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Kﬂstract: Fleck [2] suggested that the structural properties of grammars could
be measured by the relative complexity of their derivation languages. ioriya [6]
ranked context—free grammars within an infinite hierarchy by appealing to this
measure. We present a similar measure based on left(right)-most derivations.

The structural complexity of a context-free grammar is given by 1ts “"left(right)-
degree" which is strongly related to the nature of its left(right)-most deriva-
tion language. Our measure appears to be ''matural" in the sense that each
structural complexity class defines a full AFL, The measure is applied to obtain
the relative complexity of a grammar and an equivalent grammar in Greilbach form.



The function py; applied to w specifles the maximum number of nonterminals
that could appear in a sentential form at some step of m when treated as a
derivation from w.

Definition 3. Let G = (V,E,P,a). L(G) denotes the language generated by G,
while 2(G), E?E(G) and E?}(G) are respectively, the languages of all derivations,
left-most derivations and right-most derivations of G. :
26
E’Zﬂ'(G) = {1 [ aﬁ=§xEL(G)}

2, = {n | a%ﬁbeL(G)}.

{7 | cr.=="=prL(G)],

Definition 4. Let G = (V,I,P,a) be context-free. For each integer k >0
the languages of k-bounded derivations, left-most derivations and right-most

derivations are denoted, respectively, by Q(k) G, 9 (k) (G) and 2 (k) (G)
and are defined as follows r

2™ ) = (1€26) | u_(o) < K},

2% = (1€ 2,© | w_(a) < kI, and
2% - (e, ©) | ru_() <k .

Definition 5. Let G = (V,I,P,a). C and L(G) are said to be:

{(a) nonterminal bounded (ntb) if Z(G) =Ea(k)(G) for some k > 03
the notions of left-most and right-most nonterminal bounded
(Intb,rntb) grammars are analogously defined,

(b) derivation bounded {db) if there exists k > 0 such that for

every X€ L{G) there exists T EE@(k)(G) such that
"'Tx X
O e X .

G — e

Theorem 1. G 1is ntb(ntb,rntb) if and only if £9(G)(£2£(G),£§}(G)) is regular.

Proof. The result for ntb grammars can be found in Banerji [1] and Fleck [2].
The result for Intb and rntb grammars is given in Moriya [6].



Definition 6. Let G = (V,I,P,a) be context-free. The relations AQ(G) and ﬁr(G)
are defined on V as follows:

{l*l.ﬁ.,)EhE(U) If and only I1F,

*
(1) Bla%:puﬁlvﬁzw for some uvw € (VUY) or

ot ' €
(2) B _T—.ua v and B TxﬂlyB z for some B V and uvxyzE(VUE)

ar(G) is defined by replacing uslvﬂzw and xBlyﬂzz by their reverses.

Definition 7. Let !91 ‘gﬂ and ¥ denote respectively, the class of all reduced

context—-free grammars for which A (G) is 1rref1exive, A_(G) is irreflexive and
G 1s derivation bounded. T

Theorem 2. _?}' = _G’r = &.

Proof. A context-free grammar is said to be nonexpansive if for every nonterminal,
+

g8, B==??’w implies ||w|]B < 1. Ginsburg and Spanier [4] have shown that G is

db if and only if G is nonexpansive. It follows easily from definition 6 that G
is nonexpansive if and only if ai(c) and ﬁr(G) are irreflexive.

Definition 8. Let § be a set and R a relation on S. For each s€S define,

C(s,R) {k ] there exists a sequence s = 50’51""'Sk’ k > 1, elements of §
{not necessarily distinct) such that (si—l’si) R for 1 < i < k},
deg(s,R) = =, if C(s,R) is infinite:

Max C(s,R), if C(s,R) is finite and nonempty;

0 if C(s,R) is empty.

Lemma 1. Let G = (V,I,P,a) be a reduced context-free grammar, then
(1) A (G) and a (G) are tramsitive.
(2) GG_@(?) if and only 1f deg(w,A (G)) (deg(a A (G))) is finite.
(3) deg(e,p, (G)) > deg(B, QE(G)) for all BEV (simllarly for ﬁr(G)).
(4) 1f GEZ (¥), then (B,B')E%(G) (A_(6)) implies
deg(8,4,(G)) > deg(B',&R(G)) (similarly for A _(G)).

Proof. (1), (2) and (3} are immediate from definitions 6 and 8. (&) follows
directly from the irreflexive and transitive properties of ﬂE(G) and ﬂr(G).



Definition 9. Let G = (V,I,P,a) be a reduced context-free grammar, The left-
degree and right-degree of G, denoted 2deg(G) and rdeg(G), respectively, are
defined by, .

Ldeg(G) = deg(a,r, (G))
rdeg(G) = deg(a,&r(G)).
For k < « we define,
%, (k) = {GEY, | 2deg(6) < k},
%.(k) = {GEZ | rdeg(c) < k},
&, () = (L©) | cEL WY,
& (k) = {L(G) | GEZ ()},

The classes gi(k)(gi(k)) and ﬁf&(k)(gﬂ;(k)) are called respectively, the left

{right) dominant grammars and languages of degree - k.

Theorem 3. Let % denote the class of all linear languages.
(1) .&"; & (k) qt &g, (k+1) for each k > 0.
(2) & (k) is a full AFL (Abstract Family of Languages) closed under
regular substitution for each k > 0.

_ n
(3) Let L, = {agbo(codoeo | n > 1} and for each k > 0 let

L& = {azbk(ckdkek)n | n > 1} and L, = T(LL), where t 1s the substitution

defined by T(0) = {0} for all UEE{ak,bk,ck.ek} and T(dk) =L
Then L, €4 (k+1) - & (k) for each k 2 0.
(4) LEjﬂE(k) if and only if Rev(L)Ejﬂ;Ck) for each k > 0. (Rev is the

reversal operator).

Proof. These results have been established in Workman [8].

It should be noted that part (4) of theorem 3 implies that (1) and (2) hold
for gﬂ;(k), k > 0, as well. Part (3) holds for iﬂ;(k) if Lk is replaced by Rev(Lk).

The grammar classes,_ﬁi(k) and Si(k), may be further refined by defining

relations P and X Py decomposes_ga(k) into an infinite hierarchy of grammars,

K
while _§i(k) 1s analogously decomposed by Ak. These relations are important in

the characterization of ﬂﬂa(k) {and ﬂﬂ;(k)) as presented in theorem 4.



Definition 10. Let G = (V,5,P,m)€%. Tor each k > 0 let pk(kk) be the relation

.] —_ T n1 . o= +
deg(ﬂz.ﬂa(b)) = deh(Bz,aa(b)) k and Bl G 2
Similarly, Ak is defined by replacing ﬁz by ﬂr and uﬁzvﬂéw by 1its reverse.

defined on V by (HI,HZ)G G If and only IF there exlats B €V such thar
' *
ub',)vﬁ'w for some uvwe (VUY)

It follows easily from the definitions of ak(c) and Ar(G) that if ﬂl and

ar are irreflexive, then pk and Ak are also 1rreflexive; furthermore pk and Ak

are transitive for each k. By applying definition 8 with R = pk or A lemma 1

k!
can be demonstrated for pk and A, . From these facts we are motivated to make

k
the following definition.

Definition 11. & {1,3) = {(CEH (1) | deg(a,p. (6)) < j}, .(i,3) =
{GeL (1) | deg(a,2,(6))
sponding classes of languages are denoted ﬁii(i,j) and ﬂﬂ;(i,j), respectively.

i}, where o is the start symbol of G. The corre-

| A

The main results of this paper rely heavily on the properties outlined
in theorem 3 together with an important characterization of the left(right)
dominant languages of degree - k. Our characterization is presented in
theorem 4 and is based on the class of left{right) strictly linear languages
introduced in the next definition.

Definition 12, A context-free grammar G = (V,I,P,a} 1is said to be left-strictly
linear over (ZE’Er) if

(1) G is linear,
* k&
(2 P g;Vx(ERVErLJEQ), where I = ERLJEr and rirwzr = ¢,
Similarly, G is said to be right-strictly linear if instead of (2), (2') holds.
% &k K
L
(2') P C Vx(ERVErUEr).

A language is left(right) strictly linear over (zﬂ,zr) 1s generated by a so-named
grammar.

Definition 13. Let G = (V,IZ,P,c¢) be a linear grammar. The left-strict image of
G is the grammar G = (V,I',P',a), left-~strictly linear over (I,T), where

(B ~ up'v) €P', B'€V, if and only if (8 + uB'v)EP and V is the string v with
each symbol o €I replaced by its counterpart, T€Z. The right-strict image of G
is analogously defined by replacing u by T (instead of v by ¥v).

It is obvious that L(G) = h(L(G)), where h is the homomorphism defined by
h(c) = h(g) = o.

Definition 1l4. Let G = (V,I,P,a) be context-free. The subgrammar of G relative
to BEV is the grammar G(B8) obtained by reducing (V,E,P,a). For U C V- {B}

the subgrammar of G relative to B restricted on U is the grammar G(8,U) obtained
by reducing (V-U,ZJU,P,R).

In a subgrammar restricted on U, the nonterminals of U are treated as terminals
1n that they are not rewritten when introduced into a sentential form derivable in
the restricted subgrammar.




Lemma 2. Let G = (V,I,P,a)€4),. Let 2deg(C) = k and deg(x,p, (&) = n.
13 = (BEV | deg(8,8,(6)) = 1 and deg(8,0,(®)) = j}.

the restricted subgrammar G(B’Uij) ig linear and its

Furthermore, define V
Then for each BEVij,

left-strict image, E(B’Uj;i) is strictly linear over (Ff.’rr)’ where

Ty UijUE and l"r (UiUZ). The sets Uij and Ui are defined by,

U = ¢, if 1 =0
i

U ([jjvqj), if 1 > Q.

g<i
= 1yt : =
Uij = Ui’ if f 0
= U U< LJV ) if § » 0.
q<]
Finally,

L{G) = T(L(E(G,Ukn))), where 1 is the substitution defined by 1(0) = 1(g) =
for all o€ Zi and EEEr. () = 1(¥) = L{G(y)) for all y€ I‘P_ﬂv and ?Gl"rﬂ?.

Proof. The proef is given in Workman [8]; it is based on properties of the rela-
tlons A (G) and p (G}, 1 > 0, It can be readily established that if BEVij. then

[3=pw implies ]|w|| < 1. Furthermore, for all BE vij and for all
Y13

ij’ '\r==bw implies ||w|| .
Definition 15. Let _(4' denote the class of all left-strictly linear languages
and let o/ and 9 be classes of languages. Define,

_&,’(_@',_@) {L | L‘E_Yh, left-strictly linear over (ER.’Er) and a substi-
tution, T, such that L = t(L'), where 1(a)€x¥ for all a€ Ez
and t(b)ESPR for all bGEr}.

The remaining results are stated with respect to '_é(/z(k), _‘%(k) and
Qz(k). Dual results hold with respect to _c.‘fr(k), _?fr(k) and Qr(k). In .
the statement of the next theorem, the dual is obtained by replacing _E,/i i
by &, and .%(M,Q) by 5{;(_@' »7'), where @' and ' represent the
appropriate replacements for @ and &, respectively.



Theorem 4. Let & be the class of all regular sets.
(1) LE%(I{) if aﬁd only 1if there exists j > 0 such that LE_(%(k,j).
(2) &, (0,0) = L (R, R).
.d/(O.J) = £ (#Z,0,3),#), for all j > 0.
(3) For k > O, M(k 0 = y(_éfa(k 1), _(!/(k 1)) and
For j > 0-%(1(.1'*‘1) —-4(%(1(,:]),%(%-1))-

It

Theorem 5. GE_%(O) if and only if QR(G) is regular.

Proof. Walljasper [7] has established that GE%(O) if and only if G is 1lntb.
It follows by theorem 1 that GE%(O) if and only if QE(G) is regular.
One of the main results of this paper is theorem 2 which generalizes the

preceding theorem by establishing necessary and sufficient conditions on
92((;) to guarantee that GE%(R), for arbitrary k. Theorems 6, 7 and B provide

a proof of thecrem 9.

Theorem 6. GG_%'(k) implies %(G)E_&'ﬂ(k—l) for all k > 0.

Proof. We proceed by induction on k, Initially let G = (V,I,P,u)E '?P.

such that 2deg(G) = k > 0. Let P denote the set of production "labels" for P.
Define G0 = (V,F,Po,u) to be the grammar obtained from G by replacing
(p:B8+w) €EP by (p:B*pw'), where w' is obtained from w by deleting all elements
of I. It 1s easily established that L(GO) =9£(G0) =9£(G); furthermore,
deg(B,&z(G)) = deg(B,ﬁg(GO)) and deg(B,pi(G)) = deg(B,pi(GO)) for all i > O
and BE V.

Case k = 1, We establish that GEffﬂ(l,j) implies QE(G)GME(O,J') by induction
on . Then by theorem 4 part (1) the result follows for k = 1.

Let j = 0. By lemma 2 and our initial remarks it follows that %(G) = L(Go) =
— — ] S =
T(L(Go(a,Ul'o))), where GO(u’Ul,O) is left~strictly linear over (Ul,OUP’Ul)

(UiUF,U_i) and T is the substitution defined by t(p) = p for all pEP and

1(y) = t(y) = L(G(Y)) for all YEUi and ?E‘I-J‘i_ But ye U]'_ implies GO(Y)eyE(O)
and by the nature of G, » D , (65(Y)) = L(G,(Y)). Thus by theorem 5, G, (Gy(y)) is
regular for all YEU]'_- Thus by theorem 4 part (2), 9 (G) = T(L(G {a Ul 0)))5%(0 0) i

C (0).



Now suppose GE_(%(I,j) implies %(G)e%(o,j) for all J < 1. Let

GE® (1,i+l). Then GOE‘%.(l’iﬂ') and by lemma 2 it follows that QE(G) = L(GO) =
2- > _ _ . '

%(GO) =T (L(GD(N,U1’1+1))). where GO(G’U1,1+1) is left-strictly linear over

(FUU1;1‘+1'U_{) and t(p) = p, PEP, 1(y) = L(G4(Y)) for wrf:‘Ul,!+1 and Y(B) =

L(G,(B)) for BEU). Dut we'ul’i+1 implies 6, (Y)€,(1,1) and since L(G (Y)) =

@E(GO(Y)), then by the Induction hypothesis it follows that T(Y)E_&/R(O,i) for

all YEU By a similar argument it follows that T(Eb is regular for all

1,i41°
. Thus by theorem 4, part (2), we have that L(GO) =,9%(G)e£ﬂ£(0,i+1).

— =
BEELl

Case k » 1. Assume that Ge%(k) implies Qz(c)e%(k—l) for all k, 1 < k < i,

By induction onr ] and arguments similar to those given for the case k = 1 (for_
the general case we appeal to theorem 4, part (3)), it follows that Gﬁigi(i+l,3)

implies E@h(G)Eiﬁi(i.J) g:jﬂi(i). In this fashion the theorem is proved.

Cut next theorem establishes a partial converse to theorem 6.

Theorem 7. Let G be an arbitrary reduced context-free grammar. If Ai(G) is not
irreflexive then9£(G)¢_M£(k) for any k > 0,
Proof. Since ﬂéi(k) 1s a full AFL for each k > 0, then ﬁﬂl(k) 1s closed under

seéuential transducer maps (Ginsburg and Greibach [3]). The proof consists of
showing that 1f ﬁg(G) is not irreflexive, then for each k > 0 there exists a

sequential transducer map, Tk+1’ such that Tk+l(£a&(c)) = Lk+l’ where Lk+le£ﬂ£(k+l) -
ﬁﬁi(k) is the language defined in theorem 3. Thus Q%(G)Eﬂéi(k) for all k > 0. A
precise definition of Tk+1 is given in Workman [9].

We now strengthen theorems 6 and 7 by establishing the precise relationship
between the left-degree of G and that of'g%(G).

Theorem 8. For all k > 1, 1if GE_?}'(k+1) - %(k), then 9£(G)e_&£(k) -
&, (k-1). 1If ceg(l) - %,(0), then gz(c)e%(m - P, where # is the class of
regular sets,

]

Proof. The proof follows the same approach used for theorem 7. That is, if
2deg(G) = k+l, then there exists a sequential transducer map, Tk’ such that

Tk(QE(G)) = Lk' where Lke%(k) - _&/E(k—l) is defined as in theorem 3. For

k =0, L0 is a linear language which 1is nonregular.

The results of theorems 5, 6, 7 and 8 are summarized in the next theorem.



Theorem 9. GE%(]&I) - %(k) if and only if %(G)E%(k) - %(k—l) for all
k>1l. GELQ) - 4(0) 1f and only 1f ()€, (0) - R.

The preceding theorem suggests that the hilerarchy of AFLs, ﬁfﬂ(k), k > 0,

may be “generated" from the regular sets as described in our next theorem.

Theorem 10. Let _@O = {L | L = L{G) for some G such that QE(G) is regular}.
For 1 > 0 define gi+l = {L | L = L(G) for some G such that %(G)Egi].
Then ﬁak =jﬂ£(k) for all k > 0.

If we define the "structural complexity" of a context—free grammar, G, to
be the least k such that GE%(k) or to be infinite i1f such.a k does not exist,

then it may be useful to know the degree to which various grammar transformations
may change the structural complexity. Our final result establishes the relatlve
structural complexity between a derivation bounded grammar and an equivalent
grammar in left-Greibach form.

Theorem 11. Let G be a left—Greibach grammar in_gi(k+l), then L(GﬂEjﬂ{(k).
Conversely, if Legﬂi(k), then L = L(G) for some left-Greibach grammar, GEﬁ?i(k+l).

Proof. Suppose G = (V,I,P,a)E gg(k+l), k > 0, is in left—Grebiach form. If

*
pE P, then p is of the form B + ow, where d€L and wEV . It is clear, therefore,
that L{G) = h(L(GO)) = h(E@R(G)), where G0 is defined in the proof of theorem 6

and h is a homomorphism. By theorems 4 and 6 it follows that L(G)egﬂi(k).
The converse is proved by showing that every linear grammar, G (G is linear if
and only iftSGj%(0,0)), has a left-Greibach form 1n,gi(1,0). By an inductive con-

struction based on that for linear grammars, it can be shown that for all j > O,
GE_?E(D,j) implies there exists an equivalent left-Greibach grammar, G'Egg(l,j).

The same inductive arguments are used to establish the result for GEigi(i,j) to
obtain a G'E%(:I&l,j) .
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