
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1967

Structure of a Language for a Numerical Analysis Problem Solving Structure of a Language for a Numerical Analysis Problem Solving

Systems Systems

Lawrence R. Symes

Roger V. Roman

Report Number:
67-012

Symes, Lawrence R. and Roman, Roger V., "Structure of a Language for a Numerical Analysis Problem
Solving Systems" (1967). Department of Computer Science Technical Reports. Paper 70.
https://docs.lib.purdue.edu/cstech/70

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

STRUCTURE OF A
LANGUAGE FOR A

NUMERICAL ANALYSIS
PftOdLEM SOLVING SYSTEM

Lawrence R. Symes (Senior Author},
Roger V. Roman

Computer Science Center
Purdue University
Lafayette, Indiana

CSD TR 12

\ I

ABSTRACT

A general description is given of the NAPSS language presently-

being implemented at Purdue University. The NAPSS language is an

interactive problem-oriented language, des-igned frrlnwrity for statirtg

numerical problems in a mathematical like notation. It permits the

direct manipulation of arrays and function and also includes several

built-in higher level numerical operations which may appear any-

where in arithmetic statements. The method of solution of common

numerical problems is provided automatically by the system. NAPSS

may also be used as a procedural language, allowing all the flex-

ibility of procedural languages, but eliminating unnecessary clerical

operations,

Symes
Page 1

INTRODUCTION:

A project has been undertaken at Purdue University to

design and construct an interactive system for solving numeri-

cal problems [1]. The system has been designed to accept

input in a language which is very close to natural mathemati-

cal notation and also to provide for the solution of problems

without requiring specially trained prOCT"imrnp'rc -and immarlcal

analysts.

The use of polyalgorithms [2] reduces the amount of prob-

lem analysis needed before the problem is presented to the

system, the language reduces the amount of time required to

transform the problem into a form acceptable by the system,

and the interaction between the user and the system along with incre-

mental execution increases the users control over the solution

of his problem [3].

This paper is primarily concerned with the structure of

the Numerical Analysis Problem Solving System (NAPSS) language.

AIMS OF THE LANGUAGE — • • i ••
The NAPSS language attempts to eliminate many of the

unnecessary rules and restrictions that are in other languages,

while at the same time not imposing on the languages1 flexi-

bility,

Syraes
Page 2

The NAPSS language permits the manipulation of vector's

aTrays and functions with the same ease that procedural lan-

guages,, FORTRAN^, are able to manipulate acaiars.

Strictly clerical statements, such as those used for

declaring array dimensions, and variable type or mode are

not required in NAPSS, but can be included if the user de-

sires.

The arithmetic expression in NAPSS is more general than

that of procedural languages, permitting the appearance of

any number of the built-in numerical operators (/ integra-

tion, ' transpose, and ' differentiation) in addition to the

five basic arithmetic operations (+,*,/,+)v

NAPSS, by permitting the manipulation of entities larger

than scalars, not requiring declarations, and allowing the

direct use of numerical operations in arithmetic expressions,

allows a user to present his problem to the computer in a form

which is very close to its natural mathematical form,

HAP09 atsu permits the autoaatic solution n£. numerical

problems. The user need only supply to the system a descrip-

tion of the problem to be solved and the variables to be

solved. The system by means of polyalgorithms selects the

method to be used. For example to have the system solve the

second degree initial value problem

y"00 + y'00 + aXy(x) = sin2x, 0<x<2, y» (0) = 1, y(0) = Q,

Symes
Page 3

a user would simply say:

SOLVE y"(x) + P(x)y'(x) + r(x)y(x) = g(x) ,

FOR y(x),WITH y' (x-K)) 1, y(x+0) • 0,

P(x) 1, r(x) 1- EXP(x), gfx) SIN(2x),

ON 0 < x < 2;

LANGUAGE

Rather than present a detailed description of the NAPSS

language [4], we will describe the unique features by examining

several of the more important statements in the language and by

an example program.

ARITHMETIC EXPRESSIONS

NAPSS contains the five basic arithmetic operators

in addition to several buil^-in. muaaricaj.

The * may be omitted in -cas&s. tfbTIF no ambiguity results.

2ZA is equivalent to 2*ZA

CI 2D is equivalent to C1*2*D

Xt2Y is equivalent to (X+2)*Y

In the second example above the blank between the CI and

the 2 is significant as a variable name may be composed of more

than one letter or digit, the first being a letter.

Syraes
Page 4

The built-in numerical operators are: | j absolute values,
1 derivative of function of one variable, ' transpose of vectors

and 2-dimension matrices, DER partial differentiation,/ Riemann

integration.

For example:

i)] | absolute value

j X-Y | denotes the absolute value of the arithmetic

expression X-Y. If X and Y are not scalars,

the absolute value of each element of the vector

or matrix resulting from X-Y is taken,

ii) 1 - differentiation

f1 (X) denotes d£f-X^ while dX

f'"(3.5) denotes
d3X X = 3.5

iii) 1 - transpose

A' denotes the transpose of the vector or matrix A,

while B[i,*]' denotes the transpose of the ith row

of the matrix B, i.e. it creates a column vector.

A "*" in place of a subscript specifies that the *'ed

(starred) subscript varies over its entire range and thus can

be used to obtain subarrays.

Symes
Page 5

iv) DER - partial differentiation

DER (g(x,y) / (x+2>)0) is the linear notation for

2
3 x3y

DER ((x+3+ay+g(x)) / (x,y) j x«-2, y+4)

denotes 32(x5+a*y+gCx))
3x3y

v) I - integration

x = 2
y = 4

ft/ (l+t+2), (t+0 TO 2) denotes f2 — H j dt
° 1+t

// f(x,y), (x«-0 TO y), (y«-0 TO 1) denotes

i r
f f f(x,y)dxdy.
o o

Iff addition to operations on components, arithmetic can he

performed on arrays.

A+B is the sum of the arrays A and B, (they must be of the

same size).

A*B or A B is the matrix product, (A and B must be con-

formable) »

At-1 is the inverse of A (A must be square and non-singular),

5A causes each element of the matrix A to be multiplied

by 5.

(l,2,k».,6)' (1+4 for I 7 TO 12) is an example of the multi-

plication of two explicitly declared vectors. All explicitly

Symes
Page 6

declared vectors are considered to be column vectors initially.

The first vector contains the integers 1 through 6 while the

second contains the integers 11 through 16.

As was seen when looking at the differentiation operator

and integration operator, functions in addition to arrays can

be manipulated in arithmetic expressions.

ASSIGNMENT STATEMENT

There are two types of assignment statements in NAPSS.

The first type is the usual procedural language, Fortran

or Algol, type of assignment statement where the name on the

left assumes the value of the expression on the right. The

name on the left is separated from the arithmetic expression

•on the right in NAPSS by

Declaration statements can be omitted in ilAPSfr because

when a variable appears on the left of an assignment state-

ment it obtains its attributes from the expression on the right

and its own mode of use.

.1 a •+• 5

a a B1

If B1 is a 5 x 4 complex matrix, a in line 2 will be rede-

fined to be a 5 by 4 complex matrix whose indices range over

the same values as the indices of Bl.

Symes
Page 7

fCx) x+3+cos (x), (-2 < x < 10)

h(v,w) •*- v+2w,(-10 < v < 4 AND w > 0)

k 6

g(y) f(y) - 5 h(y,k)

Line 4 defines g(y) to be equal to the function y^+cosyt30y2

on the interval (-2,4). Since no explicit domain is defined for

g, it is the intersection of the domains of f and h.

As can be seen from the above example the arguments of a

function are simply piace-markers, also since k is not an

argument of the function g, the current value of k,6, is used

in line 4,

3 f (x,y) t- x+2y, (x+2+y+2 < 4 QR 4< = x< = 5 AND 0 < y < = 1)

xt2+y+3, (y>=2+x+2) + x+3+Sy+3

The above is equivalent to
2 7 7

f x y, x^+y* < 4
! ,
I x y, 4 <_ x <_ 5 AND 0 < y <_ 1

f(x,y) = - 2 3 2
i x +Y , y > 2 + x] t 3 x + 5y , elsewhere

4 A[l,*] (1,2, n)

A[2, *] -<- A[1, *] + (n FOR n TIMES)

(3ft*l FOR I f 1 TO n)

Symes
Page 8

The above defines A to be the n by 3 matrix

|~1 n+1 2n+l
1
2 n+2 2n+2

. . .
i
j n 2n 3n

and it also exhibits some additional methods permitted in NAPSS

for generating vectors.

The second, type of assignment statement separates the

variable name on the left from the arithmetic expns&slorr on "the

right with an =. This causes the variable on the right to be

set symbolically equivalent to the following expression instead

of being assigned the value of the expression. Thus the variable

names in the expression on the right do not have their values

substituted for them when the assignment statement is executed.

Values are substituted for the variable names in the expression

only when the numeric value of the variable on the left is needed,

i.e., when it appears in an expression, to. the right rjf an or in

an output stateanent for example.

example
x 4

y = 2x

z 2x

x +• 5

w •*• z

v y

The result is v = 10 and w = 8.

Symes
Page 9

When =s is used the arithmetic expression on the right

must not contain the variable name appearing to the left of the

=, nor may any of the variable names appearing in the arithmetic

expression be symbolically equivalent to an arithmetic expression

containing variable name:

example

i) N = N+l

ii) A = B+C

B = X+A

Both of the above are illegal, and would result in an error

message;

More than one variable name> with accompanying or =,

appearing to the left of an arithmetic expression is equivalent

to writing a series of assignment statements.

example

X «• B = A + 2X+3 - 4

is equivalent to

X + 2X+3 - 4

B = 2X+3 - 4

A«- 2X+3 - 4

Symes
Page 10

NAPSS permits symbolic definitions of arrays in terms of

their indices. This type of assignment is similar to an assign-

ment statement defining a function except that the name of the

array can appear in an arithmetic expression and an array with

dimensions corresponding to that -with which it is being com-

bined, is generated.

examples

A[I,J] = 1/CI+J)

B «- A+C

A denotes the Hilbert matrix.

In line 2 if C were a 3 by 3

matrix, the 3 by 3 Hilbert

Matrix C would be added to C and

the result stored in the matrix B.

EQUATIONS

A NAPSS equation consists of two arithmetic expressions

separated by an =.

Equations can be labeled for future reference. An equa-

tion label consists of a variable name, a period, followed

optionally by an integer. When an equation has been.labeled,

the use of the label is equivalent to writing the equation.

Symes
Page 11

The association of a label with an equation is similar to an assign-

ment statement. The assignment of an equation to a label is done

at execution time. The same label may be assigned different

equations at various times and denotes the last equation assigned

to it.

examples

EQ 1.1: 2SIN(X) = A X-2X+2

EQ 1.2: aX+2 + b*X + C = 0
• • •

EQ 1.1: 2C0S(X) = A X - 2X+2

The colon is used to separate the label from tlie equation,

SOLVE STATEMENT

The SOLVE statement is one of the most important features

of NAPSS since it allows- the automatic solution of numerical

problems. The user need, only supply to the system a descrip-

tion of the problem to be solved and the variables to be solved.

The statement has the form:

SOLVE EQS., FOR VARS. (OPTIONS);

where EQS, represents one or more equations or equation labels,

VARS. indicates the variables or variables to be solved, and

(OPTIONS) represents a list of optional information which may

or may not be present. If more than one solution is possible

they come back in an array.

Symes
Page 12

example

SOLVE X+2 - 4 = 0, FOR X ;

will set X[l] to 2 and X[2] to -2.

While details may be left to the system, the user can

exercise some control over the solution by providing additional

information of the following types (OPTIONS):

1_ WITH indicates values to be assigned to variables

in the equations. If absent, current values

of the variables will be used.

2 ON indicates that only solutions falling within

the specified range aTe desired,. If absent,

any solution is accepted.

NUMBER indicates the maximum number of solutions

desired. If absent, the system looks for all

possible solutions in the desired range.

4 USING indicates a particular method is to be used.

If absent, the system selects a method or

methods for solving the given problem by means

of the polyalgorithms which use intermediate

results to decide on which method to use in

the current situation.

5 TYPE indicates the type of equations to be solved

(e.g. linear system, polynomial, differential

equation). If absent, the system determines

the type (so this serves merely to speed

computation).

Symes
Page 13

6 ACCURACY indicates the absolute or relative accuracy

desired in the solution. If absent, then

either the accuracy specified by an accuracy

statement (if present), or the standard system

accuracy is used.

£ STEP indicates the initial step size to be used

(when meaningful),. If absent, the initial

step size is determined by the accuracy

desired.

exam i£les

_1 SOLVE TAN (X) = 2X-a, FOR X, WITH a PI, ON 0 < X < PI

This finds the unique solution of

tan X - 2 X+tt = 0 on the interval (0,ff),.

2_ EQ-1 : X+2 + Y+2 = 4

EQ..2 : X = (Y-1,.5) +2

SOLVE EQ.1, EQ.2, FOR X,Y, ON

0 < X AND 0 < Y, TYPE

POLYNOMIAL SYSTEM;

This finds all solutions of the system:

X2 + Y 2 = 4

X = (Y-1.5)2

which fall in the first quadrant., If NUMBER 1 were used, only

one solution would be obtained..

Symes
Page 14

SOLVE A X = LAMDA X, FOR LAMDA, X,

WITH A[l,*] (-1,0,0),

A[2,*] (3,2,0),

A[3,*j «- (-1,-1,-1),

ACCURACY 5 DIGITS,

NUMBER 3;

This will obtain all 3 eigenvalues and eigenvectors of

! -1

f -1 -1

0 I

LAMDA will be set equal to the vector (-1,2#1) and X will be

the 3 x 3 array with eigenvectors as columns:

X = -k

k

0 i

0

3 !

where k^ j* 0, i = 1,2,3.

CONDITIONAL STATEMENT

The NAPSS conditional statement is similar to that in ALGOL,

and has the form:

Symes
Page 15

IF BE, THEN Sj, S2,

ELSE «•»> Tjji

where BE. is a boolean expression and S1# $ f S , a n
Tj, T2, . a r e NAPSS statements.

The conditional statement as well as other compound state-

ments in NAPSS are terminated with & "ai-colon, tdiile. simple

statement® mch as assignment statements are terminated with

nothing if they are the last thing on a line or card and with

a comma if they are followed by anything on the same line or

caid.

THg use of the semi-colon with compound statements sofacsr

sevexaJ problem^ In the conditional sraTgfflfln.t it etrtvea the.

^dangling ELSE" problem and in. compound statements, in general^

it ppTraite them to be continued from one line or card to the

next-without ajiy continuation mark.

If there is no ELSE clause in a conditional statement the

semircoion is placed after the statement Sn«

examples

1_ IF X = 2 THEN IF Y=3 THEN ?=4; ELSE 2=5;

2 IF X = 2 THEN IF Y=3 THEN Z=4 ELSE Z=S;;

Symes
Page 16

In example 1 the ELSE is associated with the first IF

because the second IF is ended with a semi-colon after its

THEN clause. In example 2 the ELSE is associated with the

second IF.

ITERATION STATEMENT

The iteration statement has the form

where IS. represents an iteration specification and
Sl» S2' S» "axe s t a t e m e n t s- ^ extent of the

iteration is indicated by the serai-colon.

The various iteration specifications are a generalization

of those appearing in ALGOL:

i) FOR T •+• 0, 1, 16, -3, S (T assumes values 0,1,16,-3,5)

ii) FOR Q .1 TO .9 BY .3 (Q assumes values .1,.4,.7)

FOR Q +• -3, -1,,..,6 (Q assumes values -3,-1,1,3,5)

The last example is equivalent to FOR Q -3 TO 6 BY (-l-(-3))

iii) Any combination of expressions from above which follow

the :

FOR C + 0,1,16,-3,5,.1 TO .9 BY .3,-2 TO 2,-3,-1,...,6,2 TO

iv) FOR 72.4 TIMES (loop is executed 72 times)

IS. DO S , S2,

FOR Q -2 TO 2 (Q assumes values -2,-1,0,1,2)

FOR Q + 2 TO -2 (Q assumes values 2,1,0,-1,-2)

Symes
Page 17

v) WHILE X > 0 OR Y < 1 loop is executed while the

boolean expression is true,

vi) UNTIL |Z-Yj = 1 loop is executed until the

boolean expression is true,

vii) Any combination of FOR with WHILE or UNTIL: In this

case the loop is executed until one of tlie conditions,

is satisfied.

FOR Y 0 TO 6X+3 OR While W < .001

FOR Z3 + 1 TO 10, 15 TO 100 BY 5 OR UNTIL X + 2 < .5 i

The t in NAPSS is equivalent to the E in FORTRAN.

If a loop is being controlled by more than one index which

assumes tfee same values the ^tPrfti-P" JJJ> -w^^ar*-fpjT.^.^ ̂ 1 *

FOR J.JfV 1,2,..., m DO X[K,J] -h l/CK+i);

which is equivalent to:

FOR J «- 1,2,..., m DO

FOR K + 1,2,..w m DO

X[K,J] + 1/(K+J);;

Iteration variables were included in NAPSS to aid in loop

controls For instance, while X represents the present value of

X, X+[-l] represents the previous value of X and X+[-2] the one

before that and so on. The number of previous iterates can be

determined at compile time because the valu£ in the square

brackets is restricted to be a negative integer. No variable

Symes
Page 18

names can appear in the square brackets» Previous iterates

cannot be assigned values directly. They obtain their values

as X is assigned different values.

example

To find a root of f,(X) = 0, using Newton's method with

XO as a starting value we have:

X X0

POR 100 TIMES OR UNTIL |X-X+[-l]| < .00005

DO X X - f(x) / f'(X) ;

The iteration terminates when two successive iterates

agree to four decimals, or after 100 iterations- Since the

iteration variable X+[-l] is used in the until clause, the

following boolean expression is not tested until the loop has

been evaluated once. In general if an iteration variable, let's

say X [-5J, appears in a WHILE or UNTIL test of a loop, the

loop would be executed £ times before the test is made.

DECLARE STATEMENT

The declare statement is optional in NAPSS, for variables

can be contextually declared when they appear in an assignment

statement. But the user can explicitly assign some or all of

the attributes of a variable in a declare statement. The main

advantage in doing this is that when a declared variable appears

Symes
Page 19

on the left of an assignment statement the attributes of an

expression on the right which corresponds to the explicitly

declared attributes of the variable on the left must agree, or

an error message results. The remaining attributes which have

not been explicitly associated with a variable name are defined

contextually;

example

If A is explicitly declared to be a REAL ARRAY then

A*- (1,2,3)

is a valid assignment A because (1,2,3) is a one-dimensional

matrix with all real elements: But

A (l,2,3+4i)

is an invalid assignment to A because all the elements of the

array on the left are not real;

The declare statement in NAPSS is an executable statementi

Thus, attributes of a variable name can be explicitly changed

in a program by having the variable appear in different declare

statements. When a variable name appears in more than one de-

clare statement the attributes explTcixty associated with it

are all of attributes assigned by the last declare statement

executed and all of the attributes explicitly associated with

the variable name by previously executed declare statements*

which have not been explicitly changed;

Symes
Page 20

example

DECLARE A ARRAY, SINGLE;
* • •

DECLARE A SCALAR, COMPLEX;

A, after the second declare statement has the attributes

SCALAR, COMPLEX, SINGLE explicitly associated with it.

The attributes which can be associated with a variable

name are REAL, COMPLEX, SINGLE, DOUBLE, SCALAR, ARRAY, FUNCTION,

LOCAL, GLOBAL, INITIAL.

Three attributes cannot be assigned contextually: GLOBAL,

LOCAL, and DOUBLE.

examples

i) DECLARE A REAL, B COMPLEX, D[-5 TO 10],

C[*, -6 TO *], E[5,6J;

After the above declare statement has been executed A has

the attribute REAL; and B the attribute COMPLEX; D is a one

dimensional array with index range from -5 to 10; C is a two

dimensional array, with the bounds of the first index to be

defined contextually and its lower bound of the second index to

start at -6 and the upper bound is to be defined contextually;

E is a two dimensional array whose first index ranges from 1

to 5 and whose second index ranges from 1 to 6.

Symes
Page 21

ii) DECLARE (A REAL, (B COMPLEX, C REAL) DOUBLE) GLOBAL;

Since attributes can be factored, this is equivalent

to:

DECLARE A REAL, GLOBAL, B COMPLEX, DOUBLE, GLOBAL,

C REAL, DOUBLE, GLOBAL;

GLOBAL and LOCAL are unique attributes—they are assigned

at compile time.

When a name has the attribute LOCAL associated with it

anywhere in a procedure, say procedure A, it denotes a new

variable distinct from variables with the same name in proce-

dures containing procedure A. All occurrences of the variable

in procedure A refer to the same variable until the variable

is assigned either the attribute LOCAL or GLOBAL in a procedure

internal to procedure A, A variable name may not be assigned

both the attributes LOCAL and GLOBAL- in. prpcedme A excluding

contained procedures.

The declaration of a variable to be GLOBAL has the same

effect as declaring it to be LOCAL except that all occurrences

of the variable in procedures where it has been declared to be

GLOBAL refer to the same variable,

The scope of variable names which are not declared to be

LOCAL or GLOBAL and are not parameters is the outer most con-

taining procedure.

Symes
Page 22

example

EXTERNAL!: PROCEDURE
• « •

DECLARE (A,D) REAL, E GLOBAL;

L2: A - Z - k * K

INTERNAL?: PROCEDURE (B)

INTERNAL2: PROCEDURE

DECLARE (A,E,D,K> GLOBAL, Z JJJCAL;

END

L3: Z «- G + K

i t »

DECtAWL t4*E,Nj LOCAL.;

END

END

EXTERNAL2: PROCEDURE

DECLARE (A,E,D) GLOBAL;

END

Symes
Page 23

The variable names Z and K in statement L2 of proce-

dure EXTERNAL1 and statement L3 of procedure INTERNAL1 refer

to the same variable, but the variable names Z and K de-

clared in procedure INTERNAL2 refer to different variables.

The variable names A and D in INTERNAL1 refer to different

variables than the variables named A and D in EXTERNAL1,

INTERNAL2, and EXTERNALS. But since the variables names A and

D in INTERNAL2 and EXTERNAL2 have the attribute GLOBAL they

refer to the same variables.

The attribute INITIAL permits the assigning of initial

values to arrays or scalars only. The initial values are

assigned every time the declare statement is executed, unless

a variable name is declared to be GLOBAL. When this is the

case initial values are only assigned when:

i) the variable name has no values presently associated

with it.

ii) the other attributes, explicitly declared in addi-

tion to GLOBAL, cause the previous values associated

with the variable name to be destroyed.

example

i) DECLARE A REAL INITIAL (5),

B[3] SINGLE INITIAL (1,2,3) ;

A is set equal to 5 and B is set equal to the

vector (1,2,3).

Symes
Page 24

ii) DECLARE A[3,3] INITIAL (1, [2]*,[2](2,)),0,1);

[integer] is used as a repetitive factor and *

signifies that no value is to be assigned to the

corresponding element. Thus A is set equal to the

matrix:

1 2 3

j - 3 0

L - » i_ .

ACCURACY STATEMENT

The accuracy statement permits the user to specify the

number of digits he wants retained for all his variables,

except those whose accuracy is specified in a declare state-

ment or solve statement.

The accuracy statement is an executable statement, so

different accuracies can be used in various segments of a

program.

example

ACCURACY 6 DIGITS

This specifies that six-significant figures will be

retained for all variables/

Symes
Page 25

SAMPLE PROGRAMS

The following procedures display how a user might program

the Gauss Seidel Method for solving the system of linear equa-

tions AX=Y using the NAPSS language on these different levels -

first on the level of ALGOL, second using array arithmetic and

iteration variables, and third using the solve statement.

i) GAUSSEIDEL: PROCEDURE £A,X,Y,fQ
DECLARE X[N], XINT[NJ, A[N,N], Y[N];
FOR I * 1 TO N DO

X[I] XINT[I] * 0;
GO TO LI

L2: FOR I * 1 TO N DO XINT[I] X[I] ;
LI: FOR X 1,2,...,N DO

T 0
FOR J f 1 TO N DO

T T + A[I,J] *X[J];
X[I] + CV[I] - T + A[I,I] * X[I])/A[I,I]

TT -t-
FOR I 1 TO N DO

T + ABS(X[I] - XINT[I])
IF T > W THEN W * T ; ;

IF V.1 >.5* -8 THEN GO TO L2
ELSE RETURN;

END

Symes
Page 26

PROCEDURE (A,X,Y,N)
DECLARE X[N] INITIAL (0 FOR N TIJES);
UNTIL MAXC |X-X+[-l]|) < S.f-8 DO

FOR I 1 TO N DO
X[IJ - (Y[I] - A[IJ*]X+A[I,I]X[I])/A[IfI]

END

PROCEDURE (A,X,Y,N)
SOLVE A X = Y, FOR X, NUMBER N,

TYPE LINEAR SYSTEM,
USING GAUSS SETDEL;

END

As can be seen from the above examples the amount of program-

ming decreases greatly from example i) to example ii) and in

example iii) th.e user actually needs to know no more about the

method than its name.

The following is a complete program which solves the matrix

equation AX=Y by the Hestenes and Stiefel Conjugate Gradient

Method, and determines the eigenvalues of A by Krylov's Method.

The program appears as it would if it had been inputted through

an on-line terminal. The numbers on the left are statement

numbers printed by the system. Underlined messages are also

printed by the system.

ii) GAUSSEIDEL:

iii) GAUSSEIDEL:

Symes
Page 27

EXECUTE MODE

1,000 CONJ: PROCEDURE (Y)
2.000 DECLARE X[N] LOCAL, INITIAL (0 FOR N TIMES);
3,000 Z S -t- Y
4.000 FOR N TIMES OR UNTIL MAX (|S|) < = .0001 DO
5,000 T A * Z
6.000 L <- (Z's)/CZ'T)
7.000 X-t-X+LZ, S S - L * T
9.000 MU f -Z'*CA * S)/(Z'T)
10,000 Z f S + MU * Z;
11,000 RETURN X , END
13.000 READ N; DECLARE A[N,N], Y[N], D[N,0 TO N];
IS,000 READ A,Y;
16,000 X C0NJ(T)
17,000 PRINT "THE SOLUTION OF AX=Y BY CONJUGATE GRADIENT METHOD IS",X
18.Q00 READ B[*,0];
19,000 FOR K + 1 TO N-l DO
20,000 B[*,K] -e A1 B[*,K-l];
21,000 BN + A'B[*,N-1]
22.000 CALL GAUSSEIDEL (B,Q,BN,N)
23,000 pCt) •«• (-+)+N + (-1)*(N+D SUM(Q[J] t+(J-l), FOR J + 1 TO N)
24.000 SOLVE pCt) = 0 FOR T ;
25.000 PRINT "EIGENVALUE FOR MATRIX", A, "ARE" tj
26TOOQ END

Symes
Page 28

After the user has logged on at a remote terminal, the system

responds with the message EXECUTE MODE. The user at a terminal

has the option of operating in either execution mode, where each

instruction on the console level is executed as it is received

or in a suppressed mode where each instruction is compiled into

internal text and stored for later execution. A compiled NAPSS

program or procedure is executed ircterpretively. When operating

in execute mode and a procedure statement is typed in, as in

statement number 1,000, the system temporarily enters suppressed

mode until the matching end statement is received, statement

number 12.000, and then re-enters execute mode.

Since X is declared to be local in procedure CONJ, the

variable named X in procedure CONJ refers to a different X

than the X in the console level routine, for instance the X in

statement 16,000. The console level routine is the outer most

procedure when operating in execute mode.

The call statement, number 22.000, causes the routine

GAUSSEIDEL to be brought in from the users library as an external

routine. A user may save any routine or his previous days work

in his own library,
When operating from--a terminal, statements are numbered,

not lines. This is done to aid the user if he should have to
perform any editing.

Symes
Page 29

If a user has not initialized a variable before using it

the system will issue a message when it attempts to execute

the statement in which the undefined variable occurs, and will

request him to initialize it. Than can be done indirectly by

inserting an assignment statement into the program before the

statement with the undefined variable in it and restarting

there, or by assigning a value directly to the variable in

the edit mode.

References

1, RICE, J, R,; ROSEN, S.j NAPSS—A. numerical analysis problem
solving system, Proceedings - AjC.M, National Meeting 1966,
p. SI,

2, RICE, J, R,; ON THE CONSTRUCTION OF POLYALGORITHMS FOR
AUTOMATIC NUMERICAL ANALYSIS, Purdue University
Technical Report CSD TRIO June 1967,

3, ROMAN, R, V,' SYMfcSr IMPORTATION CONSIDERATIONS
IN NUMERICAL ANALYSIS PRC3LE'.' SOLVING SYSTE Purdue
University Technical P.eport, June 1967,

4, SYMES, L, R.; ROMAN, R. V.; SYNTACTIC AND SEMANTIC
DESCRIPTION of the NUMERICAL ANALYSIS PROGRAMMING
LANGUAGE (N A P S S) , purdue University Technical Report,
CSD TR 11, May 1967,

	Structure of a Language for a Numerical Analysis Problem Solving Systems
	Report Number:
	

	tmp.1307986960.pdf.GbzzG

