
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1975

Capacity Bounds for Multi-Resource Queues Capacity Bounds for Multi-Resource Queues

K. J. Omahen

Report Number:
75-137

Omahen, K. J., "Capacity Bounds for Multi-Resource Queues" (1975). Department of Computer Science
Technical Reports. Paper 87.
https://docs.lib.purdue.edu/cstech/87

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Purdue E-Pubs

https://core.ac.uk/display/4951341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

i

CAPACITY BOUNDS FOR MULTI-RESOURCE QUEUES

K. J. Omahen
Purdue University

West Lafayette, Indiana 47907

March 1975

CSD-TR 137

\

CAPACITY BOUNDS FOR MULTI-RESOURCE QUEUES

K. J. Omahen

Abstract

A multi-resource queueing system is a single congestion point associated

with a number of resources which may be of different types. Arriving jobs

require some combination of these resources simultaneously for the duration

of the processing time of the job. The capacity bound for such a system,

given the characteristics of the input -stream. is defined as the smallest

input rate which is guaranteed to saturate the system regardless of the schedul­

ing rule which is employed. An algorithm for calculating this bound is pre­

sented which also specifies the proportion of time that the system should

spend in processing various job combinations in order to achieve the capacity

bound. The implications of this result are discussed for a number of

resource allocation problems arising in computer systems.

2

CAPACITY BOUNDS FOR MULTI-RESOURCE QUEUES

K. J. Omahen

This paper examines a type of queueing model which is applicable to

computer systems but which has not previously been described in the literature.

This model, called a multi-resource gueueing system, is characterized by a

congest-ion point which j's associated with a number of different resource types

and by arriving jobs which require simultaneously some combination of the system

resources. In contrast, the previously analyzed queueing models for computer

systems have assumed that, even when there is a network of queues, each

congestion point involves only a single resource type and Jobs require exactly

one unit of the scarce resource. Instances of multi-resource queueing systems

have been independently treated by Omahen [1] and Marathe [2]. and it has been

found that these models are quite difficult to anal¥ze when using methods

from classical queueing theory. This paper focuses on one measure of performance,

system capacity, and describes a method for determining a bound on the capacity

of a system when given the characteristics ,of the job stream. In addition,

this method also determines the proportion of time that the system should spend

in processing various combinations of jobs if the capacity bound is to be

aChieved. The results are pleasing in their simplicity and offer insights

into a number of different resource allocation problems arising in actual

computer systems.

Notation and Terminology

This paper will first examine a basic model for a multi-resource queueing

system and later demonstrate how the model may be easily extended to treat a

number of realistic resource allocation problems. The presentation will begin

by listing the assump~ions included in the basic model for a multi-resource

gueueing system:

Mode 1 1

(I) The congestion point is associated with several resource types,

and an arbitrary number of units of each resource may be present

in the system.

3

(2) Arrivals request service and require the simultaneous use of some

combination of the system resources.

(3) Arriving jobs belong to one of several classes, where Jobs In the

same class have fixed (and IdentIcal) resource requirements and where

each class has a specifIed interarrlval time distrIbution and

processing tIme distributIon.

(4) There Is no sharing of respurces Tn the sense that an allocation

quantity (I.e., the amount of a resource allocated to a Job) is

associated with at most one job at any instant In time; given that

the" resource requirements of a Job are met, the job progresses at

unit rate.

The following notation will be used to describe a multI-resource queueing system:

I = Number of Resource Types,

R. = Amount of the ith Resource In the System, where I = 1, .•. ,1,
I

J c Number of Job Classes.

For each Job-Class-j, where 1 ~ j ~ J, we further define:

Aj = Arrival Rate for Class-j Jobs,

P
J

= Non-negative Random Variable denoting a Class-J Processing Time,

E(P.) = Expected Class-j Processing Time._ J

VJ • (rjl'rj2·····rjl)

= Resource Request Vector for the Jth Job Class Indicating that rjl units

of Resource-T are required. rj2 units of Resource-2. etc., where

O<r •• <R 1•
- JI -

The overall arrival rate for jobs of all classes, A, is given by

J
A • E

j-l

Given the overall arrival rate A. the proportion of jobs which belong to a

particular class Is given by

f. = A.fA where 1 < J < J .
.J J - -

Having given the necessary notation for describing the system resources and the

characteristics of the various job classes, attention will noW be focused on

the manner in which ~omblnation5 of jobs may be concurrently processed. Define:

4

[nk1 , nk2 '···. nkJ] = Job Combination k consisting of n
k1

jobs of

Class-l. nk2 jobs of Class-2, etc.

A feasible job combination k is one having the following property:

J
r

j=1
= 1 to I.

The above requirement states that no combination of jobs can be concurrently

processe'd if the total' resource requirements exceed the number of resources

present in the system.

S = Set of all (distinct) feasible job combinations for the system.

M= Number of Job Combinations contained in Set S.

If the amount of each resource type is finite and if each job class requires

the use of some system resource, then Mwill have a finite value. The state

of the system at any point in time wilT be described by the job combination

which is being processed by the system at that moment. The feasible job com­

binations will be very important in the remainder of the paper because, once

these combinations are known. we need not be concerned with the resource re~

quirements of the individual jobs.

Properties of Multi-Resource Queues

Assume that stationary interarrival "time and processing time distributions

exist for each job class; if the system is operating under some arbitrary

scheduling rule and if the system is nonsaturated at input rate A. we define

the following steady-state probabilities:

1TO(A) = Pr[System is idle]'

1T (A) = Pr[Job Combination m i~ in progress]. where 1 ~ m ~ M.
m

Suppose that certain of the job stream parameters are manipulated in the

fol lowing manner: the parameters f., j = I. 2 •...• J are held constant, and
J

the processing time distribution is also fixed for each class, but the overall

arrival rate (and consequently the parameters of the interarrival time dis­

tributions) is allowed to vary. In such a situation the system will be described

as having fixed job stream characteristics. For a gIven scheduling rule and

fixed job stream characteristics, the capacity of the system will be defined

as the overall input rate A t such thatsa

= Max
• CA)

m

5

The capacity_bound A
max

for the multi-resource queueing system Is defined as

the infimum of the overall input rates at which saturation is guaranteed to

occur regardless of the scheduling rule which is employed. Although it may

not be obvious at this point, it is very possible that saturation will occur

under a given scheduling rule at overall input rates less than that given by

the capacity bound for a given set of job stream characteristics. If, however,

the capacity A t under a specified rule is equal to the capacity bound A
sa max

for all job stream parameters. the scheduling discipline is said to be a full-

capacity rule.

If we consider the properties of the multi-resource queueing system, it

becomes apparent that the system will be characterized by a variable-service

rate which is a function of both the number and types of jobs which being

concurrently processed at any instant, i. e., the system state given by the job

combination in service. An interesting consequence of the above feature is

that the performance of a scheduling rule is a function of the manner in which

combinations of jobs are chosen for servicing; in reference [1] the concept of

assigning priorities to job combinations was found to be a useful for describing

various scheduling rules for multi-resource systems. Furthermore, a scheduling

rule may be unable to achieve full capacity even though there is no overhead

in switching between jobs. In the case of a single-server queueing system, any

discipline which involves no overhead in switching between jobs and no inserted

idle time will be a full-capacity rule.

A method for determining the capacity bound for a multi-resource queueing

system under fixed jcb stream characteristics will be next presented. It will

be seen that this will involve determining the proportion of time that the

system should spend in processing various job combinations.

THEOREM 1. Assume that the relative input rate f j and expected processIng

time E(P.) are ·constants for each Job class-j. The capacity bound A
J max

for the system is the solution of the following Linear Program:
M
E C *. CA)

m=l m m

for I < m < M

such that

M,
m=l

/

6

and

M
E

m=1

where

A .on (A) = 0
ffid m

for 1 ::. j ~ J-I,

and

n • }: I{.~ f.*E(P.)}
ffiJ I; J=1 J J

for 1 < m < M

A . = n ./[f.*E(P.)] - n .+I/[f.+I*E(P.+ I)]
mol ffiJ J J md J J

for 1 < m < Mand I < j < J-l.

PROOF. Assuming that there is zero overhead in switching between jobs,

the following equation must hold when the system is nonsaturated at input rate A:

M
~O(A) + r ~m(A) = 1, where TIO(l) ~ 0 and TIm(A) ~ a for m=1 to H.

m=l

A conservation equation may be obtained for each Job class by applying Little's

Equation [3] to the processor system; the conservation equation may be stated

as follows:

[Expected no. of Class-j jobs in progress] =

[Arrival rate for Class-j jobs] * [Expected Class-j Processing Time].

Therefore, the set of state probabilities must also satisfy the conservation

equation for each Class-j, where 1 ~ j ~ J; the Class-j equation appears below:

If the system is operating under some scheduling rule j, the system capacity

A • will be the input rate at which the following equations hold:max)

1imit
At).. .

maxJ

M
E

m=l
n (Al = I,

m
and 1imi t

AtAmaxj

The capacity bound).. for this system is the infimum of the input rates atmax
which the system is guaranteed to saturate, and this bound will be the largest

7

capacity that could be achieved by any scheduling rule that might be used.

It follows that the capacity bound A will be the largest input rate Amax
for which a set of state probabilities may be found whIch satisfy each of the

J conservation equations and also the equation

M
E

m=l
,(A)=I.

m

The capacity bound then becomes the solution of the following Linear Program:

A = Max Amax
A,lT (A.),m

for 1 < m < M

such that

M •
E , (A) =] .

m=] m

and

M
E

m=l
n .*, (A) = Af.E(P.)

rnJ m J J
for every Class-j such that I .:::. j < J.

Note that A is a dependent variable in this formulation of the problem because

the value of A is completely determined by the values assigned to the state

probabilities. Therefore, !he statement of the problem much be modified in

order to be amenable ,to solutions by means of existing Linear Programming

software. The procedure described below is intended to remove A from the

formulation of the Linear Programming problem. If one equates the sums of

the left- and right-hand sides, respectively, of the J constraint equations

obtained by application of Little's Theorem, the following equation results:

M J
E '(A)* E

m=l m j=l

J
n

mJ
• = A"E f.*E(P.) •

jc] J J

Solving for A, one obtains:

M
A = " C *, (A)

m=J
m m

where
J Jf" n ·}/f " f,'E(P.)}j=1 mJ J=1 J J

8

for 1 < m < M.

The above equation for A represents the objective function to be maximized,

and the problem now becomes one of maximizing th~ expected amount of concurrent

processing in the system. Each of the J constraints can also be solved for A,

and the jth equation (from Little's Theorem) is"given by

1 - [J/(f.-Elp.»]
J J

M

"m=1
n .", IA)

mJ m '
where l:5.-j < J.

By equating the jth and (j+l)th representations of A, where I ~ j ~ J-l. and

rearranging terms, one obtains the J-l constraint equations given below:

M

m:l Am,jt'm(A) = 0 where Am,j = nm/[f/E(Pj)] - nm,j+I/[fj+I·E(Pj + I)]

and 1 .::. j .::. J-l

The statement of the Theorem then follows directly. Q.E.D.

The above theorem specifies a method for determining the capacity bound

for the system, given fixed job stream characteristics. There are a number

of observations which can be made concerning the implications of the theorem.

Because the statement of the LP problem contaIns J constraint equations, at

most J of the variables (i.e., the 1T. (A) terms) will be non-zero in value.
I

The set of values found for the 1T. (A) terms will be referred to as the solution
I

set of state probabi"lities, and each 1T i (A) value specifies the (long-run)

prop~rtion Qf time that the system should spend in processing the lth job com­

bination in order to achieve the capacity bound. One additional warning must

be included: there is no guarantee that the solution will be unique. If the

maximum occurs at more than one extreme point, it'will also occur at every

convex combination of those points.

The solution set of state probabilities gives insights into the manner in

which the various job combinations should be chosen by the scheduling rule for

the multi-resource system. The scheduling discipline should give preference to

the set of job combinations which includes every combination such that 1T. (A) is
I

9

nonzero in the solution to the LP problem. Conversely, those combinations

assigned probabilities of zero in the solution are lI undesirable'l combinations

which should be avoided whenever possible. The notion of assigning priorities

to job combinations rather than to job classes follows naturally for a multi­

resource queue since the scheduling decision involves the choice of a combination

of jobs for processing. If a discipline i!ii to achieve full-capacity, one

would expect that the IldesirableJi combinations be given higher priority than

the Il undes i rab 1ell ones.

An alternative view may be taken to arrive at the representation for

the capacity bound. In reference [2], Marathe suggested a measure of performance

for multi-resource queues called load factor and defined as the (steady-state)

proportion of time that the system is busy (non-idle). In that study of

certain multi-resource queues, it was found that two disciplines under identical

loads could have load factors which varied greatly. The load factor may be

considered to be a measure of the concurrent processing which takes place,

where smaller load factor implies greater concurrency. Suppose that we have

a multi-resource queue under nonsaturated operating conditions. If the Job

stream characteristics are fixed as described previously, there will be some,
lower bound for the load factor that could be 'achieved by any discipline. Define:

Pmin(A) = greatest lower bound for the load factor at input rate A,

given fixed job stream characteristics and arbitrary scheduling

rule.

Using the terminology defined for the previous theorem, the above quantity

can be. determined as described below:

COROLLARY The quantity P . (;\) is found as the solution of the
m' n

following Linear Programming problem:

M
P
min

(>,) = MIN E n (>.)
n (>.) m=l m

m

for 0 < m < M

subject to the following constraints

M
E n (>.) = I,

m=l m

10

and

M
~

m=l
n .*rr (A) = A*f.*E(P.)

rnJ m J J
for every Class-j such that 1 < j < J.

Sketch of Proof. Essentially identical to that for the previous theorem,

except that we instead want to minimize the probability of the system being busy.

Given the above result, the capacity bound A is the input rate " such thatmax

1im
AfAmax

P • (A) = I
min

The Corollary should be interpreted as follows: given the characteristics of

the job stream arriving at a multi-resource queue, the steady-state syste~ is

guaranteed to be busy with probability greater than or equal to p . (A). It
min

is of course possible that the system will be busy with steady-state probability

greater than p . (;>.,) for a specified schedul jng rule.min
An alternative multi-resource queueing model will be next presented which

is particularly relevant to contemporary computer system architecture; the

following assumptions form the basis for this mod~l:

Model 2

(1) The congestion point is associated with several resource types, and

an arbitrary number of units of each resource may be present in

the system.

(2) Arrivals request service and require the simultaneous use of some

combination of the system resources.

(3a) There is one class of jobs having some specified interarrival time

distribution. Furthermore, a set of Job states are defined for

these jobs, where each state has fixed resource requirements and a

processing time distribution to describe the time between state

transitions. The transitions between states are assumed to take

place immediately upon entry of the job into the system and upon

the completion of processing in a particular job state; the next

state is chosen via a Markov process described by a routing transi­

tion matrix.

II

(4) There is no sharing of resources in the sense that an allocation

quantity is associated with at most one job at any instant in time;

given that the resburce requirements of a job-state met, the job

progresses at unit rate.

By comparison with Model I, it may be seen that Hodel 2 differs only in the

third of the above assumptions. The notation presented for the Theorem has

the following meaning for Hodel 2:

h = Overall Arrival Rate for jobs,

= Number of Resource Types,

R. = Amount of the ith Resource in the System. where i D 1•...• 1.,
J = Number of different Execution States possible for jobs.

For each Job-State- j. where 1 :5.. j ..::. J. defi ne:

Non-negative Random Variable denoting a State-j Processing Time

(i.e.) time between entry into State-j and the instant at which

the next transition takes place).

Expected State~j Processing Time.

P.•
J

E(P.)~
. J

V. "" (ro
l
, r.

2
•.•.• rOI) ::::: resource request vector for a job in State-j.

J J J J

It is assumed that there are two states in addition to the J Execution States

mentioned above: these correspond to an ini tial state (State-C) for arriving

jobs and a terminating state (State-(J+l). Upon entering the system an

arrival immediately makes a transition from State-O to one of the other states,

and a job leaves the system upon exit to State-(J+l). A routing transition

matrix Q describes the manner in which the state transitions take place. where

an element q(k,£) of the matrix is defined to be:

q(k,£) "" Probability that a job in state-k goes into state-t at the

next transition. where 0 < k 2 J. < £ 2 J+l, 0 ~ q(k,£) < 1, and

J+ I
E q(k,') ~

kol
k:::::O.l •... ,J.

Each job will sequentially enter a number of different execution states, and it

would be desirable to know the effective rate at which jobs enter these various

12

execution states. Define:

f. = Expected Number of Times that a job"will enter State-j.
J

The set of f. terms must satisfy the following relations:
J

f j = q(O,j) +
J
[fk*q(k,j)

k=l
where l.:=..J <~.

Referring to the terms on the right-hand side of the equation, it may be seen

that the expected number of. times that a job enters state-j equals (a) the

expected number of times that state-j is entered from the initial state. plus

(b) the expected number of times that state-j is entered from each state-k.

where 1 < k < J. Given the transition matri~ Q, we may determine the corres­

ponding values for the f. terms by solving the set of simultaneous linear
J

equations. In contrast to Modell, the only restriction on the f. terms for
J

Model 2 is that they be required to have non-negative values since they are no

longer probabilities.

When specifying the combinations of jobs which may be concurrently pro­

cessed, it will be necessary to describe the number of jobs in each of ' the
,

possible states that are involved in the combination. A job combination may

then be described by

[nml , nm2 ,···, nmJ] = Job-Combination-m consisting of nm1 jobs in

State-I. nm2 jobs in State-2, etc.

As in Model I, a feasible job combination is defined as a job combination

whose total resource requirements can be met by the resources in system, and

we again define:

M = Number of distinct feasible job combinations.

The Theorem and Corollary apply to Model 2 by merely replacing the words

"Job-Class-j'l with l'Job-State-j". Model 2 appears to be a generalization of

the Markov i an Network Mode f s wh Ich are frequent 1y used to ana Iyze computer

systems. Model 2, however, embodies a more complex form of resource allocation

than the usual Markovian Network Model in which it is assumed that a job in

any particular state requires one unit of exactly one resource type.

13

There are two additional forms of resource allocation which will next

be considered: resource-sharing and resource-multiplexing. These two cases

wi 11 be discussed below in detail, but informally these two situations may be

thought to correspond to the usual cases of llsegment-sharing" and Ilprocessor­

sharing ll as take place in multiprogramming computer systems. The effect of

these forms of resource a11ocation will be discussed with respect to Model 2.

Resource-sharing is intended to deal with the situation in which a

quantity of some resource is allocated simultaneously to two or more jobs in

such a way as to satisfy the resource requirements of each of those jobs.

For example, reentrant code segments or read-only data segments in a multi­

prograrrming system may be shared in this manner. In this case of resource­

sharing, the jobs simultaneously allocated the segment(s) each proceed at unit

rate, assuming that all other resource requirements are met.

Consider the effect of segment-sharing for jobs in some combination-m:

[nml , nm2 ,···, nmJ] = job-combination-m consisting of n
ml

jobs in state-I,

nm2 jobs in state-2, etc.

Suppose that the lth resource, say primary memory, corresponds to a resource

affected by the resource-sharing. Define:

w . = Total amount of the ith resource required by the jobs in combination-m.m,
If resource-sharing is taking place, it should be expected that

w • <m,
J
[

j-j
n .*r ..

mJ J I

,

where the right-hand term represents the resource requirement with no sharing

of any allocation quantity. The net effect of this form of resource-sharing

is that the number of feasible job combinations may possibly inc"rease. If this

increase does take place, the additional job combinations will offer greater

opportunities for concurrency (in turn, the capacity bound may then take on a

larger value).

Resource-multiplexing is aimed at cases in which a quantity of some

resource is allocated to two or more jobs, 'but where these jobs do not progress

at unit rate because that al location quantity is multiplexed (over time) among

the jobs. An obvious example is the sharing of a processor by jobs in primary

memory of a multiprogramming computer system; whether a round-robin discipline

14

or some other rule is employed, each Job appears to receive only a fraction

of the processor power during a given interval. At this point some additional

terminology should be introduced. Define:

e . = Average rate at which each job In state-j progresses during the
mJ

servicing of job-combinatlon-rn.

"" Steady-state probab iIi ty that a job in ·state-j is progress i n9 at

unit rate at a random instant, given that job-combination-m is in service.

If one considers a feasible job-combination-m. it becomes apparent that the

following relation must hold when resource-multiplexing is taking place for

the ith -resource type:

J

"j,1 n .*r .. *e j < R••
rnJJlm-1

That is, during an interval in which the ~th job combination is in service, the

multiplexed resource usage over time cannOt exceed the total available resources

over that same interval.

The two additional forms of resource allocation will next be included in

a variation of Model 2; the assumptions of Model 3 are given below. When

compared to Model 2, Model 3 may be noted to have a slightly modified fourth

assumption, and additional fifth and sixth assumptions to deal with resource­

sharing and resource-multiplexing, respectively.

Model 3

(I) The congestion point is associated witn several resource types, and

an arbitrary number of units of each resource may be present in the system.

(2) Arrivals request service and require the simultaneous use of some

combination of the system resources.

(3a) There is one class of jobs having some specified interarrival time

distribution. Furthermore, a set of job states are defined for

these jobs, where each state has fixed resource requirements and a

processing time distribution to describe the time between state

transitions.- The transitions between states are assumed to take place

immediately upon entry of the job into the system and upon the com­

pletion of processing in a particular job state; the next state is

chosen via a Markov process described by a routing transition matrix.

15

(~a) If the resource requirements of a job are met and if the necessary

quantity of each resource is allocated solely to that job, the job,
progresses at unit rate (i.e., no r&.source-sharing or resource­

multiplexing).

(5) If resource sharing takes place and a quantity of some resource is

simultaneously allocated to two or more jobs (thereby satisfying the

resource requests of those jobs. and assuming no resource-multiplexing),

those jobs progress at unit rate.

(6) If resource-multiplexing (with or without resource-sharing) takes

place for certain jobs, those jobs progress at a rate (less than one

in value) which is a function of the job combination in.service and

the job-state.

The main theorem presented earlier in the paper requires only minor modifications

for Model 3. As noted earlier, resource sharing will require that the set of

feasible job combinations calculated in a slightly different manner. In

addition, the emj terms must be included in the statement of the Theorem as

shown below:

stants for each job-state-j. The capacity bound

is the solution of the following Linear Program:

state transition matrix

the relative input rate f.
J

Q) and expected processing

THEOREH 2. Assume that (calculated from the

time E(P.) are con­
J

A for the system
max

H
A = Max " C ", (A)
max , (A) m=1

m m .

m

for < m < M

such that

M

" , (A) = I •
m=1 m

and

M

" A .", (A) = 0
m=l m,j m for 1 .::.. J < J-l

16

where

and

c =
m

f.*E(P.) }
J J

for 1 <: m < M

for 1 em < Mand 1 <: j < J-l.

Sketch of Proof. The derivation is nearly identical to Theorem 1j the

only change is·that the application of Littlels Theorem for jobs in state-j

gives the following constraint equations:

M
E n .*. (h)*e . = A*f.*E(P.)

m=l mJ m rnJ J J
for every job-state-j such that 1 < j <: J.

!n the above statement. the convention is adopted whereby the rate at which a

job in state-j progresses when job-combination-m is in service is taken to be

unity in the absence of resource-sharing involving that jobj that is,

(job progresses at unit rate) if there is no resource-sharing.e . " ImJ

It may be seen that it is reasonable to use the interpretation of

" probability that a job in state-J is progressing at unit rate at

e . as the
mJ

a random

instant during the servicing of combinatiofl-m."

Discuss"ion and Examples

The capacity bound for a multi-resource system may be calculated using an

alternative algorithm which is simpler but which does not supply any informa­

tion concerning the manner in which the bound may be achIeved. Consider Model

introduced earlier; at saturation at least one of the resource types will be

100% utilized. For each resource type, one may find the smallest input rate

which would cause that resource to be fully utilized. The capacity bound

then becomes the minimum of those input rates calculated to c~use full utiliza­

tion for the resource types in system. Using the notation introduced for Modell,

we proceed as follows. Define:

17

A(i) = input rate which causes the ith resource type to be 100% utilized,

where "" 1, 2..... I.

The expected number of units of the ith resource which are allocated to jobs

at input rate A(i) must be less than or equal to Ri , the total number of

units of resource-I present in system. That is, the following relation must hold:

J
E

j=l
l(i)*f.*E(P.)*•.. < R.

J J I J I

It follows that

J

{ E f."E(P.)* •.. j
. I J J I JJC

and

A "" MIN[h(l), h(2) •...• A(t)] where MIN denotes the smallest of the
max

I arguments.

This method, however, offers no insights into how a scheduling rule should go

about giving preferences to the possible job combinations which might be

serviced.

Two specific systems will be examined next in order to illustrate the

application of the general method described in Theorems 1 and 2. These

examples will demonstrate that one may obtain a number of insights into system

performance through the use of the method.

Two CPU System With K Units of Memory

A bound on the capacity of a multi-resource system of the type described

by Modell will now be determined for the case in which the'system resources

consist of two CPUs and K units of memory. The system resources are therefore

described by the notation given below:

R
j

= 2,

= Number of CPUs in the system.

RZ = K.

= Number of blocks of memory in the system

The jobs arriving to the system will require the simultaneous use of one

Central Processing Unit and a number of units of memory which varies as a

18

function of the class to which the job belongs. There are K classes of

arrivals, and these classes correspond directly to the size of the memory

request associated with jobs within the class. The characteristics of each

job class are described

where integer j is such

Non-negative Random Variable denoting the Processing Time required

A. = Arrival Rate
J

P. :::
J

by the notation given below; for jobs of Class-j,

that 1 ~ j ..::.. K, define:

for Class j Jobs,

by a Class-j Job,

E(P.) = Expected Class-j Processing Time,
J

(l,j) = Request Vector for a Class-j Job indicating that one CPU and j units

of memory are required simultaneously by each Class-j Job.

The overall arrival rate wi II the sum of the arrival rates for the individual

job classes, and this quantity will be indicated as shown below:

K, = L L =
j=l J

Overall Arrival Rate for Jobs of all Classes.

Given the above representation for the overall arrival rate, the proportion of

jobs from the overal I input stream which belong to a particular class will be

designated as follows:

f. = A.fA
J J

::: Proportion of overall input stream which represents the contribution

of Class-j Jobs, where 1 ::. J .::. K.

Before presenting a theorem for the capacity bound of the above system,

some observations will be made concerning the characteristics or major features

of this problem. The resource requirements of the various job classes are

such that at most two jobs may be concurrently processed, and the memory

requests associated with the two jobs must not exceed the total number of units

of memory in the system. In.determining the bound on system capacity, the

primary objective will be to maxim"ze the amount of concurrent processing

which takes place in the system. This problem, in turn. is equivalent to

"balancing" the workload associated with large jobs with that for small jobs.

It may be noted that the larger the memory requirements of a job class. the

smaller the degree of freedom in the choice of small jobs in order to achieve

concurrent processingj for example, jobs of Class (K-l) can only be processed

19

with Class-l jobs, but Class-(K-2) Jobs may be run with either Class-lor

Class-2 jobs. 115mal,.1 jobs which r-equire no more than half of the total

avai lable memory pose no serious problems because any pai r of these Iismall"

jobs can always be processed concurrently.

THEOREM 3. Assume that there is a stationary distribution for the

processing times associated with each job class and that the jobs of

each Class-j constitute a fixed proportion f. of the overall input
J

stream. The capacity bound A for the two CPU system with K unitsmax
of memory is given by

J
). = (L

max j=l
f.E(P.) +

J J

L
L

j=1
+

where J = INT[K/2] = integer part of K/2,

L = INT[(K-l)/2],

and where variables 6
K
-

1
through 6K- L are calculated iteratively as shown

below:

and for 2 < j ..::. L,

= MIN[f K .E(PK .), f.E(P.) +
-J -J J J

PROOF. See Appendix.

j -I
[

i=1

The results given in THEOREM 3 may be described in a slightly different

manner using intuitive arguments. For each job-class-j, where l..::.j .::.K,

define variable p. a"s follows:
J

Pj =. H/(Pj),

= Average amount of Class-j work (i.e., processing time requests)
I

arriving to the system per unit of time.

20

The capacity bound can only be achieved by a rule which results in a maximum

amount of concurrent processing. This is accomplished by maximIzing the sum

of the probabilities that a small job and a large job are processed simultaneously

and by insuring that a small job is never processed alone (more accurately,

the probability that a small job is processed alone approaches zero as the

input rate approaches>.). Consider the situation in which), = A ,andmax max
define variable Yk . for I <: j ~ L as given below:

-J -

YK • = ASK' for _< j <: L.
-J -J

It then follows that

and for 2 < j .:5.. L.

j -I
E

j""'l
(p • -Y

K
.) J•, -,

The representation for A in Theorem 3 implies that the following equation holds:max

J L
, ,,{ E f.E(P.) + E

max • I J J . I
J"" J=

L
E

j=l
[fK .E(PK .j - 8K .J J =

-J -J -J

This equation, in turn, may be written as

J
E

j= I
p. +

J

L
E

j=l
+

L
E

j=l
= 1.

The above equation is valid at input rate A • and the form of this equationmax
may be explained by viewing the system operation over a unit interval of time.

The details of system operation on a job-by-job basis will be ignored; instead

only the p. terms wi 11 be considered. The equation may be interpreted as
J

follows:

{total work performed with two jobs simultaneously in progress}

+ {total work performed with only a single job active} = I.

21

The total amount of work for which it is possible to have two jobs pro­

cessed concurrently will be considered first. All work (i.e., P
J

terms)

associated with llsmal1" jobs of Classes-] through -J is included in this term

because it should always be possible to concurrently process two small jobs,

given that at least two of these jobs are present in the system. The sum of

YK-j terms represents the work associated with "1 arge ll jobs for which i't is

possible to process concurrently with work associated with small jobs; note that:

Y - Maximum amount of Class-(K-l) work which can be processedK-I -
simultaneously with Class-l work per unit of time.

YK-j = Amount of CJass-(K-j) work which can be processed concurrently

with work associated with Classes-l through -j, per unit of time.

Refer to the representations for the YK . terms which appear above; these
- J

illustrate an optimal rule for matching work-loads presented by large jobs with

those of small jobs. Class-l jobs will be processed with Class-(K-l) jobs

whenever possible, and term (P l - YK-l) represents any excess of Class-l work

above that amount needed to balance the Class-(K-l) work-load. Similarly,

Class-(K-2) jobs will be run simultaneously with Class-2 jobs and the excess

(if any) of Class-l jobs; the term (P 2 + ~Pl - YK-l) - YK-2 is then the excess

of Class-l and Class-2 work. This process is continued in a similar fashion

for the other job classes.

The total work performed with a lone Job in progress includes all of the

Class-K work (which must be processed alone) plus work assodated with IIlargeli

jobs for which it is not possible to have concurrent processing. It may now

be seen that, for 1 .::. j .::. L,

(P
K

. - YK .) = Class(K-j) work which cannot be matched up with work
-J -J

associated with " sma l]!,' jobs of Classes-j through -j.

Theorem 3 may be seen to provide, for this specific system, a solution to

the Linear Programming problem of Theorem 1 which is va1id for a wide range

of values for the f. and E(P.) terms which describe the job stream character-
J J

istics. Theorem 3 also 'is strongly suggestive of the manner in which a

full-capacity rule might operate.

22

A Simple Multiprogrammi~gComputer System

Consider a simple multiprogramming computer system having one CPU, one

I/O File Unit, and eight pages of Primary MemorYi this configuration will be

shown to be an instance of a system described by Model 3. Define:

R
j

= 1,

= Number of Central Processing Uni ts.

R2 = I,

= Number of I/O Fi le Units.

R
J

= 8,

= Number of pages of Primary Memory.

The job stream characteristics are such that jobs may be in anyone of four

execution states (i.e., J = 4) having resource requirements and expected

processing times as specified below:

State Resource Reguirements Expected Processing Time

0 None (I ni t i a 1 State) 0

I (I,D,.) E(p I)

2 (0,1,.) E(P2)

3 (1,0,2) E(p J)

• (0,1,2) E(P.)

5 None (Terminating State) 0

Below is a transition diagram (Figure I) which ill ustrates the manner in whi ch

transitions may occur for a particular job in the system.

• t

3

1....

Figure 1. Transition diagram for jobs.

23

The rout i n9 transition matrix Q is therefore given by

Previous. Next State
State 1 2 3 4 5

0 , 0 (I -,) 0 0

1 0 (I-s) s 0 0 o < , <

Q. 2 I 0 0 0 0 0 < s <

3 0 0 0 (I -t) t o < t <

4 0 0 I 0 0

Recall ing the notat i on introduced earlier, we have:

f. = Expected number of times that a job will enter State-j, and the
J

set of f. must satisfy the J simultaneous linear equations given by
J

f. • q(O,j) +
J

J

" fk"q(k,j)
k·1

where 1 .::.. j < J.

Because of the simple nature of the routing transition matrix Q in this

problem we easily obtain:

f l • 'Is, ('>

f
2

• ,*(I-s)/s,

f
3

• (l-p's)/t,

f
4

• (1-,*s)*(I-tl/t.

Similarly, the feasible job combinations may be found with little difficultYj

they are listed below for reference:

Combination
Number

I
2
3
4
5
6
7
8
9

10
II
12
13
14

Description

[0,0,0, I]
[0,0,1,0]
[0,1,0,0]
[1,0,0,0]
[0,0,0,2]
[0,0,1,1]
[0,0,2,0]
[0,1,0,1]
[0,1,1,0]
[0,2,0,0]
[I,p,O,1]
[1,0,1,0]
[1,1,0,0]
[2,0,0,0]

Combination
Number

15
16
17
IB
19
20
21
22
23
24
25
26
27
28
29

Description

[0,0,0,3]
[0,0.1,2]
[0,0;2,1]
[0,0,3,0]
[0,1,0,2]
[0,1,1,1]
[O,l,2,OJ
[1,0,0,2]
[1,0,1,1]
[1,0,2,0]
[0,0,0,4]
[0,0,1,3]
[0,0,2,2]
[O,O,3,lJ
[0,0,4,0]

24

I t also follows that

M= 29 = Number of distinct

Model 3 was described, termWhen

e .
rnJ

feasible job combinations.

e . was defined as
rnJ

= Probability that a job in state-j is progressing at unit rate during

a random instant during the processing of job combination m,

where 1 .:: m.:: M and 1 .:: j < J.

The values for the e . terms in this problem have been.chosen as follows. If
rnJ

the job combination m in service contains k(>O) jobs in states which require

the CPU, each of those jobs receives (11k) of the CPU power during that servicing

interval (i.e.) processor-sharing takes' place). Likewise, for the n jobs in

states requiring the I/O File Unit, the probability that any particular one is

progressing at unit rate equals (l/n) at a random instant. Below are listed

the e . terms which have values which differ from unity:
rnJ

CPU Multiplexing (for jobs in state-l and state-3)

e 7,3 = 1/2, e 12 ,1 • 1/2, e I2 ,3· 1/2, e 14,1 = 112, e 17 ,3 = 112,

e 18 ,3 = 1/3, e 21 ,3 = 1/2, e 23 ,1 = 1/2, e 23 ,3 = 1/2, e 24,1 = 1/3.

e 24,3 • 1/3, e 27 ,3 = 1/2, e 28,3 = 1/3. e 29 ,3 = 1/4

I/O File Unit Multiplexing (for jobs in state-2 and state-4)

e S,4 = 1/2, e 8,2 = 1/2, e 8,4 = 1/2, e lO ,2 = 1/2, e 1S ,4 = 1/3,

e 16 ,4 = 1/2, e 19 ,2 = 1/3, e 19 ,4 = 1/3, e 20 ,2 = 1/2, e 20 ,4 = 1/2,

= 1/4, e 26 4 =, 1/3, "27,4 = 1/2

Given the above information. Theorem 2 may be directly applied to this problem.

In order to obtain sample numerical results, it will be assumed that the para-

meters for the system take on the va 1ues g.j ven below:

E(p I) = r = 0.8

E(p2) = 2 s = 0.6

E(p3) = 3 t = 0.5

E(p4) = 2

25

Using these values. we immediately obtain:

f l = 1.333. f 2 = 0.533. f
3

= 1.040, f 4 = 0.520

There is now enough information to apply Theorem 3. however, we should make

sure to use a Linear Programming software package that works properly when all

constraints are equalities. Let 'Ii. denote the proportion of time that the
I

system should spend in processing the ith combination in order to achieve the

7T max = 0.225

"14 = 0.299

" 21
= 0.240

"28 = 0.234

"29 = 0.228

.-

If we solve the Linear Program for this system, we find

unique; below are two different solutions:

Solution 2

= 0.240

Solution 1

- = 0.225"max
= 0.467

= 0.060

= 0.234

capac i ty bound A •
max

that solution is not

"13
There exist solutions in addition to the above, and it may be noted that, from

the viewpoint of the Linear Program, a number of the combinations are equivalent.

Job combination-m will be said to be equivalent to combination-k (denoted as

nmj*emj = _nkj*ekj for j = l,2, •.. ,J.

If the job combinations are examined, the following "equivalences" rrsy be noted:

I _ 5 - 15 - 25
2 _ 7 _ 18 _ 29

3 - 10

4 - 14

6 - 16 - 17 - 26 - 27 - 28

9 - 21

II - 22
•

This system is CPU-bound, meaning that the CPU is the resource type whose

uti 1ization approaches 100% as the input rate nears the capacity bound. If

the two solutions are examined, one may notice that they seem to differ

markedly in terms of the "degree of multiprogramming" embodied in the combina-
,

tions assigned non-zero values in each solution set of state probabilities.

The equivalence between certain of the job combinations offers an explanation~

26

because equivalent combinations service identical amounts and types or ~ork

'per unit of time. It is also interesting to note that no solution set of state

probabili,ties for this problem (with the given parameters) will have non-

zero values assigned combinations involving only jobs In state-2 or state-q

which require the rIo File Unit. For this reason, combinations I, 3. 5, 8,

10. 15. 19 and 25 may be classified as llundesirable" combinations which should

be avoided. If one were to examine the performance of a full-capacity schedul­

ing rule for this system, it would be expected that the state probabilities

for these undesirable combinations approach zero as the input rate increases

to the capacity bound. Increasing the degree of multiprogramming for a CPU­

bound system indeed has the effect of reducing the state probabilities for these

undesirable states under most scheduling rules. An alternative is to use

preemption to avoid proces~ing the undesirable combinations: whenever a transi­

tion results in all jobs in service requiring the I/O File Unit (leaving the

CPU idle), at least one of those jobs should be preempted with a job requiring

the CPU. The derivation of the capacity bound was made under the assumption

of -zero overhead and arbitrary preemptionj unfortunately, it is often impossible

to preempt certain .system resources at zero cost. It should be expected that

CPU-bound multiprogramming systems will be unable to achieve 100% CPU utilization

without employing the type of preemption described above.

Summary and Further Thoughts

Three different models were proposed for describing multi-resource queueing

systems. For each of these models, an algorithm was given for determining the

capacity bound for the system as well as a solution set of state probabilities

describing an lIop timal" proportion of time to be spent in processing various

combinations of jobs. Two example systems were studied in order to demonstrate

that the described approach can offer a number of insights into the design of

ful I-capacity scheduling rules for such systems. •

Because multi-resource queueing systems have not been previously examined

using the author1s approach, a number of conjectures and observations will be

presented which were first discussed in reference [1].

(1) For a multi-resource queueing system, the scheduling rule should be

concerned wi-th the decision problem of choosing a combination of jobs

to be serviced rather than merely the choice of the next job to go

into service.

27

(2) First-Come-First-Served disciplines for multi-resource gueuelng

systems will not, in general. be able to attain full capacity.

(3) Preemptive disciplines are usually required in order for a scheduling

rule to be of the full-capacity type.

(4) Giving preferential service to a particular job class (or job-state)

may cause the capacity under that scheduling rule to be less than

that specified by the capacity bound.

Reference [4J is recommended for those desiring further information regard­

ing instances of multi-resource queues which have been analyzedj that paper

represents an overview of results independently obtained by Omahen [1] and

Marathe [2]. The author believes strongly that all of the above conjectures

are true and that multi-resource queues are important enough to warrant further

investigation.

28

Bibliography

1. Omahen, K. J. Analytic models of multiple resource systems. Ph.D.
Thesis, Committee on Information Sciences, University of Chicago,
June, 1973.

2. Marathe. V.
quirements.
May, 1972.

P. Priority queueing systems with simultaneous server re­
Ph.D. Thesis, Operations Research, Cornell University,

3. Little. J. O. C. A proof of the queueing formula L=lW. Operations
Research 9 (1961), 383-387.

4. Omaheri, K. J. and Marathe, V. P. A queueing model for a multiprocessor
system with partitioned memory. Technical Report CSD-TR 132, Dept. of
Computer Science, Purdue University. January. 1975.

- 0 l]-IK- jJ

APPENDIX

Proof of Theorem 3.

THEOREM 3. Assume that there Is a stationary distribution for the pro­

cessing times associated with each job class and that the jobs of each Class-j

constitute a fixed proportion f. of the overall input stream. The capacity
J

bound A for the two CPU. system with K units of memory is given by
max

Amax = 1/2[~ f.E(P.) + .~ OK-.J + [fKE(PK) +
j=1 J J J=I J .

where J ~ INT[K/2] = integer part of K/2,

L INT[(K-l)/2],

and where variables BK- 1 through 6K_L are calculated iteratively as shown

below:

OK_I = MIN[fK_1E(PK_1), f 1E(P 1)J

= minimum of terms fK_1E(P K_1) and fIE(P 1),

and for 2 < j ~ L,

= MINrfK .E(P K .),L -J - J

j -I
f.E(P.) + r

J J i= 1

PROOF. The state of the system at any point in time will be taken to be

described by the job combination which is in progress. Assume that the system

is nonsaturated under some input rate Aj the steady-state probability that the

system is in a particular state will be denoted by the following terminology:

nO = Pr[System idle],

n
j

= Pr[Class-j Job being processed along], where 1 .::. j .::. K,

n.. = Pr[Class-i Job and Class-j Job simultaneously in progress],
loJ

where 1 < i .::. j .::. K-l and i + j ~ K.

The above probabilities are really functions of the input rate A and of the

scheduling rule that is employed for the system. Define two new variables J

and L as (in the Theorem) follows:

two jobs fit into the

b) Two small jobs,

c) One large job,

d) One small Job.

2

J '" INT[K/2] = integer part of K/2,

L = INT[(K-I)/2],

The various job combinations may be divided into four classifications, and

the termLnology wi.ll be adopted that a Ilsma ll" job is a job belonging to a

Class-j such that I ~ j .::. J and that a "l argell job is one belo.nging to any

of the classes K-L through K. The four classifications of job combinations are:

a) One small job and one large job (subject to the constraint that the

available memory),

It will be convenient to define variables to represent the sums of the proba­

bilities associated with each of the above classifications; these sums are given by:

L L L j
A = E E

'Ir i ~ K- j = E E 'iT. K •
i=l j=i j=l j-l I, - J

J J
B = E E ••

i=1 j=l I ,j

L
C = E 'K .

j=l -J

J
0 = E ••

i=l
I

The sum of the probabilities over the possible system states must equal unity

under nonsaturated operation, and the following equat i on obviously holds:

'0 + A + B + C + D = l. (I)

In addition to the above equation, the set of probabi I i ties must also satisfy

conservation equations .which are obtained by applying Little's Equation [3] to

the processor system. In this case, Little's Equation may be stated in the

fo 11 owi ng manner:

EIN.) = l.E(P.) - If.E(P.),
J J J J J

3

where N
j

"" Non-negative Random Variable denoting the number of Class-J

jobs in progress,

and integer j is such that 1 < j < K.

The following K conservation equations, one per job class, are obtained through

the use of the above equation; it may be remarked, though, that the set of K

equations will be slightly different d~pending on whether the number of units

of memory. K, has an even or an odd value.

For Class-l Jobs:

1T I . +
oJ

L
L

j=1

For Class-j Jobs, where 2 ~ j ~ L-l :

j-I
1T.+21T .• + E 1r •• +

J J.J i=lloJ

J
L

T=j+l
'IT •• +

J • I

L
E

i=j

If K is even. the two equations below are obtained (L = J-I) for Class-L

and Class-J Jobs, respectively:

L-I
E
j-]

J -1
E

i=1

1T. +1T +n
I,L L,J L,K-L

For K odd, the single equation below is found (L = J) for Jobs of Class-J:

J -I
[

i=l

For Class-(K-j) Jobs, where I < j < L:

j
[

i=l

For Class-K Jobs:

4

By finding the sums of the left-hand and right-hand sides of these K equations

and equating the two results, we obtain:

K
2(A+B) + (C+D) = !. "

j=1
f.E(P.).

J J
(2)

Under any specified discipline
A (. h •rate . I.e .• t e capacItymaxJ .

j. the system will first saturate at input

under that discipline), and it must be true that

= o and limit [A+B+C+D]
At!. .

maxJ

= I.

(4)

At system capaci'ty.'\ . under any particular discipline, the following
maXJ

equation holds in addition to the K conservation equations and Equation (2):

A+B+C+D=1.

Using Equations (2) and (3). it is found that

K
A . = {I + (A+B)} I " f.E(P.).

maxJ j=l J J

The notation given below will be useful in the material which follows: define:

MIN[a.b] "" minimum of a and b,

max(y) = ~aximum value of variable y.

The capacity bound A for this system will be an input rate at which the overall
max

expected waiting time will be infinite for every scheduling rule. By Equation

(4). it is apparent that A can be achieved only by a rule which results in
max

the sum A+B being maximized (alternatively, C+D being minimized). A rule which

maximizes A+B is really maximizing the amount .of concurrent processing which

takes place in the system since A and B are sums of the state probabilities

associated with the concurrent processing of two jobs.

Two additional equations may be obtained by summing both sides of the

conservation equations for jobs of Classes-l through -J and also for Jobs of

Classes-(K-L) through -Kj this procedure gives:

J
D + 2B + A = A E

j=1
f.E(P.).

J J
(5)

• 5

and
L
L

j=!
(6)

By rearranging terms in Equation (5), it is found that

J
A+B={AL f.E(P.)+A-O}/2,

j=) J J

and Equation (6) gives

(])

f
K

.E(P
K

.)} - A.
- J - J

(8)

Equation (7) illustrates that the sum A+B is maximized when the sum A-O

is maximized. It will now be demonstrated that the probabilities of the

various states may always be chosen so that 0 is equal to zero. Recall that

D is the sum of the probabilities that a "small" job is processed alone by

the system. Terms~. and rr .. appear only In the conservation equation for
J J,j

Class-j Jobs, where 1_< j < J. If n. "" E > 0 and iT, • = a > 0, the probabilities
- J J,J-

may be instead chosen so that rr. = 0 and n .• "" a + E/2, and the conservation
J J,j

equation for Class-j Jobs will still be satisfied. It follows directly that the

set of probabilities may always be chosen such that

o = o.
Maximizing A+B is equivalent to maximizing A and minimizing D (i.e., to value

zero) as can be seen from Equation (7). Substituting Equations (7) and (8)
into Equation (3). the following equation is valid at A: A

max

J
112 {A L

max. 1
J=

+ max (A}}

= I.

L
L

j=l
fK-/(P K- j)] - max(A)}

(9)

A procedure will now be. given for determining the va')ue max(A) for

input rate A; in order to simplify the description of this procedure it will be

convenient to define a function which represents various partial sums of the

terms included in A. For integer n such that 1 < n ~ L. define:

n
S(n) = L

j=l

j
L

i-I
n. K ••
I. - J

It may immediately be seen that

A = S(L),

6

(10)

•

and that the following relation holds for the function Sen) when 2 ~ n < L:

Sen) = S(n-I) + rr K +n, -n

n-l
E

i=l
rr. K
I. -n

(II)

When describing the procedure for finding max (A) for some Input rat~ A, it

will often be necessary to find the sums of both the left- and right-hand

sides of certain of the conservation equatlonsj by equating the two sums, it

will then be possible to obtai" inequalities which gives bounds on the values

of the state probabilities.

The maximum value for 1T. K 0' where 1 _< j _< L, may be easily found from
J, -J

the conservation equations for Class-j and Class-(K-j) Jobs. The conserva-tion

equation for Class-j Jobs implies that

rr. K . < If.E(P.),
J,-J- J J

and similarly the equation for Class-(K-J) jobs gives

From the two inequalities above. it must be true that

(12)

where 1 .:=.. j ~ L.

Consider the conservation equations for Classes-I through-n, where 2 ~ n ~ L.

By first summing the left-hand sides of these n equations. then finding the

sum of the right-hand sides, and finally equating the two sums, a new equation

is obtained. The resulting equation shows the inequality below to be valid:

n-1 n-I
E rr. K < 1 E f.E(P.) - S(n-l) .

1=1 I.-n- j=l J J

.
The equation for Class-(K-n) jobs immediately gives

n-l [n-l
L n. K < MIN A ~

i=1 I, -n - j=1
f.E(P.)-S(n-l), lfK E(PK)- rr K]
J J -n -n n,-n

(13)

.. 7

Equation (11) and Inequality (13) imply that

S(n) :'.. S(n-I) + 'n,K-n + MIN[h:~: f/(Pj)-S(n-n, HK-nE(PK-n)-'n,K-n]

The terms on the right-hand side of the above inequality may be rewritten

in the two forms shown below:

Sen)

or

~
n-I

:'.. MIN h" f.E(P.) +
j= 1 J J

'lrn,K-n •

S(n)
[

n-I]
< S(n-I) + MIN h" f.E(P.) +. K -S(n-l), hf K E(PK)
- . J J n -n -n-n

J= 1 J

The first of these two forms makes it obvious that Sen) is maximized when both

• K and 5(n-1) are maximized. We therefore find that. at input rate AI
n. -n

the relation for the maximum value of Sen) is given by (for 2 < n ~ L)

max(S(n» = max(S(n-l»

+ MIN[,n~1 f.E(P.)+max(. K)-max(S(n-l», HK_nE(P K_n)], (1.)
j=l J J n, -n

and Equation (12) gives

max('n,K_n) = h"MINfnE(Pn)' fK-nE(P K- n)] for I < n < L.

If one observes that

max(S(1» = max('l,K_l) = h*MIN[fIE(P I), fK_1E(P K_I)]

it is clear that the maximum values for 5(1) through sell may be calculated

iteratively to finally obtain max(A), Given the procedure for calculating max(A),

we wish to modify the procedure slightly in order to show the manner in which

max (A) varies as a function of the input rate A. Equation (14) may be rewritten

as shown below:

max(S(n» = max(S(n-l»

f.E(p.)-maX(S(n-l»].
J J

(15)

8

Equation (15) is obtained by noting that

,
•

f.E(P.) - max(S(n-T)),
J J

HIN[X+HIN[Y,zl,zl - HIN[X+Y,X+Z,ZJ = HIN[~+Y,Z]

n-I
where X '"). I:

j-T

Y = H E(p),
n n

I f X ::.. 0,

and Z~HK_nE(PK_n)'

By equating the sums of the left- and rIght-hand sides of the conservation

equations for Classes-! through-n, it may be verified that

n-T
X • A E f/(P

J
.) - max(S(n-l») ~ O.

j·T
The procedure for calculating max (A) may be restated; define 6K . for

-J
< j 2. L as given below:

8K- T - HINrK-TE(PK-l)' fTE(P T)] ,

and for 2 2. j .::. t,

= HIN~K .E(PK .),l -J -J

Using these new variables. an alternative method for stating the procedure

for calculating max (A) may be given. First note that

n
max(S(n» = A E 8K_

jj-)

and therefore

L
max (A) • A E 8

K-J'j·T

for 1 :::.. n .::. L.

where 6
K

-
1

through 6K- 1 are calculated iteratively

as described above.

The value of max (A) for A

a first order equation in

'" A may bemax
A results.

max

substituted into Equation (9). and

Solving for A ,the proof Is complete.
max

Q. E.D.

	Capacity Bounds for Multi-Resource Queues
	Report Number:
	

	tmp.1307986960.pdf.LwsfN

