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Abstract: The presence of illumination variation in dermatological images has a negative impact 
on the automatic detection and analysis of cutaneous lesions. This paper proposes a new 
illumination modeling and chromophore identification method to correct lighting variation in skin 
lesion images, as well as to extract melanin and hemoglobin concentrations of human skin, based 
on an adaptive bilateral decomposition and a weighted polynomial curve fitting, with the 
knowledge of a multi-layered skin model. Different from state-of-the-art approaches based on the 
Lambert law, the proposed method, considering both specular reflection and diffuse reflection of 
the skin, enables us to address highlight and strong shading effects usually existing in skin color 
images captured in an uncontrolled environment. The derived melanin and hemoglobin indices, 
directly relating to the pathological tissue conditions, tend to be less influenced by external 
imaging factors and are more efficient in describing pigmentation distributions. Experiments show 
that the proposed method gave better visual results and superior lesion segmentation, when 
compared to two other illumination correction algorithms, both designed specifically for 
dermatological images. For computer-aided diagnosis of melanoma, sensitivity achieves 85.52% 
when using our chromophore descriptors, which is 8~20% higher than those derived from other 
color descriptors. This demonstrates the benefit of the proposed method for automatic skin disease 
analysis. 
 
Keywords: adaptive bilateral decomposition, weighted polynomial curve fitting, melanin 
identification, hemoglobin identification, skin disease analysis. 

 
 
1. Introduction 
Skin colour is an important characteristic for accurate diagnosis and grading of cutaneous lesions by 
experienced dermatologists in clinical practice. For example, the presence of multiple colour shades and 
pigmentation asymmetry within lesions often indicates a high risk of developing malignant melanoma 
(MM) (Friedman et al 1985). However, visual perception of skin colour is not only credited to major 
chromophores (melanin and hemoglobin) underneath the skin surface, but is also affected by external 
illumination and spectral responses of imaging detectors. Skin colour representation in a specific colour 
space (e.g. RGB and its transformations) is not a genuine physical quantity. It derives from colour 
matching functions of human visual system (Wandell 1995). It sometimes fails to provide precise 
information about the concentrations of cutaneous chromophores, and is easily influenced by external 
imaging factors. For example, figure 1 shows a MM image, whose pigmentation information is partially 
concealed by illumination artifacts. As a result, conventional colourimetry may not properly describe the 
underlying histological content of skin and tend to yield less trustworthy results when colourimetry is 
applied directly to skin disease analysis. 

A number of studies have been developed for non-invasive assessment of melanin and hemoglobin 
on skin lesion images. Claridge et al (2003) proposed a sophisticated multilayered skin model based on 
Kubelka-Munk theory for extracting epidermal and dermal melanin, blood, and collagen thickness using 
multispectral skin data. Yamamoto et al (2008) applied a much simple three-layered skin model based on 
the Lambert law, and calculated melanin index and erythema index in RGB skin images. But Claridge’s 
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approach requires multispectral images, which are not always available in clinical practice; while 
Yamamoto’s algorithm is reported sensitive to imaging circumstantial conditions, as there is no 
illumination-modeling step to correct external imaging factors in their method. 

 

 
Figure 1 A melanoma image from a public database (Galderma 2014) with obvious highlight and shading effects. 

 
Tsumura et al (2003) removed shading effects by a colour vector analysis in optical density domain, 

and applied independent component analysis (ICA) on RGB skin images to separate average 
concentrations of melanin and hemoglobin. Similarly, Madooei et al (2012) introduced extra imaging 
factors (e.g. shading, sensor characteristics) to a diffuse reflection skin model and cancelled out their 
influences by directly dividing two spectral responses in original lesion images. Then they also applied 
ICA approach on the post-processed RGB channels for extracting chromophore densities. These methods 
show efficiency for shading removal in skin colour images, and their chromophore descriptors are useful 
for characterizing cutaneous pigmentation for MM diagnosis. However, ICA-based methods are only 
responsible for separating a skin image into two independent components, and do not associate the 
knowledge of the absorbance spectrum. This results in ambiguities when differentiating melanin from 
hemoglobin. 

All the above methods, either specified (Tsumura et al 2003, Madooei et al 2012) or not included 
(Claridge et al 2003, Yamamoto et al 2008) an illumination correction function, refer to human skin as a 
merely diffuse reflectance surface. They ignore the specular reflection at the air-skin interface. But this 
component is generally believed as the cause of highlight and its effect changes with viewing direction. 
Accordingly these existing methods will fail to address highlight effects in skin lesion images captured 
under non-polarized conditions. 

This paper, considering human skin as a specular + diffuse reflectance model, proposes a novel 
illumination correction and chromophore identification scheme on dermatological images following three 
steps. First, specular reflection is separated from diffuse reflection through specular pixel localization and 
a B-spline image interpolation. Second, the resulting diffuse image is decomposed into a base layer and a 
detail layer. The base layer, having low frequency illumination and shading effects, is approximated by 
polynomial curve fitting taking an initial illumination map from an adaptive bilateral filter as a prior. The 
detail layer, containing high frequency chromophore reflectance, is calculated by subtracting the base 
layer from the diffuse spectral band in a logarithmic form. Finally, incorporating the knowledge of 
chromophore absorption characteristics, melanin density and hemoglobin density are well identified using 
detail layers from different spectral channels. 

Experiments show that the proposed method is able to address highlight and strong shading effects in 
dermatological photographs of large dynamic range intensity. The derived chromophore descriptors, more 
efficient in describing pigmentation distributions of skin, demonstrate to be useful for improving the 
automatic diagnosis of melanoma. 

 
2. A Multiple-Layered Skin Model 



	   3	  

Human skin can be simplified as a thin structure with distinctive multiple layers, which correspond to 
melanin-rich epidermis, hemoglobin-rich dermis, and subcutis with collagen and fat (Tsumura et al 
2003). Based on this multilayered model, previous methods (Tsumura et al 2003, Madooei et al 2012) use 
Lambert law to characterize skin radiance provided that there is little specular reflection at the skin 
surface. This diffuse reflectance model is efficient in modeling skin images captured under polarized 
lighting (e.g. dermoscopy images), but it is not appropriate to handle cutaneous images illuminated under 
uncontrolled imaging settings. Therefore, this study considers skin as a specular reflection and diffuse 
reflection model in figure 2, and skin image intensity 𝐼 at pixel (𝑥, 𝑦) and wavelength 𝜆 can be written as 
a combination of specular reflection 𝐼! and diffuse reflection 𝐼! as: 
 
                   𝐼! 𝑥, 𝑦 =    𝐼!,! 𝑥, 𝑦 + 𝐼!,! 𝑥, 𝑦  

= 𝑄! 𝑘!𝐸!,! 𝑤!(𝑥, 𝑦) ! + 𝑘!𝐸!,!𝑤!(𝑥, 𝑦)𝑒
! !!,!!!,!!! !,! !!!,!!!,!!! !,!        (1) 

 
where 𝑄! stands for sensor characteristics. 𝑘! and 𝑘! are specular reflection constant and diffuse 

reflection constant, respectively. 𝐸!,! and 𝐸!,! are intensities of specular and diffuse components of light 
source. 𝑤! is the specular factor giving rise to highlight, which is the dot product between viewer 
direction and specular reflection direction.  𝛼 is a material relevant constant, which assigns a large value 
for a smooth surface while a small value for a rough one. 𝑤! is the wavelength-independent shading 
variable due to scene geometry, which is the dot product between surface normal and lighting direction. 
𝜇!,!  and 𝜇!,!  are wavelength-dependent absorptive coefficients of melanin and hemoglobin, 
respectively.  𝑙!,! and 𝑙!,! are the accumulated path lengths of photons in epidermis and dermis layers. 𝑐! 
and 𝑐! are densities of melanin and hemoglobin in a sampled volume of skin. 

 

 
Figure 2 A three-layered skin reflectance model. 

 
 

3. Methods 
 
3.1 Specular Reflection and Diffuse Reflection Separation 
Yang et al (2010) estimate the maximum diffuse chromaticity of the specular pixels by apply- ing 
bilateral filter to the maximum fraction of the color components in original image, such that the maximum 
diffuse chromaticity can be propagated from the diffuse pixels to the specu- lar pixels. This method works 
well for removing specular reflection on images of man-made objects, which have smooth surfaces and 
distinctive hue colors. But it poses much difficulty when applied directly on texture-rich skin images. 
This is because human skin has areas shar- ing similar hue values but different saturations. Surface 
texture in these areas will be filtered out as the specular component. As a result, the diffuse image 
becomes blurred, and part of the skin texture information, having diagnostic importance, is lost. These 
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drawbacks can be clearly detected in the diffuse image of an MM example derived from (Yang et al 2010) 
in figure 3(c). 

In this study, we apply Yang’s method to localize candidate specular component first. Then the 
highlight areas are decided by selecting pixel intensity larger than a threshold, which is set to 0.25 times 
of the maximum intensity in candidate specular image. Compared to the candi- date specular component 
(figure 3(a)), the surface texture is greatly reduced in the specular image after thresholding (figure 3(b)). 

In principle, the diffuse reflection can be obtained by subtracting the specular component from 
original skin image. But direct subtraction may yield some fake intensity pixels, visible as dark spots, in 
the derived diffuse image (figure 3(c)). This is because the image intensity of these pixels is dominated by 
specular reflection, while diffuse reflection is largely missing due to local surface smoothness and 
observation direction. Subtraction results in small pixel intensity in all the RGB channels, but not the real 
diffuse chromaticity. This undesired effect becomes worse when specular reflection is strong. 

 

 
Figure 3 Specular reflection removal in skin image, taking the MM in figure 1 for example. (a) Candidate specular 
reflection by Yang’s method (Yang et al 2010). (b) Specular reflection after thresholding. (c) Blurred diffuse image 
by subtracting figure 3(a) from figure 1, having fake intensity pixels visible as dark spots. (f) Diffuse image by our 
method using a B-spline image interpolation. 

 
To circumvent this problem, the diffuse chromaticity of the detected specular pixels is obtained by a 

B-spline interpolation (Thévenaz et al 2000) using neighboring non-specular points as: 
 
𝐼!,! 𝑥, 𝑦 = 𝐼! 𝑥, 𝑦                                                                 (𝑥, 𝑦) ∉ 𝑀!

𝐼!,! 𝑥, 𝑦 =
!!" !!,Ω(x,y)∗!!(!,!) !!"

!

!!"!!(!,!)!!"
!             (𝑥, 𝑦) ∈ 𝑀!

  ,    𝐾!" =

!
!
− !

!
𝑟𝑥 ! 2 − 𝑟𝑥         0 ≤ 𝑟𝑥 < 1        

!
!
(2 − 𝑟𝑥 )!                                  1 ≤ 𝑟𝑥 < 2    

0                                                        2 ≤ 𝑟𝑥

       (2) 

 
where 𝑀! is a set of specular pixels after thresholding. Ω(!,!) = (𝑖, 𝑗)  is the neighborhood of pixel 

(x, y) where 𝑟𝑥 = !!!
!

< 2, 𝑟𝑦 = !!!
!

< 2 . 𝑊!(!,!)  is a matrix of Ω(!,!) assigning 1 to non-specular 
pixels and 0 to specular pixels. 𝐾!"  and 𝐾!"  are vectors of interpolation coefficients in x- and y-
directions. Figure 3(d) shows the diffuse reflection image derived from our method. 
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3.2 Decomposition of Diffuse Reflection Image 
After specular reflection removal, the remaining diffuse reflection can be formulated by a linear 
combination of chromophore coefficients, optical parameters of light source, and effects of scene 
geometry in an inverse logarithmic form as: 
	  

loge Id ,λ (x, y) = µm,λlm,λcm (x, y)+ µh,λlh,λch (x, y)( )− logeQλ − loge Ed ,λ − loge wd (x, y)             (3) 

3.2.1 Initial Illumination Approximation. Bilateral filter, firstly proposed in (Tomasi and Manduchi 1998), 
was developed for image denoising meanwhile preserving important edges and features. It extends the 
concept of Gaussian smoothing through a weighted average process of neighboring pixels. In this study, 
bilateral filter is applied to diffuse skin image 𝐼!,! to estimate the initial illumination map. The output 
image 𝑙𝑜𝑔𝑒𝐼!,!

!  after filtering at pixel (𝑥, 𝑦) and wavelength 𝜆 is given as: 
	  
loge Id ,λ

' (x, y) = 1
A

ϕ (p,q),(x, y)( )Φ loge Id ,λ (p,q), loge Id ,λ (x, y)( )loge Id ,λ (p,q)
( p,q)∈Ω( x ,y )
∑

= − logeQλ − loge Ed ,λ⎡⎣ ⎤⎦ +
1
A

ϕ (p,q),(x, y)( )Φ loge Id ,λ (p,q), loge Id ,λ (x, y)( ) µm,λ Im,λcm (p,q)+ µh,λ Ih,λch (p,q)− loge wd (p,q)( )
( p,q)∈Ω( x ,y )
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   

(4) 

where (𝑝, 𝑞) belongs to the neighborhood (Ω(!,!)) of pixel (𝑥, 𝑦), and 𝐴 is a normalizing constant. 
The first term of the above equation refers to illumination information, which is a function of λ. The 
second term contains chromophore reflectance (𝜇!𝑙!𝑐) and shading effects (𝑤!), whose contributions in 
𝑙𝑜𝑔!𝐼!,!

!  are controlled by a spatial function 𝜑 and a range function 𝛷, defined as Gaussian kernels in this 
study: 
	  

ϕ (p,q),(x, y)( )Φ loge Id ,λ (p,q), loge Id ,λ (x, y)( ) = exp −
(p,q)− (x, y) 2

2σ 1
2

⎛

⎝⎜
⎞

⎠⎟
exp −

loge Id ,λ (p,q)− loge Id ,λ (x, y)
2

2σ 2
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

      (5) 

 
Considering that shading is normally a low frequency component which changes gradually across 

large skin areas, high frequency chromophore elements can be smoothed out by selecting relatively large 
spatial (𝜎!) and intensity (𝜎!) standard deviations (SD), whose values depend on specific applications. 
Subtracting 𝑙𝑜𝑔!𝐼!,!

!  from 𝑙𝑜𝑔!𝐼!,!, intrinsic chromophore information can be obtained. We then embed 
this bilateral filtering in an iterative process such that chromophore reflectance will iteratively propagate 
till the difference between images before and after filtering is smaller than a threshold t for each pixel. In 
this study, t = 0.01*loge(255) ≈ 0.05, which means 1% of the overall image intensity range. The iterative 
process is summarized as Algorithm-1 below. 

 

Algorithm-1: Initial illumination approximation 
Input:         𝐼!""# = 𝑙𝑜𝑔!𝐼!,! 
Repeat:  (1) Apply bilateral filter on 𝐼!""#, store filtered image 𝐼!""#! . 

 (2) Compute propagated chromophore reflectance 𝐼!= 𝐼! + 𝐼!""# - 𝐼!""#! , and the remaining 
component after this iteration 𝐼!"#$%& = 𝑙𝑜𝑔!𝐼!,! − 𝐼!. 

 (3) If 𝐼!""#!    −    𝐼!""# < 𝑡 for every pixel, step outside loop. Otherwise  𝐼!""# = 𝐼!"#$%&,  and 
repeat steps (1)~(3). 
Output:  ℒ!"!,! = 𝐼!"#$%&  
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It should be noted that the goodness of illumination approximation by standard bilateral filter 
depends on the selection of 𝜎! and 𝜎! for individual images. Large spatial and intensity SDs may make 
the normal skin areas overly smoothed, and part of the shading effects fail to be removed; while small 
SDs could lead to poor illumination estimation, where overall lesion areas appear as shading in the 
estimated illumination map. As a result, the contrast between lesion areas and surrounding normal skin 
was greatly reduced in the corrected image. 

In order to cope with this problem, we take image intensity gradients as reference to make the spatial 
and range standard deviations adaptive to each pixel: 
	  

σ 1,λ (x, y) = min(Rgx ,Rgy )*Gλ (x, y)  ,    σ 2,λ (x, y) = RgId ,λ *Gλ (x, y)                      (6) 

Gλ (x, y) = 1− exp −
∇Id ,λ (x, y)
2σ G

2

⎛

⎝
⎜

⎞

⎠
⎟                                                         (7) 

 
where Rgx and Rgy are the width and height of the image, and RgId,λ is the maximum intensity 

value in the diffuse image of channel λ. 𝐺! is a monotonically increasing function of image intensity 
gradient 𝛻𝐼!,!, and 𝜎!  controls increasing rate of function 𝐺!. Hence pixels of large intensity gradients, 
corresponding to lesion areas, are assigned large SDs; whereas pixels of small intensity gradients, 
referring to homogeneous normal skin, are given small σ! and σ! values (figure 4(d)). Using this adaptive 
bilateral filter, shading effect is kept in the filtered image; meanwhile chromophore components are 
gradually smoothed out during each iteration. 

Figure 4(e) shows the illumination approximation of the MM example in figure 3, derived from 
Algorithm-1 applying the proposed adaptive bilateral filter. It is obvious that shading effects on the left 
are well preserved in the RGB channels due to the selection of small smoothing parameters, while most of 
the chromophore information is removed as high-frequency elements by strong averaging process. But 
varied SDs at different pixels make the illumination estimation ℒ!"! unnatural and less homogeneous. 
Thus a polynomial curve fitting is subsequently introduced to generate the final illumination image. 

 
3.2.2 Final Illumination Modeling. Polynomial function 𝑓 in (8) is applied as a parametric modeling of 
lighting variation. Three sets of polynomial orders (𝑛𝑥, 𝑛𝑦) ∈ 𝑁, corresponding to horizontal shading 
(2,1), vertical shading (1,2), and radial shading (2,2), are considered in this study. Our objective is to 
optimize the polynomial coefficients 𝜌 in the model through minimizing the cost function (9) using the 
initial illumination estimation ℒ!"! as a prior. 
	  

f (x, y,nx,ny) =
ρwvx

w−v yv
v=0

ny∑ nx ≥ ny
w=v

nx∑
ρwvy

v−w xw
w=0

nx∑v=w

ny∑ nx < ny

⎧
⎨
⎪

⎩⎪
                                 (8) 

  
f = argmin

(nx,ny)∈N
ϖλ (x, y) Lini,λ (x, y)− f (x, y,nx,ny)

(x,y)∈I∑⎛⎝
⎞
⎠

                      (9) 

 
where 𝜛!  is a monotonically decreasing function defined as 𝜛! = β ∇!!,!)  with β=0.01 as a 

constant. It assigns relatively smaller weights to pixels in skin lesion areas with large intensity gradient, 
so that normal skin areas give greater contribution in calculating the final illumination map. As shown in 
figure 5, the introduction of weight 𝜛! enables the parameter σ! in (7) to be chosen in a larger range 
without greatly influencing the final illumination estimation. In this study, we set σ! = 0.3 throughout 
the work. 
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Figure 4 Base layers and detail layers of the MM image in figure 1. (a) Illumination component. (b) Corrected 
image after illumination modeling by the proposed method. (c) Spectral bands of diffuse reflection image. (d) 
Intensity gradient expressed by the monotonically increasing function G! with σ! = 0.3. Blue color refers to small 
G! value, while red color stands for large one. (e) Initial illumination approximation ℒ!"! by the adaptive bilateral 
filtering. (f) Base layers, and (g) Detail layers after polynomial curve fitting, taking ℒ!"! as a prior. For comparison 
with the original spectral bands in (c), ℒ!"!, 𝐼!"#$ and 𝐼!"#$%& are shown in the exponential form. 1st – 3rd columns: 
Red, Green and, Blue channels, respectively. 

Subtracting the final illumination estimation from the diffuse reflection component, a skin image can 
be decomposed into a base layer 𝐼!"#$ having low frequency imaging factors, and a detail layer 𝐼!"#$%& 
containing chromophore reflectance: 
 

Ibase,λ (x, y) = − logeQλ − loge Ed ,λ (x, y)− loge wd (x, y)                              (10) 
Idetail ,λ (x, y) = µm,λlm,λcm (x, y)+ µh,λlh,λch (x, y)                                   (11) 

 
We will write 𝐼!"#$,!(𝑥, 𝑦), 𝐼!"#$%&,! 𝑥, 𝑦 , 𝑐! 𝑥, 𝑦 , and 𝑐! 𝑥, 𝑦 , as 𝐼!"#$,!, 𝐼!"#$%&,!, 𝑐!, and 𝑐! for 

simplicity hereafter. 
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Figure 5 Average intensity values of estimated illumination map with the change of parameter σ!, calculated with 
and without the introduction of weight 𝜛! in (8). The average intensity values are stable in the range of σ! ∈
[0.2  0.9], if weight 𝜛! is applied; but they become fluctuated without 𝜛!. Numerically, when σ! ∈ [0.2  0.9], the 
maximum differences of intensity in the exponential form (0~255 range) are 7.57, 1.83, 1.60 for R, G, and B 
channels respectively with the assignment of weight 𝜛!; while the differences increased to 17.35, 7.06, and 5.61 
without it. 

 
From figure 4, the resultant base layers, responsible for low frequency component across large 

smooth regions, match with the varied illumination information in the original spectral bands at different 
wavelengths. The corresponding detail layers show pigmentation in large skin regions with little 
illumination influence. In addition, it is worth noting that the exact degree of pigmentation in the detail 
layers greatly changes among the RGB channels. This is because the absorbance spectrum of melanin and 
hemoglobin varies with wavelength. Thus the diffuse reflectance of skin in a specific spectral band can be 
considered as an effect attributed to particular chromophores. Therefore, melanin index and hemoglobin 
index can be calculated. 

 
3.3 Melanin Index and Hemoglobin Index Estimation 
As shown in figure 6, melanin, the major pigmentation chromophore, effectively absorbs light from 
400nm to 1,000nm; whereas oxyhemoglobin and deoxyhemoglobin, the major blood chromophores, both 
greatly absorb light around 450nm and 570nm. Due to the increased spectrum attenuation of hemoglobin, 
the absorption at longer wavelength light (>620nm) is dominated by melanin, whilst that of hemoglobin is 
negligible. Associating chromophore absorbance with the spectral responses of conventional RGB 
cameras, image intensity in red channel (~650nm) is primarily attributed to melanin concentration, while 
those of green (~550nm) and blue (~450nm) channels are the joint effects of melanin and hemoglobin 
simultaneously. The detail layers of skin image intensity in the RGB channels can then be expressed as: 
	  

Idetail ,r = µm,rlm,rcm                                                                       (12) 
Idetail ,g = µm,glm,gcm + µh,glh,gch                                                   (13) 
Idetail ,b = µm,blm,bcm + µh,blh,bch                                                  (14) 

 



	   9	  

 
Figure 6. Spectral absorption of major chromophores from 400nm to 1,000nm based on the published data (Jacques 
1998), and their relation with spectral responses of conventional RGB digital cameras. 
 

Based on the previous publications about absorptive coefficients and light penetration lengths into 
human skin (Jacques 1998, Keller et al 2001), the melanin density and hemoglobin density can be 
estimated: 
	  

cm
ch

⎛
⎝⎜

⎞
⎠⎟
=

µm,rlm,r 0

µm,glm,g µh,rlh,r

µm,blm,b µh,rlh,r

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

−1

Idetail ,r
Idetail ,g
Idetail ,b

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
0.4313 −0.229 0.9456

−0.2349 0.8262 −0.3451

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
*
Idetail ,r
Idetail ,g
Idetail ,b

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

                              (15) 

 

 
Figure 7 Melanin and hemoglobin concentrations calculated by different algorithms. (a) MI and (b) HI derived from 
the proposed approach. (c) First and (d) second independent components by the ICA method (Madooei et al 2012). 

 

(a) (b)

(c) (d)
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In this study, the melanin index is defined as MI = c! and the hemoglobin index is HI = c!. Figure 
7 shows the MI and HI of the MM image in figure 3. This example has both dark brown/black (lesion) 
and reddish (vessels) responses, reflecting the underlying melanin and hemoglobin densities respectively. 
The MI mapping from our method successfully addresses the shading effects, giving apparent contrast 
between blackish areas within MM and surrounding healthy skin. The corresponding HI mapping has 
little highlight effects, and reveals the capillaries that are concealed by illumination in that of the ICA 
approach (Madooei et al 2012). All these should lead to more accurate results in automatic skin disease 
analysis. 

 
4. Experiments and Results 
 
4.1 Experiment Data and Setup 
For algorithm evaluation, a number of 258 conventional RGB skin lesion images, including 76 MMs, 182 
benign nevi (BN), are collected from two public databases (Galderma 2014, Diepgen et al 2014). Of these 
lesions, 154 were reported to be excised and examined by histopathology, giving 76 MMs and 78 BN 
diagnosed as 34 Dysplastic nevi, 30 Common Acquired nevi, 8 Blue nevi, 5 Spitz nevi, and 2 Seborrheic 
Keratosis. The remaining 104 lesions did not undertake excision biopsy due to no evidence of malignancy 
under clinical examinations. 

Automatic skin lesion segmentation and computer-aided melanoma diagnosis are performed to show 
the usefulness of the proposed method in skin disease analysis. In lesion segmentation experiment, 
images after illumination modeling by our approach are first visually compared with the results from two 
other illumination correction methods (Cavalcanti and Scharcanski 2011, Glaister et al 2013). Both were 
developed specifically for skin image analysis. Then automatic lesion segmentation is performed as 
quantitative analysis, taking manual segmentation by an experienced board-certificated dermatologist as 
reference. 

In melanoma classification experiment, diagnostic features are extracted from resulting images after 
illumination modeling. These features are then forwarded to a linear support vector machine using a ten-
fold cross validation as the training-testing strategy (Theodoridis and Koutroumbas 2006). Sensitivity 
(SE) and specificity (SP) are recorded to evaluate the classification performance for differentiating MM 
from BN. The area under the receiver operating characteristic curve (AUC) is also calculated, with a 
confidence interval of 95%. Classification results, computed using diagnostic features extracted from 
images after different illumination modeling approaches, are compared to demonstrate the goodness of 
the algorithms. 

 
4.2 Lesion Segmentation 
Figure 8 shows six example skin lesion images after illumination correction by different methods. It is 
noted that the Cavalcanti and MSIM methods cause a colour change in the shading areas, whilst the 
proposed method maintains a consistent chromaticity of healthy skin. This could be clearly observed in 
figure 8(b) and (d). Furthermore, for skin images having complex surface shapes and oversaturated 
illumination variations, such as figure 8(c) and (f), the Cavalcanti and MSIM methods fail to satisfactorily 
remove the shading effects, whilst the proposed method successfully addresses the undesired artifacts. 

Based on results after illumination modeling, skin images are segmented into lesion and non-lesion 
areas by the same Otsu’s method (Otsu 1979). Taking manual segmentation by the dermatologist as 
reference, the Tanimoto coefficient (TC) defined in (16) is adopted to quantitatively evaluate the 
segmentation performance (Tan et al 2005), 
 

TC = ζmanual−auto

ζmanual +ζ auto −ζmanual−auto

×100%                                        (16) 
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where automanual−ζ  denotes the number of pixels assigned to lesion areas by both manual and automatic 
segmentations. autoζ is the number of lesion pixels computed by automatic method, and ζmanual  is that 
selected by the dermatologist. TC becomes 1 if automatic segmentation is exactly the same as the manual 
one, whilst it is 0 when there is no overlapping between them. 

Table 1 shows the segmentation accuracy carried on uncorrected and corrected skin lesion images by 
different algorithms. It is noted that all the methods show efficiency for correcting illumination variations 
and improving lesion segmentation accuracy. But compared to the state-of-art algorithms under 
consideration, the proposed method proved superior as well as reliable in illumination modeling, which 
gives the highest average TC value and the lowest SD in segmentation experiment. 

 
Table 1. Comparison of segmentation accuracy on uncorrected and corrected skin lesion images by different 
illumination modeling methods. 

 Uncorrected Cavalcanti  
(Cavalcanti and Scharcanski 2011) 

MSIM 
(Glaister et al 2013) 

Proposed 
method 

Average TC (%) 67.54 80.63 82.78 88.96 
SD (%) 23.21 12.16 13.47 8.13 

 

 
Figure 8 Comparison of different illumination modeling for skin lesion images. (1st row) Six examples from public 
databases (Galderma 2014, Diepgen et al 2014) with highlight and shading as artifacts. (2nd row) Results from 
Cavalcanti’s method (Cavalcanti and Scharcanski 2011). (3rd row) Results from MSIM method (Glaister et al 
2013). (4th row) Results by the proposed method. (5th row) Skin lesion segmentation on uncorrected and corrected 
images. Black line: manual segmentation by an experienced dermatologist. Blue line: segmentation on the 
uncorrected original image. Green line: segmentation on the corrected image by the Cavalcanti’s method. Yellow 
line: segmentation on the corrected image by the MSIM method. Red line: segmentation on the corrected images by 
the proposed method. 
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4.3 Melanoma Classification 
In order to demonstrate the efficiency of the chromophore indices for skin disease analysis, the present 
study compares the computer-aided melanoma diagnosis using diagnostic features derived from RGB 
colorimetry and chromophore indices. Based on widely applied ABCD rule (Friedman et al 1985), the 
diagnostic features including absolute colour variation, relative colour variation (Sun et al 2013), and 
global point signature based asymmetry measures (Liu et al 2012), are extracted from each skin lesion 
image using the existing computer-based analytical algorithms. For RGB colorimetry, these features are 
extracted from red, green, and blue channels as shown in (17). Whilst for chromophore indices, these 
features are extracted from MI and HI mappings in (18). The computed diagnostic features are normalized 
using a z-score transformation (Aksoy and Haralick 2001), so that 99% elements of each feature are in the 
range of 0~1 to prevent features of large ranges dominating the classification. 
 
𝐹!"# = {𝐶𝑉!"#! ,𝐶𝑉!"#! ,𝐶𝑉!"#! ,𝐶𝑉!"#! ,𝐶𝑉!"#! ,𝐶𝑉!"#! ,𝐴𝑠𝑦!"#! ,𝐴𝑠𝑦!"#! ,𝐴𝑠𝑦!"#! ,𝐴𝑠𝑦!"#!!"! ,𝐴𝑠𝑦!"#!!"! ,𝐴𝑠𝑦!"#!!"! }     (17) 

𝐹!!!"# = {𝐶𝑉!"#!" ,𝐶𝑉!"#!" ,𝐶𝑉!"#!" ,𝐶𝑉!"#!" ,𝐴𝑠𝑦!"#!" ,𝐴𝑠𝑦!"#!" ,𝐴𝑠𝑦!"#!!"!" ,𝐴𝑠𝑦!"#!!"!" }                          (18) 
 

For comparison, experiments based on RGB colorimetry, refer to the classifications using descriptors 
from original uncorrected images and corrected images after illumination modeling by Cavalcanti 
method, MSIM method and the proposed method. While experiments based on chromophore indices, are 
the classifications using descriptors from MI and HI mappings computed by the ICA method (Madooei et 
al 2012) and our method. The corresponding melanoma classification results are summarized in Table 2. 

For classification in RGB colorimetry, the priposed method greatly increased 4~8% sensitivity and 
8~21% specificity, in comparison to the results derived from uncorrected and corrected images by other 
methods. Moreover, sensitivity of automatic melanoma diagnosis has been further improved 12% via 
applying the diagnostic descriptors from chromophore indices, with 5% sacrifice in specificity. 
Considering that the most important objective for melanoma diagnosis is to maximize the correct 
recognition rate of malignant lesions, the best classification is achieved by using the chromophore 
descriptors from the proposed method, which gives 85.52% sensitivity, 84.07% specificity, and 84.50% 
overall diagnostic accuracy, respectively. 

 
Table 2. Melanoma classification results using diagnostic features extracted from RGB colorimetry and 
chromophore indices. 
 SE (%) SP (%) Acc. (%) AUC 
RGB 
Colorimetry 
  

Uncorrected 65.78 68.67 67.83 0.649 
Cavalcanti (Cavalcanti and 
Scharcanski 2011) 

69.74 76.92 74.51 0.706 

MSIM (Glaister et al 2013) 71.05 80.77 77.90 0.748 
Our method 73.68 89.56 84.88 0.867 

Chromophore 
indices 

ICA (Madooei et al 2012) 77.63 78.57 78.29 0.759 
The proposed method 85.52 84.07 84.50 0.870 

 
5. Discussion 
 
5.1 Comparison of Illumination Modeling Methods  
In the present study, two other illumination-modeling approaches, Cavalcanti’s method and MSIM 
method, are considered for performance comparison. It is noted that Cavalcanti and MSIM approaches 
cannot address highlight effects in the lesion images, while the proposed method can successfully remove 
this artifact. This is because both Cavalcanti and MSIM approaches refer to human skin as a merely 
diffuse reflectance surface, and ignore the specular reflectance in their skin models. But our method 
considers both specular and diffuse reflectance, so it is able to deal with highlight and shading effects in 
skin images of large dynamic range intensity. Hence lesion image in figure 8(f), reported fail to be 
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satisfactorily corrected due to highly oversaturated illumination variation (Glaister et al 2013), was well 
modeled by the proposed method. Its corresponding lesion segmentation is close to the manual one 
outlined by the experienced dermatologist. 

Furthermore, Cavalcanti and MSIM methods make two assumptions about skin lesion images. First, 
skin lesion in the image is assumed illuminated by a single source of white light (Glaister et al 2013). 
Hence only V-channel in the HSV colour space is used for illumination correction. But this assumption is 
not always true for skin images from public databases. This is probably the reason why Cavalcanti and 
MSIM methods sometimes cause a colour change within the shading areas of healthy skin (figure 8 (b) 
and (d)). Conversely, the proposed method does not make the above assumption and corrects the 
illumination variations in all the RGB channels. Hence it maintains a consistent colour across 
homogeneous healthy skin in the corrected lesion images. 

Second, both Cavalcanti and MSIM methods assume that skin lesion is found in the center of the 
photograph. Thus they suppose healthy skin is near the corners and borders of the image. Accordingly 
they use pixels in these areas to estimate the illumination map. These methods can remove shading effects 
when lighting variations in skin images are relatively simple (figure 8(a) and (e)). But limited pixel 
information poses much difficulty when characterizing skin lesion images having more complex 
illumination due to skin surface shapes and oversaturated variations (figure 8(c) and (f)). In comparison, 
our method properly describes the sophisticated lighting variations by using all the image pixels to 
estimate the illumination map. As a result, the proposed method gave visually superior corrected images 
and higher lesion segmentation accuracy during experiments. In addition, it is worth noting that the 
central localization assumption works only for single lesion images, such as MM diagnosis. But it is not 
applicable to skin images where several lesions exist, e.g. acne detection; while the proposed method 
proved working on this kind of skin image in our earlier study (Liu and Zerubia, 2013). 

 
5.2 Comparison of Melanoma Classification Using RGB Colorimetry and Chromophore Indices 
For classification in RGB colorimetry, melanoma diagnostic accuracy, especially specificity, greatly 
increases after illumination correction. This is because illumination modeling results in more accurate 
lesion segmentation and colour feature quantification, allowing a better distribution separation between 
MM and BN.  

Classifications using chromophore indices largely boost the sensitivity, thanks to the melanin index 
and hemoglobin index properly characterizing the pathological tissue conditions of the skin (Dolotov et al 
2004). Take melanoma image in figure 1 for example. The shape of this malignant lesion is more or less 
symmetric and its colour variations are relatively small in the RGB colour space. Hence it was 
erroneously classified as a benign naevi in the diagnostic experiments using RGB colorimetry based 
descriptors. In comparison, chromphore indices are physical measures. The irregular growth of melanin is 
generally believed as the cause of malignant melanoma. Accordingly measuring melanin distribution 
provides a way to evaluate the genetic instability underneath the skin surface. For this instance, 
pigmentation asymmetry and pigmentation variation of the lesion obviously increase in the melanin index 
mapping in figure 7. This leads to a correct classification using chromophore based descriptors, which 
categorizes the lesion as a malignant case. Hence, compared to the RGB colorimetry, chromophore 
indices are more efficient in describing the pigmentation distribution of the cutaneous lesions, and 
therefore can benefit the automatic skin disease analysis. 
 
5.3 Limitation 
The method discussed in this article was implemented in Matlab R2012b (Natick, MA, USA) on a PC 
with an Intel i5-4460 CPU and 8GB DDR3-1600 RAM. Since the spatial (σ1) and intensity (σ2) standard 
deviations are adaptive to every pixel in bilateral filtering, the computa- tion power for processing the 
algorithm cannot achieve real time. Take figure 1 with a spatial resolution of 740 × 488pixels for 
example. It takes 183.86s to remove highlight and shad- ing effects under the platform stated above. If a 
compiled language such as C++ is used, the computational time can trivially be reduced by at least an 
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order of magnitude. But in order to achieve real-time computation, one possible way could be to group 
pixels having similar intensity gradients and make them share the same spatial and intensity standard 
deviations during computation. 

Another limitation lies in the fact that only one dermatologist’s/histopathologist’s evalua- tion was 
used to create the gold standard. As such, it is not possible to characterize inter-operator error. Although 
resources were not available in this study to allow for multiple experts to examine the images, in our 
opinion, the results still elucidate the efficiency of the proposed method for improving the quality of 
clinical data and assisting physicians to achieve better diagnostic results. Nevertheless, a future endeavor 
should strive to investigate whether the estimated error is on the order of the inter-operator error. 

 
6. Conclusion 
 
This paper proposes a novel illumination modeling and chromophore identification method in 
dermatological images for melanoma diagnosis. The derived melanin and hemoglobin indices are well 
identified, and prove robust to highlight and shading effects in skin colour images captured under 
uncontrolled imaging setting. Experiments show that the proposed method gives superior visual and 
segmentation results when compared to two other illumination correction approaches. Chromophore 
descriptors largely increase sensitivity of automatic melanoma diagnosis than those derived from RGB 
colorimetry. We expect that this new method will prove useful for other skin disease analysis. 
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