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~bstract: Fleck [2] suggested that the structural properties of grammars could
be measured by the relative complexity of their derivation languages. ;-1oriya [6]
ranked context-free grammars within an infinite hierarchy by appealing to this
measure. We present a similar measure based on left(right)-most derivations.
The structural complexity of a context-free grammar is given by its "left(right)­
degree" which is strongly related to the nature of its left(right)-most deriva­
tion language. Our measure appears to be "natural" in the sense that each
structural complexity class defines a full AFL. The measure is applied to obtain
the relative complexity of a grammar and an equivalent grammar in Greibach form.



The function Vn applied to w specifies the maximum number of nonterminals
that could appear in a sentential form at some step of n when treated as a
derivation from w.

Definition 3. Let G = (V,E,P,a). L(G) denotes the language generated by G,
while ~(G), ~l(G) and ~r(G) are respectively, the languages of all derivations,
left-most derivations and right-most derivations of G.

9(G) = (,

9,(G) = (,

9.(G)={'
r

,
o~xEL(G)l,

a G~lm'XEL(G)},
,

o~xEL(G)l.G.rm

Definition 4. Let G = (V,E,P,a) be context-free. For each integer k ~ 0
the languages of k-bounded derivations, left-most derivations and right most

derivations are denoted, respectively, by g;(k) (G), 9"1 (k)(G) and 9
r

(k)(G)
and are defined as follows:

9(k) (G) = ['E9(G) I ",(0) .: kl.

9 (k) (G) = ('E9,(G) '" (0) 2 k}, and, ,
9 (k) (G) = ('E9! (G) r v

1T
(a) < kr r

Definition 5. Let G = (V,E,P,a). G and L(G) are said to be:

(a) nonterminal bounded (ntb) if ~(G) =9(k) (G) for some k ~ O.
the notions of left-most and right-most nonterminal bounded
(lntb,rntb) grammars are analogously defined.

(b) derivation bounded (db) if there exists k > 0 such that for

every xE L(G) there exists 1T Eg(k) (G) such-that
x

'x
a.--.x.

G

Theorem 1. Gis ntb(1ntb,rntb) if and only if g(G)(~l(G)'~r(G» is regular.

Proof. The result for ntb grammars can be found in Banerji [lJ and Fleck [2J.
The result for 1ntb and rntb grammars is given in Mariya [6J.



Definition 6.
are defiol'u on

Let G = (V,E,P.a) be
Vas follows:

context-free.

(I;l,I'~)Efl2.(n If ;IIlU llilly if,

+ *(1) t\ -=c=+ uG I vfiZW for some uw E: (VU>:) or

(2)

lJ. (G) is
r

+ I ,+ I
B _. ---.uB 1 vand Bl-cr+xBlyeZz for some1 G _

defined by replacing uelveZw and xBiYBZz

*BiEV and uvxyzE(VU[)

by their reverses.

Definition 7. Let ~.2.' ~r and ~denote respectively,

context-free grammars for which lJ.~(G) is irreflexive,
G is derivation bounded.

the class of all reduced

d (G) is irreflexive andr

Theorem 2.

Proof. A context-free grammar is said to be nonexpansive if for every nonterminal,

13, 13 +1.' implies 111.'11 13 "::' 1. Ginsburg and Spanier [q] have shown that G is

db if and only if G is nonexpansive.
is nonexpansive if and only if lJ.~(G)

It follows easily from definition 6 that G
and lJ. (G) are irreflexive.

r

Definition 8. Let S be a set and R a relation on S. For each sES define,

C(s,R) = {k I there exists a sequence s = sO,sl •...• sk' k ~ I, elements of S

(not necessarily distinct) such that (si_1.si) R for 1 ..::. i ..::. k},

deg(s,R) = =, if C(s,R) is infinite;

Max C(s,R), if C(s.R) is finite and nonempty;

o if C(s,R) is empty.

Lemma 1. Let G = (V,E,P,a) be a reduced context-free grammar, then

(1)

(2)

(3)

(4 )

lJ. (G) and lJ. (G) are transitive.
• r
GE~(~) if and only if deg(a,lJ.~(G» (deg(a,lJ.r(G») is finite.

deg(a,lJ.t(G» ~ deg(B,lJ..t(G» for all eEV (similarly for lI. r (G».

If GEjr,(!!1:), then (S,S')E6,(G)(6 (G» implies
t r ~ r

deg(8,lJ.~ (G» > deg(e ' ,lJ.9. (G» (similarly for lJ.r(G».

Proof. (1), (Z) and (3) are iltllRediate from definitions 6 and 8. (4) follows
directly from the irreflexive and transitive properties of !J.t(G) and lJ.r(G).



Definition 9. Let G = (V.E,P,a) be a reduced context-free grammar. The left­
degree and right-degree of G, denoted !deg(G) and rdeg(G). respectively, are
defined by,

For k < m we define,

'deg(G)
rdeg(G)

= deg(a,ll! (G»
• deg(a,. (G».

r

.0/, (k) = (GE'9', I 'deg(G) 2 k),

!9;,(k) = (GE'9'r I rdeg(G) 2 k},

~ (k) = (L(G) I GE~ (k) ),

M (k) (L(G) I GE~ (k».
r r

The classes ~(k)(~(k» and ~t(k)(~(k» are called respectively, the~

(right) dominant grammars and languages of degree - k.

Theorem 3. Let.5zfdenote the class of all linear languages.

(1) y~ M', (k) ~ M, (k+l) for each k ~ O.

(2) tfI (k) is a full AFL (Abstract Family of Languages) closed under

regular substitution for each k ~ o.
(3) Let La = {a~O(cOdOeO)n I n ~ I}. and for each k > ° let

Lk = {a~bk(ckdkek)n I n ~ I} and Lk = ,(Lk), where T is the substitution

defined by ,(a) = {a} for all aE{ak,bk,ck,e
k

} and T(d
k

) = L
k

_
l

.

Then Lk+lE~(k+l) - ~(k) for each k 3-.°.

(4) LE~(k) if and only 1£ Rev(L)E~(k) for each k> 0. (Rev is the

reversal operator).

Proof. These results have been established in Workman [8].

These relations are important in

hold
Rev(Lk)·

(1) and (2)
replaced by

(4) of theorem 3 implies that
(3) holds for ~r(k) if L

k
is

It should be noted that part
for 1t2'.- (k), k > 0, as well. Part

r -

The grammar classes, ~t(k) and ~(k), may be further refined by defining

relations Pk and Ak . Pk decomposes~!(k) into an infinite hierarchy of grammars,

while ~r(k) is analogously decomposed by A
k

.

the characterization of ~(k) (and ~(k» as presented in theorem 4.



ucg(f~2,li~(G»

Similarly, Ak

Definition 10. Let G::: (V,r.,r,lX)E~. For each k::. a .let P
1
\(\) be the' rel ..Hioll

d{'fli1l'd on V by (l'l,ll
2
)EP

k
if :mu on.ly If lhcTl' l'X[:it,H I'.~EV Hlll'h 11J ..lt

+ . •
de~(Bi,li~(G» '" k Utltl131 G Ilti2V~;;w (01- :wnll' IlvwE(VUn .

is defined by replacing li~ by li r and uS 2vS 2w by its reverse.

li r are irreflexive, then P
k

are transitive for each k.

can be demonstrated for and A
k

.

It follows easily from the definitions of li~(G) and li (G) that if li and
• r •

and Ak are also irref1exive; furthermore P
k

and A
k

By applying definition 8 with R ::: P
k

or A
k

, lemma 1

From these facts we are motivated to makePk
following definition.the

Definition 11. ~(i,j) = (GE1'i(i) I deg(a,Pi(G» ~ j}, ~(i,j) =

{GE~(i) I deg(a,Ai (G») ~ j}, where 0. is the start symbol of G. The corre­

sponding classes of languages are denoted ~(i,j) and ~(i,j), respectively.

The main results of this paper rely heavily on the properties outlined
in theorem 3 together with an important characterization of the left(right)
dominant languages of degree - k. Our characterization is presented in
theorem 4 and is based on the class of left(right) strictly linear languages
introduced in the next definition.

Definition 12. A context-free grammar G ::: (V,L,P,a) is said to be left-strictly
linear over (L~,r. ) if

-- • r

(1) G is linear.
• • •(2) P t;: Vx(r.~Vr.rUL~). where E ::: EtUL r and [tnrr::: ¢J.

Similarly, G is said to be right-strictly linear if instead of (2), (2') holds.
•• *

(2') PCVx(".V" U").- ~ r r
A language is left(right) strictly linear over (Et,Er ) is generated by a so-named
grammar.

Definition 13. Let G ::: (V,r,p,o.) be a linear grammar. The left-strict image of
G is the grammar IT m (V,L',P' ,a), left-strictly linear over (1.,11, where
(S -+ u6 ' V') EP', 6' E V, if and only if (.B + u6'v)E P and v is the string v with
each symbol crEE replaced by its counterpart, <rEI:. The right-strict image of G
is analogously defined by replacing u by u (instead of v by V).

It is obvious that L(G) ::: h(L(G), where h is the homomorphism defined by
h(o) = h(o) = a.

Definition 14. Let G = (V.r.P,a) be context-free. The subgrammar of G
to .BEV is the grammar G(6) obtained by reducing (V,L,P,o.). For U C V
the subgrammar of G relative to 6 restricted on U is the grammar G(B,U)
by reducing (V-U,LLJU,P,6).

relative
{e}

obtained

In a subgrammar restricted on U, the nontermina1s of U are treated as terminals
in that they are not rewritten when introduced into a sentential form derivable in
the restricted subgrammar.



Lemma 2. Let G ::: (V,~,P,~)E~i. Let ideg(G) ::: k and deg(a,Pk(G)) ::: n.

Furthermore, define V
ij

::: {SEV I deg(S,6
i

(G)) ::: i and deg(l3,P
i

(G)) ::: j}.

Then for each SEV
ij

, the restricted subgranunar G(S,U
ij

) is linear and its

left-strict image, G(S~~~ is strictly linear over (ri,f
r
), where

r i = UijUE and rr '" (UiUr). The sets U
ij

and Ui are defined by,

v: • ., if i • 0
1

: U (UV
qj

), if i > O.
q<i j

U
ij

: Ui, ifj = 0

ViU(UV. ) if j > o.
q<j 1q

Finally,

L(G) = «L(G(a,U
kn

))). where < is the substitution defined by «0) = T(O) = 0

for all OEt
i

and aEt
r

" «y) = T(Y) = L(G(y)) for all YEfinV and YErrnV.

Proof. The proof is given in
tions 6

t
(G) and Pi(G), i ~ o.

~+w implies Ilwllv :: l.
ij

rEVij, r+wimplies IlwilB

Workman [8]; it is based on properties of the rela­
It can be readily established that if aE V.. , then

1J
Furthermore, for all BE V

ij
and for all

= O.

Definition 15. Let ~i denote the class of all left-strictly linear languages

and let.s;; and ~ be classes of languages" Define.

~(~,~) = {L L1E~, left-strictly linear over (Lt,Lr ) and a substi-

tution, T, such that L = «L'), where T(a)E-W for all aE~t

and T(b)E~ for all bE~ }.
r

The remaining results are stated with respect to '~(k), ~(k) and

~n (k). Dual results hold with respect to ~ (k), ~ (k) and ~ (k). In
N r r r

the statement of the next theorem, the dual is obtaine? by replacing ~t

by Y. and st:(N,~) by !L(.~I..N'), where .!i l and .N1 represent ther N r '
appropriate replacements for.5j and.N, respectively"



Theorem 4.

(1)

(2 )

(3)

Theorem 5.

Let ~ be the class of all regular sets.

LE~(k) if and only if there exists j > (j such that LE~(k.j).

M',(O,O) • .5<t(~,~).

~(O,j) • 2i(~(O,j),~), for all j ~ O.

For k > 0, ~(k,O) • .5<t(.Ilf',(k-1), ~(k-1)) and

For j ~ O,~(k,j+1) • .5<t(~(k,j),~(k-1)).

GE~ (0) if and only if ~t (G) is regular.

Proof. Walljasper [7] has established that GE.91
t

(O) if and only if G is lutb.

It follows by theorem 1 that GE~t (0) if and only if .9}'t (G) is regular.

One of the main results of this paper is theorem 9 which generalizes the
preceding theorem by establishing necessary and sufficient conditions on
!JP9.,(G) to guarantee that GE~(k)J for arbitrary k. Theorems 6, 7 and 8 provide

a proof of theorem 9.

Theorem 6. GE~9.(k) implies !?Pi.(G)E~ (k-l) for all ~ > O.

Proof. We proceed by induction on k. Initially let G ~ (V,E.P,~)Ejfl

such that ldeg(G) = k > O. Let P denote the set of production "labels" for P.

Define GO : (V'P'PO.a) to be the grammar obtained from G by replacing

(p:B-+w)EP by (p:8-+pw'), where Wi is obtained from w by deleting all elements

of E. It is easily established that L(G
O

) :~1(GO) :~1(G)j furthermore,

deg(B,O,(G) • deg(B,O,(GO)) and deg(B,Pi(G)) • deg(B,Pi(GO)) for all i , 0

and BE V.

Case k "" 1. He establish that GE~1(I,j) implies ~.2.(G)E~(O.j) by induction

on j. Then by theorem 4 part (1) the result follows for k = 1.

Let j : 0. By lemma 2 and our initial remarks it follows that 9.2. (G) = L(GO) :

,(L(Go(a,ul •O)))' where GO(a,ul,o) is left-strictly linear over (UI,oLJP.Ui) :

(UiUP,Ui) and T is the substitution defined by .(p) : p for all pEP and

,(y) = T(Y) = L(G(y)) for all YEUi and YEUi.

and by the nature of GO' ~1(GO(Y)) c L(GO(y)).

regular for all y E Ui. Thus by theorem 4 part

~ ~(O).

But yE Ui implies GO(Y)E !~'i (0)

Thus by theorem 5, ~l(GO(Y)) is

(2), ~,(G) • T(L(G
O

(a'U
1
O)))E~(O,O),



Now suppose GE~(l,j) implies ~(G)E.ar£.(O.j) for all j ~ 1. Let

GE~(l.i+l). Then GOE~(l.i+l) and by leUDIla 2 it follows that.9)'.I!.(G) = L(G
e

) =

fa (G) = T(L(G (N. U »), where G (0:,0 "+1) is left-strictly linear over
~ 0 0 • I, HI a 1,.L

{PUU1;H_l'Ul) and rep) = p, pEP, T(Y) '" L(GOCy» for vEUl,Hi and y(j;) =

L(GO(~» for ~EUi-' But YEU1 ,i+l implies GO(Y)E.:f.l!.(l,i) and since L(GaCY»

f@.I!.(GO(y», then by the induction hypothesis it follows ~hat T(Y)E~(O,i) for

all yEU1 ,i+l" By a similar argument it follows that T(a) is regular for all

BEUi· Thus by theorem 4, part (2), we have that L(G
O

) =g;}'.9.(G)E~(O.i+l).

Case k > 1. Assume that GE.111 (k) implies 92.(G)E~ (k-l) for all k. 1::... k ::... i.

By induction on j and arguments similar to those given for the case k = 1 (for
the general case we appeal to theorem 4, part (3», it follows that GE~(i+l.j)

implies 9g, (G)E~ (i,j) C .Mi (i). In this fashion the theorem is proved.

Out next theorem establishes a partial converse to theorem 6.

Theorem 7.
irreflexive

Let G be an arbitrary reduced context-free
then !iolt (G)¢ Mf (k) for any k.': O.

grammar. If t:.t (G), is not

Proof. Since ~(k) is a full AFL for each k ~ O. then J¥rt(k) is closed under

sequential transducer maps (Ginsburg and Greibach [3]). The proof consists of
showing that if t:.g,(G) is not irreflexive. then for each k > 0 there exists a

sequential transducer map. Tk+l , such that Tk+1 (9t (G» = L
k

+
l

, where Lk+lE~(k+l) _

~l(k) is the language defined in theorem 3. Thus ~(G)E~(k) for all k > O. A

precise definition of Tk+l is given in Workman [9].

We now strengthen theorems 6 and 7 by establishing the precise relationship
between the left-degree of G and that of ~(G).

Theorem 8. For all k ~ I, if GE~(k+l) - ~(k), then 9"J!.(G)E~(k) _

M"t(k-l). If G~(l) - ~(O). then !iolt(G)EMi(O) -fit. where fit is the class of

regular sets.

Proof. The proof follows the same approach used for theorem 7. That is, if
tdeg(G) = k+l, then there exists a sequential transducer map, T

k
, such that

Tk (9"£ (G» = Lk , where LkE~ (k) - ~ (k-l) is defined as in theorem 3. For

k = O. LO is a linear language which is nonregular.

The results of theorems 5, 6, 7 and 8 are summarized in the next theorem.



Theorem 9. GE~ (k+1) - ~ (k) if and only if 9
t

(G)EM"t (k) - MI. (k-1) for all

k > 1. GE~ (1) - ~ (0) if and only if 9
t
(G)E~ (0) -!JR.

The preceding theorem suggests that the hierarchy of AFLs. ~l(k). k ~ O.

may be "generated" from the regular sets as described in our next theorem.

Theorem 10. Let ~O '" {L I L c L(G) for some G such that~l(G) is regular}.

For i > 0 define ~i+l '" {L L '" L(G) for some G such that!:j'i (G) E.sit }·

Then .5i
k
=~(k) for all k > O.

If we define the "structural complexity" of a context-free grammar, G. to
be the least k such that GE~ (k) or to be infinite if such a k does not exist,

then it may be useful to know the degree to which various grammar transformations
may change the structural complexity. Our final result establishes the relative
structural complexity between a derivation bounded grammar and an equivalent
grammar in left-Greibach form.

Theorem 11. Let G be a left-Greibach grammar in.!9"t (k+l), then L(G)E ~(k).

Conversely, if LE~(k), then L = L(G) for some left-Greibach grammar, GEJft(k+l).

Proof. Suppose G = (V,E.P,a)E.!9"t(k+l), k ~ 0, is in left-Grebiach form. If
•pE P, then p is of the form B + ow, where oE E and wEV. It is clear, therefore,

that L(G) = h(L(G
O

» = h(~t(G», where GO is defined in the proof of theorem 6

and h is a homomorphism. By theorems 4 and 6 it follows that L(G)E~(k).

The converse is proved by showing that every linear grammar, G (G is linear if
and only if GE~(O,O», has a left-Greibach form. in .!9"t(l,O). By an inductive con-

struction based on that for linear grammars, it can be shown that for all j > 0,
GE~t(O,j) implies there exists an equivalent left-Greibach grammar, G'E~t(l,j).

The same inductive arguments are used to establish the result for GE~t(i,j) to
obtain a G'E.'¢'i(i+1,J).
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