View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1974

Comments on a Linear Paging Model
Peter J. Denning

Report Number:
74-123

Denning, Peter J., "Comments on a Linear Paging Model" (1974). Department of Computer Science
Technical Reports. Paper 74.
https://docs.lib.purdue.edu/cstech/74

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.


https://core.ac.uk/display/4951331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

COMMENTS ON A LINEAR PAGING MODEL*

_ Patar J. Denning
Purdue University**

C3D=-TR-123

.Abstract: The linear approximation relating mean time

" between page transfers between levels of nenory, 8s re-
ported by Salteer for Multics, is examined. It is tenta-
tively concluded that this approximation is untenable for
main memory, especially under working set policies; and
that the linearity of the data for the drum reflects the
behavior of the Multics scheduler for background jobs, mot
the behavior of programs.

1. Zntepauction

... Saltzer reportad recently (1] measurements taken on the Multics
system, accarding to which the mean time between page transfers betwsen !
2 memory level M and the naxt lower level in the memory hisrarchy sppeared |
linsac in.m, the size of M; the linear behavior for claimed for M being
either the main memcry cr the paging drum. Specifically, the resder is
asksd to beliave two propositions:

P1 The mean tine batwesn requests to transfer a page from drum to

maln mescry (i.e., the mean time between system page faults) is
linear in the sire of the main memory.

P2 Theliﬁ:tiubtt:nmroqmltstotrmfunpag.frondhkto
- drum-1s linear in the sixe of the drum. .

The mote- I pondered tha paper, the less successful was I in reconciling
these clains (especially P1) against completely the opposite conclusions
one is led to-by considering measurement data reported throughout the
literature. Proposition P1 is, I beliave, simply incorrect. The data

*This work was supported in part by NSP Grant GJ-41269.
**Computer Sclences Dept., West Lafayetts, Indiana 47907 USA.




presented in the paper in support of P1 are unconvincing, and it appears
that a bizarre scheduling algorithm would be required to cause P1 o hold.
Proposition P2 appears to result from the operation of the Multics scheduler
and seems at best weakly correlated to program behavior. The extent to
which it is satisfied in other systems will depend on the extent to which
their achedulers share certain (as yat unknown) properties with Multics.

In the following pages I shall at.tanﬁt to share with you the reasoning
which led me to these conclusions.

I ﬂ‘nuld point out that I an dissatisfied lass with the conclusions
of Saltzer'u paper than with its or:lmtation and philosophy. We are
being askad: t:o regard the aesory syitem as a black box, to ignore completely
ite 1nt¢ma1 structure and organirzation. We are agked tobelieve that the
external behavior of the system is more or less independent of mmerous
internal factors over which the system designer has control -- factors
such as the policies of scheduling and memcry management, page sharing,
and the individual behaviors of programs —— without being offered a shred
of evidence whether in fact the external behavior is independent of these
factors. We are thus asked to sacrifice a great deal of what wa know
abiout controlled experirents and the sclentific mathod, as well ai a
substantisl amount of intellectual curiosity. I shall show below that
fattors such 'as those listed above are indeed critical, a fact which
becomes®clasr only after one discards the black box philosophy and per-
mits himself the privilege for a moment of peering within the system,

2, Dafinitions
' The acronym LRU signifies “least recently used.” An LRU stack over
P pages.ls a tims-dapandent vector of tha form S(t) = (31,...,1 } in which
each page appsars &xactly once, t=1,2,3,,. counts page refcrmcel, and
i<j implias 8, was _reforcmd more recently than ’j' Page x is at dis-
tance i in S(t) ifli_-:l.- If page x is referenced at time t+1 and is

at distance i in S(t), it is moved to the first position in 5(t+1) and
 the intetvening pages pustud down one place; . that is

._s_tt‘fi) - (z.'i'..."jpi'.iﬁi’...’. ).
The importance of an LRU stack is that the first'm elements of it are




preciaely the contents of a memory space of gize m< m<p managed under
demand fetc:hing and using LRU replacement. A page will be missing from
the memory space at time t+1 if and only if its distance in S({t) exceeds m.

Let a, denote the frequency of refarences having distance 1 in the
stack over some measuremant period., Let Ai. - a1+...+ai denote the cumu-
lative frequency distribution, and take AO-O. For a memory space of size
m pages, 1.-A can be interpreted as the rate of references to pages not
in the space, and L(m) = 1/(1—A ) as the expected number of referencas
between two for missing pages.

The mean mumber of refmnces .between two missing-page references
is called the lifetime (2,3,4], and the function L(m) is called the life-
time function. The mean real time between two nissing-page references
has been called the headway [1]; it is given by

(2.1) H(m) = TL(m),

where T 15 the mean time between references to the store for which L(m)
is tha lifetime function., The linear paging assusption states that
there exists a constant ¢ such that H(m) = cm.

A task in the system is a member of the. active set if it is eligible
to receive processor gervice and to be allocated pages in main RENOY'Y,
The size of the active set is called the degree of multiprogramming. In
Multics (and in many other multilevel memory syatems) a task's pages
reside initially on the disk. Wwhen an active task references a page for
the first time, a copy of that paga is placed in both main memory and on
the drum. After a page has been unreferenced for a sufficient time, the
main memory policy will delete it from main memory. If the page rexains
unreferenced for an additional period, the copy of it on the drum will
also be deleted, In Multice, the drum Pages are maintained in an LRU
stack, the lowest page on this stack being deleted from the drum when an
active task generates a page fault that causes a page to be requested
from the digsk, However, Multics' main memory policy is not based on an
LRU stack; it uses an algorithm resembling a unrkinj set policy.

The above consideraticns lead to the observation that the main mem-
ory size m and the drum size M satisfy the relation mM, It is customary
in such systems to take the main memary access time as the basic time unit;




therefore the main memory headway function, which gives the mean time
batween page faults in the system, is given by taking Tai in Eq. (2.1):

{(2,2) H(m) = L(m).

Hereafter, tha notation of (2,2) will be used for main memory lifetime
and headway functicns, The drum headway function HD(I'I) gives the mean
time between requests to move a page (simultanecusly into main BOEOLY

and drum) from the disk, Under the assumption that every main memory
page has a copy on the drum, it must be true that

(2.3) Him) = HD(I:);

that is, the headways agree when Msm. (Saltzer's data obeys this pro-
perty.} Noting that drum stack updates occur only at page fault times,
the intervals between which are T=H(m), we can use eq. (2.1) to-obtain
for-the drum headway function

where Ly (M) is the lifetime function of the drum. Note that M (M) is
a function of m, explicitly because of the term H(m) on the right side
and implicitly because m affects the drum stack distance frequencies
and hance LD(H). Since the drum is managed according to LRU,

(2.5) L) = =i

1-)\M °
Note that (2.3) and (2.4) imply that L (m)w1, and (2.5) implies that
AH-O for M<mj this 1a consistent with the assumption that every main
memory page has a copy on the drum.* (However, to enforce this, it
is necessary to deviate slightly from the drum stack updating procedure:
At each page fault, the referenced page iz placed as usual on top of
the stack; but the page being replaced from main memory, which will
appear at some distsnce not exceeding m in the drum stack, must be
moved directly to position m+1 in this stack.)

*To be honest, I do not know for sure whether the assumption that every
main memory page has a copy on the drum holds in Multics, as Saltzer is
not clear on this point. An obvious alternative is to have cne copy of a
Page between the main memory and drum. In this case, the drum stack and
main mamory contents are disjoint. A reference to drum stack distance i
implies a page fault (and a contribution to the frequancy ay), which moves
ths page off the drum stack and into main memory. A replacement from

.../l.l




Bacause HD(H) iz undefined for M<m, is it tempting to construct for
m given a compoaition of H and I-ID:

H(x), x<m
Pn(x) - !

HD(J:J, %>m
Because by (2.3) H and HD agree at the point xem, the function Fn will
exhibit no discontinuities. (Saltzer's Figure 4 is a plot of this func-
tion for m=320 pages.) From the earlier discussicn, you can sees that
H and HD are entirely different functions with different interpretations.
A plot of I-'“I can, therefore, be quite misleading, luring the unsuspecting
beholder to the false conclusion that H'HD‘

3. The Main Hanor_:x Headiq Function

The form of the main memory headway function and its relation to
Proposition P1 will be considered in this section. By (2,1) it is suf-
ficlient to study the lifetime function directly. I must discuss first
how the main memcry lifetime function relates to thoss of individual
talkl. iat Li(xi_dmte the lifetime function of task ‘l.'1 whan it has
a space allocation of x pages in main memOry. It has been determined
that for well-behaved paging algorithes Li(::J has the S—shaped form
suggestsd in Figufe 1 [see 2,3,4], consiating of a concave up region
for x<x,, and a concave dows region for ©x,; (where x . -depends cn the
task). In the concave up region it has been discovered moreover that,
approximately

ky

(3.1) L) = ex <X 4

where approxisately k,e2. The point is, the individual 1ifetime functions

(cont,.)

uin‘neioéyhmttrndmtopofﬂndrmatadp. In this case both

20 and M20; eq. (2.3) becomes H(m) = Hp(0); and eq. (2.4) is unchanged,
- Saltzar's data cbeys eq. (2.3), which leads me to suspect that my
principal formulation is more accurate that the one in this footnote.




are distinctly nonlinear. Similar behavior will be observed for working
set policies, where Li(i) denotes the lifetime when mean working set '
size is X [see 5],

The mean main memory lifetime function L{m) observed by the pro-
cessor executing active tasks im a memory of size m is determined as
follows. Consider a sequence of r lifatime intervals on the pProcessor,
and suppose T.hc de‘r';otes the task to receive service in the kit such inter-
val., The processor's lifetime function, which is also the main mamory
lifetima function, 1s then

' r
1
- . L = - L
(3.2) (m) = 151 Jl:(zjk’

where task Tjk has space x. allocated, and the total spacs allocated

among the actlive tasks 1is 3:]:
Suppose now that the main memory sive is changed from m to Km pages;
what effact does this have on the main memory lifatime function L(m)?
(The linear paging assunption would pradict that L(Km) = KL{m).) To
answer this, ons needs to know how the multiprogramming policy responds
to an increase in the main memory size. Consider two extremes:
Case A. The degree of multiprogramming is held fixad, the

_ ud:r:a pages being used to increase unifornly the allocation
of each task.

Case B. The degree of multiprogramming is multiplied by
iap;rox!.natnly) Ky, under & warking set policy that keaps main
mesory as fully allocated to working sets as possible,

For case A, tha main memory lifetime function (3,2) becomas

r
(3.3) L,(a) = %xﬂ Ly, (Roxg,)
If weo assume that euch task operates in its concave up region, we have
from (3,1) that approximately Ly (Kx, ) = 2L 3 gy ) v ¥hich with (3.3)
inplies L (Km) = K2L (!); in this care, the linear approximation is not
oven clou. If we assume each task operates in its concave down region,
a similer argument leads to the conclusion L, (ke) < KL, (m), again viola-
ting the linear appraximation. The only situation possibly favorable to

the linear approximation would take m such that most tasks operate in -




‘SUCTIUNF GWTISJTT AYowem UTEm STqFssod *7 sanby g

378
Aywsw w

uyew

g 098D am

. ()1
m’]
*UOTINF STINFTT ¥$wy TuSpdAy T 3FBTZ
" UCTIRIOTTe TO, 0
Aromoa upwa x.

sobed zo .iaqmu
SWTIFTT ww




their concave up regions, and Km such that they operate in their concave
down regions. It is plain, however, that in this case linearity would
hold only over a limited range of values of m and K.* Case A multi-
programming policies appear incapable of exhibiting linear behavioer over
any significant range of memory sizes.

Por Case B, the situation is simple indeed. Assuming that Caga B
follows the working set principle, it will tend to allocate each program
the minimm space in which the rate of paging (of that program) does
not exceed some predetermined maximum, which implies that ij(xjk) = L
(approximately) for all k and some L in (3.3). This yYields, approximately,

for all m, in sericus vioclation of the linear assumption. Case B multi-
programming policles necessarily viclate the linear assunption for nearly
all values of m.

The above conclusions on Case A and Case B multiprogramming policies
are sumarized in Pigure 2. It appears that a multiprogramming policy
would have to employ a fortultous combination of Case A and Cage B affects
to maintain the linear approximation over any apprecisble range of memory
sizes. Inasmuch as working set policies are used increasingly in multi-
programning, most systems will exhibit the distinctly nonlinear, controlled
Case B behavior. |

*To verify this, I experimanted mumericslly with simple functions
of tha form

2
X"y X<Xo4

2
Xos * Bi“. - exp(-bi(x-xo.t)), x>x01

Every simple example I constructed (by arbitrary but aeemingly reasonable
choices of tha paramaters xgy, By, and by) yielded a function L(m) which
was itself S-gshapad (az in Pig. 1) and sometimes double S-shaped. MNone had
any appreciable range of linearity. Though axamples prove nothing, they
did suggest the difficulty of parameter sets occurring "naturally” which
produce dinsar Lim),

Li(x} =




9

The interested reader will find in the paper by Erandwain et al. [6]
& queueing network model in which, given a memory size m, the degree of
multiprogramming n is chosen to maximize processing efficiency. Tha anal-
ysis shows that, except for small values of m, the mean time between
processar page faults is independent of m. Inasmuch as this is tha
ideal Case B policy, it further supports my conclusions above.
‘ The diagrams offered in Saltzer's paper to support the linear approxi-
mation of main memory 1lifetime (his Pigures 2 and 3) do not in fact support
the linear assumption at all. At the very least, they are unconvincing
(one contains four data points, the other two). The interested reader
will find that an S-shaped curve (such as Figure 1 of this paper) fits
this meager data better than straight lines do.* with respect to Multics,
therefore, we require more data and more information about the multiprogram-
ming policy before we can conclude anything useful about its main meamory
lifetime function. ‘

4. mggg Headway Punction

Saltzer's dats in support of Proposition P2 shows that the mean
time bstween requests to move a page from disk to drum, referred to here
as the drum headway function, is approximated by

(4.1) : Hy(M) = oM
for drum size M in the renge

320 < M < 2048 .
and approximately

€ = 20 time units/page.

*The dats in Saitzar's Figure 2 is taken from Schroeder (7, p239] and
is as shown. I remain to be convinced that this is n-L(h)
reascnably approximated by a straight line graph. —em——

Actually, Schroedar's data defines an "associative 2 g-g
memory lifetime function" giving the mean timg 8 34.3 a3
batween two "no-match” events in address transla- 16 80:1.

tion. - Since the associative memory contains both

SDWs (sagment descriptor words) and PTws (page table words), and since
it is frequently cleared, it is difficult to see the relation between
this data and the main mew>ry lifetime function.

.Y



10

Since the drum’ 15 maintained by an LRU stack, we can use the egquations
{2.4) and (2.8) together with (4.1), '

' H{m)
(4.2) . HD(H) - "i'_'_';;' cM
to study the propertiss of the drua stack distance distribution AH
Letting 4 = c/H(m), we observe that the drum lifetime function L, (M)
= dM also satisfies a linear assumption, and hence

(4.3) AH e 1 %

4ty Wt A At D " g
{the last aquality 1s an appxoximation). It remains to deduce what if
anything this implies about scheduler and program behavdor.,

It is interasting to observe that the working set pages of some
task Ti will tend to preceds those of Tj in the drum stack, if T:l has
been a member of the active sat more recently than TJ. In othar words,
the drum stack can be partitioned as shown in Pigwre 3; atop the stack
are pages belonging to tha working sets of active tasks, while farther
down tha stack can be partiticned into the warking sets of tasks TJ poes,T
in order of increasing time since last deactivation. {(This is of course
an approxinate description, since nonwarking set pages of active and
formerly active tasks will be intermingled with the heatly~groupsd wor-
king set pages.) The pages of the active tasks atop the stack are not
likely to be partitioned as ngatly as thoge 6f inactive tasks, since
the drum stack is updated cnly at page fault times and the procassor is
cycled among active tasks. The average distance D at which the parti-
tioning beging is D = nw, where n is the mean degree of multiprogram-
ming and W is the msan working set size. (Saltzer provides no data on
n or W, 80 I hove no idea what portion of the drum stack is consumed
by pages of active tasks in Multics.) The main point is, the position-
ing of pages in tha drum stack is dominatad by the scheduling policies
of the system. A program's referenca pattern is less significant, for
it determines only the relativs positions of its pages within the group
corresponding to its working set.

ir




11

¥ m
quel T
of D
active
tasks
T
j‘l
T
32
Sages
of .
inactive : .
tasks
4
jr
- Candidates for del-
etion from drm
BOTTOM

Figure 3. Effect of scheduler on page
position in deum LRU stack.

1
i
!
'
1
1
]
1
'
1
1
)
1
1
)
'
|

N
2

gu_:_ 4. Expected time till reactivation of job in stack
position 1, for linear lifetire assumption.

1 + 1 N+1

¢




12

As an approximation, therefore, we can map the linearity of the drum
lifatime function into that of an LRU job stack, in which T, precedes T,
ir Ti was activated more recently than Tj' The motion of jobs in the
job stack corresponds directly to the policy by which the scheduler acti-
vates tasks. If T,, T,, ..., T  are the tasks (in order) in the job
stack, then the drum stack t_:ontains the uork.‘,.ng sets (in the same order)
of thess tasks, as suggssted in Figure 3,

The job stack lifetime function L(4i) denotes tha mean mmber of
references to the job stack for jobs at positions i+l or greater. Let
the mean time betwsen two references to the job’ stack be signified by
t-.o, the mean time between two activations; then the mean time between
activations of jobs at positions 1+1 or greater in the job stack is
LGi)to. Now, the linsarity of the drum stack lifetime function implies
(under suitable agsumptions of equilibrium) that of the job stack life-
time function; that is, thare exists a constant d such that L(1) = di.
Comparing sgainst (4.3) and (4.4), we find A, = 1-1/d1 and 3, = 1/d1?
as defining the frequencies of referencing job atack positions.

In the appendix, we prove expressions for two quantities: g(i) re-
presents the expected mmber of jobs to be activated bafore a given job
in position 1 of the job stack; and h(i) represents the expected mmber
of jobs which were activated since the one in position i was deactivated.
In other wards, g{i)t, astimates the time until next reactivation of the
job in position i, and h(i)to estimates the time since last activation
of the job in position 1. We have

(4.5) gy « =il
11

i-1 1

(4.6) R » 3
ko A

where N is the capaclty of the job stack, Comparing (4,5) and (4,6)
with (4,2), wa find

(4.7} g{1) = (Neis1)L(i-1l) = d{N=1+1)(5i-1)
-1 1(4-1)
{(4.8) hi{l) = X L{i) = d——z——
k0 - ) )

Eq. (4.7) has the form shown in Pigure 4. It is interesting that
jobs in the middle of the stsck have the, maximum expected time until



13

reactivation. -One explanation far the dacrease in g(i) u'__indg'léoa‘cﬁes N
might be-that the schedular compensates jobs which have been inactive for
an mldunpu:iod by .farcing them to become active. Or, it l!}!.ghf L#iﬂp}y
be a manifestation of system equilibrium, according.to which eve.ry

job gets.run, eventually, o

At this point, I have no other mterpretationl for the abcve
equations to offer. I present them meraly as approximations, the utility
of which is in question because important effects such as page shnrh}g,
initial-loading of tasks, and the presence of sbsentee jobs (background
work) have not been accounted for. It is best to megard this as an
exazple of how a scheduler can affect the drum lifetime function, rather
than as a definitive explanation for the behavior reported by Saltzer.

In connection with tha linear approximation of the drum lifetime
function, one other point is important. According to the definition of
"LpfM) .as:1/(1-A,), the frequency distribution of references to the vari-
1oua. positions of the.drum stack determines the behavior of Ln(l!l.., Since
tha frequency a, measures only the fraction of drum stack updates which
moved a page from stack position 1 to stack position 1, any page which
was referenced only onca will not affect this data: for that page will
be moved immediately from the disk to the top of the drum, than will
) d.riﬂ: g!.'adually dovm tha drum stack, and f:lnnny will rotmm to the disk.
Th. pages of sl'nrt, tanuul-otl.mtod tasks may well sat.hfy thtl. as
. nl:h a task will be acti.vatod. bring its working set pages mto ‘main
memory, and muqunntly tarminate before the scheduler dnctivntas 1t.

. Ifthenjorityoftuklmmmuc-mofthistype (and I understand
that they m), then the data accnmlatod in Ag . {and therefore. in LD(H))
may well reflect only the bahavicr of absantse jobs, and certainly not

. the majority of work processed by this system. This suggests that the
obsérved dnan 1ifetime ‘function may give us little basis for concluding
anything nbput the.mejority of Multics' workload: it may be nothing more
than noise, !ha manifestation of, 1iterally, a Background effect.

1-




5. Conclusions

One should take grest care n(.th axparisents designed to measure, as
if a black box, the external bsh:\lor of a mechanisa with controllable
internal paramaters, for it is ea:|ly neglected that the results may
dapand critically on the paranmete: | settings. There is no apparent thaore-
tical basis for ther Multics' clair ; of linear main memory headway function,
and on closer inspection the data }_ut forth to explain the claim appears
irrelevant to it. The data put f.\th to explain a similar claim of lin-
earity for the drum heacay funct II"m appears on closer inspection to re-
flect little more then the lllmr::JLn which the scheduler treats back-
ground jobs, which are a small fr(:tion of the work performad by the
system. The Multice results spp:ir of limited utility, evemn to Multics.

|

Acknowl edgement /

I am grateful to Jeffrey Ben and Don Hatfield for useful criticisms
offerad while T wes prepardng ;s psper. My students Kevin Kahn and Rich
Simon also providad valueble ingit.

)

References |
1. Saltzer, J. H, A sinple 1is0ar model of demand paging performance.”
Comme ACH 17, 4 (Bpril 1974., 181-185,

2. Belady, L. A. and C. Jo Itunﬂnr, “Dynamic space sharing in computer
syatems.” Comm. ACM 12, 5 (May 1969}, 282-288,

3. Chamberlin, D. D., S. H. Puller, and k. ¥. Liu. "A page allocation

strategy for nultiprogramming systems with virtual mesory.” IBM 7.
J. Watson Ressarch Centar Repart RC 3848 (May 1972).

4. Ghanem, M. Z, "The lifetims function shape and the optimal mesory
allecation.” IBM T. J. Watzon Research Centar Report (Sept 1973).

5. Spirn, J. R "Program locality and dynamic pamory sarmgemant.” FPh.D,
Thasis, lhpt. Eloc. Engrge., Princeton Un.l'.. Mafch 1973,

6. DBOrandwejn, A., J. Buzgn, E. Gelenbe, and D. Fotier, "A modsl of,
parformance for virtusl memory systeams." Proc, 1974 SGGMETRICS
Symp. {Oct 1974).

7. Schreeder, M. D. “Performance of the GE-645 associative memory ;

while Multics is in operation.” Proc. ACM Wkshp. on Syat. Perf.
Eval. (Apfil 1971), 227=-245.




15
APPENDIX

Consider an LRU stack with positions i = 1,..,,N. Assume that each
reference to the stack is independant of past and future referancas, and
that each causes the entry at some distance 1 to be moved to the top and
the intervening entries moved down one place. Let a; denote the relative
frequency of distance i, and Ay its cumulative distribution.

To study the motion of a particular entry in this stack, it is useful
to define a Markov chain X(t), in which X(t)=i if apd only i1f the given
entry is at position i in tha stack at time t, whare t counts the nuaber
of references to the stack. Initially, X(0)=1. Let Pj4 denote the transi-
tion probabllity Pyy = PriX(t+1)s)./ X(t)=il, It is oa-l‘ly verified that
P1j=0 except for these casgses:

Fig = 8 Py = A Pygam A
That Pjyg = Aj_4 follows from tha observation that X{t+1)eX(t)=i if and
anly if the stack position referenced at time t is one of 1,25000,1=1,
That Py 4,1 = 1-Aj follows from the observation that X(t+1) = X(£)+1 & 141
if and only if the stack position at time t is one of 1+1,...,N.

Define g(1) to bes the msan forward passage tims frow state i to
state 1 —- i.e., g(i) iz the mean value of k, where k is the smallest in-
teger such that X(t)=i and X(t+k)=1. Define h(i) to be the mean backward
recurrence time since the most recent exit from state 1 — i.e., hii)
is the mean value of k, where k is the smallest integer such that X(t—k)=1
and X{(t)=si, Now, g{i) is 1 if the transition (i,1) is foliowad; it is
g{1)+1 if the transition (1,i) is followed; and it is g(i+1)+1 if the
transition (1,1+1) is followed, This gives the recursion relations

) = ay ¢ (GUMDAL ¢ (U111 (1-A)),  IKIN

giN) = a, + t‘g(!«l)-ri)hn_i

It is easily proved by induction that the solution is

N=1+1
e —

1=-A 41

which is shown as eq. (4.5) in the main text.

g(i)

Now, h(1) is h(1)#1 if the transition (1,1) was most recently used;
it is 1+h(1-1) if the transition (i-1,1) was most recently used. This
leads to the recurrence relaticms :

h{{) = (h(1)+‘1)Ai_1+(h(i.-i)-l-‘.l.)(:l-n )y 14N

-1
h{l} = 1

It is easily proved by induction that the solution is

-1,
hii) =« § ==
ke A

whare AO-O. This is-q}wwn as eq. (4.6) in the main text.
4 '




	Comments on a Linear Paging Model
	Report Number:
	

	tmp.1307986960.pdf.LiH6m

