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Abstract

The rela-Lion of subsymbolic (neural computing) and symbolic com­
puting has been a topic of intense discussion. We address some of the
drawbacks of current expert system leclmology and study the possibility
of using neural computing principles to improve lbcir competence. In this
paper we focus on the problem of using neural networks La implement
expert system rule 'auditions. Our approach allows symbolic inference
engines to make diced usc of complex sensory input viii. so called de­
tector predicates, We also discuss the use of self organizing Kohoncu
neLworks as a means to determine t1lose attributes (properties) of data
that reflect meaningful statistical relationsltips in the expert system input.
space. This meclLanism can be used to address the difficult problem of
conceptual clustering of information. The concepts introduced are illus­
trated by two application examples: an automatic inspection system for
circuit packs and an expert system for respiratory and anesthesia moni­
toring. TIle adopted approach differs from tILe earlier research 011 the usc
of neural ncl.works as expert systems, wbere tile only method lo ubtllill
knowledge is learning from lraining data. In our approach lhe syu<:rgy
of rules and deteclor predicates combines the advantages of both worlds:
it maintains the clarity of Llle rule-based knowledge represcJLtatioll at the
lligher reasoning levels without sacrificing the power of noise-tolerant pal­
terll association offered by neural computing mctlLods.

Keywords: Expert System Architectures, Expert Systems Witli COIIi­
plex Input, Neural Networks, Knowledge Compilation
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1 Introduction

2

Currently expert systems are usually designed bascd on a particular knowledge
representation framework (rule-based, frame-based, object-based etc.). ITow
much of thc expert system's problem-solving performance is restricted by the
limitations of the representation technique chosen? It seems that many of the
fundamental problems in expert system design are due to imperfect "knowledge
compilation": part of the domain knowledge cannot be expressed in the format
dictated by the representation framework. Expert systems perform inferences
on symbolic (data structure) level, but in many applications the "knowledge"
exists not only in the reasoning with concepts, but also in correctly coding
input information to a. symbolic form. "Ts the monitored elevator traffic pallefll
showing rush hour behavior?" or "Is the concentration of sulphuric acid in the
process within tolerance bounds?" Answering questions such as the ones above
put the expert systems to a real test: how to compress complex high-dimensional
sensory data into symbolic form which can be used by the inference engine, like
the information received by human expert's sensory systems can be utilized at
higher cognitive levels?

In spite of the underlying strong optimism in his book, Waterman [¥late 86]
identifies several areas where programs have had little success of showing similar
performance as human experts. Many of these problems are studied intensively
in the artificial intelligence community, but we will address only two of them:
direct use of complex sensory input and conceptual clustering by learning, i.e.
how to "ground" symbols to the statistical information available to the appli­
cation.

In our approach this "compilation" from sensory informatiOll into symbols is
performed by neural networks [AnRo 88, RuMc 8li]. These neural networks ad
as computing modules that perform noise-tolerant pattern recognition of input
information. Although we adopt a purely engineering approach (as opposed
to for example the competence modeling approach of [KeJ 0 86]), and do not
try to mimic cognitive behavior of human experts, we still find an interesting
sLarting point in studying areas where human expertise dearly is superior to
the capabilities of modern expert systems.

RcCCllt years have seen an impressive growLh in neural COlnl)uting reseal'ch
and many monographs have been published on the topic. As it ii::i outside the
i::icope of this paper to review the various theoretical models and their proper­
ties appearing in the literature, we suggest for an uninitiated reader to study
for example the two-volume set by the PDP-group [RuMc 86] and the mono­
graph by Kohonen [Koho 88]. Our use of neural computing principles differs
considerably from the usual studies of neural networks as expert systems (see
e.g. [BePe 87], [BLMW 88], [DuSh 88] and [Gall 88]) which concentrate solely
on acquiring knowledge by learning processes. Our approach to expert system
design is a 11ybrid one, the higher levels of reasoning are always described within
the rule-based paradigm.
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2 Managing cOluplex sensory input inforIna­
tion in expert systems

For pragmatic reasons we will restrict ourselves to represent symbolic knowledge
in the form of rules [\Vate 86]. Currently rules are the most common means to
give rigorous formal e.xpressions of knowledge about the problem domain.

Application examples

Rule-based expert systems manipulate symbols that represent ideas and COll­

cepts. However, in many application areas complex sensory data (visual data,
auditory data, satellite data ctc.) has to be transformed into symbols manipu­
lated by the inference mechanism. In pure rule-based systems this translation
process inevitably loses information, and depending on the application, thaL
information may be crucial to a successful operation of the overall system. For
a moment let us study some typical rules from existing expert systcms (see
Figure 1).

SPE is a typical example of an interpretive expert system whose purpose is
to infer situation descriptions from sensory data, in this case analyze waveforms
from a scanning densitometer to distinguish between different causes of inBam­
matory conditions in mcdical patients. The rule from TATR is an example of
rules in planning expcrt systems that create plans of actions to perform a given
goal. REACTOR falls into the category of monitoring systems that compare
actual system (in this case nuclear reactor) behavior to expected behavior. For
all of the example rules from thesc different types of systems there exists a
need for translation from sensory data to a symbolic representation, and the
correctness of this translation is essential to the viability of the rule ("TR/\CI NG
PATI'ERN IS ASYMl'.IETRIC GAMMA" ... , "AIRFIELD DOES NOT HAV~; 8XI'OSED

AIIlCRAFT" ... , ... "COOLANT SYSTEM IS INADEQUATE").

Although all the above notions "TRACING PATTERN IS ASYMMETRIC G/\/llMA" ,

"DOES NOT HAVE EXPOSE:D AIIlCRAFT" and "HEAT TRANSFER.,. COOLANT

SYSTEM IS INADEQUATE" have a precise meaning, problems arisc when one at­
tempts to give a formal definition, e.g. in logic, to describe the condition. The
situation is further complicated by the fact that the sensory data is usually tloi~y,

sparse or incomplete, in worst case all of them. In the case of one-dimensional
data it is sometimes possible to approximate these conditions by giving ~ymbolic

boundary expressions such as toleration intervals

0.6 < HEAT TRANSP81t < 0.9,

but this approach does not generalize well to higher dimensional data with more
complicated relations, e.g. recognizing similarities of waveforms. In the litera­
ture there exist many studies on fuzzy logic [Zade 83] for approximate reasoning
strategies which aim at a good estimate for uncertain data and imperfect rules.
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Instead of describing thc ccrtainty factor of the truth value of a rule R, OlLr
approach is much more pragmatic, we simply implement a reliable detector for
the predicate P in the condition part of the rule. We have adopted this ap­
proach as wc have observed that very seldom the rules themselves are fuzzy, but
in many cases the detectors for the condition predicates arc hard to descriue
algorithmically. Thus the problem is how to preserve the relevant information
when changing information into symbolic form rather than the impreciness of
the the rules themselves.

3 Implementing data compilation with neural
networks

Formally, a ncural network N is a dynamical system which has a topology of
a directed graph and carries out information processing by means of its state
response to (continuous) input [Hech 87aJ. Onc class of neural networks suitable
for compiling sensory data into symbols are networks that directly approximate
the target function

g:S~RnI---tS'~Rm

after sclf-adjustment in response to a finite descriptive set of example mapping
pairs {(it, ad, ... J (ik , Ok)} (where OJ = !(ij)+'Tl, 'Tl is a stationary noise process).
Such layered networks arc discussed for example in [Hech 87b] and [Werb 74J.

The nodes in the networks are simple computational elemcnts: a node sums
k weighted inputs and passes the result through a nonlinearity f as shown in
Figure 2. The topology of these networks is a DAG with usually less than three
layers.

Neural networks as classifiers

Much of the interest in these networks is due to the observation that they can be
used as pattern classifiers (see e.g. [DuHa 73]) in the d-dimensional feature space
defined by the network inputs [Werb 74], [RuMc 86], [Lipp 87]. The decision
boundary in the feature space is defined by the state of the network (connection
topology, weight matrLx W, function f and thrcshold value vector 9). Although
in principle the position of this decision boundary in the feature space could be
"programmed" directly by selting arc weight values, the values of the weights
are seldom known a priori. Hence the correct positioning of the boundary is
approximated uy a training process, whcre a set of examples of input instances
{I,,···,h} and a correct classifications {O" ... ,Od are prescnted to the
network, and an algorithm called learning rulc [RuMc 8G] is used to calculate
weight changes depending on network's performance with the current weights.
The network input includes also the correct classifications, hence this type of
training is called supervised learning (DuHa 73]. Finally, the complexity of the
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shape of the boundary (linear, convex etc.) that can be realized is dependent
on the number of layers (see [Lipp 87]), however for our purposes it is enough
to know that any realizable shape can be produced by a three-layer network of
the above elements - at leasl. in principle.

For the above layered 11etworks many learning algorithms have been .sug­
gested [Lipp 87], [Werb 74J, [RuMc 86], e.g. backpropagation and its va.riallts
[Werb 88]. In our case l.he del.ails of the learning algorithms are not important,
it is sufficient to know l.hat for example backpropagatioll is an iterat.ive gradi­
ent descent algorithm designed to minimize the mean square error between Lhe
actual and desired output of the multilayer network.

If neural nel.work N solves a two-class classification problem, such as Lhe
questiOJl if an input I is regular/nonregular, in our knowledge representation
formalism the network corresponds to a single data predicate Pi. However, in
many cases a single network is capable of solving m-class problems aJld hence im­
plements a set of (usually mutually excluding) predicates Pj :::: {PI/ , ... ,P",I}.

4 Knowledge representation with rnles and de­
tector predicates

In our case the knowledge base consists of three (sub)knowledge bases: a rule
base Rb , a fact base Fb and a neural network base Nb • Following the conmlon
expert system terminology a rule is understood as a condition-action -statement

rule i: IF C, THEN Ai;

with the obvious semantics (if the condition part C j is evaluated to be true, the
action part Ai will be performed). A condition Ci is an expression containing
one or more predicates Pi);. For our purposes it is sufficenl. to make a distinction
between detector and /lon-detector predicates. The former predicates (denoted
by Pd) arc implemented by neural networks in Nb.

An action Ai is a set of operations {Oij}, each operaLion being either

• internal, i.e. it modifies the fact base Fb and/or int.ernal variables.

• external, i.e. call to an external procedure (e.g. for an alarm signal) or

• adapl.ive, i.e. call to a neural network in Nb in training mode.

Internal operations allow storing deduced knowledge for further use and external
operations provide the interface to the environment where the expert system is
functioning. These two types of operations are usually found in all monitoring,
planning or interpretive expert systems. The adaptive operations, which are
related to the adaptiveness of the data detectors, will be discussed in more
detail in the contexL of dynamic behavior of this expert sysl.em architecture.
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Fact base

6

The fact ba.se Fb consists of facts stating that a particular predicate P holds for
certain objects s, in the object domain S of the expert system. The predicates
appearing in the fact base Fb can also be detector predicates. In this ca.-;e the
detector predicate on current input I has already been evaluated. Hence a fact
base acts as the "memory" of the expert system. In addition to the static
part that states the universal fads about the problem domain, it abo contains
dynamically changing knowledge about a particular execution that call be erased
later on.

Neural network base

The neural network base N b contains a set of neural networks {Nd, each of
which corresponds to one or more detector predicates. Like rules ill the rule
base, neural networks are active components of the system. They perform a
classification operation that implements a predicate test on their input data
and keep the latest data stored in an associated buffer. We call this process
knowledge compilation, as the statistical relationships within the input data are
translated into symbolic facts. In this sense Nb is analogous to the rule base Rb;
the latter contains the knowledge [or inference at the symbolic level, the former
the knowledge for reasoning at the subsymbolic, stochastic data level.

Architecture of the system

The dynamic behavior of the expert system is illustrated in Figure 3. The in­
ference engine performs the normal backward/forward-chaining of rules. How­
ever, the inference engine may encounter a rule which has detector predicates
Pdl (1, x), Pd3(j, y), ... in its condition part, and it cannot decide the value of a
predicate from the facts in fact ba.~e j;1, it perforllls a caUlar the correspondillg,
neural network(s) with predicate arguments as parameters. These parlll11eLen;
are not tIle actual input values to the neural network N, they define what clas­
sification result (l) is significant. to the condition (since a multi-class classifier
corresponds to a set of predicates {Pd;}) and the address of thc input devi<.:e
(x). The actual input values the neural network receives from the sensory data
equipment directly, the arrival of the parameters acts only as a trigger to the
classification process. In in its simplest form N returns a boolean predicate
value. If the predicate is true, the action part A of the rule in question has
an operation 0, that stores the corresponding fad in the fact basc. If it is
evaluated false, thc system automatically stores the negative fact. This is nec­
essary in ordcr to prevent the subsequent encounters with thc predicate ill .sollie
other condition parts [rom invoking the knowledge translation process again, i.e.
the system "memorizes" the fact. Naturally this stored information is query­
dependent and is removed after the query is completed. In the case of graded
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classifier output the value itself is stored in the fact base, i.e. a graded predicate
always "succeeds" .

Adaptation

Layered neural networks, such as the ones we are using, often require all exten­
sive training period with a sample set adjusting the weights to reflect a good
approximation of the decision boundary in the feature space. Obviously the
larger and statistically more representative this training sample set is of the
whole input space S, the better the performance (i.e. the accuracy of the ap­
proximation) is. Unfortunately in most cases it is not possible to gather enough
data samples in advance to create a truly representative seL Therefore l.lle

system described must be prepared to continue adjusting the network weight
matri..'\: while already functioning by using the adaptive operations oa in the
adion parts. If during the inference process there is substantial evidence of the
fact Pd,(l, x) in Fb being incorrect, deduced either automatically or by human
intervention an adaptive operation is performed. The adaptive operation is im­
plemented as a call to the corresponding N with the correct classification and
the request to train to perform this classification. Observe that we required our
N modules to be able to store the latest input. data whose classification was
triggered, hence t.he symbolic reasoning module does not. have to deal with the
actual data at all. This adaptation mechanism gives a way to gradually improve
the accuracy of the detector predicate implementations with real input data.

5 Self-organization for attribute selection

In practice one of the most difficult. issues in the design of an expert system
is the question of attribute selection for knowledge representation. As any real
world process has infinitely many attributes, the problem is how to choose such
a small attribute set for the knowledge base that it would be descriptive enough
for the modeling purposes. This problem is present especially when machine
learning methods (either neural or symbolic, decision tree based ones sllch as
lD3 [Quin 79]) are used for knowledge acquisit.ion.

Interestingly enough, one important organizing principle of sensory pathways
in the brain is that the placement of neurons is orderly and OftCIl rcHl'C1s sOllie

characteristic of the external stimulus being sensed [KaSc 85J. Inspired uy Lhis
biological fact some of the neuralnctwork models and their associated learning
algorithms promote self organization [Kobo 88], [Gross 88]. As variants of thcsc
Kohonen networks can also be Ilsed directly as classifiers, they especially suitable
for our purposes.
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Self-organizing Kohonen networks

In Kohonen networks the learning algorithm generates a mapping of a higher
dimensional input space S onto (usually two-dimensional) discrete lat.t.ice kf of
output nodes. The map is generated by establishing a correspondence between
the inputs in S and output. nodes in M, such that the topological neighborhood
relationships among the input instances are reflected as closely as possible in
the arrangement of the corresponding nodes in the lattice. As a result of this
process, a non-linearly reduced two-dimensional version of the input space is
found. This data structure can be used to cluster input attributes.

The correspondence is obtained as follows. Each input instance is repre­
sented by a vector s E S. For each training cycle an inPIlL insLance .~ E S
is chosen randomly according to a probabilit.y distribution PJ'(s). Each loca­
tion m E M has an associated vector Will E S, These vecLors Will lIlap lauicc
locations m to points in 5'. For each training cycle the mapping is modified
according to the following abstract algorithm:

AI. Determine lattice locat.ion c for which

where s is the input chosen for t.he training cycle.

A2. For all nodes Tn in the neighborhood of c modify

Here 0 < 0"'0 S 1 is the adjustment function for the distance Ilw _ 511
and a is the learning step size.

By decreasing the step size a and the width of omo slowly during training, the
algorithm gradually yields values for the vectors W m which denne a discretized
neighborhood conserving mapping between lattice nodes m and points of the
input space S [Koho 88].

Self-organization for attribute selection

We now turn to the problem of using this self organization process for att.ribute
selection. Let us assume that our input space S is d-dimensionaL i.e. each iuput
instance is a vector v:::::; (VI, V:!",., Vd). LetT be the training set. i.e. a ,wI, of
such vectors. Further assume that t.he (out.put) nodes M are arranged as a grid
(size k 2

). In the training process an input instance enforces the sensit.ivity of
the most responding node c (closest in d-space) and the nodes in iLS irnmediate
neighborhood (defined by orne), hence the resulting network has a tendency to
form clusters of nodes that. are sensitive to similar inputs (see Figure 4). After
the completion of the training process, each cluster Ci is labeled with a meaning­
ful attribute name B i (semiantomatically) by finding an example set of vectors
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T; from the training set. such that the nodes in C, are sensitive to these input
instances. These example vector sets T; help giving a meaningful interpretation
for the clusters Ci. Observe that this process resembles multivariate IlletllOJs
such as factor analysis, but is nonlinear in nature.

As the output of the cluster nodes ei is graded, these attributes could directly
be used in relational expressions to form detector predicates Pdi discussed above.
For example, "sensor object s is a rock" if detector predicate is-rock(s) holds,
where is-mck(i) == ROCK> .7 (ROCK is an attribute defined by the clustering
process). However, better results are obtained if this self-organization process is
used as a pre-processing step for a more sophisticated classifier. The clustering
and labeling process gives the number and type of the classes after which a
neural implementation of a nearest-neighbor method called LVQ [Koho SS] can
be used to tune the classifier with the same training set T. This tuned classifier
gives an alternate neural implementat.ion to a set of detector predicates to those
based on layered networks in SectioJl 3, and is more viable ill the cases where the
structure of the expert system input space is 1101. well-understood in advance.

6 Example: expert system for automatic lll­

spection

We demonstrate the ideas discussed by applying them to the design of an expert
system for automatic inspection of circuit packs. We will focus OIl showing the
benefits of our overall approach in this particular applicat.ion, readers interested
in the det.ails of the problem and a comparison of t.he different. solutiOll methods
adopt.ed should consult [MoRT S9a],[Tirr S9J.

Computer vision is playing an ever increasing role in assuring the quality of
manufacturing processes by making available low cost, reliable illspection. A
computer vision system placed in-line after the placement operat.:ion can catch
errors before the soldering process, thereby also reducing t.he repair cost. OIle
special problem that arises in electronic assembly is the component orientat.ion
error. Although in sometimes even hundreds of components are placed on a
single circuit pack, the components must be loaded into their hoppers manu­
ally and the symmetry of the component allows an orientat.ion error to occur.
Presently there is no standardizat.ion of the orientation marks (notches, dots
etc.) and even if marks arc used, they are often very hard to detect with a com­
puter vision system. Hence the only starting point for the orientation detect.ioll
is the iuformation print.ed on the electronic component..

Therefore let us fOClIS on one particular rule in t.he inspection expert system,
namely

IF ORI8NT(CHlP;) = ORIENT(CIlIP;) IN DESIGN-DB
THEN CHECI{-PINS(CHll'i);
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that requires checking the component orientation before initiating the inspection
of component pins. In principle one could use backward-chaining to solve the
value of ORIENT(CHIP,) and then compare it to the value accessed from the
design database. One could imagine a set of rules that could be used to detect
the orientation based on the features extracted from the image produced by the
machine vision system. However, the viability of this solution is questionable if
we consider more closely some of the key requirements for this text orientatiou
problem:

• There is no advance knowledge of font style or size.

• As opposed to Optical Character Recognition there is no opportunity to
use contextual information (dictionaries) to resolve difficult-ta-detect char­
acters.

• The printing is oHen poor quality, e.g. characters are touching, misaligned
and may contain nonchacter symbols.

• Many characters are invariant or almost invariam to a 180 degree rotation
(or when rotated re.':iemble some other character without rotatioll)_ Hell~e

the system must be prepared to output also an "indeterminate" respolI.':ic.

• Detection must be carried out very quickly (typically up to 100 charac-
ters/second).

A solution to this problem is to implement a detector predicate ORIENTO as
a feedforward network presented in Figure 5, which can then be called when
executing the corresponding rule.

The feed-forward neural network model used in this application is called
Random Neural Networks (RNN) [Tirr 90]. RNN networks resemble struc­
turally the Olles used with gradient descent. based learning methods such as
back-propagation [Werb 74, RuMc 86, Werb 88]. However, it should be pointed
out that with lhe RNN neural networks there is no iterative learnillg proce;;;;.
Computation in these RNN networks are based on a set of reference vectors
u, )a~J ... , u. and b" b~, ... ,b. (symbols in normal orientation and rotaled, re­
spectively), and the weights are set only once when the reference vector set lli
stored. Adaptation is achieved by incrementally adding new nodes if new refer­
ence vectors become available. One should also notice that the effect of adding
new reference vectors to the computed function is only gradual. Thus the un­
desirable interference properties frequently observed with many of the neural
network learning algorithms [BrSm 89, MeCI 88] can be avoided.

In RNN, the first active layer, consisting of "pattern units". comJlutes Halll­
lrung distances hex, u,-) and h(x, bi ); the next layer, consistillg of "sulllUlation
units", forms pta: Ia) and p(x Ib) as weighted sums, and finally the "ompuL
units" give the final decision by thresholding. As ill this case cOlllputatioll of
the conditional probabilities is based on calculating Hamming distances, the
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RNN neural net.work model can also be understood as a generalization of the
"Hamming Network" [Stei Gl, StPi 63, TayI 64]. As pointed out by Lippman
[Lipp 87], it is well known that under the assumption of independent bit errors,
the optimal minimum error classifier calculates the Hamming distance to a sin­
gle reference instance (or codeword) in each concept and selects the vector with
the minimum distance as the decision. A schematic of a network representing
this mechanism is presented in [LiGo 87J. The RNN approach can be viewed
as a natural generalization of that idea in that rather than taking the nearest
reference instance, we compute the likelihood ratio from families of reference in­
stances for a concept. However, it should be noted that the approach presented
here is not restricted to Hamming metric; it can be generalized to any problem
domain for which a metric can be defined on the input space. A marc detailed
discussion on the theoretical basis of RNN networks is outside the scope of thi:;
paper, and presented in [Tin 90].

Figure 6 presents an example of the recognition process llsing RN N in a l:as('

of a rotated chip. For the reference vectors in this application bitmaps of [,he

letters in Sun font library were used. In Figure 6 we can see the aut.omatically
extracted characters together with t.he corresponding likelihood ratios. The
closer the likelihood ratio is to 0, tIle more certain the detector predicate is t.h(l.t
the symbol is up-side down. More detailed discussion on implementation and
the performance of the application can be found in [MoRT 89a, Tirr 90].

7 Example: respiratory and anesthesia moni­
toring

As a second example we will briefly compare the approach presented above t.o
implemellting an expert system with tradit.ional rule-ba:;ed techniques. Rather
than inventing an artificial example of our own, we chose an example from the
literature in the area of intelligent monitoring in medical environment. The
original prototype system CAPS [RaCM 87], has been implemented by using
various commercially available software tools for st.atistical analysis and expert
system development.

One type of equipment malfunction during anesthesia is the accidental dis­
connection of the paralyzed patient from the life sustaining ventilator. If thi!::i
occurs, no oxygen can be delivered to the patient and t.he carbon dioxide pro­
duced by the patient is not removed from the lungs. The result. is a brain damage
in less than five minutes. To prevent this from happening analyzers that produce
carbon dioxide waveforms (capnograms) are used for monitoring purposes. A
mass spectrometer produces a capnogram which is plotted agaillsL time and dis­
played on a CRT monitor together with some numerical information gathered,
Unfortunately the capnogram and its relationship to physiological changes in
the patient and to anesthesia equipment malfunction is not usually well under-
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stood by many anesthesiologists. Lack of experience with capnograllls reduces
the information gained and may cause misinterpretations. Therefore the work
in [RaCM 87J aims at a real-time expert system for analyzing capnograrns II'hich
could indicate whether the waveforms are normal or abnormal and suggc",t ac­
tions to fix the possible problem.

Before the design of CAPS rule base the authors used manually a stat.is­
tical analysis package to analyze data stored in a capnogram database (each
capnogram has also associated descriptive information about the case). Based
OIl this analysis they chose 12 different capnogram types to be recognized with
au associated feature set. In our approach this database would be used to uain
the self organizing nelwork to find the initial clustering, i.e. the number of
capnogram classes. In this case the input space would be d-dimensional, where
d is the resolution of the waveform image stored in the database, This gives us a
statistically rigorous method to determine different attributes thal can be used
to form detector predicates such as REBREATHING(CGRAM), NORMAL(CGRAt.'i),

CARDlOGENIC-OSCILLATlON(CGIlAM) etc. As discussed already in the previolls
sections, the LVQ-method could then be used to tune the classifier neural net­
work that implements the set of detector predicates which describe the nature
of the waveform.

In the original prototype system CAPS most of the 4S rules were used for
deducing the classification from elementary features, i.e. they served pattern
recognition purposes. Based on the experience with CAPS the authors predict
that satisfactory operation in a delivered product would be achieved with lOUU
rules! In our case the detector predicates perform the pattern recognition func­
tions and free the rule base to describe only the necessary actions (less than
2U rules) and other higher level relationships b&ied 011 this iJlfol'luatioll. Thi~

considerable reduction in the number of rules has obvious performance hClIefils.
As the real product system in the operating room should analyze several gases
simultaneously (nitrogen, oxygen, isoflurane etc.) our rules could also easily
express complex relations between different classifications such as

IF HYPERVENTILATION(CGRAM) AND NORMAL (NGRAM)

THEN CHECK(ABNORMAL(OGRAM))

and hence improve the expert systems ability to gain better evidence about the
cause of a possible abnormality. Our claim is that the rule bases produced this
lVay are easier to maintain and understand, since the low level reasoning for the
pattern analysis is not mixed with the high level reasoning considering proper
actions.

8 Conclusions

Neural networks can be used to implement the compilation from stochastic sen­
sory data to symbols manipulated by the inference engines. The most obvious
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application areas are expert systems that make direct use of complcx senso]'y
input, however, the ideas presented are in fad much more general. We already
mentioned the notion of self-organization as a means to determine those proper­
ties of data that reflect meaningful statistical relationships in the expert system
input space. The mechanisms described can be useful in many related areas such
as robotics (autonomous vehicles etc.), and image processing. As our examples
show, many isolated components of the systems already exist (LVQ- network
simulators, design tools for rule bases etc.) but currently the integration itself
requires considerable additional effort.
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[SPE [WeKu 84Jl IF '1'118 TRACiNG PATTERN IS ASYMMETRIC GAMMA ,\ND

THE GAMMA QUANTITY IS NORMAL

THEN THE CONCENTIlA'l'lON OF' GAMMAGLOBULIN IS IN NOlo.L\1.

IlANGE

[TATR [CaWK 84]] IF THE AIRFI8LD DOES NOT nAVE AN EXPOSED AIR­

CIlAI"T AND THE NUMBER OF AIRCRAFT IN TilE or'EN AT THE AIRFIELD

IS GREATER THAN 0.25 TIMES TilE: TOTAL NUMBER OF AIRCRAFT A'I'

'I'IIAT AIRFIELD

THEN f,ET EXCELLENT BE THE RATING FOR. AIRCRAFT AT THAT AIR­

FIELD

[REACTOR [Nels 82]] IF TilE HEAT TRANSFER FROM THE PRIMARY

COOLANT SYSTEM TO THE SECONDARY COOLANT SYSTEM IS lNADEQU,\'I'E

AND THE FEEDWATER FLOW IS LOW

THEN Tim ACCIDENT IS LOSS OF FEEDWATER.

Figure I: Some lypical rules from existing expert systems thaL illustrate lhe
need for translation from sensory data to symbolic form.
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Figure 2: The computational element in a layered neural network.
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Neural network base Nb

input
module x

)--Pdi

Fact base Fb

pry)

( •
IF P O,x) and P(y) THEN

d

store(~O,x).Ij,); E(x); ............... ------... -_.....'- -.J .__.•. -.--.-I::::=------.J

r------------------,
I ------- -- control flow IL J

Figure 3: The behavior of a rule with a boolean detector predicale.
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.......--- • o
\,

......1---- •••
Figurc 4: Thc self organization algorithm forms clustcrs among the output
nodes. Each of lhc pcaks on the surface represent a cluster ccnl.er, i.e. the peak
clement. and its neighbors are scnsitive to a particular attribute value.
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If(x) = h(x,:;j

[(x) =
p(xlb)-"P(xla) ~ 0

h(x,b l)
[(x) '" p(xlb) =1: .9

h(,;.,ai) [(x) ='r--_--l..:::::::::, [(x) = p(,;.):!) =1: .9 p(xla)."P(xlb) ~ 0

11(,;.) = h{x,aJ

I[(xl = h(x,a;!

Figure 5: The RNN neural network implementing the delector predicate
OrrIENT().
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Figure 6: An example of the recognition process of a chip aD a circuit board.
Low cumulative ratio on the right indicates that the chip is upside-down. The
software is currently running on a Sun 3/260 workstation.
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