game C(X,Y) if and only if it is a
deterministic O-shift (1-shift) solution of the condition C for
Y (~C for- X).

Thus Lemma 1 asserts the intuitively obvious fact that in no game C
can both players possess a winning strategy. Furthermore, the
condition C(X,Y) is determined (Definition l) just in case the
game C is determined in the sense that one of the two players
possesses a winning strategy.

If C(X,Y) is called a finite state game in case it is the
a>~behavior of a finite automata operator of form (5) with an
output U, then Theorem 1 takes the following form.

THEOREM 1'. Every finite state game is determined. Moreover, the
player who has a winning strategy in fact has one which can be
executed by a finite automaton.

We leave it to the reader to make up a particular finite state
game and to meditate about the sense in which such a game can actually
be played. We also suggest that he review the results of section 4-
in game terminology.

We would like to emphasize here that the second stronger part
of Theorem 1' is critical for out solvability algorithm (section 4).
This second part is also a new kind of result in game theory. More
generally, the following type of game problems are naturally
suggested by automata theory. Given a class of games G:
1) Can one effectively decide, for any CeG, which player has a

10.

winning strategy? 2) Just how simple winning strategies do exist

for games in G? For example, is there a recursive or even a
finite automata winning strategy for CeG? This general problem 1

was considered in [IT]•
We suggest that the arithmetic hierarchy [ll] provides more

natural choices of G (in connection with the above questions),
than does the classical Borel hierarchy considered in the
literature [7,10,15]. To state a more concrete question we ask,

PROBLEM. For any V^-game is there a winning strategy in the
arithmetic hierarchy of operators? If yes, how high do they occur
in the hierarchy?
Here V^ stands for the class of all C(X,Y) which are of the
form (Vx)(3 y)(V z)B(X,Y,x,y,z), whereby B is recursive.
Note that Y^ contained in F ^ of the Borel hierarchy over
the product of the natural Cantor spaces of I-sequences and
J-sequences (since B(X,Y,x,y.,z) is open and closed for fixed x,y
and z). Hence ^ games are determined as a consequence of the
following result of Davis [7]-

(*) All F ^ games are determined.

It is easy to show, using the axiom of choice, that there is
a C(X,Y) which is not determined [10]. However, it is not known
whether all F^^. or even all ^ games are determined.

For comparison with our stronger proof of the full Theorem 1},
we end this digression into game theory with a proof, using (*),
that all finite state games are determined. In fact Theorem 2
below is somewhat stronger.

11.

Call C(X,Y) a continuous-sup-condition (recursive-sup-
condition) if it is of the form, sup 2 e U if Z - E(X,Y),
whereby E is a continuous operator (recursive operator). I.e.,

(8) C(X,Y) .=. (3Z)[(Vt)Zt=$(x(0t), Y(0t)) a sup Z e U]

where $ and 0 are arbitrary (recursive) functions. Note that
co-behaviors (i.e., finite state games) are recursive-sup.

LEMMA 3. Every continuous-sup-condition (recursive-sup-condition)
C is in the Boolean algebra over F^ (over J^).

PROOF. Assume C is given by (8), but drop the second argument Y
to avoid notational complexity. Using the definition of sup (6) it
follows that,

C(X) V [(3y)(V't)[y<t =x&(x(0t))€B] A
BeU

A (tfy)(3t)[y<t A 4>(X(0t))=s]].
seB

Note that U and its members B are finite sets, so that C(X) is
a Boolean combination of expressions of the form (3y)(Vt) M(x,y,t)
The expressions M(X,y,t), namely [y>t v $(x(0t))eB] or
[y>t v <J>(x(0t))?s] (for various values of B and s), denote
clopen sets for fixed y and t (recursive relations in case $
and 0 are recursive). This is true because M(X,y,t) implies
M(X*,y,t) whenever X*(0(t)) = x(0(t)). Consequently each
(3 y)(V t)M(X,y,t) denotes an F^ (an 3 g) so that C is a
Boolean combination of F 's (of 3 ' s). 0. E. D.

12.

THEOREM 2. Every continuous-sup-game (recursive-sup-game) C(X,Y)
is determined.

The proof is obvious from (*) and Lemma 3- We have not
investigated whether Davis' proof of (*) can be analyzed to yield
further information in case one assumes C(X,Y) to be recursive-
sup (or even an cu-behavior). At any rate, if C(X,Y) is an
co-behavior our Theorem ll strengthens Theorem 2.

It seems unlikely that there is a presentation for recursive-
sup-conditions which admits a method for deciding which of the
players has a winning strategy. Note that our Theorem 6 states
the existence for sequential conditions.

PROBLEM. Is it true that for every recursive-sup-game either of
the players has a winning strategy which is arithmetical? If yes,
how high does it occur?

4. A SOLVABILITY-SYNTHESIS ALGORITHM FOR SEQUENTIAL CALCULUS

Our concern here is not so much to determine solutions for
particular conditions. We rather ask for algorithms which for a
class CL of conditions determine solvability questions with respect
to a class OP of operators. Such algorithms are discussed in the
literature [2,5,6,8,9,18,19]- We will restate some known results
and show what our basic Theorem 1 provides.

Let CL be an interpreted formalism (called the condition
language) containing formulas C(X,Y) denoting relations between
co-sequences. Let OP be a class of operators. A solvability
algorithm for CL with respect to OP is an effective procedure

13-

which applies to any C(X,Y) e CL and tells whether or not C
admits a solution AeOP for Y- In case the members of OP are
finitely presentable (as is an FAO by a finite automaton and a
RDO by a Turing machine computing 4>), one may ask for a partial-
synthesis algorithm which for any C(X,Y) e CL constructs a
presentation of a solution AeOP, if a solution exists, and a
solution algorithm which, given a C(X,Y) e CL and a presentation
of some AeOP, decides whether or not A solves C for Y.

In [4] sequential calculus (SC) is considered as a natural
candidate for a condition language for FAO. SC is the monadic
second-order theory of the successor function ' on natural numbers.
That is SC is the interpreted formalism which includes the first
order theory of <Coj,0,'> and quantification over monadic predicate
variables ranging over sets of natural numbers. Note that a subset
X of co (i. e. , predicate on co) may also be interpreted as an
co-sequence of members of {T,F}, and a finite sequence
X = . . >X^> is an co-sequence of members of the set
(T,F}k. Thus, a formula C(X,Y) of SC with free predicate
variables X = <X-L,. . . ,Xh> and Y = <Y1,. . . denotes a

h k
condition on co-sequences over I = {T,F} and J = {T,F} .
Other finite I and J can be handled by coding their members as
sequences of the truth-values T,F.

In [4] a method for deciding truth of sentences in SC was
presented. Let Y = A(x) be a FAO given by (3). By appropriate
coding of the automaton <(K,H,L,v£> one can construct a formula
F(X,Y) e SC of form,

14.

(J Zy . • Zn). Z-jOaH-^O) A ... A Zn=Hn (0) A(Vt^^t'SL^t) A. • •

A Znt'SLn(t')] A(Vt)[Y1t=W1(t) A .. . AYkt=Wk(t)]

(whereby the H,L,W's are propositional formulas in the atomic parts
X-^,. . • ̂ 0 ^ 0 , . . . jYj^O^O,. . • .Z^X^',.. . ,Xht' ,Y-̂ tf . . ,Ykt' ,
Z^,...^ t), such that F(X,Y) means Y=A(x). The assertion,
A solves C(X,Y) e SC for Y, where A is a FAO can therefore
be stated as a sentence of SC. Hence,

THEOREM 3. There is a solution algorithm and a partial
synthesis algorithm for SC with respect to FAO.

A partial synthesis algorithm is available because all finite
automata can be effectively enumerated, and one after the other
checked as to whether it solves a proposed condition c(X,Y)
stated in SC. For a very small fragment of SC a solvability
algorithm was found [4] and improved by Wright. This result can
be extended to cover conditions of SC of the form

(predicate prefix on Z). H[3D] t) L f x t » z t ' z t ' 1

(unpublished). It is easy to see [4] that addition of an
existential conjunct (Bt) M[Zt] to such formulas yields all
conditions c(X,Y) expressible in SC. However, even for very
special formulas including both kinds of individual quantifiers
the problem of finding a solvability algorithm was left open in [6],
and seemed rather hopeless at that time. It is only by using
McNaughton's fundamental lemma and our Theorem 1 that we are now
able to give a solvability algorithm for all of SC.

15.

The main definability result of [4] can be restated thus:
To every formula C(X,Y) of SC one can construct a transition
system <Cs,K,L,U)> with output condition whose co-behavior is (the
relation defined by) C. Thus by the fundamental lemma,

THEOREM 4. To every formula C(X,Y) of SC one can effectively
construct a finite automaton with output ^SjS^jH,!^ whose
co-behavior is (the relation defined by) C.

Conversely, every cu-behavior can be defined in SC. In fact
(7) with sup Z replaced by its definition (6), up to coding, yields
such a definition (as y^y is definable in SC by
(V Z) [Zy A (V't) [Zt1 => Zt] z) Zx]). Also note that the fundamental
lemma yields another proof of the critical lemma 9 of [4], which
does not make use of Ramsey's Theorem.

Because of Theorem 4 we can extend Theorem 1 to,

THEOREM 5- Every condition C(X,Y) definable in SC is determined.
In fact, either there is a O-shift FAO which solves C for Y or
else there is a 1-shift FAO which solves ~C for X.

Because of lemma 1 we have,

COROLLARY. If C(X,Y) in SC has a deterministic solution for Y
then it has a FAO solution for Y.

The corollary generalizes the statement: If C(Y) in SC
holds for some Y, then it holds for ultimately periodic Y. Juflt
note that a FAO solution of C(Y) for Y is an input free automaton.

16.

THEOREM 6. There is an algorithm which for any C(X,Y) of SC,
1) decides whether C(X,Y) is deterministically solvable for Y, ..
2) produces a J-shift FAO solution of C(X,Y) for y (if C
is " '•• deterministically solvable for Y), 3) produces a 1-shift
FAO solution of ~-C(X,Y) for X (if C is not deterministically
solvable for Y).

PROOF. Algorithm 1: Systematically list all i-shift FAO'
Y=A(x) and all 1-shift FAO X=B(Y). Check whether A solves C
for Y or B solves for X using the algorithm of Theorem 3«
By Theorem 5, eventually a solution of C for Y or a solution of
~-C for X will be found.

Algorithm 2: Use the algorithm of Theorem 4 to put C(X,Y)
in finite state form. Then use the method described in section 5-

Note that there is a solvability algorithm for SC with
respect to DO, which is also a solvability algorithm for SC with
respect to FAO (Theorem 6). However, while there is a
solution algorithm with respect to FAO (Theorem 3), there is
no solution algorithm for SO with respect to RDO.
For example, let C(X,Y) be (3 y)(i/z)[y<z = Let
Y=An(x) be the RDO defined by

whereby Q is a recursive set. A^ solves C for Y if and only
if Q is finite. Hence a solution algorithm for SC with respect
to RDO would, given an index for Q, decide whether it is finite.
It is well known that such a method does not exist.

We have not seriously investigated whether the algorithms of

Yt =
f T if t e Q,
I.F if t £ Q

Theorems 3 and 6 can be improved to a point of usefulness in the
design of sequential circuits. As they include conversion of
propositional formulas into normal form, it seems that presently
available computing equipment could not carry a significant part
of out algorithms. Nevertheless, out solution automata of section 5,
like the construction of [l4], provide examples of strictly finite
devices which accomplish surprisingly intricate tasks.

The fundamental lemma can be extended to a-behaviors, for
any countable ordinal a. This leads to a decision method for
the monadic second order theory of > (see [l]). We hope
to present elsewhere a corresponding extension of Theorem 6
from cu to any countable ordinal a.

C(X,Y) admits an h-shift solution for Y, if and only if,
Ch(X,Y) : (3Z).C(Z,Y) a (Vt)Zt=X(t+h) has a O-shift solution
for Y. Thus, for any fixed h, Theorem 6 yields a solvability
algorithm for SC with respect to h-shift DO's and FAO's. Note
that any (h+l)~shift recursion is also an h-shift recursion.
This suggests,

Problem; Can one algorithmically determine whether or not for
a condition C(X,Y) stated in SC there exists an h such that C
admits an h -ehift, but no (h+l)-shift solution for Y?

5' SOLVING FINITE STATE CONDITIONS

We will present here our main proof, that of Theorem 1.
Therefore, throughout this section C(X,Y) will be the co-behavior,
with respect to U, of the FAO given by

18.

zo = 8o

(9)
Zt' = H[Xt,Yt,Zt]

t
Let I,J,S be the finite sets of states of X,Y,Z respectively,
so that U is a class of subsets of S- We recall that C(X,Y)
stands for sup Z e U, whereby Z is given by (9).

Our proof is outlined as follows. In section (a) we will
construct a subset R [] of the set of states S, such that
if s e R [] then C(X,Y) is solvable for Y by a O-shift O //
FAO, and if s^ £ Rfl[] then ~C(X,Y) is solvable for X O
by a 1-shift FAQ. Thus, s e R„[] is the condition of O £
solvability of C(X,Y) for Y. The case so e] is treated
in section (b), where we will present a O-shift FAO Y=A(X) which
solves C for Y. The case s £ R„[] is treated in section (c), O Jo

where a 1-shift FAO X=B(Y) is presented which solves <~ C for X.

(a) Definition of R^[]. For each AeU choose a cyclic
permutation of its members. For simplicity of notation we denote
the value of this permutation at seA by A(s). The crucial
construction is that of the sets R, [A,,s,,...,A ,s], k 1' 1 n n
Pk[A1,s1,. . . ,An,sn], and s-^ • • . ,An, sn], whereby n>0 ,
A^ => . . . => A^ range over strictly decreasing chains in U
and s^,...,sn range over members of A^,...,An, respectively.
These sets are defined simultaneously by the following induction
on k = 0,1,2,... .

19-

scR [AlJs.^ . . . s] . =. false

BePkU1,s1,... ,An,sn] s e R^f]vS€A-LnRkv •••

(10)
S E Q J J A ^ S ^ . . . >A N,S N] .=. V- BeU A seEcAn A

B
A U€R. [An ,s. . . J .S-B,B(u)]
ueB K 1 1 n n

seR,, [A ,s ,. . . ,A ,s 1 . =. A V H[xJyJs]e{s1,. . . ,s } U K + 1 1 1 n n xel yej 1 n

Pk[A1,s1>...jAnJsn] U Qk[A1Js1J...,AnJsn]

Note that n is bounded by the length of maximal chains in U.
If n=0 we use the notations],],]-

Caution? In interpreting (10) for the case n=0 the occurrence
of A^ (in the expression SEB^A^) is to be suppressed. A similar
remark goes for all future occurrences of A . o

By induction on k, one easily shows that Rk[v]<Rk+]_[v] ,
Pk[v] c Pk+1[v] , Q k M <= Qk+1[v] , for all arguments
v = Ea1,s1,...,A]. Because all RkEv]J P k M a n d

are subsets of the finite set S, and there are but a finite
number of v's, it follows that there is a number k such that,
for all v, Rk[v] = R k + 1 M , PjJv] = P k + 1 M and = Qk+1l>].
Accordingly we define i,

(11) & is the first number such that, R^_;i_[v]=R^ [v] [v]=P^ [v],
and Q<g_1[v]=QJ[v], for all v=[A1,s1,. . . ,AnJsn] , Â =>. . . =>An, n>0.

20.

From (10) and (11) we obtain

[An, S-,,.. . , A , s 1 .=. V A H[x,y,s] i {sir..,s > U
* 1 1 n n xeZ yej 1 n

Pjj [A-̂ , s.̂ ,. . . > A^, s^ [A JJ s^j . . . , A^,

(12) s^[A 1,s 1,. .. ,An,sn] .=. A [BeU A seB cA n]
B

v U/R- [A, , s-,,. . . jS ,B,B(u)]
ueB

BJ^P£[A1,S1,. . . ,A ,s] .=.] A SJ^A1nR1[A1,S1] A...

A s/A OR [A. , s.,. . . , A , s] n £ 1 1 n n

(b) The case s^ e R.[]: Choose a linear order of the members o J>
of J and U. An expression (p-y) E(y) denotes the first member
of J, in the chosen order, which satisfies E(y), if it exists.
We will now display a O-shift FAO Y=A(X), and prove that it
solves C(X,Y) for Y.

In the sequel X,Y,Z,k denote co-sequences over the sets I,
J,S,{0,.. . ,£}, respectively. V denotes co-sequences of elements
of form [A^ s^h-^ . .. ,An, sn,h

n], whereby n > 0, . is a
chain of members of U, S_EA.,... .s eA and !> > hu ... > h . J 1 1' ' n n 1 ' n
Consider the following formulas,

21.

ZO=so, VO=[], hQ=£

if Vt=[A1,s1,h1J...,An,sn,hn] let

Yt = (ny).H[Xt,y,Zt] e {s1,...,sn) U

*Kt-l[AVsl"-->An*Bnl U Qkt-1 tA rs r...,A n, S n]

Zt' = H[Xt,Yt,Zt]

(a) if Zt1e{s1,. . . ,s } , let i be the first such that
Zt1 = si- Then

Vt' = [A1,s1,h1,...JAiJA1(si), h±]

(13) kt' = h±

(p) if Zt'ePkt-i[AijSi'*••,AnjSrJ b u t n o t ' l e t ^
be the first such that Zt' e A . fl R^t-l^l' S1J' • •
(zt'eRkt_1[] if j=0). Then,

Vt' = [A1jS1,h1,...

kt' = kt - 1

: • ' (7) if Zt'eQkt_1[A1Js1J...,An,sn] but neither (a) nor (p),
let B be the first in the chosen order of U such
that, Zt' eBcA and /\ ueR.. , [A,, s-,,. .. ,A , s ,B, v]. n u,veB K X - X 1 1 n

Then

Vt* = [A1,s1,h1,'. . . ,An,sn,hn,BjB(Zt'),kt-l]

kt' = kt-1

and the formulas.

22.

Zt e RRt[A]L,s:L,.. . ,An,sn], Zt e An (if n ^ 0)

(14) Ax= ... sieAi6U, ... >hn>kt>0

A U E R H [A,,S ,...,A ,V] , if Vt=[A Js1jh1,...,A ,s ,h 1
u,veAi ni 1 ± x

Because we are dealing with the case the values
ZO, VO, kO given by (13) clearly satisfy (14). Assume
inductively that (l4) holds for t, and Xt is arbitrary.
Using (10) it follows that there is a yej such that
H[Xt,y,Zt] e {s1,...,sn> U . .,An,sn] U
Q, . ,[A,,s-,...,A ,s 3, and therefore Yt exists as described ^kt-1 1' 1 ' n n
by (13), and so do Zt' , Vt', kt' , in all cases (a), (p), (7).
Furthermore, one easily checks that these values Zt', Vt', kt'
satisfy (14) with t replaced by t'. Thus, the formulas (13)
constitute a recursive definition of Y,Z,V,k from X, and
furthermore, (13) implies (14).

Let Y=A(X) be the operator froml-sequances to J-sequences,
given by (13)- Then A clearly is deterministic and recursive.
Furthermore, because of (l4), the auxiliaries Z,V,k in the
recursion (13) are finite valued. In fact it is easy to modify
(13) so that it is of form (3). Therefore, A is a O-shift FAO.
It remains to show that A solves C for Y, ie. , that (l) holds.

Note that a copy of (9) is built into the definition (13)
of A. As a consequence the assertion (l) is tantamount to the
assertion: For any X,Y,Z,V,k, (13) implies sup Z € U. The
remainder of section (b) constitutes a proof of this.

Assume that (13), and therefore (14), holds for X,Y,Z,V,k .
From (13) one easily sees that Yt, = [] and t, <(t0 implies

23.

kt1 > ktg. Therefore, by (14), there can be but finitely many
t such that Vt = []. Accordingly there is a t^ such that,
Vt 4 [] for all t > i. e. , if t > t]L then Vt is of form

s1,h1,...,An,sn,hnJ with level n > 1.
As the level n of Vt is bounded by the lengths

of chains in U (see (14)), some level n > 1 must occur
infinitely often. Let m be the smallest of these. Then, m > 1
and there is a tg such that for all t > t 2 the level of Vt
is y_ m. Thus we have,

If t > t then Vt = [A1,s1,k1,. .. ,Am,sm,km,.. .,An,sn,kn]
(15) thereby n > m. Furthermore, n = m occurs for infinitely

many times t.

It follows from (1 5) that for tr)> t 2 only the cases
(a) i > m, (P) j > m, and (y) n > m of (13) can occur. Con-
sequently, for t tg the entry Am (and all previous entries)
in Vt remains constant. By (14) it follows that Zt e A^
for t > tg, Am e U. Thus sup Z 5 Am c U.

Suppose the case (a) i = m occurred for only finitely
many t. Then there would be a t^)> such that for t > t^
only the cases (a) i > m, (P) j > m, (y) n > m could occur.
Inspection of (13,14) shows that then also the case (p) j = m
could occur only for finitely many t > t^ (because each application
of 0 or more steps (y) n > m, (a) i > m, (P) j > m followed
by (p) j = m lowers the value of k). Thus, both cases
(a) i = m and (P) j = m would occur only finitely often.
This contradicts the second part of (5). Therefore the case
(a) i = m must occur infinitely often.

2k.

Let t^ < t^ < t^ < be the infinitely many consecutive
places t y tg where (a) i = m is used. It clearly follows
that Zt^ = Am(Zt3), Zt5 = Am(Zt4), Zt6 - JAm(Zt5)J... .
Because s A (s) was chosen to be a cyclic permutation of A . m m
it follows that Z will keep taking any value in A . Thus,
sup Z ̂ A . Together with a former result, this yields
sup Z = A e U. Q. E. D. m

(c) The case so /]: Choose a linear order of I. The
expression (p-x)E(x) denotes the first x in I such that E(x),
if it exists. We will now display a 1-shift FAO X=B(Y), and
prove that it solves ^C(X,Y) for X.

In the sequel X,Y,Z denote co-sequences over the sets
I,J,S. V denotes aj-sequences over elements of form
[A1,s1,...,An,sn], whereby A-j=> ... =>An is a chain of members
of U and s,eA,,...,8 eA - W denotes co-sequences of chains l i n n
of subsets of S. Consider the following formulas,

ZO = sQ WO = {{so}} VO = []

if Vt=[A1,s1,.. . ,An,sn] and A ^ ^ A let

Xt = (M-X) A H[x,y,Zt] d {s1,. . . ,sn)up^[A1,s1,. •• ,A jS] U
yeJ

Zt' = H[Xt,Yt,Zt]

Wt' = {BU{Zt'} ; BeWt v B=A>
(16)

(a) If V.BeUn Wt' A V [A.^B^A. . A Zt' ĵ R. [A, , s , , . . . B 0<i<n 1 !L+1 ^ 1 1
A^,s^,B,B(Zt')]], let B be the largest such. Then,

25.

Vt' = [A1,s1,. . . ,A i ts ±,BMzV)]

(P) If not (a), let i be such that Zt1 Z W A i + r

Vt' = [A1,s1J.•.,A±,si]

and the formulas,

if Vt = [A1,s1,...)AnJsn] then,

Zt d R [Â ,S-̂ ,.- - JAn,sn] . A-j=> ... all in U ("I Wt

Zt e An (if n ^ 0) , s e A^. . . , sneAn

Wt is a chain of subsets of S

Because we are dealing with the case s^ ft R„[], the O *f

values ZO, PO, VO given by (16) satisfy (17) for t = 0.
Assume inductively that (17) holds for t and Yt is any member of
By (12) it follows that Xt, Zt', Wt' as prescribed by (l6) exists
Furthermore, Wt' is still a chain of subsets of S, and
Zt' i P [A^ s^. . . ,A , s]. By (12) it therefore follows that, in
cases (P), (17) holds for t replaced by t'. The same can easily
be checked in case Vt' is calculated by (a). The preceding
argument shows that (l6) constitutes a recursive definition of
Z,W,V,X from Y, and that (16) implies (17)-

Let X=B(Y) be the operator from I-sequences to J-sequences,
given by (16). Then B clearly is a 1-shift deterministic operator.
Furthermore, the auxiliaries Z,W,V take values in finite sets
(see (17))- In fact, the recursion (16) is easily modified to the

26.

form (31). Thus, X=B(Y) is a 1-shift FAO. To terminate the proof
of Theorem 1, it remains to be shown that B solves ^C(X,Y) for
X, i.e., that X=B(Y) and (9) imply sup Z / U.

Note that the recursion (9) is built into the definition (l6)
of X=B(Y). As a consequence, 'B solves C(X,Y) for X1 is
tantamount to the assertion: (l6) implies sup Z / U. The
remainder of this section constitutes a proof of this, in the form:
(16) and sup Z e U yields a contradiction.

For the sequel assume that (l6), and therefore (17)J holds
for X, Y, Z, W, V. Furthermore, assume sup Z = D e U. It follows
that there is a t^ such that

t > tx => Zt e D
(18)

u e D => (-3t)[t > a A Zt=u], for any time a.

From (l6) one clearly sees that the chain Wt consists of all sets
(ZO,...,Zt), {Zl,...,Zt},...,{z(t-l),zt}, {Zt}. It follows from
(l8), and D e U that there is a time t^ ̂ t^, such that

(1Q) t) tg 3 D e unwt

Let Vt = [A1,s1,. . . ,An,sn]. From (l6), Zt1 / s^ . . . , An, s
Because of (12) and BeWt'^zt'eB this yields,

[B E UTlWt' A A =>B] => V u £ R.[An , S-, . . ,A ,S ,B,B(u)]
ueB

This and (19) yield,

[t > tQ A A ^D] 3 V u / R.[A-, s,,... , A , S ,D,D(u)] ~ ueD ^ 1 1 n n

Because of (l8) this yields,

27-

(20) [t > t2 A Vt=[A1,s1,...JAn,sn] a A^D] 3

(Ja)[a> t A Za'^kg[A1,s1,...,An,snJD,D(Za')]

Define the quasi-order -4 on chains A,3 ... DA (p > 0)
cf members of U by:

[B-, ,. . • JB 1 [A-. ,. . • , A] .=. V [- A A -=B . A A.^B.] 1 q - L P l<i<q,p l<j<i J J

[A A -=B. A p > q]
1< Xq J J

By the principal part of the chain ... =>An (of [A^, s^. . . , An, s^]
we mean the chain A,=> ... =>A (the sequence [A,, s..,.. . , A , s])
whereby p is the largest i such that A^ => D, or p = 0 if
there is no such i. Note that A if i < p < n 4 0. p— P+ -L ~

if p=l, p=0 if n = 0.
Let Vt-=[A1Js1J. . . ,AnJ sn] , let [A-̂ s^ . . . ,Ap, sp] be the

principal part of Vt. Inspection of (16) shows that the
principal part of Vt1 will be equal or larger (in the sense of -s)
except if comes to use. If t > t2, so that by (l8),
Zb'eDcAp, ^^i^p cannot come to use. Therefore, for t > t2

the principal part of Vt either stays equal or increases. Because
is a quasi-order on a finite set, there must be a t^ ̂ t2

such that the principal part of Vt remains constant from t^ on.
I.e., there are m > 0, A s . . . , A m , s m such that Am 3 D and,

if t y_ t^ then Vt is of form [A^,s^,. . . ,Am, i^,.. • ,An, sn]
(21)

whereby n = m or EoA , -,=> ... 3A . ^ ch- l n

28.

Assume that, for all t } t^, Vt were of form
. . ,Am,sm,Amfl(t),sTrH_1(t),. . .]. By (16), it follows

that AjT>fl(tI J^nn-i^)' f o r a 1 1 t t3* Thus, there would have
to "be a c > t~ such that A ,(t) remained constant, say = A,
from c on. By (2l) D => A, so that by (l8) there would exist a
d > c, Zd' £ A. But Vd = [A-,s,,...,A ,s ,A,...], so that the — 1 1 m m
case of (l6) would come to play. As a result,
Vd1 = [A-ĵ ŝ ,. . . , A , s]. This is contradictory to the assumption,
so that there must be a t^ y_ t^ such that,

(22) Vt^ = [A1,i1,. . . ^ s j

Assume A ̂ D, or m = 0. By (20) and (22) there would be an
a > tj, such that Za' £ R [An, i1,. .. , s ,D,D(Za')]. By (21), — ^ IF J. L IN M

V3=i.A1,s1,. .. ,J5m,sm], or Va=[A1,s1,. . . sm,A,. ..] and
ItoA. By (19), D e U n Wa1 . Thus, D is a possible value
for B in (a) of (l6). Therefore, (a) for some B D would
come to use for calculating Va'. The result would be an entry
B ^ ,...,A , B ^ D in Va'. This contradicts (21). Therefore,

(23) m > 1 Am = D .

From (l6) it clearly follows that Zt' ^ sm if
Vt' = {Ay By. . . ,A , s ,. . .]. Therefore, by (21) and (17),
Zt' / s e A for any t > t0. It follows that A can m m — 3 m
not be sup Z, i.e., Am 4 D. Together with (23) this yields the
contradiction, ending the proof of Theorem 1.

29.

The reader will easily find various modifications of our
recursions (13) which also define DO's which solve C(X,Y) for Y
in case s e R.[]. For example, such a recursion may keep o a
Zt' e R [] up to a fixed time h and from there on act like (13).

Xt

More generally, the time h, at which the forcing of sup Z into U
is actually started, may be made to depend on the input X, and
may be set and reset, deterministically depending on X. We
have not investigated the following question.

Problem: Modify the recursions (13) to a schema with parameters
which, by proper additional specifications for the parameters,
will yield any given deterministic operator which solves
C(XiY) for Y. Do the same for (l6) and solutions of C(X,Y)
for X.

To accomplish this it might be necessary to make (more basic)
changes in the definition (10) of the sets R, [A^jS^j. . . j j sn] j
which would make our proofs less intricate.

30.

BIBLIOGRAPHY

1. J.R. Buchi, Decision methods in the theory of ordinals,
Bull. Amer. Math. Soc. 71(1965), 767-770.

2. J.R. Buchi, C. E. Elgot and J.B. Wright, The nonexistence
of certain algorithms of finite automata theory (Abstract), Notices
Amer. Math. Soc. 5(1958), 98.

3- J.R. Buchi, Weak second order arithmetic and finite automata
Zeitschrift f. Math. Logik und Grundlagen d. Math. 6(1960), 66-92.

4. J.R. Buchi, On a decision method in restricted second
order arithmetic, Proc. Int. Cong. Logic, Method, and Philos. Sci.
I960, Stanford Univ. Press, Stanford, 1962.

5- A : hu.-ch, Application of recursive arithmetic to the
problem of circuit synthesis, Summaries of Talks Presented at the
Summer Institute for Symbolic Logic, Cornell Univ. 1957, 2nd ed;
Princeton, i960, 3-50.

6. A Church, Logic arithmetic and automata, Proceedings of
the International Congress of Mathematicians 1963, Almqvist and
Wiksells, Uppsala, 1963-

7- M. Davis, Infinite games of perfect information, Advances
in Game Theory, Princeton Univ. Press, Princeton, 1964, 85-101.

8. C. C. E';.got, Decision problems of finite automata design
and related arithmetics, Trans. Amer. Math. Soc. 98(1961), 21-51-

9- J. Friedman, Some results in Church1s restricted recursive
arithmetic, J. Symbolic Logic 22(1957), 337-342.

10. D. Gale ana F.M. Stewart, Infinite games with perfect
information, Contributions to the Theory of Games, Vol. II Princeton
TTniv. Press, Princeton, 1953, 245-266.

11. S.C. Kleene, Arithmetical predicates and function
quantifiers, Trans. Amer. Math. Soc. 79(1955), 312-340.

12. S-C. Kleens, Representation of events in nerve nets
and finite automata, Automata Studies, Princeton University Press,
Princeton, 1956, 3-41.

13- L.H. Landweber, Finite State Games- A solvability algorithm
for restricted second-order arithmetic, Notices Amer. Math. Soc.
14(1967), 129-130-

31.

14. R. McNaughton, Testing and generating infinite
sequences by a finite automaton, Inf. and Control 9(1966), 521-530.

15- J- Mycielski, S. Swierczkowski and A. Zieba, On infinite
positional games, Bull. Acad. Polon. Sci. 4(1956), 485-488.

16. M. Rabin and D. Scott, Finite automata and their decision
problems, IBM Journal of Research and Development 3(1959),114-125-

17- M. Rabin, Effective computability of winning strategies,
Contributions to the Theory of Games, Vol. Ill, Princeton Univ.
Press, Princeton, 1957, 147-157-

18. B.A. Trachtenbrot, Synthesis of logic networks whose
operators are described by means of single place predicate calculus,
Doklady AN USSR 118(1958), 646-649-

19- B.A. Trachtenbrot, Finite automata and the logic of
single place predicates, Doklady AN USSR 140 (1961), 326-329-

	Solving Sequential Conditions by Finite State Strategies
	Report Number:
	

	tmp.1307986960.pdf.6Gcwu

