Purdue University

Purdue e-Pubs

Comments on a Linear Paging Model

Peter J. Denning
Report Number:
74-123

[^0]This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Petar J. Denning
Purctue University"*
CSD-TR-123

Abstract

The IInear approximation rolating man time between page transfers batwen levals of memory, as reported by Saltear for Multics, is examined. It is tentstively concluded that this approximation is untenable for main memory, especially under working set policies; and that the 11nearity of the data for the drum reflects the behavior of the Multics scheduler for background jobs, not the behavior of prograns.

1. Introduction

Saltear reported recently [1] meazuremants taken on the Multics syatam, according to which the mean time betwoen page transfers between a maneyy level M and the next lower level in the mamory hiecarchy appeared 11noar inn, the sice of M; the 1 inear behovior for clained for M being either theman meocry oce the paging drum. specifically, the reader is aaked to belleve two propositions:

P1 The mean tima batwean requenta to transfer a page from drum to main menory (1.e., the man time between system page faults) is innear in the alze of the minin nemory.
P2 The mian time between requeste to transfor a page from diak to drum in linear in the sice of the drun.
The nore I poncered the paper, the lase accessful wat I in reconelling these elains (especinily P1) ageinat completely the oppoaite eonciucions one is led to by considering masursment data raported throughout the literature. Propostition P1 is, I believe, simply incorrect. The data

[^1]presented in the paper in support of P1 are unconvincing, and it appears that a bizarre scheduling algorithm would be required to cause $P 1$ to hold. Proposition P2 appears to result from the operation of the Multics seheduler and seens at best wably correlated to program behavior. The extent to which it is satisfied in other syatems will depend on the extent to which their achedulers share certain (as yet unknown) properties with Multics. In the following pages I shall attempt to share with you the reasoning which led me to these conclusions.

I should point out that I an dissatisfied less with the conclusions of Saltzer's paper than with ite ocientation and philosophy. we are being amked to regard the menory syitem as a black box, to ignore completely its internal structure and organization. We are asked to believe that the external behavior of the system is more or leas indapendent of memarous Internal factors over which the system designer has control -- factors wuch as the policies of scheduling and memary management, page eharing, and the individual behaviors of programs - without being offered a ahred of evidence whether in fact the external behavior is independent of these factors. We are this asked to eacrifice a great deal of what wa know aliout controlled experimenter and the scientific anthod, as well as a wubstantial amount of intellectual curiosity. I shall show belou that factorg such as those listed above are indeed critical, a fact wich becenes ciear only after one discards the black box philocopty and permits himgelf the privilege for a mement of puaring within the syitem.

2. Definitions

The acronya LRU signifias "least recently used." An LRU stack over p pages is a timedapendent vector of the form $S(t)=\left(s_{1}, \ldots, s_{p}\right)$ in which each page appears exectly once, $t=1,2,3 . \ldots$ counte page references, and $1<j$ implien a_{i} was referenced more recently than s_{j}. Page x is at distance i in $\underline{S}(t)$ if $s_{1}=x_{0}$. If page x is referenced at time $t+1$ and is at distance 1 in $S(t)$, it is moved to the first position in $s(t+1)$ and the intervening pages puahed down ons place; that is

$$
\underline{s}(t+1) \quad-\left(x, s_{1} ; \ldots, s_{1-1}, z_{i+1} ; \cdots, z_{p}\right)
$$

The importance of an LinU stack is that the first'm elements of it are
precisely the contents of a manory space of alze mp managed under demand fetching and uging LRU replacenent. A page will be missing fron the mernory space at time $t+1$ if and only if its distance in $\underline{s}(t)$ exceeds m.

Let a_{1} denote the frequency of references having distance in the stack over sone measuremant period. Lat $A_{1}=a_{1}+\ldots+g_{1}$ denote the comithlative frequency distribution, and take $A_{0}=0$. For a memory space of aize in pages, 1-A can be intarprated as the rate of references to pages not in the space, and $L(m)=1 /\left(1-A_{n}\right)$ as the expected number of references between two for missing peges.

The moan mumber of references between two missing-page references 18 called the 119fotime $[2,3,4]$, and the function $L(m)$ is called the lifetime function. The mean real time between two nissing-page references has been called the headvay [1]; it is given by

$$
\begin{equation*}
H(n)=T L(m), \tag{2.1}
\end{equation*}
$$

where T is the mean tine between references to the store for which $L(m)$ is the 1 ifetine function. The 1 ina ar paging assuxption states that there exists a constant c such that $H(m)=c$.

A task in the syatem is a member of the active set if it is eligible to receive processor service and to be allocated pages in main mamory. The size of the active set is called the degree of wultipagraming. In Multics (and in many other multilevel memory syatans) a task' a pages reside initially on the disk. When an active task referencen a page for the first time, a copy of that page is placed in both main anory and on the drum. After a page has been uncaferenced for a gufficient tirn, the main monory policy will delete it from man meary. If the page remains unreferenced for an additional period, the copy of it on the drum will also be deleted. In Multica, the drum pages are maintained in an LRU stack, the lowest page on this stack being deleted from the drum when an active task generates a page fault that cautes a page to be requented from the disk. However, Multies' miain masory poiley is not based on an LRU stack; it uses an algorithm reaembling a warking met policy.

The above considerations lead to the observation that the main mennory size an and the drum size M antifly the relation mpy. It is cuntomary in auch ryatems to take the main mamory access tim as the basic time unit;
therefore the main memory headway function，which gives the mean timp between page faults in the system，is given by taking $T=1$ in Eq．（2．1）： （2．2）H（四）L（m）。

Hereafter，tha notation of（2．2）will be used for main memory ilfetimi and hoodway functions．The dem headway function H_{D}（ H ）gives the man time between requasts to move a page（sirultanaously into main manory and drua）from the disk．Under the assumption that every rain manory page has a copy on the drun，it munt be true that

$$
\begin{equation*}
H(m)=H_{D}(m) ; \tag{2.3}
\end{equation*}
$$

that is，the headways agree when Mane（Saltaer＇s deta obeys this pro－ pertye）Noting that drum stack updates occur only at page fant times， the intervals between which are $\mathrm{T}=\mathrm{H}(\mathrm{m})$ ，we can use eq．（2．1）to obtadn for－the drum headway function

$$
\begin{equation*}
H_{D}(A) \quad=H(m) L_{D}(H), \quad M \tag{2.4}
\end{equation*}
$$

where $L_{D}(M)$ is the lifetive function of the drun．Note that $H_{D}(M)$ is a function of m ，explicitly because of the torn $H(m)$ on the right side and implicitly because m affects the drua stack distance frequancies and hance $L_{D}(M)$ e Since the drum is managed according to LRU，

$$
\begin{equation*}
L_{D}(M)=\frac{1}{1-A_{M}} \tag{2.5}
\end{equation*}
$$

Note that（2．3）and（2．4）1mply that $L_{D}(m)=1$ ，and（2．5）implias that $A_{H} \mathbf{0}$ for $k<m ;$ this is consistent with the assumption that every eain menory page has a copy on the drum．（However，to enforce this，it is necessary to deviate slightly from the drum stack updating procedure： At each page fault，the referenced page is placed an usual on top of the stack；but the page being replaced from main menory，which will appear at some distance not exceeding in in the drum stack，mast be moved diractly to position m＋1 in thia temek．）

[^2]Because $H_{D}(M)$ is undefined for $M \mathrm{M}$, is it tempting to construct for m given a composition of H and H_{D}

$$
F_{a}(x)= \begin{cases}H(x), & x \leq m \\ H_{D}(x), & x>m\end{cases}
$$

Because by (2.3) H and H_{D} agree at the point $\mathrm{x}=\mathrm{m}$, the function F_{m} will exhibit no discontinuities. (Saltzer's Pigure 4 is a plot of this function for man 320 poges.) From the earlier discussion, you can seo that H and H_{D} are entirely different functions with different interprethtions. A plot of F_{m} can, therefore, be quite aleleading, 2 wring the unsuspecting beholder to the false conclusion that $H=H_{D}$.

3. The Main Menory Headway Function

The form of the main memory headway function and its relation to Proposition P1 will be considered in this section. By $(2,1)$ it is anffielent to study the lifetine function directly. I mast diseuse first how the maln memory lifetime function relates to those of indivicual taske. Lipt $L_{i}(x)$ denote the lifetime function of task T_{1}, when it has a spece aliocation of x pages in main mesory. It has been dotermined that for well-behaved paging algorithos $L_{1}(x)$ has the s-shaped form ungegted in Figure 1 [see 2,3,4], consisting of a concave up region for $x \leq x_{01}$ and a concave donvergion for $x x_{01}$ (where x_{01} dripenda on the task). In the concave up region it has been discovered moreover that, approximately

$$
\begin{equation*}
L_{1}(x)=c_{1} x^{k_{1}}, \quad x \leq x_{01} \tag{3.1}
\end{equation*}
$$

where appeoxisately $k_{1}-2$. The point is, the individual lifetime functions

(eont.

main meinicy is entered on top of the drum stack. In this case both m 70 and DN ; eq. (2.3) becomes $\mathrm{H}(\mathrm{m})=\mathrm{H}_{\mathrm{D}}(0)$; and eq. (2.4) is unchanged. Saltser's' data obeye eq. (2.3), which leads ne to suspect that my peinicipial formation is more accurate that the one in thia footnote.
are distinctly nonlinear. Similar bahavior will be observed for working set policies, where $L_{i}(\bar{x})$ denotes the lifetime when mean working set sive is $\overline{\mathrm{x}}$ [sec 5].

The mean main mesory lifetime function $L(m)$ observed by the processor executing active tasks in a memory of aize m is determined as follows. Consider a sequence of r lifotime intervals on the processor, and suppose $\mathbf{T}_{\mathbf{j} \mathbf{k}}$ denotes the task to recaive service in the kir such interval. The processor's lifetime function, which is also the main memory lifotime function, is then

$$
\begin{equation*}
L(m)=\frac{1}{F} \sum_{k=1}^{r} L_{j_{k}}\left(z_{j_{k}}\right) \tag{3.2}
\end{equation*}
$$

where taak $T_{j_{k}}$ has space $X_{j_{k}}$ allocated, and the total space allocated among the active tanks is m.

Suppose now that the main memory sive is changed from m to ke pages what effect does this have on the main memory lifatige function $\mathbf{L}(\mathrm{n})$) (The ilnear paging assumption would predict that $L(K m)=K L(m)$.) To anower this, one needs to know how the multiprogramoing policy maponds to an increase in tha main memory wize. Consider two extrenes:

Case. A. The degree of multiprograming is held fixed, the extra pages boing tised to increase uniformly the allocation of each task.

Cage B. The degree of multiprograming is multipliod by (approximately) K , under a working set policy that keepa main mesory as fully allocated to wocking aetz as posstble.

For case A, the main memory lifetime function (3.2) beconas

$$
\begin{equation*}
L_{A}(K Q)=\frac{1}{F} \sum_{k=1}^{r} L_{j_{k}}\left(K x_{j_{k}}\right) \tag{3.3}
\end{equation*}
$$

If we assume that ach task operaten in ita concave up region, we have from (3.1) that approximately $L_{j_{k}}\left(K x_{j_{k}}\right)=K^{2} L_{j_{k}}\left(X_{j_{k}}\right)$, which with (3.3) implies $L_{A}\left(K_{m}\right)$ a $K^{2} L_{A}(E)_{B}$ in this cane, the ilnear approximation is not even close. If we asauma aach task operates in its concave down region, a minilar argument leads to the conclusion $L_{A}(K)<K L_{A}(m)$, again violating the inear appreximation. The only situation poasibly favocable to the innear approximation would take m auch that most taske operate in

their concave up regions, and Kn such that they operate in their concave down regions. It is plain, however, that in this case linearity would hold only over a limited range of values of mand K_{o}. Case A miltiprogranaing policies appear incapable of exhibiting linear behavior over any significant range of menory sizes.

Por Case B, the situation is simple indeed. Assuming that Cace B follows the working set principle, it will tend to allocate each program the minimin apace in which the rate of paging (of that program) does not exceed some predetermined maximum, which implies that $L_{j_{k}}\left(x_{j_{k}}\right)=L$ (approximately) for all k and some L in (3.3). This yields; approximately, (3.4)

$$
L_{B}(m)=L
$$

for all m, in serious violation of the linear assumption. Case B multiprograming policiea necessarily viclate the linear assumption for marly all valuea of m.

The above conclusions on Came A and Case B multiprograming policies are sumarized in figure 2. It appears that a muitiprograming policy would have to enploy a fortuitous combination of Case A and Case B affects to maintain the ilnear approximation over any appreciable range of mamory sires. Inammich as working set policiay are used increasingly in multiprograming, mont eystems will exhibit the diatinctly nonlinear, controlled Case 8 behavior.

[^3]The interested reader will find in the paper by Brandwajn et al. [6] a queusing natwork model in which, given a memory size m, the degree of multiprograming n is chosen to maximise processing efficiengy. The analysis shows that, except, for amall values of m, the mean $t i m$ between processor page faults is independent of m. Inasmuch as this is the ideal Case B policy, it furthar supports my conclusions above.

The diagrang offered in Saltzer's papar to aupport the Ifnear approximation of main memory lifetime (his Figures 2 and 3) do not in fact aupport the linear assumption at all. At the very least, they are unconvincing (one containe four data points, the other two). The interested reader will find that an S-shaped curve (auch as Figure 1 of this paper) fits this mager data better than straight lines do." with respect to Multics, therefore, we require more data and more information about the maltiprogramming poligy before we can conclude arything usaful about its matn macy 1ifetime function.

4. The Drum Headway Function

Saltaer's date in aupport of Proposition P2 shows that the mean time between requests to move a page from diak to drung, referred to here an the drum headway fuction, is eppcoximated by

$$
\begin{equation*}
H_{D}(H)=C H \tag{4.1}
\end{equation*}
$$

for difin tixe A in the range

$$
320 \leq M \leq 2048
$$

and apptoxdmately

$$
\text { C - } 20 \text { time unit }
$$

[^4]Since the drum is maintained by an LRU stack, we can use the equations (2.4) and (2.5) together with (4.1),

$$
\begin{equation*}
H_{D}(M)-\frac{H(m)}{1-A_{M}}=C M \tag{4.2}
\end{equation*}
$$

to study the propartios of the drua stack dietance distribution A_{i}. Letting $d=c / H(m)$, we observe that the drum lifetime function $L_{D}(M)$ - dif also satisfies a linear assumption, and hence

$$
\begin{equation*}
A_{H}=1-\frac{1}{d H} \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
g_{M}=A_{M}-A_{M-1}=\frac{1}{d(M-1)}=\frac{1}{d H^{2}} \tag{4.4}
\end{equation*}
$$

(the last equality is an appoxamation). It remains to deduce what if anything this implies about schoduler and program behavior.

It is interasting to observe that the working set pages of sowe task T_{1} will tend to procede those of T_{j} in the drum stack, if T_{i} has been a member of the active set more recently than T_{j}. In other words, the drus stack can be partitioned as shown in Blgure 3; stop the stack are pagas belonging to the working sets of active tasks, while farther down the stack can be partitioned into the working sots of tanke $\mathrm{T}_{\mathrm{y}_{1}}, \ldots, \mathrm{~T}_{\mathrm{y}_{\mathrm{r}}}$ in ceder of increasing tine aince last deactivation. (This is of course an approxinate description, aince nonwarking set pages of active and formerly aetive tasks will be intaraingled with the beatly-grouped working set pages.) The pagen of the active taske atop the stack are not likely to be parititionad as natily as those of inactive tasks, since the drum atack is updated oniy at page fault timen and the procensor is cycled aroing active tasks. Tha average dietance D at which the partitloning beging de $D=\bar{n} \bar{v}$, where \bar{n} is the man degree of miltiprograme ming and \bar{W} is the mean warking set size. (Saltzer provides no data on \bar{n} oc \bar{W}, wo I have no dob what portion of the drua atack is consurad by pages of active tagks in Multics.) The main point is, the positioning of pages in the drum atack is doninated by the scheduling policies of the ayatem. A progran's referenca pattern is leas significant, for it deterndies onjy the relative positions of its pagee within the group cocresponding to its working set.

Figure 3. Effect of scheduler on page position in divm LRU stack.

Finure 4. Expacted time till reactivation of job in stack position 1, for linaar lifetine assumption.

As an approximation, tharefore, we can map the linaarity of the drum lifatime function into that of an LRU fob stack, in which T_{i} precedes T_{1} If T_{i} was activated more recently than T_{j}. The motion of jobs in the job stack cocresponds directly to the poilcy by which the meheduler activates tasks. If $T_{1}, T_{2}, \ldots, T_{p}$ are the tasks (in order) in tina job stack, then the drum stack contalns the working sets (in the ame order) of theae tasks, as muggested in Figure 3.

The job stack 11fotine function $L(i)$ denotes the mean muber of references to the job stack for fobs at positions $i+1$ or greater. Let the mean tion betwean two referancen to the job stack be signifiad by t_{0}, the man time betwean two activations; then the mean $t i m$ between activations of jobs at positiont $1+1$ or greater in the job stack is L(i) t_{0}. Now, the inearity of the drum stack iffetime function implien (under suitable asgumptions of equilibrinn) that of the job stack $21 f e$ tire function; that is, there exists a constant d such that $L(1)=d 1$. Comparing agatnst (4.3) and (4.4), we find $A_{i}=1-1 / d 1$ and $a_{1}=1 / d 1^{2}$ as defining the frequancias of referencing job stack positions.

In the appendix, we prove expressions for two quantitient $g(i)$ represents the expected nusiber of jobs to be activated before a given job In position 1 of the job stack; and $h(i)$ represents the expected muber of jobs which ware activated since the one in position 1 was deactivated. In other werde, $g(1) t_{0}$ estimates the time until next reactivation of the job in position 1 , and $h(1) t_{0}$ estimates the time since last activation of the $j 0 b$ in position 1. we have

$$
\begin{array}{ll}
(4.5) & g(1)=\frac{N-i+1}{1-A_{i-1}} \\
(4.6) & h(1)=\sum_{k=0}^{1-1} \frac{1}{1-A_{k}}
\end{array}
$$

where N is the capacity of the job stack. Comparing (4.5) and (4.6) with (4.2), we find

$$
\begin{align*}
& g(1)=(N+1+1) L(1-1)=d(N-1+1)(1-1) \tag{4,7}\\
& h(1)=\sum_{k=0}^{i-1} L(1)=\frac{d(1-1)}{2}
\end{align*}
$$

Eq. (4.7) has the form shown in Ploure 4. It is interesting that jobs in the midile of the atsok have the, maximu axpected tine until
reactivation. ... One explanation for the decrease in $g(i)$ as 1 appraaches N aight bethat the acheduler compensates jobs which have been inactive for an undum period by forcing then to becone active. Or, it might ajraply be a manifestation of system aquilibriun, according to which every job gete cum, eventually.

At this point, I have no other interpretations for the above equations to offer. I present them meroly as appoximations, the utility of which is in question because important effects such as page sharing, initial-loading of tasks, and the presence of absentee jobs (background work) have not been accounted far. It is best to eegard this as an example of how a zcheduler can affect the drum lifatime function, rather than as a definitive explanation for the behavior reported by Saltzer.

In connection with the linear approximation of the drun lifetime function, one other point is important. According to the definition of $L_{D}(H)$ as: $1 /\left(1-A_{M}\right)$, the frequency distribution of references to the various ponitions of the ctrme stack determines the behavior of $L_{D}(M)$. . Since the frequency a_{i} measures only the fraction of drum stack updates whech moved a page from stack position ito stack position 1, any page which wes referenced only once will not affect this data: for that page will be moved fmediately from the disk to the top of the drum, than will drift gradually down the drum stack, and finally will return to the diak. The pages of ohort, teminal-ociented taake may well satisfy this, as such a task will be activated, bring its working set pages into main memory, and subsequantly torminate before the scheruber deactivates it. If the majority of taske run on Pultice are of this type (and I understand that they aco), then the data accumulated in A_{M} (and therefore in $L_{D}(M)$) may well reflect only the behavicic of absentee jobs, and certainly not the majeenticy of work processed by this aystem. This suggests that the obsorvid druin $21 f e t i m e$ function may give ue little basis for concluding amything abput the majority of Pultics' workioads it may be nothing more than noise, the manifestation of; Ifterally; a background effect.

One should tale grest care, (th experiments designed to masure, as If a black box, the external bah ilor of a mechanisw with controllabla internal parmaters, for it is ea ly neglected that the resulte may depend criticaliy on the paraneter settings. There is no apparent theoretical basis for the Nultice' clair of linear main manory headiey function, and on closer inspection the data rut forth to explain the clain appears ierelevant to it. The data put f ith to explain a sinilar clade of linearity for the drum headnay funct in appears on closer inspection to reflect littie mare then the manser |n which the scheduler treats background jobs, which are a small friztion of the work performed by the cyatem. The Multice rasules appit of linited utility, even to Pulties.

Acknowledrement

I an gratoful to Jorfrey Blen and Don Hatfield for ueaful criticiane offered while I weis propareng ti geper. My studionts Kevin Kaha and Rich stion also provided valueble ingit.

Rintrence:

1. Saltzar, J. H. "A airaple 1 inoar model of damand paging performance." Conne ACH 17. 4 (apxil 1974., 181-185.
2. Belady, L. A. and C. J. Kueliver, "Dynasic space sharing in computer syateme" Conin. ACR 12, 5 (Mry 1969), 282-288.
3. Chamerlin, D. Da, S. H. Puller, and L. Y. Liu. "A page allocation strategy for multiprograming gyoteme with virtual manory." IEM T. J. interon Rosearch Center Repart RC 3848 (May 1972).
4. Ghanem, Mo Z. "The lifetima function shape and the optinal manory allocation." IBY F. J. Wataon Resoarch Center Rapoct (Sopt 1973).
5. Spim, J. Ro "Program locallity and dymatc neacry mangement." PhoD. Theals, Dapt. Elec. Eagigo, Princaton Undy., Match 1973.
6. Brandwajn, A., J. Burean, E. Gelenbe, and D. Potier, "A model of performance for virtual menory ayateas." Eroce. 1974 gropizirics Syme (Oct 1974).
7. Schseedar, M. D. eperformance of the GE-645 associative many while Multics is in operation " Proc. ACM Kikehp. on Syat. Perf. Evele (Apfil 1971), 227-245.

APPENDIX

Consider an LRU stack with positions 1 = 1,....N. N. Assume that each reference to the stack is independent of past and future references, and that each causes the entry at some distance 1 to be moved to the top and the intervening entries moved dom one place. Let a_{i} denote the relative frequency of distance $i_{\text {, }}$ and λ_{1} its cmulative distribution.

To study the motion of a particular entry in this stack, it is useful to define a Markov chain $X(t)$, in which $X(t)=1$ if and only if the given entry is at position 1 in the stack at time t, where t counts the number of references to the atack. Initially, $x(0)=1$. Let $P_{i f}$ denote the transition probability $P_{i j}=\operatorname{Pr}[X(t+1)=j / X(t)=1]$. It is eanily verified that $\mathrm{P}_{1 j}=0$ except for these casest

$$
P_{i 1}=a_{i}, \quad P_{i 1}=A_{1-1}, \quad P_{i, 1+1}=1-A_{i}
$$

That $P_{1 i}=\mathcal{M}_{1-1}$ follows from the observation that $X(t+1)-X(t)=1$ if and oniy if the stack position referenced at time t is one of 1,2,...,1-1. That $P_{i, 1+1}=1-A_{1}$ follows from the observation that $X(t+1)=X(t)+1=1+1$ If and only if the stack position at time t is on of $1+1, \ldots, N$.

Define $g(1)$ to be the man forward passage time from atate 1 to state 1 - $1.0 .0, g(i)$ is the mean value of k, where k is the analleat integer such that $X(t)=1$ and $X(t+k)=1$. Deitine $h(1)$ to be the mean backward recurrence tive since the most recent exit from state 1 - i.e., $h(i)$ 1s the maan value of k, whare k is the smallest integer auch that $X(t-k)=1$ and $X(t)=i$. Now, $g(1)$ is 1 if the tranaition $(i, 1)$ is followed; it is $g(1)+1$ if the tranaltion (1,i) is followed; and it is $g(i+1)+1$ if the transition $(1,1+1)$ is followed. This gives the recursion relations

$$
\begin{aligned}
& g(1)=A_{1}+(g(1)+1) A_{i-1}+(g(1+1)+1)\left(1-A_{1}\right), \quad 1 \leqslant 1<N \\
& g(N)=A_{N}+(g(N)+1) A_{N-1}
\end{aligned}
$$

It is easily proved by induction that the solution is

$$
g(1)=\frac{N-1+1}{1-\lambda_{1-1}} .
$$

which is thown as eq. (4.5) in the main text.
Now, $h(1)$ is $h(i)+1$ if the transition (1,1) was most recently used; it is $1+h(1-1)$ if the transition $(1-1,1)$ was most recently used. This leads to the recurrence relationo

$$
\begin{aligned}
& h(1)=(h(1)+1) \lambda_{i-1}+(h(i-1)+1)\left(1-A_{i-1}\right), 1<i \leq N \\
& h(1)=1
\end{aligned}
$$

It is easily proved by induction that the solution is

$$
h(1)=\sum_{k=0}^{1-1} \frac{1}{1-\lambda_{k}}
$$

where $\lambda_{0}=0$. Thid is shown as eq. (4.6) in the min text.

[^0]: Denning, Peter J., "Comments on a Linear Paging Model" (1974). Department of Computer Science Technical Reports. Paper 74.
 https://docs.lib.purdue.edu/cstech/74

[^1]: *Thil work wal aupported in part by NSF Grant G-41269.

 - "Somputer Selemees Depto, Mat Lafayette, Indinna 47907 USA.

[^2]: To be honest，I do sot know for sure whether the aspuption that every main memory page has a copy on the dru holda in Multics，as saltaer is not clear on this point．An obvious altermative is to have case copy of a page between the main memory and drum．In this case，the drum stack and man many contents are disjoint．A reference to drum etack iletance i implies a page fault（and a contribution to the frequancy a ${ }_{1}$ ），which moves the page off the drum stack and into main merory．A replacement from

[^3]: *To verify this, I experimented muerieally with simple functions of the form

 $$
 L_{1}(x)= \begin{cases}x^{2}, & x \leq x_{01} \\ x_{01}^{2}+B_{i}\left(1-\exp \left(-b_{i}\left(x-x_{01}\right)\right),\right. & x x_{01}\end{cases}
 $$

 Every simple example I constructed (by arbitrary but seemingly rearonable choices of the parematers x_{01}, B_{1}, and b_{1}) yielded a function $L(m)$ which was itself S-shapad (as in Fig. 1) and sometimas double s-shaped. None had any apprecisble range of linearity. Though examples prove nothing, they did suggest the difficulty of pacameter sate occurring "naturally" which prodica aimear $L(m)$.

[^4]: Tha data in Saltwar's Figure 2 is taken from Schroeder [7, p239] and is at show. I remain to be corvinced that this is feasonably approximated by a straight ifne graph. Aetually, Schroedar's data defines an "angociative merocy ilfetive function" giving tho mean time batmeen two "nomatcin" avent in address translation. Sluce the associative momory containg both

 | n | $L(m)$ |
 | :--- | ---: |
 | 0 | 0.0 |
 | 4 | 9.4 |
 | 8 | 34.3 |
 | 16 | 80.1 | SDW (B egment descriptor words) and P1wis (page table words), and fince it is frequently eleared, it is difficult to tee the relation betroun this dats and the main miney lifetime function.

