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Abstract

The relalion of subsymbolic {neural computing} and symbolic com-
puting has been a topic of intense discussion. We address some of the
drawbacks ol current experi syslem technology and study the possibility
of using neural computing principles to improve Lhicir competence. In this
paper we [ocus on Lhe problem ol using neural networks Lo implement
expert sysiem rule conditions. Our approach allows symbolic inference
eugines to make direct use ol complex sensory inpul via so called de-
tector predicates, We also discuss the use of sell organizing Kohoneu
nelworks as a means to determine those attributes (properties} of data
that reflect meaningflul statistical relationships in the expert system inpul
space. This meclhanisin can be used to address the difficull problem of
conceptual clustering of information. The concepts introduced are ilius-
trated by two applicalion examples: an automatic inspeclion system for
circuit packs and an exper!{ sysitem for respiratory and anesthesia moni-
toring. The adopled approach differs [rom tlie earlier research on the usc
of neural nelworks as experl sysiems, where the only method Lo obtain
knowledge is learning [rom training dala. In our approuch the synergy
of rules and deteclor predicates combines the advantages of bolh worlds:
it maintains the clarity ol Lthe rule-based knowledge represeitation at the
higher reasoning levels without sacrificing the power of noisc-iolerant pat-
tern association offered by neural computing metlods.

Keywords: Expert System Architectures, Expert Systems with Com-
plex Input, Nenral Networks, Knowledge Compilation

* On leave [rom Department of Computer Science, University of Helsinki, FINLAND. This
research s supported by Technology Development Center (TEKES) in Soltware Technology
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1 Introduction

Currently expert systems are usually designed based on a particular knowledge
representation framework (rule-based, frame-based, object-based etc.). Tow
much of the expert system’s problem-solving performance is restricted by Lhe
limitations of the representation technique chosen? It seems thal many of the
[undamental problems in expert system design are due Lo imperfect “knowledge
compilation”: part of the domain knowledge cannot be expressed in the formal
dictated by the representation framework. Expert systems perform inferences
on symbolic (data structure) level, but in many applications the “kitowledge”
exists not only in the reasoning with concepts, but also in correctly coding
inpui information to a symbolic form. “Is the monitored elevator traffic pallern
showing rush hour behavior?' or “Is the concentration of sulphuric acid in the
process within tolerance bounds? Answering questions such as the ones above
put the expert systems to a real test: how to compress complex high-dimensional
sensory data into symbolic form which can be used by the inference engine, like
the information received by human expert’s sensory systems can be utilized at
higher cognitive levels?

In spite ol the underlying strong optimism in his book, Waterman [Wate 86)
identifies several areas where programs have had little success of showing similar
performance as hurmnan experts. Many of these problems are studied intensively
in the artificial intelligence community, but we will address only two of them:
direct use of complex sensary input and concepiual clustering by learning, i.c.
how to “ground” symbols to the statistical informalion available to the appli-
cation.

In our approach this “compilation” from sensory information inle symbeols is
performed by neural networks [AnRo 88, RuMc 86). These neural networks acl
as computing modules that perform noise-tolerant pattern recognition of input
information. Although we adopt a purely engineering approach (as opposed
to for example the competence modeling approach of [Kelo 86]), and do not
try to mimic cognitive behavior of human experts, we still find an interesling
starting point in studying areas where human expertise clearly is superior to
the capabilities of modern expert systems.

Recent years have seen an impressive growth in neural computing rescareh
and many monographs have been published on the topic. As il is outside the
scope of this paper 1o review the various theoretlical models and their proper-
ties appearing in the literature, we suggest for an uninitiated reader to study
for example the two-volume set by the PDP-group [RuMc 86] and the mono-
graph by Kohonen [Koho 88]. Our use of neural computing principles differs
considerably from the usual studies of neural networks as expert systems (see
e.. [BePe 87), [BLMW 88], [DuSh 88] and [Gall 88]) which concentrate solely
on acquiring knowledge by learning processes. Qur approach to expert system
design is a hybrid one, the higher levels of reasoning are always described within
the rule-based paradigm.
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2 Managing complex sensory input informa-
tion in expert systems

For pragmatic reasons we will restrict ourselves Lo represent symbolic knowledge
in the form of rules [Wate 86]. Currently rules are the most common means to
give rigorous formal expressions of knowledge about the problem domain.

Application examples

Rule-l>ased expert systems manipulate symbols that represent idcas and coun-
cepls, However, in many applicalion areas complex sensory data (visual datla,
auditory data, satellile data etc.) has to be transformed inlo symbols manipu-
lated by the inference mechanism. In pure rule-based systems this translalion
process inevilably loses information, and depending on the application, thal
information may be crucial to a successful operation of the overall system. For
a moment let us study some typical rules from existing expert systems (sce
Figure 1).

SPE is a typical example of an inlerpretive expert system whose purpose is
to infer situation descriptions from sensory data, in this case analyze waveforms
from a scanning densitometer to distinguish between different causes of inflam-
matory conditions in medical patients. The rule [rom TATR is an example of
rules in planning expert systems that create plans of acticns to perforin a given
goal, REACTOR falls into the category of monitoring systems thal compare
actual system (in this case nuclear reaclor) behavior to expected behavior. For
all of the example rules from these different types of systems there exists a
need for translation from sensory data to a symbolic representation, and the
correctness of this translalion is essential to the viability of the rule (“TRACING
PATTERN 1S ASYMMETRIC GAMMA” ..., “AIRFIELD DOES NOT HAVE EXPOSED
AIRCRAFT”. .., ... “COOLANT SYSTEM IS INADEQUATE").

Although all the above notions “TRACING PATTERN IS ASYMMETIIC GAMMA”
“DOES NOT HAVE EXPOSED AIRCRAFT” and “HEAT TRANSFER ...COOLANT
SYSTEM I$ INADEQUATE" have a precise meaning, problems arise when one al-
tempts to give a formal definition, e.g. in logic, Lo describe the condition. The
situation is [urther complicated by the fact that the sensory data is usually noisy,
sparse or incomplele, in worst case all of them. In the case of one-dimensional
data it is sometimes possible Lo approximate these conditions by giving symbolic
houndary expressions such as toleration intervals

0.6 < HEAT TRANSFER < 0.9,

but this approach does not generalize well to higher dimensional data with more
complicated relations, e.g. recognizing similarities of waveforms. In the litera-
ture there exist many studies on fuzzy logic [Zade 83] for approximate reasoning
strategies which aim at a good estimate [or uncertain data and imperfect rules.
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Instead of describing the certainty factor of the truth value of a rule R, our
approach is much more pragmatic, we simply implement a reliable detector for
the predicate P in the condition part of the rule. We have adopled this ap-
proach as we have observed that very seldom the rules themselves are fuzzy, but
in many cases the detectors for the condition predicates are hard to describe
algorithmically. Thus the problem is how to preserve the relevant information
when changing information into symbolic form rather than the impreciness of
the the rules themselves,

3 Implementing data compilation with neural
networks

Formally, a neural network N is a dynamical system which has a topology of
& directed graph and carries out inlormation processing by means of ils state
response to (continuous) input [Hech 87a]. One class of neural nelworks suitable
[or compiling sensory data inlo symbols are networks that directly approximate
the target function

g:SCR'— S Cchr”

after self-adjustment in response to a finite descriptive set of example mapping
pairs {(i1,01), - .., (i, 0)} (where o; = f(3;)+7, nis a stationary noise process).
Such layered networks are discussed for example in [Hech 87b] and [Werb 74].

The nodes in the networks are simple computational elements: a node sums
k weighled inputs and passes the result through a nonlinearity f as shown in
Figure 2. The topology of these nelworks is a DAG with usually less than three
layers.

Neural networks as classifiers

Much of the interest in these networks is due to the observation that they can be
used as pattern classifiers (see e.g. [DuHa 73]} in the d-dimensional [ealure space
defined by the network inputs {Werb 74], [RuMc 86), [Lipp 87]. The decision
boundary in the feature space is defined by the state of the network (connection
topology, weight matrix W, function f and threshold value vector ©). Although
in principle the position of this decision boundary in the feature space could be
“programmed” directly by selling arc weight values, the values of the weights
are seldom known a priori. Hence the correct positioning of the boundary is
approximated by a training process, where a set of exarnples of input instances
{I.,..., I} and a correct classifications {Q,,...,0;} arc presented Lo the
network, and ar algorithm called learning rufe [RuMc 86] is used to calculate
weight changes depending on network’s performance with the current weighis.
The network input includes also the correct classifications, hence this type of
training is called supervised learning {DuHa 73). Finally, the complexily of the
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shape of the boundary (linear, convex etc.) that can be realized is dependent
on the number of layers (see [Lipp 87]), however for our purposes it is enough
to know that any realizable shape can be produced by a three-layer network of
Lthe above elements — at least in principle.

For the above layered networks many learning algorithms have been sug-
gested [Lipp 87], [Werb 74), [RuMc 86], e.g. backpropagation and its varianls
[Werb 88). In our case the details of the learning algorithms are not important,
it is sufficient to know that for example backpropagation is an iterative gradi-
ent descent algorithm designed to minimize the mean square error between Lhe
aclual and desired output of Lhe multilayer network.

If neural network N solves a two-class classification problem, such as the
question if an inputl I is regular/nonregular, in our knowledge representation
formalism the network corresponds to a single data predicate £;. However, in
many cases a single network is capable of solving m-class problems and hence -
plements a set of (usually mutually excluding) predicates £ = {Pi;,..., Pur}.

4 Knowledge representation with rules and de-
tector predicates

In our case the knowledge base consists of three (sub)knowledge bases: a rule
base fy, a fact base I and a neural network base N,. Following the common
expert system terminology a rule is understood as a condition-action -statement

rule i: IFF C; THEN A

with the obvious semantics (if the condilion part C; is evaluated to be true, Lhe
action part A; will be performed). A condition C; is an expression containing
one or more predicates Py, For our purposes it is sufficent Lo make a distinction
between detecior and non-delector predicates. The former predicaies {(denoted
by Fg) are implemented by neural networks in N,

An action 4; is a sel of operations {0, }, each operation being either

¢ inlernal, i.c. it modifies Lhe [acl base F} and/or inlernal variables,
o external, i.e. call to an external procedure {e.g. for an alarm signal) or
¢ adaplive, i.e. call to a neural network in N, in training mode.

Internal operations allow storing deduced knowledge for further use and external
operations provide the interface to the environment where the expert system is
functioning. These two Lypes of operations are usually found in all monitoring,
planniog or interpretive expert systems. The adaptive operations, which are
related Lo the adaptiveness of the data detectors, will be discussed in 1nore
detail in the context of dynamic behavior of this expert system architecture.
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Fact base

The facl base F}, consists of facts staling that a particular predicate P holds for
certain objects si in the object domain S of the expert system. The predicates
appearing in the fact base £} can also be detector predicates. In this case Lhe
detector predicate on current input I has already been evaluated. Hence a lact
base acts as the “memory” of the expert system. In addition to Lhe static
part that states the universal facts about the problem domain, ii also contains
dynamically changing knowledge about a particular execution that can be erased
later on.

Neural network base

The neural nelwork base N, contains a set of neural networks {N;}, each of

which corresponds to one or more detector predicates. Like rules in the rule
base, neural networks arc active components of the system. They perform a
classification operation that implements a predicate test on their input data
and keep tlhe lalest data stored in an associated buffer. We call this process
knowledge compilation, as the statistical relationships within the input data are
translated into symbolic facts. In this sense N} is analogous to the rule base &;;
the latter contains the knowledge [or inference at the symbolic level, the former
the knowledge for reasoning at the subsymbalic, stochastic data level.

Architecture of the system

The dynamic behavior of the expert system is illustrated in Figure 3. The in-
ference engine performs the normal backward/forward-chaining of rules. How-
ever, Lhe inference engine may encounter a rule which has detector predicales
Pai(t, z), Paa(F,y), -..1n its condition parl, and it cannot decide the value of a
predicate from Lhe facts in fact base I}, it performs a call for the corvesponding
ncural nelwork(s) with predicate arguments as paramelers. These paramelers
are not the actual input values to the neural network &, they define what clas-
sification result (!) is significant to the condition (since a multi-class classifier
corresponds to a set of predicates {Py;)}) and the address of the input device
(=). The actual input values the neural network receives [rom the sensory dala
equipment directly, the arrival of the parameters acts only as a trigger to Lhe
classification process. In in its simplest form N rteturns a boolean predicate
value, If the predicate is true, the aclion part A of the rule in question has
an operalion o; thal stores the corresponding fact in the lact base, If it is
evaluated false, the system automalically stores the negative fact. This is nec-
essary in order to prevent the subsequent encounters with the predicate in sowe
other condition paris [rom invoking the knowledge translation process apgain, i.e.
the system “memorizes” the fact. Naturally this stored information is query-
dependent and is removed aller the query is completed. In the case of graded
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classifier output the value itself is stored in the fact base, i.e. a graded predicale
always “succeeds”.

Adaptation

Layered neural networks, such as the ones we are using, often require an exlen-
sive training period with a sample set adjusting the weights to reflect a good
approximation of the decision boundary in the feature space. Obviously Lhe
larger and statistically more representative this training sample setl is of the
wholc input space S, the better the performance (i.e. the accuracy of Lhe ap-
proximation) is. Unforlunately in most cases it is not possible to gather enough
data samples in advance to creale a truly representalive sel. Therefore the
syslem described must be prepared Lo continue adjusting the network weight
malrix while already funclioning by using the adaptive operations oa in Lhe
aclion parts. If during the inference process there is substantial evidence ol Lhe
fact Py(l,z) in Fy being incorrect, deduced either aulomatically or by human
intervention an adaptive operation is performed. The adaptive operation is im-
plemented as 2 call to the corresponding N with the correct classification and
the request to train to perform this classificatior. Observe that we required our
N modules to be able to store the lalest input data whose classification was
triggered, hence the symbolic reasoning module does not have to deal with the
actual data at all. ‘I'lus adaptation mechanism gives a way to gradually improve
the accuracy of the detector predicate implementations with real inpui data.

5 Self-organization for attribute selection

In practice one of the mosi difficult issues in the design of an experl system
is the question of attribute selection for knowledge representation. As any real
world process has infinitely many attributes, the problem is how to choose such
a small attribute set for the knowledge base that it would be descriptive enough
for the modeling purposcs. This problem is present especially when machine
learning methods (either neural or symbolic, decision tree based ones such as
ID3 [Quin 79]) arc uscd [or knowledge acquisition.

Interestingly enough, one imporiant organizing principle of sensory pathways
in the brain s that the placement of neurens is orderly and olten reflects soie
characteristic of the external stimulus being sensed [KaSc 85]. [nspired by Lhis
biological fact some of the neural nctwork models and their associated learning
algorithms promote self organization [Koho 88], [Gross 88]. As varianis of thesc
Kohonen networks can also be used directly as classifiers, they especially suitable
for our purposes.
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Self-organizing Kohonen networks

In Kohonen networks the learning algorithm generates a mapping of a higher
dimensional input space S onto (usually two-dimensional) discrete lattice M of
output nodes. The map is generated by establishing a correspondence between
the inputs in S and oulput nodes in M, such that the topological neighborhood
relationships among the inpul instances are reflected as closely as possible in
the arrangement of the corresponding nodes in the lattice. As a resull of this
process, a non-linearly reduced two-dimensional version of the input space is
[ound. This data structure can be used to cluster input attributes,

The correspondence is cbtained as follows. Each input instance is repre-
sented by a vector s € §. For cach training cycle an input instance s € 5
is chosen randomly according to a probability distribulion Pr(s). Each loca-
tion m € M has an associaled vector w,, € §. These veclors w,, map latlice
locations m to points in §. For each training cycle the mapping is modihied
according to the following abstract algorithm:

Al. Determine lattice location ¢ for which
[we = s|| = minmess|[wm — 5|
where s is the input chosen for the training cycle.
A2. Tor all nodes rn in the neighborhood of ¢ modify
Wt 4+ 1) = we(t) + adnls. wnit)).

Here 0 < 4, £ 1 is the adjustment function for the distance ||w — sij
and a is the learning step size.

By decreasing the step size o and the width of 4, slowly during training, the
algorithm gradually yields values for the vectors wr,, which define a discretized
neighborhood conserving mapping between lattice nodes m and points of the
input space 5 [[Koho 88].

Self-organization for attribute selection

We now turn to the problein of using this self organization process for attribute
selection. Let us assume that our input space S is d-dimensional. i.e. each input
instance Is & vector v = (v, va,...,v4). Lel 1" be the training set, i.c. a sel of
such vectors. Further assume that the (output) nodes M are arranged as a grid
(size £?). In the training process an input instance enforces the sensitivity of
the most responding node ¢ (closest in d-space) and the nodes in its immediate
neighborhood (defined by &), hence the resulting network has a tendency Lo
form clusters of nodes that are sensitive to similar inputs (see Figure 4). Afler
the completion of the training process, each cluster C; is labeled wilh a meaning-
ful attribute name B; (semiautomatically) by finding an example set of vectors
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T} Irom the training set such that the nodes in C are sensitive to these input
instances. These example vector sets 7; help giving 2 meaningful interpretation
for the clusters €. QObserve that this process resembles multivariate ethods
such as factor analysis, bul is nonlincar in nature.

As the outpul of the cluster nodes ¢; is graded, these attributes couid directly
be used in relational expressions to form detector predicates Py; discussed above.
For example, “sensor object s is a rock™ if detector predicate ts-rock({s} lrolds,
where is-rock{i} = RocK > .7 (ROCK is an attribute defined by the clustering
process). However, better results are obtained if this self-organization process is
used as a pre-processing step for a more sophisticated classifier. The clustering
and labeling process gives the number and Lype of the classes after which a
neural implementation of a nearest-neighbor method called LVQ [Kolio 88] can
be used to tune the classifier with the same training set T. This tuned classifier
gives an alternale neural implementation to a set of detector predicates to those
based on layered networks in Section 3, and is more viable in the cases where the
structure of the expert system input space is not well-understood in advance.

6 Example: expert system for automatic in-
spection

We demonstrate the ideas discussed by applying them to the design of an expert
system [or automatic inspection of circuit packs. We will focus on showing Lhe
benefits of our overall approach in Lhis particular application, readers interested
in the details of the problem and a comparison of the different solution methods
adopted should consull [MoR1' 89a],[Tirr 89).

Computer vision 1 playing an ever increasing role in assuring the quality of

manufacturing processes by making available low cost, reliable inspection. A
computer vision system placed in-line after the placement operalion can catel
errors before the soldering process, thereby also reducing the repair cost. One
special problem that arises in electronic assembly is the component orientation
error. Although in sometimes even hundreds of components are placed on a
single circuit pack, the components must be loaded into their hoppers manu-
ally and the symmetry of the component allows an orientation error to occur.
Presently there is no standardization of the orientation marks (notches, dots
etc.) and even if marks are used, they are often very hard to detecl with a com-
puter vision system. Hence Lhe only starting point for the orientation detection
is the information printed on the electronic component.

Therefore let us focus on one particular rule in the inspection expert system,
namely

IF ORIENT(CHIP;) = ORIENT(GHIP;) IN DESIGN-DB
THEN CHECK-PINS{CHIP;);
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that requires checking the component orientation before initiating the inspeclion
of component pins. In principle one could use backward-chaining to solve the
value of ORIENT(CHIP;) and then compare it to the value accessed from the
design database. One could imagine a set of rules that could be used Lo detect
the orientation based on the [eatures extracted from the image produced by the
machine viston system. However, the viability of this solution is questionable il
we consider more closely some of the key requirements [or this text oricntation
problem:

« There is no advance knowledge of font style or size.

* As opposed to Optical Character Recognition there is no opportunity to
use contextual information (dictionaries) to resolve difficult-to-detect char-
acters.

¢ The printing is ollen poor quality, e.g. charactlers are Louching, misaligned
and may conlain nonchacter symbols,

¢ Many characters are invariant or almost invariant Lo a 180 degree rotation
{or when rotated resemble some other character withoul rotalion). Hence
the system must be prepared Lo output also an “indeterminate” respouse.

» Detection must be carried out very quickly (typically up to 100 charac-
ters/second).

A solution to this problem is to implement a detector predicate ORIENT() as
a feedforward network presented in Figure 5, which can then be called wheu
executing the corresponding rule.

The feed-forward neural network model used in this application is called
Random Neural Networks (RNN) [Tirr 90]. RNN networks resemble struc-
turally the ones used with gradient descent based learning methods such as
back-propagation [Werb 74, RuMc 86, Werb 88]. However, il should be pointed
ont thai with the RNN neural networks there is uo iteralive learning process.
Computalion in these RNN networks are based on a set of reference vectors
@,,Gz,...,a, and b, , b, ... b, (symbols in normal orientation and rotated, re-
spectively), and the weights are set only once when the reference vector sel is
stored. Adaptation is achieved by incrementally adding new nodes if new reler-
ence vectors become available. One should also notice that the effect of adding
new reference vectors to the computed funclion is only gradual. Thus the un-
desirable interference properties frequently observed with many of the neural
network learning algorithms [BrSm 89, McCl 88] can be avoided.

In NN, the first active layer, consisting of "“pattern unils”. computes Ham-
ming distances A, a;) and h(z, b;); the next layer, consisting of “sununation
units”, forms p(x|a) and p(x|b) as weighted sums, and finally the “ouspuc
units” give the final decision by thresholding. As in this case computation ol
the conditional probabilities is based on calculating Hamming distances, Lle
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RNN neural network model can also be understood as a generalization of the
“Hamming Network” [Stei 61, StPi 63, Tayl 64]. As pointed out by Lippman
[Lipp 87], it is well known that under the assumption of independent bit errors,
the optimal minimum error classifier calculates the Hamming distance to a sin-
gle reference instance (or codeword) in each concepl and selects the vector with
the minimum distance as the decision. A schematic of a network representing
this mechanism is presented in [LiGo 87]. The RNN approach can be viewed
as a natural generalization of that idea in that rather than taking the nearcst
reference instance, we compute the likelihood ratio from families of relerence in-
stances for a concept. However, it should be noted that the approach presented
here is not restricted to Hamming metric; it can be generalized to any problem
domain for which a metric can be defined on the input space. A more delailed
discussion on the theoretical basis of RNN networks is outside the scopc of this
paper, and presented in [Tirr 90].

Figure 6 presents an example of the recognition process using RNN in a casc
of a rotaled chip. For the reference vectors in this application bitmaps ol the
letters in Sun font library were used. In Figure 6 we can sce the automatically
extracted characters together with the corresponding likelihood ratios, '[he
closer the likelihood ratio is to 0, the more certain the detector predicate is that
the symbol is up-side down. More detailed discussion on implementation and
the performance of the application can be found in [MoRT 89a, Tirr 90].

7 Example: respiratory and anesthesia moni-
toring

As a second example we will briey compare the approach presented above to
implementing an expert syslem with traditional rule-based iechniques. Rather
than inventing an arlificial example of our own, we chose an example from the
literature in the area of intelligenl mnoritoring in medical envircnment. The
original prototype system CAPS [RaCM 87], has been implemented by using
various commercially available software tools for statistical analysis and expert
system development,

One type of equipment malfunction during anesthesia is the accidenial dis-
connection of the paralyzed patient {from the life sustaining ventilator. If this
occurs, no oxygen can be delivered to the patient and the carbon dioxide pro-
duced by the patient is not removed from the lungs. The result is a brain damage
in less than five minutes. To prevent Lthis [rom happening analyzers that produce
carbon dioxide waveforms (capnograms) are used for monitoring purposes. A
mass spectromeler produces a capnogram which is plotled against time and dis-
played on a CRT monitor together with some numerical information gathered.
Unfortunately the capnogram and ils relationship to physiclogical changes in
the patient and Lo anesthesia equipmenl mallunction is not usually well under-
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stood by many anesthesiologists. Lack of experience with capnogramns reduces
the mformation gained and may cause misinterpretations. Therefore Lthe work
in [RaCM 87] aims at a rcal-time expert system [or analyzing capnograms which
could indicate whether the waveforms are normal or abnormal and suggest ac-
tions to fix the possible problem.

Before the design of CAPS rule base the authors used manually a stabis-
tical analysis package to analyze data stored in a capnogram database {each
capnogram has also associated descriptive information about the case). Based
on this analysis they chose 12 different capnogram types to be recognized with
an associated feature set. In our approach this database would be used to train
the self organizing nelwork to find the initial clustering, i.e. the number of
capnogram classes. In this case the input space would be d-dimensional, wlere
d is the resolution of the waveform image stored in the database, This gives us a
statistically rigorous method Lo determine different attributes that can be used
to form detector predicales such as REBREATHING (CGIRAM ), NORMAL(GGRAM),
CARDIOGENIC-OSCILLATION (CGltAM) etc. As discussed already in the previous
sections, the LVQ-method conld then be used Lo tune the classifier neural net-
work that implements the set of detector predicates which describe the nature
ol the waveform.

In the original prototype system CAPS most of the 48 rules were used [or
deducing the classification from elementary f{eatures, i.e. they served pallern
recognition purposes. Based on Lhe experience with CAPS the authors predicl
that satisfactory operation in a delivered producl would be achieved with 1000
rules! Tn our case the detector predicates perform the pattern recognition lunc-
tions and free the rule base to describe only Lhe necessary actions (less than
20 rules) and other lLigher level relationships based on this information. This
considerable reduction in the nuinber of rules has obvious perlormance benelius.
As the real product system in the operating room should analyze several gases
simultaneously (nitrogen, oxygen, isoflurane etc.) our rules could also easily
express complex relations between different classifications such as

IF HYPERVENTILATION (CGRAM) AND NORMAL (NGRAM)
THEN CHECK(ABNORMAL{OGRAM))

and hence improve the expert systems ability to gain better evidence about the
cause of a possible abnormality. Qur claim is that the rule bases produced this
way are easier to mainlain and understand, since the low leve] reasoning for the
pattern analysis is not mixed with the high level reasoning considering proper
actlons.

8 Conclusions

Neural networks can be used to implement the compilation from stochastic sen-
sory data to symbols manipulated by the inference engines. The most obvious
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application areas are expert systems that make direct use of complex sensory
input, however, e ideas presented are in fact much more general. We already
mentioned the notion of sell-organization as a means to determine Lthose proper-
ties of data that reflect meaningful statistical relationships in the expert syslem
input space. The mechanisms described can be uselul in many related areas such
as robotics (autonomous vehicles etc.), and image processing. As our examples
show, many isolated components of the systems already exist (LVQ- nelwork
simulators, design tools [or rule bases etc.) butb currently the integration itsclf
requires considerable additional efiort.
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[SPE [WeKu 84]] IF TIE TRACING PATTERN IS ASYMMETRIC GAMMA AND
THE GAMMA QUANTITY [S NORMAL
THEN THE CONCENTRATION OF GAMMAGLOBULIN IS IN NORMAL
RANGE

[TATIR [CaWXK 84]] IF THE AIRFIELD DOES NOT IIAVE AN EXPOSED AlR-
CRAFT AND THE NUMBER OF AIRCRAFT IN TUE OPEN AT THE AIRFIELD
1S GREATER THAN 0.25 TIMES THE TOTAL NUMBER OF AIRCRAFT AT
TUAT AIRFIELD
THEN LET EXCELLENT BE THE RATING FOR AIRCRAFT AT THAT AIR-
FIELD

[REACTOR [Nels 82]] IF THE HEAT TRANSFER FROM THE PRIMARY
COOLANT SYSTEM TO THE SECONDARY COOLANT S5YSTEM IS INADEQUATE
AND THE FEEDWATER FLOW IS LOW
THEN THE ACCIDENT IS LOSS OF FEEDWATER.

Figure 1: Some {ypical rules from existing experl systems thai illustrate Lhe
need for translation [rom sensory data to symbolic form.
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k
o= f() wi; - ©)
i=1

where [ is a nonlinearity.

Figure 2: The computational element in a layered neural network.



IMPLEMENTING EXPERT SYSTEM RULE ... 18

Neural netwprk base Nb
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module x
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IE Pd(l,x) and P(y) THEN
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\, H.:\ --"'r
=== 1
I » control flow |
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Figure 3: The behavior of a rule with a boolean detector predicale.
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Tigure 4: The sell organization algorithm forms clusters among the output
nodes. Each of Lhe peaks on the surlace represent a cluster center, i.e. the peak
clement and its neighbors are sensitive to a particular attribute valuc.
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() =
) = pam) =Z_ 5] | pextay-Ap(xlb) 20

tx) =
p(xlb)-Ap(x|a) 2 0

h(x,b
) = p(ib) =E .9

Figure 5: 7The RNN peural petwork implementing tlhe delector predicate
ORIENT().
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Figure 6: An example of the recognition process of a chip on a circuit board.
Low cumulative ratio on the right indicates that the chip is upside-down. The
software is currently running on a Sun 3/260 workstation.
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