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ABSTRACT

In this paper we investigate the convergence of the block Modified Accelerated
Overrelaxation (MAOR) iterative method, when applied to the nonsingular linear sys-
tem Ax = b, where A is a generalized consistently ordered (GCO) (g, p — ¢)-matrix.
By mainly using the theory of block p-cyclic matrices, of positive matrices, and of reg-
ular splittings sufficient conditions for the convergence of the block MAOR and related
methods are obtained. In this way known results are extended and improved and new

ones are derived.
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1. INTRODUCTION AND PRELIMINARIES

In this paper we are concemed with the Modified Accelerated Overrelaxation
(MAOR) iterative method for the solution of the nonsingular linear system

Ax=b ,

where A € ™" and b € €". It is assumed that when A is partitioned into a p X p
block form it is as follows

r —

An 0 0 0 Ay O A 0
0 Aoy c ... 0 ¢ A2.s+2 T 0
0 0 0 ... 0 0 0 . g
A=\ 4 0 0 o 0 0 o |12
q+1,1 < s e
0 Agi22 O 0 0 0 0
0 0 0 Aps 0 0 App

with the diagonal blocks Aj;, j = 1(1)p, square and nonsingular and ¢ relatively prime
to p (gcd(p, q) = 1), where p =5 +¢. As is known the mairix A in (1.2) belongs to
the class of p-cyclic matrices (see Varga [28]) or more precisely to that of generalized
consistently ordered (GCO) (g, p — g)-matrices (see Young [30]).

Let D :=diag(A 11, A2z, - App), then the block Jacobi iteration matrix T#, asso-
ciated with A, has the form




[0 0 0... 0Ty O . 0]
0 b 0... 0 0 Tyea .. O
0 0 0 0 0 0 Tgp
Ay _n-l _
M=l=D"A=lr 0, 0 0... 0 0 0 o |-
0 0 0. T, 0 0 - 0

where 0; is the null matrix of the order of Aj; and Ty =— A7 Az, j=11)p,
E=11)p, j=k Writing A =D( —L — U), with L and U strictly lower and strictly
upper triangular matrices respectively, we have TA =L + U. Let p(-) denote the spec-
tral radius of a matrix and let W= p(ITA [). In this paper, and unless otherwise
specified, we shall be concerned with matrices A that belong to the class of matrices &,

where

Ae®/n> arbi , A is a block
.={ Py } (14)

GCO (g, p — g)-matmix withfl :=p(ITA1)

Very recently the new iterative method for the solution of linear systems, the
Modified Accelerated Overrelaxadon (MAOQOR), was introduced in [7]. The MAOR
method for (1.1) is defined by

x(m+1) = iﬁ.n x(m) +c, m=01,2, .. (1.5)

where

280 = U-RLTI-Q+(Q~-R)L+QU]

= I-(J-RLY1QD14 (1.6)




and

c=(-RLY' QD 'p . 1.7

In (1.6) — (1.7) the matrices R and Q are defined as follows

R
Q

diag (rl 11, ra 12, - rp Ip) s

diag (01 11, 0 [2, s @y 1) (1.8)

where If is the identity matrix of the order of Aj; and r; , w;, j = 1(1)p, are in general
complex parameters with @; 20, j = 1(1)p. If R =0, that is r; =0, j = 1(1)p, then (1.5)
reduces to the Extrapolation Jacobi (EJ) method with p parameters ®; where each one
is associated with the corresponding jth row block of T4 (see e.g., [9]), while if R =Q,
that is r; =®;, j = 1(1)p, it reduces to the Modified SOR(MSOR) method for (1.1).
(See e.g., [3], [17], [27], [30], [10], [9] or [29].)

The purpose of this paper is to give sufficient conditions for the convergence or
divergence of the block MAOR method and consequently of the methods which are
derived from it. It is shown that the convergence results are applicable to the case
where A is also an H-matrix. In general, several new results are obtained some of
which extend and improve previously known ones.

2. CONVERGENCE OF THE BLOCK MAOR METHOD

We begin with the proof of two lemmas, the second one is a generalization of
Lem.2.1 in [24], which are useful in the sequel.

Lemma 2,1: Let B, " e €™" such that

B = diag(B; Iy, B2 12, o Bp Ip)

i 2.1
diag (v; {1, Y2 124 «r Y Ip) (2.1)

=
Il

Then the eigenvalues & of the matrix

BL +TU (2.2)




are given by

q p p
€=[1‘[1§- I1 Bj} ro, (2.3)

=1 =g

where L€ 6(T4) (o(-) denotes the spectrum of a matrix) with T4, L and U being
defined in Section 1.

Proof: From the relatonship

(BL +I'UY = ﬁyj ﬁ Bj] (TAYy 2.4

A1 e

and the p-cyclic nature of T the proof follows.D

Lemma 22: If B, I" are given by (2.1) with B;, v;20, j=1(1)p,
A= diag(d; Iy, & 12, ..., 6, 1) with &; > 0, j = 1(1)p, and

[ lil"r; 1 B;] i’ <1£_[5j , (2.5)
j=1

J=1 j=q+1
where L =p(IT4 1) =p(IL | + U |), then the matrix

A=A—BILI -TIUI (2.6)

] A
satisfies A 2 0.

Proof: Let the matrix @ be defined by

Q=AT1BILI+A'TIUI 20 . 2.7)

Then by Lem. 2.1 and (2.5) we have

q p P -1 ur
p(Q)=HHYj 11 [3,-] [na,-] } E<l . (2.8)

=1 j=gel j=1
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Because of (2.7) and (2.8), from Thm 3.8 in [28, p. 83] we obtain that 7 — @ is non-
singdlar  and (@ -0)'20.  Thus, A=A-AQ=AU-0Q) and
Al=@-0y'Atlz0.0

The following theorem gives sufficient conditions for the convergence of the block
MAOR method (1.5).

Theorem 2.1: If the acceleration and relaxation parameters r; and ®;, j = 1(1)p,
respectively, of the MAOR method (1.5) satisfy

I1-w;1 <1, j=10p , (2.9)
and
q P O
Il JT Url+ lw;—r )| 07 <TT (1 - 11 —w;l) 2.10)
= i=q+1 j=1

then the MAOR method converges (p(£4 q) < 1).

Proof: Let

M = I-RL, N = I-Q+(Q-R)L +QU,

M = I-IRIILI, N = II-Ql+I1Q=-RI ILI+1QI U, (2.11)
A = M-N

If we set .-Eﬁ.g =M1 N, then

2ol = IMTNI<I¢0 -RLY' 1 1T -Q+ (Q-R)L +QU |
< @-IRIILIYV(I-QI+I1Q-RIILI+1Q1 U =280

<
In

implying that
p(EAq) <pEha) - (2.12)

Since
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A=M-N=(-1I-QD)=(RI+1Q-RNILI - I1Q! 1T

and (2.9), (2.10) hold, then by Lem. 2.2 we have A71>0. Moreover since M~ 20
and N20, M -Nis a regular splitting of A (see e.g., [28] or [2]) and therefore
p(;_éﬁ'g) < 1. Consequently, from (2.12), p(;f,jgﬁ"' Q)<1. 0O

Corollary 2.1: If the extrapolation (resp. relaxation) parameters ®;, j = 1(1)p, of
the EJ (resp. MSOR) method satisfy

IT-a;l <1, j=11p , (2.13)

and

P P
[Hlmle P <II-11-w;l) , (2.14)
j=1

j=1

then the EJ (resp. MSOR) method converges.

Proof: It follows by Thm. 2.1 for R =0 (resp. R =Q).0

Remark: Thm 3.1 of [24] concerning the AOR method for (1.1) is obtained from
Thm 2.1 in the special case R = rf and Q=@ 0

A careful examination of the relationships (2.9) and (2.10) leads to the following
theorem.

Theorem 2.2: Let (2.9) hold. Then a necessary conditon for (2.10) to hold is
[T

Proof: From (2.10) we have

¥ <[ 1—[1-@,4] ﬁ[ 1-11-a;l ] 215
=1 |0)J| j=g+1 |FJ|+ICOJ—FJ|

On the other hand (2.9) imply

0<1-tl-o;l €l1l-(-0)l=lal, j=1Lp . (2.16)




Moreover,
lw;jl =lri+(@;—rpl £ lrjl + lo;—r;l, j=g+1(1p . (2.17)

So, by virtue of (2.16) and (2.17), (2.15) gives p” < 1, thatis [ < 1.

Remark: In view of Thm 2.2 in the remaining of this section we assume that
A € b satisfies also the assumption L < 1. As we shall see in the end of this section
(Thm 2.4) this assumption is satisfied in the case where A belongs to the class of H-
matrices. 1

If, now, we begin with (2.9)«2.10), consider that r;, ®; € R, j = 1(1)p, and at the
same time strengthen the assumption (2.10), or equivalently (2.15), by requiring p. to be
strictly less than each of the p fractions in the right hand side of (2.15), then we can end
up with the following statement. U

Theorem 2.3: Under the assumption U < 1, with r;, o; € R, j = 1(1)p, the two
sets of conditions in (2.18) and (2.19) below are equivalent.

o 1-ll-awjl
i m< o] , J=11)g ,
’ 2.18
.. _ l—ll—(l)j| =4 1(1 ( )
n B< tril + lo;—r;l J=q+10p
) 0<w< —(£2), J=1(1)p,
1+
E—(1-11 1) L+(-11~-w;) (-19)
; —_ —_ —m: {0 _— — H
ii Lo — = <ri< Lo — L~ j=q+11p
20 2n

Furthermore, if either (2.18) or (2.19) hold, then the MAOR method converges.

Proof: From each of the p conditions in (2.18) we readily see that
1-11-w;l >0, or equivalently, 0<w; <2, j=1(1)p. By considering the two
cases 0 < w; <1 and 1 < @; < 2, j = 1(1)g, having in mind the assumption L < 1, it is
found out that (2.18i) are equivalent to

(£2), j=1)q . 2.20)

O((l)j(

I1+p
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To derive relationships equivalent to those in (2.18ii) we distinguish three cases: a)

ri<0, b) O<rj<w, and ¢) ;<r;, j=g+1(1)p. In case (a), (2.18ii) give

1-11-0;l
j

and because @; — 2r; > 0 it is implied that
w; — 2rj

L<

@~ (1= [1=-w;)

<rj(g0), j=g+l(L)p . (2.21)

2p

Since 0 < @; < 2, j =q + 1(1)p, and the left hand side in (2.21) must be negative we
obtain

O0<w; < —(£2), Jj=q+l(l)p , (2.22)
1+
) _ 1-11-oy;l . . .
In case (b), we simply have L < > leading to (2.22) again. In case (c), it
]
= 1-T1-wl
IS L < 2 — or
o;t+(1-11-w;l) )
(O)J.' <) rp < ] — ! » J=q+1(1)p . (2.23)

2u

From the fact that the right hand side of (2.23) must be strictly greater than ®;, (2.22)
follows. Hence the equivalent to (2.18ii) relationships are those in (2.22) together with
all possible values for r; obtained in the three cases just examined. These values, how-
ever, give the intervals for r;, j = ¢ + 1(1)p, in (2.19 ii). Noting that (2.20) and (2.22)
give (2.191) concludes the proof of the first part. To prove that the MAOR converges,
we simply note that the right hand sides of (2.18) must be positive, which directly give
(2.9), and that if we multiply all inequalities in (2.18) by members we obtain (2.10).
Consequently, by Thm 2.1, the proof follows. B

Corollary 2.2: If p <1 and 0 < ®; < H—L_, j =1(1)p, then the EJ and the

{L

MSOR methods for (1.1) converge. U

_ 2
Corollary 2.3 If k<1, D<w< , and
1+
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op-d-T-oh) ., 0B+ -11-00 w00 e AOR method for (1.1) con-

21

2

verges. O
Remark: The results in Thms 2.1 and 2.3 are new and the ones in the former case
are obviously stronger than those in the latter. This is not only because in Thm 2.1
complex parameters r; and w; are considered but also because the domain of conver-
gence defined by Thm 2.1 is larger than the one defined in Thm 2.3. However, even
Thm 2.3 gives larger regions of convergence than previously known ones. For exam-
ple, consider the MSOR method, for p = 2, for which it is known (see [15-16]) that in

the real (@, wy)-plane the region of convergence is the open quadrilateral R; whose

vertices are the points (0, 0), (1, H), ( 2 , 2 ), (1, 2__ ) (Fig. 1). Thm 2.3
1+ 14+[@ 1+p
gives as the region of convergence the open square R, with vertices (0, 0),
2 2 2
( —, 0), (——, — ), (0, —
1+p 1+ I1+f 1+

tagon R3, bounded by the straight lines w; =0, ®; =

) (Fig. 2), while Thm 2.1 gives the open pen-

2 2
— =0, 0y = ——
1+ 1+p

and the hyperbola (1-[%) @ @ —20; —20, +4=0, with vertices (0, 0),

(L_z, 0, (———2—_7, 1, (, 2_2 ), (0, 2_2) (Fig. 3). From the illustrative
1+ 1+p 1+p 1+

Figures 1-3 we have that R; c Ry Cc R3. It is interesting to note that as [ tends to

zero Ry tends to the parallelogram with vertices (0, 0), (1, 0), (2, 2), (1, 2), while both

R, and R4 tend to the square with vertices (0, 0) (2, 0), (2, 2), (0, 2). Hence, there

holds

ﬁl = lim R; C lim R4 = lim R4 =:ﬁ2'3
g E—0 g-0

and the area of R 1 is half the area of ﬁz_g. Also, as [L tends to 0:\16 R, tends to an
empty region (1), more specifically, to the open double line segment R with end-pc:&nts
0,0, (1,1), while R, and R3 tend to the unit square Rg3
t 0,0), 1, G), (1,1, (0,1){ . Obviously

A . . ) A
Ry=1lim R;=¢() < lim Ry = lim R3=Rp3 . O
TEE i1 g—1
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The theory developed so far applies also to a matrix A € & in case A is a non-
singular H-matrix since then L =p(1T741) < 1. Tt is reminded that A = (o) € €7 is
an H-matrix if its comparison matrix M(A) = (my), with my; = lagl, mj;=— lag 1,
i, j =1(1)n, j #1i, is a nonsingular M-matrix (see e.g., [2]). In fact i < 1 holds for any
nonsingular A-matrix in p X p block form not necessarily a p-cyclic one, We show it
in Thm 2.4 after we state and prove the two lemmas below.

Lemma 2.3: Any submatrix 4 which is obtained from a nonsingular H-matrix A
by deleting any number of rows and the comresponding columns is a nonsingular H-
matrix.

Proof: It follows from the fact that ?’-?—’L(A) is a nonsingular M-matrix and so is
M(A) =M@A) (see e.g., [28, Thm 3.12 p. 85)). O

Lemma 2.4: For any nonsingular //-matrix A, there holds

1A~ s mt@a) . (2.24)

Proof. (2.24) is readily obtained if A is written as A =D(/ —B), where
D =diag(ay,, a3, ..., @ps)- Then, because of p(B) <p(1B1) < 1, it will be

AN =1 -8Byt 1D li<@g- 1B IDITP=m-1(a) O

Consider any matrix A € €™" partitioned in a p X p block form and let T;‘ and T4
denote the point and the block Jacobi matrices, respectively, associated with A (pro-
vided they exist). Based on the previous definitions, lemmas and notattons we can
prove.

Theorem 2.4: Let A € €" be a nonsingular A-matix partioned in a p X p
block form. There hold

(1) @ e) @ )
pT*) < p(ITA 1) = < p@ W)y < p@@) = p(ITA) <1 . (2.25)

Proof: It should be pointed out that some of the relationships (relns) in (2.25) are
well-known while others are pretty obvious. For example relns (1) and (4). Reln (5)
holds because A is a nonsingular H-matrix. To show the validity of reln (3) we con-
sider two different splittings of the nonsingular M-matrix 7M.(4) =M, — N, =M, — N,,
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where M, =diag(lay; 1, lanl, .., la,,l) and
My = diag("M(A11), MA2), ... T(A,)), corresponding to the point and the block par-
tiioning of A, respectively. It is M;! 2 0, Mp! = 0, with the latter holding because M,
is the direct sum of nonsingular M-matrices, by Lem. 2.3 and Thm 3.12 of [28, p. 85],
and N, >Nj, 20. Observing now that T™#) and TI*™) are the iteration matrices
associated with the previous two regular splittings it implies that reln (3) holds [2, Cor.
3.7, p. 183). Finally, to prove reln (2) it is sufficient and necessary to show that

IAG" Ayl SMTVA) 1441, 4, j=1p, j#i . (2.26)
Since A7} Agl < IAZ |A;; | for all indices i, jin (2.26), it suffices to have
1AF L =My, i=1Q)p . (2.27)

By Lem. 2.3 A;; is a nonsingular H-matrix and by Lem. 2.4 (2.27) hold true and so are
(2.26) and reln (3), which concludes the proof. O

3. DIVERGENCE REGIONS OF THE MAOR ITERATION MATRIX,

We begin this section with the statement and proof of a weaker form of (2.10) of
Thm 2.1. This may enable us to use the eigenvalue functional equation and obtain
regions of divergence of the MAOR matrix.

Lemma 3.1: If the acceleration and relaxation parameters 7; and ©;, j = 1(1)p,
respectively of the MAOR methed (1.5) satisfy the assumptions of Thm 2.1

l-w;l <1, j=11p , 3.1)

and (2.10), then (the MAOR method converges and)

q P —p P
[T+ 1 -a) [T 12—l | i <[] 12—l (32)
j=1 j=q+l i=1

holds.




-12-

Proof: Since (3.1) coincide with (2.9) it suffices to prove the validity of (3.2)

under the assumption that (2.10) holds. For this we shall show that

I-I1-wjl 12—l
<
loj 1+ 11—l

» J=1Dg ,

and that

1—|1—0)j| < |2—ﬂ)j!

< ., J=q+1()p
|rj|+|(!)j—rj| |2?'J.—C0JI

In view of (3.1), (3.3) are equivalent to

N-1-0)1-8)P<0;8,2-0)2-8), j=1Il)q ,
where ®; stands for the conjugate of ;. After some simple algebra we obtain

Um @)?20, j=11)q ,
which are always true. By observing that
0<1-11-;l £l1+(0-o)l=12-w;l, j=q+11)p
and that
Iril + lo; —ril 2 Iy —{(@; —r))) = 12r; —wjl, Jj=q+11)p

(3.4) are shown to hold which concludes the proof of the present lemma. U

L

(3.3)

(3.4)

(3.3)

(3.6)

3.7

(3.8)

Remark: It is noted that equality in (3.6) holds if and only if w; € R, j = 1(1)q.
For equality in (3.7) we can obtain again as before ®; € R, j =¢ + 1(1)p. Using the
Iast conclusion we find out that equality in (3.8) holds if and only if r; € IR and either
rizw;orr; <0, j=q+ 1(1)p. Consequently, for w; € R, j = 1(1)p, and r; such that
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rizw;orr; =0, j =g +1(1)p, then (3.2) of Lem. 3.1 is equivalent to (2.10) of Thm
2.1. 0

Recall now the eigenvalue functional equation which connects the eigenvalues [
of the Jacobi matrix T in (1.3) and A of the MAOR matrix sf.fgl'n in (1.6) for any GCO
(g, p — g)-matrix A in (1.2) (see [7]), that is

P q 2
H()\.+OJJ'—1)=H(Dj H ((Dj—rj+rjk)w" . (39
j=1 17 jegn

As is known, if A and [ are any two numbers satisfying (3.9) and

w;j—rij+riA=0, j=g+11p , (3.10)

then p e o(7*) if and only if A € 6(£4 o). Itis noted that (3.10) always hold for the
EJ matrix, while (3.10) becomes simply A # 0 for the MSOR matrix. We also notice
that when (3.9) holds sufficient conditions for (3.10) to hold are

W;Erpoy, Jj=q+1(p, k=1lp . (3.11)

This is readily seen because the value of A for which one of (3.10) becomes zero is

0).
A=1-—L for some jefg+1,qg+2, .., p}. However, this valne must make one
r:
i

of the factors of the left hand side of (3.9) vanish. This gives that @; = r;o; must hold
for some k {1, 2, ..., p}.
Based on (3.9) and (3.11) we can prove.

Theorem 3.1: Let that the two sets of acceleration r;, j = 1(1)p, and relaxation
©; (#0), j = 1(1)p, parameters are real and satisfy (3.11). If one of the following con-

ditions:

) w;<0 or ;22 j=1Q)p,

P
iy ;21 and JJo;>0 (3.12)
j=1
P g P —p
i) [IQ-owp<sJ]o; JI @rj-o)p
Jj=1 Jj=1 J=q+1
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holds, then

sup (p(2Ro) 21 . (3.13)

Proof: i) LetQ e o(T4 ), which is always possible in case at least two of the diag-
onal blocks of A are of different orders or all the diagonal blocks are of the same order
and at least one of the off-diagonal non-identically zero blocks is singular. Then, from
(3.9), and in view of (3.11), A=1—-w; € G(.ﬂj'}‘g) for at least one £ = 1(1)p. Thus
11 — ey | 2 1 implying p(££ ) = 1 and vice versa.

ii) Let u? = e o((T4)?), which is possible in case e.g., A is an M-matrix. Then any
A which satisfies

Ph;ri, 0, =0, (3.14)

where

P q P
P(?u.;r}-, (Dj, }.L):=H(?\.+Cl)j—l)—HCOj H ((Dj—-?‘j+rj%)!lp ’ (315)
j=1 =1 j=q+l

is an eigenvalue of .:Eﬂ. . Observe now that if (3.12ii) holds, it is

P —
Psry 0p =] 0(1-1")<0 ,
j=

which combined with the fact that P(X ; ry, @;, i) 2 0 for A sufficiently large implies
that there exists a A* 2 1 such that P (A* ; r, @;, ) =0. Thus, A* € 6(££ o). Hence
PR Q)2 1.

iii) Let u? = (- )7 B¥ € o((TA)), a case which is possible if e.g., A5, j = 1(1)p, are
M-mattices, Ajp_g+; 20, j = 1(1)g, while Ay, ; <0, j = 1(1)p —q. Then, any A=—-V
satisfying (3.14) will also satisfy

Qv rj, 0, - 1DP P =0, (3.16)
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where

p q p
Qvsrp, 0 W= v-0;+ -1 JTow; JT (rj—@;+r;v)p?
j=t =1 j=g+1

(3.17)

and will be an eigenvalue of £ﬁ.g. By a similar argument as in (ii) previously it can be
proved using (3.12iii) that there exists a v* 2 1 satisfying (3.16) and therefore a
(—12)A*=-v¥g G(;Eﬁ' o) 3o, p(aﬂﬁ'g) 2 1 follows. This concludes the proof of

the theorem. O

Remark: Thm 3.1 is an extention, in one direction, of the basic Thm 3.1 of [25]
which concerns the scalarcase R =7 #0and Q=i U

4. CONCLUDING REMARKS AND DISCUSSION

As has already been seen the results of this paper and in particular those in Section
2 extend and generalize other known ones. Qur effort in Section 2 was to establish
sufficient conditions for the convergence of the MAOR method. To make these condi-
tions as strict as possible which will enable us to determine the precise domain of con-
vergence of the MAOR method, as this was done for the SSOR method by Neumaier
and Varga [19] for the entire class of H-matrices and by Hadjidimos and Neurnann [5]
for each class of GCO (g, p — g)-matrices, seems to be a complicated problem. This
can be realized from Thm 3.1, when domains of divergence were obtained. However,
we would like to point out that the conditions we considered in Thm 3.1 may be
relaxed if one considers particular methods as e.g., the EJ and/or the MSOR ones or if
one testricts oneself to subclasses of the class of matrices & as ¢.g., the one where all
diagonal blocks of A are square and the non-identically zero blocks of T4 are nonsingu-
lar. For the latter a deeper analysis of (3.9) in view of (3.10) is needed. An investiga-
tion along the lines of filling up the gap between the convergence and divergence
domains of the MAQOR method is being made.

A very interesting and attractive problem is that of deriving *‘optimal’’ or “‘good”’
values for the parameters involved so that convergence of the MAOR method is
achieved in an ‘‘optimal’’ sense. In the general case a solution to this problem does not
seem to be achieved in a straightforward manner. For this one should bear in mind the
kind of difficulties one should overcome in the determination of the optimal parameters
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when only two real ones are involved. As for example, in the scalar 2-cyclic AOR
method (e.g., [26], [201, [1], [23], [18], [9], etc. the scalar 3-cyclic AOR [22] or even in
the 2-cyclic MSOR method (e.g., [17], [27], [10], [9], [8], [11], [29]), where in the most
cases ‘‘optimal’” parameters are obtained based on previous works on 2- and k-step
iterative methods (see e.g., [13], [14], [12], [21], etc.). The problem of the determina-
tion of optimal parameters for the MAOR method in cases of both theoretical and prac-

tical interest is also being investigated.

REFERENCES

1,

Avdelas, G. and A. Hadjidimos, ‘‘Optimum Accelerated Overrelaxation Method in
a Special Case™’, Math. Comp., 36 {1981), 183-187.

Berman, A. and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sci-
ences, Academic Press, New York, 1979.

DeVogelaere, R., ““Over-relaxations, Abstract No. 539-53%", Amer. Math. Soc.
Notices 5 (1958), 147.

Galanis, S., A. Hadjidimos, and D. Noutsos, ‘‘Optimum First and Second Order
Extrapolations of the SOR Method for Certain Types of Matrices’’, BIT 29 (1989),
477-490.

Hadjidimos, A. and M. Neumann, ‘‘Convergence Domains of the SSOR Method
for a Class of Generalized Consistently Ordered Matrices™’, J. Comp. Appl. Maths,
in press.

Hadjidimos, A., T.S. Papatheodorou, and Y.G. Saridakis, ‘‘Optimal Block Iterative
Schemes for Certain Large, Sparse and Nonsymmetric Linear Systems’’, Linear
Algebra Appl. 110 (1988), 285-318.

Hadjidimos, A., A. Psimarni, and A.K. Yeyios, ‘‘On the Convergence of the
Modified Accelerated Overrelaxation (MAOR) Method’, paper presented at the
Copper Mountain Conference on Iterative Methods, Copper Mountain, Colorado,
April 1990, (also CSD-TR-929, Computer Science Department, Purdue University,
West Lafayette, IN 47907, November 1989).

Hadjidimos, A. and Y.G. Saridakis, *‘Modified Successive Overrelaxation (MSOR)
and Equivalent 2-Step Iterative Methods for Collocation Matrices’’, CSD-TR-965,
Computer Science Department, Purdue University, West Lafayette, IN 47907,
March 1990.




10.
11.

12.

13.

14.

15.

16.

17.

18.

15.

20.

21.

22,

23.

-17 -

Hadjidimos, A and A.K. Yeyios, ‘‘Some Recent Results on the Modified SOR
Theory’’, Linear Algebra Appl., in press.

Hiibner, O., ‘“Zweiparametrige Uberrelaxion’’, Numer. Math. 18 (1972), 354-366.
Hitbner, O., ‘“Optimal Real Parameters for the MSOR Method in the Case of
Complex Eigenvalues’”, Mitt. Math. Sem. Giessen 198 (1990), 43-53.

Leontitsis, A., ‘°‘A Stationary Second Order Iterative Method for the Solution of
Linear Systems’’, (in Greek), Ph.D. Dissertation, Department of Mathematics,
University of Ioannina, Ioannina, Greece, 1983.

Manteuffel, T.A., ‘“The Tchebychev Iteration for Nonsymmetric Linear Systems’’,
Numer. Math. 28 (1977), 307-327.

Manteuffel, T.A., ‘““Optimal Parameters for Linear Second-Degree Stationary Itera-
tive Methods’’, STAM J. Numer. Anal. 19 (1982), 833-839.

Martins, M.M., “‘On the Convergence of the Modified Overrelaxation Method™’,
Linear Algebra Appl. 81 (1986), 55-73. :
Martins, M.M., ‘A Note on the Convergence of the MSOR Method IT’’, Linear
Algebra Appl., to appear.

McDowell, L.K., ““Variable Successive Overrelaxation’, Report No. 244, Dept.
Computer Sciences, University of Illinois, Urbana, IL, 1967.

Missirlis, N.M., ‘‘Convergence Theory of Extrapolated Iterative Methods for a
Class of Nonsymmetric Linear Systems’’, Numer. Math. 45 (1984), 447-458.
Neumaier, A. and R.S. Varga, ‘‘Exact Convergence and Divergence Domains for
the Symmetric Successive Overrelaxation (SSOR) Iterative Method Applied to H-
Matrices’’, Linear Algebra Appl. 58 (1984), 261-272.

Niethammer, W., ‘‘On Different Splittings and Associated Iterative Methods”,
SIAM J. Numer. Anal. 16 (1979), 186-200.

Niethammer, W. and R.S. Varga, ““The Analysis of k-Step Iterative Methods for
Linear Systems from Summability Theory’’, Numer. Math. 41 (1983), 177-206.
Papadopoulou, E.P., Y.G. Saridakis, and T.S. Papatheodorou, ‘‘Block AOR Itera-
tive Schemes for Large-Scale Least-Square Problems’’, SIAM J. Numer. Anal. 26
(1989), 637-660.

Papatheodorou, T.S., ‘‘Block AOR Iteration for Nonsymmetric Matrices’’, Math.
Comp. 41 (1983), 511-525.




24,

25.

26.

217.

28.
29,

30.

- 18 -

Saridakis, Y.G., “‘Generalized Consistent Orderings and the Accelerated Overre-
laxation Method”’, BIT 26 (1986), 369-376.

Saridakis, Y.G. and J.P. Kossin, “‘On Exact Convergence of the Accelerated Over-
relaxation Method when Applied to Consistently Ordered Systems’’, Inrern. J.
Computer Math. 33 (1990), 251-261.

Sisler, M., ““Uber die Optimierung eines Zweiparametrigen Iteratonsverfahrens’”,
Apl. Math. 20 (1975), 126-142.

Taylor, P.J., “*A Generalizadon of Systematic Relaxation Methods for Consistently
Ordered Matrices™’, Numer. Math. 13 (1969), 377-395.

Varga, R.S., Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
Yeyios, A.K. and A. Psimami, ‘‘Convergence Analysis of the Modified SOR
(MSOR) Method™’", Intern. J. Computer Math. 35 (1990), 231-244,

Young, D.M., Iterative Solutiorn of Large Linear Systems, Academic Press, New
York, 1971.




-19-

0]
A
©,
X 3 = (0]
(0,0} (1,0) ( 2 . 0)
1+n
Region of Convergence R, (L =0.5)
Figure 1.
)
2 % 2 2
0, ——) = (= ——
1+p 1+p 1+
0,1 x
Ry
X
& e 3 =)
(0,0) LY 2
1+

Region of Convergence R, (L= 0.5)
Figure 2.




(0,

-20 -

Region of Convergence R3 (L = 0.5)
Figure 3.

07}
2
)
1+
2
—)
1+
0,1 % 7 ( 22,1)
Rs 1+
2
(1 — 0
& o bl
©.0) (=0
1+

)]




	The Block Modified Accelerated Overrelaxation (MAOR) Method for Generalized Consistently Ordered Matrices
	Report Number:
	

	tmp.1307986960.pdf.3mR_X

