Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1973

Magnetic Tape Portability
James Alf Iverson

Report Number:
73-101

Iverson, James Alf, "Magnetic Tape Portability" (1973). Department of Computer Science Technical
Reports. Paper 12.
https://docs.lib.purdue.edu/cstech/12

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

MAGNETIC TAPE PORTABILITY

James Alf Iverson Jr.
Purdue University
CSDh TR 101

MRGNETIC TAPE PORTABILITY

A Thesis

Submitted to the Faculty

of

Purdue University

by

James R1{ Iwverson,Jr.

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosaophy

August 13973

ii

ACKNOWLEDGEMENTS

Most 1important of all I would like to thank my wife for
her patience, understanding and keypunching during the

research and writing of this thesis.

I offer particular tharks to Professor Jay Nunamaker
for his guldance, toc Professor Maurice Halstead for his
professional 1nterest and support and to Dr. T. Aird for
his assistance in establishing a direct use for this

research.

Special thanks also go to the staff of the Purdue
Unlversity Computing Center for providing an excellent
envirorment for this research as well as outstanding

support.

The initial design effort was partially supported by
the MNational Science Foundation and the detailed design
was partially supported by the Purdue University Computing

Center.

LIST OF TRBLES
LIST OF FIGURES
ABSTRACT

CHAPTER 2 - AN ABSTRACT MODEL FOR DATA PORTRBILITY

TABLE OF CONTENTS

CHAPTER 1 - THE NEED FOR DATA PORTABILITY.... :eucusnn.

General Comments. ...cue et nneernosnnarannasannns
The Age of the User..... ... ittt innnnceasersnnsns
Definitions and Terminology.ss s e nnnnnnnonsnnnns
The Increasing Use of Data Base Management Systems...
Media for Data Portability......... ..
Magnetic Tape Portabllity...icieiiiinvrosossassneses
Recent Investigations...... ..o iernrianannns

General Comments.uecieiiasssssseraarsrsssnsennnas
Some HPproaches. c i e ireesrscencrnrssnnssnastassnonss
The General Problem......cccueeereninnerinrennrnanns
Example of An Algorithm.......... . i iiiineninan,
Other Regquired Attributes....... ... i iiiinnrinn,
Locations for the Transformation Program............
Synthesis of Previous Approaches.ottt vennnans
An RArgument for Method Three.....cooiiiviniinavarnn,

CHAPTER 3 - PROBLEMS RRISING IN MRAGNETIC TAPE
PORTHBILITY . esvsnvnnsnnamenonrannnsnnsnssansnnrnsnns

General Comments.veiriiiriearsonsnanconarsarons
Standards. . i i iie it c i i s e a s e r e s
Compressed Data. ... civiivinncnnieiinerasssnsnnnnnns
FPhysical Constralnts....... . ciiiiiaiiiiiiiiiinan
Graphic Codes. ... vttt st aresesnnsrssinansnsons
Rcceptable Source TapeS. .. ae i civevarnarsrransveros
R Synthesis of Case Histories...icivvevviaaaianiias,

iii

Page

vi

vii

i
A maiwn =

—_—

13
13
29
30
32
33
34
35

a7

37
37
40
41
42
5%
62

iv

CHRPTER 4 - AN RPPROACH FOR PORTABLE MRGNETIC TAPES..... X}
General Comments.....euiiiee e i tansenanrosonssannns 67
Data TypesS. . er e incsssncevnnontenensnsannnsnsnnae 67
Table Reguirements. .a.cveeeernssnnrnernersersnnrsnnnans [!!
Other Reguirements for Data Description.............. 72
An RAlgorithm for a Tape Transformation Program....... TE

CHAPTER 5 - IMPLEMENTRTION OF THE RPPRORCH ON R

I - 95
General Comments. .. oue e essarnssnsesreranrtanssoanns g5
Maln Program. cv iv e it ana s snsnnnaasniassananansanss 96
Machine Dependent Subroutines..........cviiniiinnaan 38
Machine Indegendent Subroutines..........cicviinannas 101
Functions. ... vt ir ittt ass st ar st nstaanarsnnss 104
L= < T = 107
Source and Target Data Description...........ccvv. 118
Memory Hllocation and Timing...... . vve v i i, 118
Implementation Corisiderations......svevivrinervarannns 121
Program Verification......c.veeriniinirninninnsansnes 124
Machine Independence. i eerenninnnertnnnernsanas 130
CHAPTER 6 - OPERRTIONAL GUIDELINES FOR MAGNETIC THPE
INTERCHANGE. . o . v i it sttt e ranann e 132
General Comments. ... vivriieereereronntentnnrsonrsnnsnna 132
Generation of Hcceptable Tapes..... i inarnns 132
Steps for a Successiul Transformation........ ... 0.0 137
CHAPTER 7 - CONCLUSIONS AND FURTHER RESEARCH AREAS...... 146
7 T T U 0 I o T 146
Extensions and Further Research............c . cviivas 4y
LIST OF REFERENCES. oo vt et i it rn s s nnnssananroeanas 149
e I I 155
L S I 166

3.10

3.11

I_LIST OF TABLES

Page
Standard BCD Interchange Code and Graphics...... 45
BCD Basic and BCD Basic+7 Character Codes....... 4B
USA Standard Code for Information Interchange. .. 49
I.5.0. 7-Bit Character Code Table.............. 50

Extended Binary Coded DBecimal Interchange Code.. 51

Eight-Bit Representation for USASCII-8.......... 52
CDC 63-Character Set...iiicinrvrerinttncrianrnernns 54
1108 Character Codes. .- vveeviiuarvrrnernarnenan Sb
GE-625/635 Standard Character Set....oeuenerann. 57
BE500 Data Representation...v.vevvineninanannaa, 58
Test CasSES. v inrtnenrrarorarsnnanaressassassnsan 65
Type Transformation Table...... oo t08
Allowakle Type Transformation Matrix............ 108
Master Graphic Table...... i 111
Packed and Zoned Decimal Table..........vovuun, 118
Computer RAttribute Table...........coviuinnn 117
Job, Tape, File and Record Descriptors for

Test CasesS. . v v ireanainnannsnueensacsnassnsnasonss 125
Field Descriptors for Test Cases......cvvuranns 128

vi

LIST OF FIGURES

Page
DBTG Conceptual Data Base Management System..... 21
The Use of Descriptions and the Association
lList in Data Conversion.......vevevrcnrnneenen.. 23
DDL-Processor System. ... vcveveenreicininnnanns 25
The General Model for Data Transtation.......... 27
Functional Diagram of the Data Translation)
= R =T 28
Global Flow Diagram for a Tape Transformation
Algorithm, oo it i e s asanaasnnnnns T
Flow Network of the Tape Transformation
Program....voiie i iveras i cansenaranrnasansnanns ar
Job, Tape, File and Record Descriptor Data
S =T T 119
Field Descriptor Data Sheet.........ccovnvvann 120

ABSTRACT

Iverson, James RIf Jr., Ph.D., Purdue University, Pugust,
1973. Magnetic Tape Portability. Major Professor: Jay
Nunamaker.

Magnetic tape portability problems still exist after
nearly two decades. This thesis identifies and suggests
solutions for several of these incompatability problems.
The specific problem addressed is that of producing a
procedure whereby a magnetic tape generated by a source

computer can be transformed into a magnetic tape acceptable

to a target computer.

The method chosen for examining this problem is the
design of a user oriented tape transformation algorithm.
The algorithm is not deperdent on any specific source
computer and is limited only by physical constraints on
the target computer and its associated tape drives. Tables
and algorithms provide the mapping capabilities from cne
data type to another and {rom one computer to ancother.
The altgorithm does not encompass all of the probleas

discussed in the thesis.

Difficultles arising when reading and writing magnetic
tapes are discussed with proposed solutions. A suggestion
for data description 1is presented along with some
operational guldelines for creating and transforming
magnetic tapes. R seven step procedwe 1is given for

transforming a magnetic tape.

The salient features of the algoritim are embodied in
a Fortran implementation on +the CDC 65080 1in which the
machine dependent routines are well identified. A
collection of twenty test cases, origirating from fifteen
different groups, are synthesized +to illustrate current
problems in magnetic tape portabkility. The source computers
were manufactured by IBM, Control Data, Modcomp, Siemens,
Univac, Honeywell and DEC. In all cases but one the target

computer was the CDC 5500.

CHRPTER 1

THE NEED FOR DATR BRSE PORTABILITY

GEMNEREL. COMMENTS

The computer user of today has access to more data than
ever before. He would Jike +to be able to extract
information from a data base without being concerned with
the complexities of -how the data is stored. The computing
center, as a result, is becoming more involved in handling
large amounts of data. They too would like +to keep the
user from having to understand how the data is stored.
This allows the computing center to make changes 1o the
system that invelve the addition or removal of dewices such
as drums, discs or tapes with a minimum of upheaval. In
essence then the goal of both the user and the computing
center is to make the mass storage devices transparent to

the user.

The current use of higher-level languages such as Cobol,

Fortran, PL/1, Algol, Jovial, etc. has made the task of

pragram conversiaon to different computers much easier.
Programs moved from one computer configuration to another
have fared vrather well providing +that they were not
programmed to be machine-dependent. On the other hand,
the transferring of large amounts of data has not been as
successful since methods to describe data have not met with

universal approval.

THE AGE OF THE USER

The typical wuser of computers today has less total
knowledge of the computer system +than ever before. This
is due ta the increasing complexity of computer systems
as well as the methad in which the user 1is being educated
in the use of computers. Over a decade ago, the user was
familiar with one higher level-programming language as well
as understanding the principles of assembly language and
machine architecture. The typical user today is conversant
primarily in higher-level languages. He has been taught
to use the computer as a tool and the mass storage devices
are transparent to him. This lack of knowledge hurts the
user when he is faced with the problem of obtainlng media,

such as cards or magnetic tapes, that contain useful data

but do not conform to his current computer system.

In particular, a user requesting data from other computer
installations most often cannot control eithesr the format
of the data or the storage media on which it 1s placed.
If he purchases the data, a predescribed format often
machine &and system dependent already exists. The typical
user assumes that 1f he 1s sent the data in a computer
readable form then 1t can ke vread on &all computers. It
is a prevalent notion that magnetic +tapes can be read
without difficulty on any computer the same as punched.cards

can be read by any card reader.

This device transparency 1is beginning to backfire on
computer centers. 5ince the awverage user believes that
all media is easily transferable, he has no regard for the
difficulties involved in moving large amounts of data
between non-compatible computers. Education as well as

assistance is needed for the user.

DEFINITIONS AND TERMIMNOLOGY

The following definitions are used:

field

the smallest unit of data to be processed. It

may be as small as one bit or as large as one

or more characters.

lngical record

& series of fields related to a common subject.

a collection of all of the records of a similar

type.

data base
a collection of one or more files that reside
in a form acceptable as input to a large scale

digital computer.

physical vrecord

this is the data that resides bstween two physzical
end of record gaps on a magnetic tape. On some
systems this is referred to as a block. It may

be composed of one or more logical records.

portable

to be easily carried.

portable data base

a data base that may be easily carried to another
computer system and used at another site. It
is in a form acceptable as input to & large scale

digital computer.

transformation

The term transformation has been chosen to
represent the conversion or translation from one
data form to another. The terms conversion and
translation are not used since they have different

meanings for IBM System 360/370 users.

source computer

the computer on which the original data base was

created.

targzet computer

the computer on which the data base containing

the transformed data is to be used.

THE INCREARSING USE OF DATA BASE_MANAGEMENT SYSTEMS

A large number of data bases today are created and
accessed using Generalized Data Base Management Systems
(GDBMS). GDBMS have evolved throughout the years from the
garly report writers and report generators. Al though
developments in GDBMS have taken place since 1358 (Minker
1969), considerable effort has been expended in in the last

four to five vyears.

State of the art reuiewslhaue been provided by Climenson
(1966), Minker and Sable (198?]. Shof fner (1968), and Senko
(19€9). The proliferation of GDBMS is best illustrated
in the reports by Mitre (Fry, et al. 1369), Diebold (1869},
CODRSYL (1969) and CODASYL (1871). These reports discuss
various GDBMS in different depths. Rmong the GDBMS
discussed are DM-1 (Ruerbach), Forge (Burroughs), Cogent
III (Computer Sciences), IDS (General Electric, nout
Honeywell), Mark IV (Informatics), GIS (IBM), NIPS/FFS

(Mational Military Command System), TOMS (SDC), Manage (SDS,

now Xerox), Rapid (U.S. Rrmy), Disk Forte (Burroughs];

IMS-DL/1 (IBM), UL/1 (RCA now UNIVAC), GIM (TRwW), ISL-1
(Infermation Systems Leasing), MIS (Mational Brewing),
Omnibus (Industrial Indemnity), FMS (Pacifiec Gas and
Elentric), DF-2 ({International Minerals), ADAM (Mitre),
and SC-1 (Western Electric]. In each of these Feports,
there 1is no attempt to deflne a GDEMS but rather to examine

common or distinct attributes of the various systems.

The major efforts by the CODRSYL GSystems Committee in
producing both "A Survey of Generalized Data Base Management
Systems” (CODASYL 1963) and "Feature Analysis of Generalized
Data Base Management Systems" (CODASYL 1971) represent the
works of many individuals with company support and again
illustrate the importance that many people and companies

are currently placing on being able to access data. Also

operating under CODHSYL; initial efforts in proposing a
language for the descriptihn andl ﬁanipu]ation of a data
base have been presented by the Data Base Task Group (DBTG}
(DTEBG 1969 and ' DBTG 1971). DBTG (19639) made some attempt
towards standardization but Jeans heavily towards COBOL
and attempts to design its ‘works" within COBOL. DETG
(1971} has extracted some of the COBOL oriented requirements
and placed them in separate chapters. The problem of
portability is solved EQ allowing the Data Manipulation
Language (DML) to default to the host language and operating
system which in turn handles the physical manipuliations

of data in primary and secondary storage.

In parallel with the DBTG effort, Guide and Share (IBM
user groups] worked together to form a set of future
reguirements for Data Base Management Systems (Guide-Share
18707 . IMDrk at Purdue Qniversity on data portability
is continuing as part of a project involving the interface
of data bases and application programs (Nunamaker et al.

1973).

In retrospect then, the user is demanding a way to better
manage his data. Software developers are slowly responding

to the rneeds of the user.

MEDIR FOR DATR PORTABILITY

There are several types of media that can be used for
data portability. Some of the more common are: paper(input/
output forms), punched cards, paper tape, data

communications, disk packs and magnetic tape..

a) paper - Data is often recorded on data shests of
various sizes. The data may have been printed by some
device or may be in hand printed form. This data can
then be transcribed directly to cards, magnetic t%pe
or discs. If the data and the data sheet are in a
machine readable - form, the data can be directly read
by optical character recognition devices or mark sensing
devices. The codes for these graphic symbols are
automatically generated by the particular device and

the wuser does not generally have to worry akout them.

b) punched cards - Card decks ranging from a handful

to several trays are in common use today. However,
they are not generally used for large data bases because
of their bulk, Several 1types of cards are presently
in use. The B0-column Hollerith card provides the most
universal method for data portability today. =
representation of selected graphics characters by

specific combinations of punched holes per coclumn has

developed into a de-factosstandard; RAs a result, both
ANST Fortran and ANSI Basic Fortran include a
representation of thelr character sets in 80-column
punched cards that are widely used in the USA. Some
card readers have the capability of reading only either
the 36-colunn cards in use on the lower range of IBM
computers or the 30-column cards which have heen used
by UNIVAC. Exceptions to standard graphic codes arise
when the data is in a compacted or compressed form.
Compressed cards in their simplest form can be in binary
images either by row ovr by column. They may also be
in a more highly compressed form using encoding
techniques. The card reader may alsoc influence the

format of compressed cards.

c) paper tape - As a general rule, in the United

States, this media is not widely used to transport other
than small amounts of data. The major users of paper
tape are those with special purpose minicomputers
equipped with only paper tape input-output. WNumerical
control machines also are sometimes driven by paper

tape.

d) data communications - With current technology it

is possible to transmit large amounts of data wvia
commuriication lines. Generally some well defined

imterface, either hardware or software, handles the

10

conversion to ‘the proper graphic code for the target
computer. The recipient of the data is well aware of

what he is to reclieve.

e) disk packs - Within a computing center disk packs

may be compatible across several computers. They are
hot generally compatible between different computer
manufacturers. Physical constraints such as sectors
per disk regquire different types of drives (i.e. the

incompatikilities between the CDC B854 and the IBM 1211.)

f) magnetic tape - Magnetic tape is rather universally

used. In particular, 7-track 1/2 inch tape vrecorded
in densities of 200, 556 and 800 bits per lineal inch
and 9-track 1/2 inch tape recorded in densities of 800
and 1600 bits per lineal inch are in very common use.
It provides a reasonahle recording density at a low

storage cost.

The major disadvantages of the previocusly discussed media
are as follows. Cards are bulky for large amounts of data.
Input forms, unless they are in machine readable form,
involve another step introducing humah error to place them
in computer useable form. Paper tape 1is not generally
available at all installations, and 1t is fairly bulky.
The wuze of data communications implies that the recipisnt

of the data be aware of its format particularly if it is

11

being wused in a real time basis. Disk packs are not always
physically and ltogically compatible. Magnetic +tapes are

serizitive to dust, temperature and humidity.

For amounts of data consuming more than a few thousand
cards, magnetic tapes are still the most physical ly
compatible media. Solwving the problem of magnetic tape
portability is a first step in solving the general problem

of data base portability.

MAGMETIC TAPE PORTABILITY

One of the major problems in data portability today is
the task of being able to read magnetic tapes on a computer
system that 1is different from the one that generated them.
Barring physical constraints such as density, number of
tracks and the width of the tape, the user has had a great
deal of difficulty in reading tapes that were not generated
on a wvery similar system to his own., This problem has
existed since the early days of computing. Howewvar, then
most users knew enough about computer systems to solve the
problem themselves. The majﬁrity of computer installations
have solved part of the magnetic tape portability problem
with utility packages that allow the user to dump the

contents of a tape so that he may examine it more closely.

12

The remaining part of the problem consists of being able
to properly describe the data and its method of being
recorded, To date, neither a list of requirements nor a
specific algorithm exists for properly handling this
problem. In the past, special purpose programs uwere
written, wused to fransform the data, and then reilegated
to a corner of a desk. Documentation almost never existed
for this "magic deck” and it was redeveloped again and again
by each user who had to transform his data. Rt the present
time this procedure still has not changed. A partial
solution to this problem is to create a tape transformation
program that 1s general enough to allow a user to transform
tapes irrespective of their contents as long as he can

properly describe them.

From the user's point of wiew, the tape may contain
programs and data that have been developed and- gathered
at a considerable cost. He wishes to take advantage of
this previous effort and convert the programs and the data
to his computer. The cost of conversion will normally be
far less than that of developing the program or gathering
the data from scratch again. Unfortunately a large class
of users are not very sophisticated in their knowledge of
computers. In particular, 1t has been found that users
do rot generally know the format of the tape that contains

the data that they wish to use. Thus we have a frustrated

13

user who has a tape full of data and does not have the
expertise to read it or properly describe its contents.
This presents a serious problem 1n that the less information
that 1s known about the tape, the more dlfficult it is to

trans{orm.

In general, thers are three classes of wusers who wil]

send data or programs on magnetic tape.
1) Thoze who know what they are doing
2} Those who do not know what they are doing
3) Those who partially know what they are doing.

In the first class, the tape sent is elther directly
useable on the target computer or it is directly
tranzformable to a tape that will be useable on the target
computer. This iz true barring any physical or mechanicai
constraints. The wuser 1is aware of the incompatibilities
of magnetic tapes and attempts tc produce a useable tape

faor the target computer.

The users in the second class are non-programmers. Theay
helieve that magnetic tapes are fully compatihle
irrespective of the computer or operating system. They
use or ask someone else to use the capabilities of the
zource system to produce a tspe. They are not capahle of

describing the format of the data on the tape.

14

The third class of users produce what can be referred

to as “almost” tapes. They understand how to use their
source computer reasonably well and assume that everyone
else does too. Unfortunately, 1f the recipient has a

computer different than the source computer he may be in

for a great deal of trouble.

RECENT INVESTIGHTIONS

Throughaut the years, there have been concerted efforts
to resalve the general problem of portability. The Fortran
language was a first step 1in the direction of providing
portable programs. The developers of the Cobol (Common
lusiness oriented language) language in using the term
"common” felt that they were providing some degree of
portability. However, the standards that are set for
higher-level languages and the standards observed for
higher-level Tlanguages are nof always the same standards.
It is very difficult for users with different requirements
to agree on standards that will be beneficial to all

regarding portability.

There have been several groups and individuals interested
in solving the portability problem. R hrief overview of

their efforts is presented.

15

The “Program Transferability Study,” (Mealy, et al.
1968) was devoted to the sof tware aspects- of
transferability. The study considered that proklems in
program transferability we?e caused by two major factors.
They concluded that current technology encourages or f{orces

the programmer to make implicit in the form of his program:

1. The details of its initial operating system,

computer characteristics, etc.

2. The structure and representation of the data

accessed by the program.

The study suggested three approaches for attacking the

prohlem:
& administrative control
® extensions to the existing system base -
® advanced transferability envirormment

Rdministrative control provides checks for adequate
documentation and restricts non-standard options. This
is a function of the amount of control one can exert over
programmers, systems analysts and systems designers. It
varies from installation to installation and directly
depends on the individuals responsible for enforcing the

controls. Extending the system base 1implies modifying

16

existing systems to allow data descriptions, minimum

hardware configurations, text editing, and mechanized

administrative control. This iz a function of the

extendability of the existing system and capabilities of

the system programmers. Both approaches have existed in
varying forms for many years. The advanced transferability
envirorment proposes to déve[op prototype systems that will
provide transferability. This has not been accomplished
to a satisfying degree and it is here that the effort must

he placed in order to advance the state of the art.

Gosden (1968) reviewed the status of‘ software
compatability as of that time. He examined what had been
promised, what existed and what was needed. He too pointed
out that one of our current goals should be inter-software
compatability. In his short discussions of data exchange
and data pooling he expressed the need for-a standard data
description language. Thiz language would be compatible
with data descriptions in current programming languages

and provide for easier data interchange.

At the Spring Joint Computer Conference in 1363, a panel
session of Software Transferability was hsld. Five short
papers were presented by UWard, Bemer, Gosden, Hopper and
Sable (Ward, et al. 1968) . The two most significant
comments were that (1) data exchange is becoming

increasingly important and that (2) programs must be

17
designed for transfer a priori.

The report, "On Program Transferability,” (Sattley,
Millstein and Warshall, 1970) also discusses program
transferability. The vreport is general in nature and they
do not provide solutions to the problem. 0f interest 1is
their feeling that the physical characteristics of secondary
memory hardware are too diverse to have common {eatures,
and that the process of going from an abstract model of
data structures to the allocation of hardware resources
must be machine-dependent. They recommend modularity as
an aild to praogram transferability but feel as Mealy et al.
(1968) that when the logical structure of the program must
be modified to accord with stringent mapping instructions,

then the possibility of easy transier dlsappears.

The most recent group to show some interest 1in
portability is the RCM Special Interest Group on File
Description and Transiation (SIGFIDET). Its membership
includes representatives f{rom industry, government and
education. The SIGFIDET (1870, 1971, 1972) workshops have
generated discussion and papers that address the probtems

of file translation and file description.

Groups at the University of Pennsylvania and the
University of Michigan have also been investigating the

area of data description and translation (French, et al.

18

1971, Smith 1871, Fry, et al. 1972, Sibley 1972). These

efforts will be examined and discussed in Chapter 2.

Some portablility does exist throughout a specific series
of computers, such as the IBM System 360/370 series,
Honeywell 6000 series, Univac 1100 series and the Control
Data 6000 series. The Ievel of portability may wvary widely
however. When changing to a similar computer configuration

within the same series, timing problems occur, undiscovered

kugs arise and machine dependent features are found. These

may result in minor inconveniences or major problems during
conversion. Portability prablems inevitably become severe

when a major change in system or manufacturer is necessary.

The main problem addressed in this thesis is the transier
of large data bases between computers. Chapter 2 will deal
with various models for data portability. Problems that
arise in magnetic tape portability along with a synthesis
of actual cases are discussed in Chapter 3. In Chapter
4, an approach for solving the problem of poritakle maghstic
tapes will be discussed. HAn actual 1implementation on the
CDC 6500 is discussed in Chapter 5. Chapter & presents
operational guidelines for magnetic tape interchange.
Conclusions and further research areas are discussed in

Chapter 7.

19

CHAPTER 2

MODELS FOR DARTH PORTABILITY

GENERAL, COMMENTS

Several organizations have been investigating parts of
the data portability problem and designing corresponding
models. The apptroaches to the models are presented and
briefly discussed. The general problem of data portability
is then addressed with three methods, one of which is

recammznded, for possible implementation.

SOME HPPRORCHES

The Data Base Task Group (DBTG 1869, DBTG 1971),
University of Pennsylvania (French, et al. 1371, Smith
1371} and University of Michigan (Fry, et al. 1372, Sihley

1972} have all addressed the notion of data portability.

20

Data Base Task Group

The Data Base Task Group proposes both a Data Dascription
Language (DDL) and & Data Manipulation Language (DML).
The DDL is used to describe an entire data base or portions
thereof. R schema is introduced +to completely describe
an entire data base by use of DDL entries. A sub-schema,
also consisting of DDL entries, is introduced to describe
the portions of a data base known te one or more specific
progrems. The relationship between a schema, sub-schema
and a data base management system is illustrated in Figure

2.17.

The DML ia the language used to transfer data between
a program and the data base. The DM. relies on a host
language such as Cobol to provide a proper framework for
interfacing with the data base. Therefore the inadequacies
of the host language for manipulating data in primary
storage are perpetuated. The DDL 1is character oriented
since Caobol was used as the original host language. For
example, it 1is not possible to properly describe the
negative representation for floating point numbers in the
DDL. Such limitations preclude the use of the DD and DML

to transform non-character oriented data.

SECONDARY
STORAGE

¥

DATABASE

PRIMARY STORAGE

21

*

OPERATING 5YSTEM

/

v

SCHEMA
(OBJECT VERSION]

4 4

-t

SUB-SCHEMA -1
(OBJECT VERSION)

SUB-

SCHEMA -
N

DATABASE
MANAGE -
MENT
SYSTEM

4

———

USER-PROGRAM -}

N\

SYSTEM
BUFFERS

N

Figure 2.1

SYSTEM
LOCATIONS. ¥

——>

USER-WORKING

<41

AREA

USER-PROGRAM - N -

SYSTEM
LOCATIONS

USER-WORKING
AREA

DBTG Conceptual Data Base Management System !

' Reproduced from [DBTG 1971, p. 16]

22

University of Pennsylvania

Smith (1871) attacks the problem of data description
and conversion by defining a Generalized Data Description
Language (GDDL) based on a model that characterizes current
data organization techniques and provides a framework within
which new data structures can be defined. The GDDL is in
greater depth than that conceptually proposed by thes DBTG.
The Smith model for extracting data items from scurce files
and creating target files {from target data 1tems is

illustrated in Figure 2.2,

The GDDL. as described is not general enough to allow
a method to properly define the characteristic of a {loating
point number. In addition, the character set specified
for GDOL contains characters that are not available on all
computers. Since an implementation 1is not discussed 1n
this report, it is likely that the GDDL will be somewhat
machine dependent upon implementation thus restricting the

general model].

A Data Description Language Processor System 1is also
under development at the University of Pennsylvania (French,
et al. 1971). The design of the system has been directed
at satisfying two requirements of data interchange, (1) data
(organization) definition and (2) data translation. The

processor system consists of a compiler generator that wuses

bkxr = abbreviatas bls
firing represmcta.
e

[Afspziation List }-—0-

23

Daterninm which fIle La ta
br rad

Diorage Structury
Deacriplion

Tarap mealing
Cwractaristic.

Locuts blochs cantaloing
fllo '

Resd bar of rils Icto eain
Oy - renorlng adr
labele

Rrid fily cootaining
polater tahlsn

Dxtruct poloters

Bcurea fidw U

{ Aszocintlca L[ly

Daterming wvhich rocord ia
o ba used

File Encodlng
Chnracizrizt|cy

Critaricn for sequanting
al rogords

Extract tar of rwcond

{

| ARkoa [at I I.SII"—'D

Racand Atructure
Dwicription

Dalarming which data
iltam Lo tha rwcard

Ia Lo ba ucel
Locate dala 1tem relative
ty plhar data ftems in

Criteris for dcresa
uth leplementation

ALizabant et and Altrl%

1rtlo

racord
Extriction of Data
Itan 1
Ineoling Caractarlatics
Attribyte
Yelua - Karksr €
Bowree Yalus
b .
Trunclyrm cource
Bource and targst
. yelua to jus ancoding
Bt valie O ractariotice
’ Targat Talua
i -
Tora tercet Attributa
Data Item Harkar Charmetarictlc

Targat record etructu
Duseription

Ozrcaniiy date 1teow
into target racord

Attrivute arcollng
Characteristics

Fiiw relation criteclog
for Bequencing recocds

-_m Detornine which

1la rvletlon crltorie
for deternlning acenen
atho loplaiented by
paintors

Encoda targot record

uﬂrgul. Racord

Sequencitg af racords

Detaroira 1f polnlars
Ars Lo foplacent
Ary dccaos patbs

Starepe 3tructurs
Dancription and
ntoding Charsatars

Ary to b llnkad
by polnlures

Craation of lubels,
anl enzodisg of
Bleci e

Intarl pednlors andfor

File Incodirg
Craractoriatics,

Tarprt
Fila

cruola tablaw

Sreata file
e t for polnier table
s oo
Blosuge ¥rita rile
MNeils ﬁ ones pediue

Figure 2.2

! Reproduced from

[Smith 1971,

p.

Uplitting of bar of tha
File 1nto tasic blocks,
fepincscant af polnters
Urlte detn onta codum.

Ascord Poaltiome
Ing apd Polotar
Interpratation

Target Fls

The Use of Desdriptinns and the Rssoclation
List in Data Conversion

150-152]

1

24

syntax and semantic definitions 1o generate a Data
Description Language (DDL) compiler. The DDL compiler
formats and transiates DDL Data Dsfinition Statements 15
produce a Data Conversion Processor which in turn converts
the source data base to the target data base. This system

is illustrated in Figure 2.3.

The design has been completed and the implementation
is to be-done in PL/1 on an IBM 3T7D/165. However, this
is a large project and it remains to be seen if it can alsc
be implemented on computers such as the CDC 6000 series
using Fortran without major modifications. Implementation
of a system proposing data portability should include the
restriction that the system itself is portable. In this
way ths system does not hecome another speclial purpose

translation program.

University of Michigan

The ISDOS project has suggested a developmental model
for data translation [ny, et al. 1372). A source
converter accepts a source file and its description and
produces a normal form. H restructurer accepts this normal
form, restructuring specifications, source and target
descriptions and produces another normal. form. This new
normal form and target description are then used as input

to the target cornverter which produces the target file.

SYNTAX SPECIFICATION . CODE GENERATION

OF LOGIC
DOL FOR
DDL
—_— e Y
r M
. |
I DDL — COMPILER GEMERATOR _
L______I.___.____ S —
DDL SYNTACTIC ODL CODE
ANALYSIS GENERATION
PROGRAM PROGRAM
e e e e MY
DOL | i
STATEMENTS, —-1 DDL COMPILER |
| —— ——— e ——— e e e e
JATA
CONVERSION
PROGRAM .
[————— e e ——————
..: ' DATA CONVERSION PROCESSOR }....

S |

Figure 2.3

2

DDL-Processor System !

' Reproduced from [French, et al. 1971, p. 17}

s/

5S¢

26

Specifications for the normal form are not giwven in the

paper. The general model 1is illustrated in Figure 2.%.

The Data Translation Project ls developing a methodology
for automation of the file translation process (Sibley
1972). Design specificatiqns have been produced for a
prototype data transiator which will be the first step in
devel opment of a generallzed data translator. The
implementation will take the NIPS data base management
system on the IBM 360 and translate it into files acceptable
to the WWDMS data base management system on the HIS 6050,
The implementation Tanguage on the HIS B050 will be ANS
Fortran with assembly language used where Fortran does not

have sufficient capability.

A functional description of the model is as follows.
A Stored Data Definition language (SDDL} Analyzer accepts
a description of both target and source inputs written in
s0DL. R Table Builder accepts outputs from the 5SDDL
Analyzer and produces input tables f{for the Translation
Modules. A Translation Definition Language (TOL) PRnalyzer
accepts relationships between the attributes and names of
items, groups, etc. in the source and target files and
produces input tables for the Translation Modules. The
Transtation Modules then accept input from the source file,
50DL tables, TDL tables and produce a target file (see

Figure 2.5]).

Description Restructuring Description
of Source Spacifications of Targst

‘o

| Target
Restructurer @¢ Converter

Q

_.,@_3 Source
Converter

KEY

SF = Source Form
TF =Targat Form
N = Nsrmal Form

Figure 2.4 The General Model for Data Translation !

! Reproduced from {[Fry, et al. 1972, p. 9]

e

28

SOURCE
Si?L TARGET

- SDDL
ANALYZER

-t——SYMBOL TABLE

TABLE
BUILDER

#"‘“"‘" —SDDL TABLES

TRANSLATION

MODULES

T—-ﬂ-—-——— TDL TABLES

TDL

ANALYZER

TDL

Figure 2.5 Functional Diagram of the Data Translation .
Project 1

' Reproduced from [Sibley 1972, p. 1.9]

. 29

Implementing specific file organizations on specific
computers (i.e. NIPS 360 to WWDMS 6050) does not lend
itself to portability unless the implementors are extremely
careful. Thus, the resulting generalized data trans)ator

may not be as general as originally intended.

THE. GENERRL PROBLEM

The general problem of data portability can best be

expressed by the following diagram.

SOURCE - TRRGET
DATAH DATA
DESCRIPTION PESCRIFTION
SOURCE TRANSFORMATION TARGET
DATA BASE PROGRAM DATA BASE

The source data description is a concise and complete

representation of all the data that resides on the sourcs

data base, 1its contents and corresponding relationships.

30.

Both physical and logical constraints exist 1iIn the data

description.

The target data description 1s a concise and complete

representation of all the data that resides on the target
data base, 1its contents and corresponding relationships.
Both physical and logical constraints exist in the data

description,

The 1transformetion program consists of an executive that

produces a target data base by (1) selecting source fields
from the source data base and (2) choosing algorithms (based
on source and target data descriptions) to properly
transform these source fields to corresponding target

fields.

EXAMPLE OF AN ALGORITHM

As an example of one of the algorithms that may exist
in the transformation program, consider the algorithm that
transforms s single precision floating point to t single

precision floating point. Rlso, let

S IBM 380

t CDC 6500

31

If the transformation program resides on the target computer

and o is the target field,

the

necessary source computer

attributes required for this example are:

word size <1,32>

sign <>
characteristic <2,8>

frac*ion <3, 32>
characteristic excess 64

exponent base 16

negative number representation sign-magnitude
fraction radix point <8.9>

Given the source field, the -

1)
2)
3)

4)

5)
7}

extract sign

extract characteristic
extract fraction
extract exponent

normalize fraction

unsigned answer

signed answer

transformation algorithm is:

leftmost bit - I1

next leftmost 7 bits » 12

rightmost 24 bits =+ Rt

I2 - 84 » I3

shift binary point of R1
left 24 bits » R

R2 * (16 Tt I3) - R3

if I I1 =1 then -R3 - d;

otherwise R3 - d

32

OTHER REQUIRED ATTRIBUTES

RAlthough these previous attributes are required for
floating point, additional attributes will be necessary

to describe other data types. For example,
1) fixed point will require

word length

position of sign
position of the fraction
length of the fraction

negative representation
2) pure graphic transformations will require

bits per graphic code

source to ‘target graphic +transformation table
3) zoned, packed and numeric decimal will reqguire

bits per character
bits per digit

source to target graphic transformation tables

For other data types; additional attributes will be

required.

" 33

LOCATIONS FOR THE TRANSFORMATION PROGRAM

The transformation program may reside on the source
computer, target computer or an intermediate computer.

Graphically this can be represented as follows:

I SOURCE TRANSFORMATION |- I TRRGET
' DATA BRSE PROGRAM PATH BASE

Method 2
INTERMEDIATE COMPUTER
— -
SOURCE | [TrensForMATION]| | TARGET
DATA BASE PROGRAM DATR BASE
Method 3

TARGET COMPUTER

 — e e — '_T
SOURCE I TRANSFORMATION TARGET
DHTR BARSE - PROGRRAM DATA BASE I

L = —

34

A1l three methods have their advantages ‘as well as
disadvantages. Method 1 assumes that +the target data
description 1is well defined when in most caseglit is not.
It has the distinct advantage however of having théh source

data description well defined.

Method 2 assumes both the source and tafget data
description are well defined. This method has a major
weakness 1in that {for the majority of cases, neither the
source data description nor the target data description

is well defined.

Method 3 assumes that the source data description is
well defined when in most cases it is not. The advantage

is that the target data description is well defined.

SYNTHESIS OF PREVIOUS APPRORACHES

The approaches discussed earlier in this chapter can
he expressed as belonging to one of these three methods.
The goals of the groups at University of Pennsylvania and
University of Michigan have been towards Method 2. However,
the Data Transtation Project, the Data Description Language
Processor System and the DBTG proposal are being implemented

similarly to Method 3. The largest problem to overcome

35

in going from Method 3 to Method 2 is that of being able
to have both the source and target data description well

defined.

AN ARGUMENT FOR METHOD THREE

Models 1 and 2 require an accurate description of the
target data description. This description is wvery difficult
to pbtain when even the recipient of the data base may not
be able to provide this information. Only Method 3 does
hot (require advance knowledge of +the target computer.
Method 3 has met with limited success in the form of one-
shot transformation programs which have been developed
iteratively. The iterative process 1is due primarily to
the lack of information about the source data base
originally. Thus, 1f success is not met, additional
information is gathered, the program modified and another

attempt or iteration is made.

Therefore, if it is possible to (1) construct a portable
transformation program that can exist on the target computer
(2) vreduce the number of iterations necessary to transform
the source data base and (3) derive a workable data
description that allows a user to easily redefine his data

base as more relevant information 1is discovered, we are

36

on the way towards providing data base portability.

As an approach to constructing a portable transformation
program, let us examine the most common portable medium
today (i.e. magnetic tape). Before the problem of portakle
magnetic tape is dismissed as being trivial, vrealize that
the probiem has existed for almost +two decades and the
general problem has yet to be solved. There is considerable
difficulty in reading "strange magnetic tapes’ at most

computer installations today.

Having established that the first step to solving the
problem of data portability is in the area of magnetic
tapes, some problems that exist with magnetic tapes are

examined in the next chapter.

37

CHAPTER 3

PROBLEMS RARISING IN MAGMETIC THAPE PORTABILITY

GENERAL. COMMEMTS

The problems arising 1n magnetic tape portability lie
primarily in the areas of standardization, data compression,
physical constraints, graphic codes and creating acceptable
source tapes. These problems are discussed 1in general
followed by specific sxamples that have occurred in 20 test

CASES.

STRMNDARDS

Standards for recorded magnetic tape for information
interchange have been specified by the Hmerican National
Standards Institute (ANSI 1967a, ANSI 1370). A standard
for internal magnetic tape labels far information

interchange also has been published (ANSI 1967hb). However,

38

many tapes do not conform to the standards. Computer
companies also publish manuals describing their internal
labels for specific operating systems (IBM 1972) as well
as standards for infaormation interchange between differenf
operating systems (IBM 1370). In addition, the Department
of Commerce has published some broad guidelines for
describing dinformation 1interchange formats which also are

applicable to magnetic tapes (FIPS PUB 20 1872).

R typical user when sending a magnetic tape, uses utility
routines to copy his program or data from mass storage to
maghetic tape. Unfortunately these utility routines may
copy the data directly in the form used by the operating
system. In many operating systems, as an efficiency
measure, physical records on magnetic tape conform to tracks
or fractions of +tracks on discs or drums. On other
computers, the Ilength of a physical record is determined
by the size and capahilities of a peripheral processor.
Therefore, a track or a fraction of a track on disc or a
core load for a peripheral processor may be mapped to =
physical record on tape. This results in a tape that is
easily read only by the source computer. These deviations
from the specified standards are due primarily +to the
increasing amount of file bhandling 1irrespective of the

storage device.

39

Problems also occur when tapes are blocked. Blocking
allows several logical records to be contalned in one
physical record thus eliminating excessive end of record
gaps that occupy useable space on tape. Blocking 1is
acceptahle 1if the physical record size is acceptable to
the target compufer. Often, due to memory or buffer size
limitations, standard wutility routines are not available
to read large physical records from the tape. Hence, the
tape must first he unblocked using non-standard routines

so that it may run on the target computer.

Some operating systems requlre special formatted tapes.
One example 1is OS 370. Tapes may be labeled or unlabeled.
If they are labeled, the label may contain no more than
120 B-bit bytes. Tapes may have variable length physical
records but the length of the variable physicail record must
he in the first four bytes of each physical record. This
implies that if a tape generated on a UNIVAC 1108 contains
126 bytes in the first physical record and 1008 bytes per
physical record after that, the job control language (JCL)
will not allow the tape to be read unless you specify the

tape as "unknown".

Standards for onc computer system are not necessarily
standards on another computer system. Enforcing national

standards on all users is a gigantic task.

40

COMPRESSED DHTH

Data is compressed in order to save space. Trailing
blarnks may be deleted by replacing them with a set of
characters indicating an end of line condition. One example
is the tape generated by the MACE operating system on the
CDC B500. Trailing bklanks are deleted from Iline images
with & special! end of line condition, 12 binary zeroces in
the rightmost 12 bits of the 60 bit word, specifying the
end of the 1ine. These trailing blanks are replaced when
the compressed line image 1s read by the §ystem to he used
as data. Another technique is to have a set of characters
or binary string indicating its compressed length. Rn
example of this may be found on the Univac 1108 where the
word preceeding the line image contains, among other thiﬁgs,

the number of 36 bit words that follow.

H more complicated technique involves deleting all

ncecurrences of three or more blanks. An example of this
is HKFILES wunder the MACE operating system on the CDC 6500
where the first blank is replaced with binary zerces and
the éecond blank 1is vreplaced with & binary counter
indicating the number of blanks deleted. This technigue
can also be wused to replace multiple occurrences of other
characters by replacing them with a special symbol, or a

count accompanied by a special symbol. Increasingly complex

%1

techniques involve compressing bits vather than characters
by repl acement of speclal strings of bits. More
sophisticated techniques used in compressing large business

files are summarized in Ruth and Kreutzer (1972).

There are many ways to compress data and it is not
possible at this time to develop a general decompression
algorithm. A decompression algorithm unpacks the data from
a packed form into a useable form. Since decompression
routines within the operating system are transparent to
the user, it is possible for him to inadvertently create
a compressed tape to send to another computer installation.
If this ocecurs, it is his responsibility to also send the
decompression a&algorithm. The target computer installation

can then apply the algorithm and decompress the tape.

PHYSICHL CONSTRAINTS

Reconstructing data on damaged tape is wvery difficult
and if +the damage to the tape is severe enough, the user
must request that a new tape be generated again at the
source site. Tape drives can be out of adjustment when
they are recording. This may result by the tape head not
being perpendicular to the magnetic tape (skewing), or the

recorded density may not be within the allowable tolerances.

42

Riso, the fape itself may have creases in 1t, the oxide

may be coming off, it may be dirty, old, etc.

Rnother problem is receiving tapes that are readahble
only on specific tape drives. For example, it is not
possible to read a 1600 bpi tape on a single density 800
bpl tape drive. Likewise, S-track tapes are not readable
on 7-track tape drives. In this case, the user must elther
have it copied to a useable density with the correct number
of tracks or he must request a new source tape that 1is

physically compatible.

GRAPHIC CODES

Graphic codes are wuniversally misunderstocd. The user
sees a graphic symbol as it 1is represented on a Ilisting
or a display tube. Graphic - symbal sets are 1in turn
controlled by the slugs on a print chain, type bkars or
matrices on terminals and the available graphics on a
display tube. Since these symbols are what the user sees
and uses, he does not generally care about their internat
representation inm memory. Hs a diréct resuit, he believes
that the character set that he uses is rather universally
krnown wherr in fact it is not. Hs an example, Binary Coded

Decimal (BCD) codes are often thought +to be the same on

43

different computers., This 1is not true. In particular,
the graphic symbols for CDC 6000 series external BCD are

not the same as for the BCD used on the IBM 380 series [(see

Tables 3.1 and 3.7).

The three major graphic codes appearing on magnetic tape
today are ASCII, EBCDIC, and various wersions of BCD. The
BCD code (6 bits) was developed from a binary representation
of the existing hollerith punch card code (Clamons 1371).
EBCDIC (2 bits) was developed by IBM to provide an Extended
Binary Coded Decimal Interchange Code that was more than
8 bits long. It is used as an internal and external code
an the IBM 360/370 series which is 8-bit oriented. ASCII
(American Standard Code for Information Interchange) is
a 7-bit code based on the IS0 (International Standards

Organization) recommerdations (FIPS PUB 1 1968).

Let us now examine each of the above graphic codes alaong

with some others that are in common use.

When BCD codes are used on IBM computers, they are
generally of two forms. These forms are BCDIC (principle)

and BCDIC (alternate}.

BCDIC (PRINCIPLE}

The Binary Coded Decimal Interchange Code (BCDIC)
is an outgrowth of the BCD codes on the early

IBM machines. BCDIC (principle) contains B4

Y

characters and is commonly referred to as the
commercial character sef. It differs from the
scientific character set (see BCD alternate below)
in that it allows the 5 special symbol s:
ampersand, percent, number sign, commercial at

and lozenge (sese Table 3.1)

BCDIC (ALTERNATE)
This code is similar to BCDIC (principle) except
for 5 scientific symbols which replace the
commercial aymbols. They are: -opening
parenthesis, plus sign, <closing parenthesis,

apostrophe and equal sign (see Table 3.1).

The two BCDIC codes are not universal across all computers,
In fact, BCD Basic (see below} seems %o be the most
universal BCD code with BCD Basic + T (see bhelow) being

applicable the majority of the time.

BCD BRSIC
Binary Coded Decimal (BCD)} Basic is a 6-bit code
consisting of the letters A through Z and the
numerics 0 through 3. The majority of BCD codes
contain the same rnumeric representation for these

36 graphics. (see Table 3.2)

Table 3.1 Standard BCD Interchange Code and Graphics U
FRINCIPLE ALTERNATE SEVEN-TAACK
COLLATING | ASSIGNED GRAPHIC ARAPHIC CARD CODE"" MAGNETIC TAPE
WUMBER" GRAFPHICS NAME NAME BCO CODE {EVEN PARITYI
£ 8 A _H 4 2 1
] HLANK Blank {Spsce) NO PLNCHES NO BITS*"*
o . Pariod [a]e |c]ea|la]s 2 |1
02 Hi Loxerg Aight Parenchesls 2] a 8 palale |4
5] [Lafr Bracher Z[sle jclala|a]4 1
o 4 Laae-Than Gign 12 a] clplals 41132
[=] [Qrove Mark 2] 7 [slals]alz |1
ba & mnd Plus 12 B lA
o7 [Collw Skn B EEN B B 2 |1
[+:] . Ayt e 1 | & 8 lcfle Bl
w 1 Right Brachet 1mn|s E] B Bl s [
10 H Sernl-Colon 111 8 B B] 4|z
n 4 Whoce Changs miz alc|e [:] alz |1
12 - Minu Hyphm 1 cle
12 [Slash a1 a 1
T4 Vo Comma o] 3 a At 2|1
1% % P Cant 5 Laft Parenthams gl = g |- A 4
18 v word ator "N -] B A] 4 1
17 A nh KR A8 [a]2
18 - Bogrrund Wark gl i lc Al lalz i
18 swn [] Subitituis Blsnk 2 a] A
20 Ha Humbsr Sign Equal_Shn alalg 8 2 11
FL) .- AT Swn Pricne, Apqmrophe [] a B |4
v : Colon 5 8 |c 8|4 1
13 > Oraler - Than Sign [] a c 8 |4]2
74 J Tere Mark (Radtical) 7 [} B |4]2 |1
L T Gurmlon 7] 0 (BN 2
28 A 17| 1 cCiB|aA 1
FH] TF[=z clad|A F3
rel c 2] a B | A Fi 1
[= D 7| 4 Tla A 0
0 E 111 8 || A 4 1
F1] F 12| & B A 4|7
2 <] 12| 7 c|lm]a [AENE
=] H L F I B C|B|a|B
34 1 12 2 Bials 1
1) t Exclamaton Point 1M{o C|a [2
L] J 114 [} 1
7 3 L5 B F]
b L n 3 [] 2 |
E7) M LU B B I
40 N 1ml| s] 4 1
43 [=] B cl|l B 4|2
42 LA 11 7 '] 412 |1
43 Q LI L] [] []
a4 A 1| & cl|la a 1
[45 » Facord Mark 0] 7 [] c Al B F
48 5 gl 2 ' A 2
L T ol 3 [3 I FD
48 U 0| 4 A q
= 40 v ol & c A 4 1
L1y w ol s C A 412
-1} X of 7 A 4al2 |
52 v pl| a AlB
61 H ol ® 3 A| B 1
54 a Q] Kl
D) T T [1
24 2 q [2
[} T 3 FEIL
L) L] [c a
(4] L] b 4 1
O a B 412
&1 ’ L [[NFEE
[.+] 8 [] c 8
a1 -]] a 1

' Reproduced from ["IBM Systems/360 Component Description,

45

2400-5eries Magnetic Tape Units, 2803/2804% Tape Control and

2816 Switching Unit, Model

MNovemher 1970,

p.

211

1", GR22-£866-5, S5ixth Edition,

46
Takle 3.2 BCD Basic and BCD Basic+7 Character Codes

BCDB_BRASIC CODE BCD BASIC + 7

51
52
53
By
ES
56
57
70
71
41
42
43
i
45
45
47
50
51
22
23
24
25
26
27
30
31
12
01
02
03
oY
05
06
67
10
11
20 BLANK

33 COMMA

73 PERIOD

53 DOLLAR SIGN
5 ASTERISK

1} MINUS

21 SLANT

DO ARFEFLONLONLYXECCIOADTVTO=ZITRNCHIOTIMOODD
UCR-NONFWON2ONYXELCCANDOITOZ2INARCHIOTIMOODD

$7.

BCD BRSIC + T
Binary Coded Decimal (BCD) Basic + 7 is a §-bit
code consisting of the letters A through 2, the
numerics 0 through 89, and the special symbois;
blank, comma, period, slash, asterisk, minus and
dollar sign. It has 7T more graphic symbols in
addition to those in BCD Basic (see tabkle 3.2),
These 43 graphic symbols have been found to have
common numeric vrepresentations in 15 BED codes
by DUARL labs who are responsible for distributing
the 1970 census tapes {(USDC 1970). It should
be noted that BCD Basic + T does not contain all

of the operators necessary in Basic Fortran.

There are also two standard interchange codes, ANSI and
I50, that have been developed by their respective standards

groups.

ASCII, RANSI or ARSCII-Y
The American National Standards Institute [(PNSI)
has established this code as the American Standard
Code for Information Interchange (RASCII). It
is a T-bit code with all 128 characters being
defined in FIPS PUB 1(1968). See Tahle 3.2 for
the code. It was hoped that +thls graphic code
would bescome a standard. It is not as universally

used as was originally intended by its developers

USR Standard Code for Information Interchange !

Table 3.3

-
M~ Al o] = 2] > B x| x| N [==[~]2 | W
]
0 |- ol v]|o} O|w] D L[| Xf—=]| E[| =] ©
IO Elwvm| D> X = |N]—]] ~—]t¢
T (9|« O VIAWIL|O|IZ|~=|"DI|J|E|Z[O
™ | O] | N|]| oo o wl Wl T A e
EWI." #$%.&Il\\l....*lT'— .,
wl~lalol=(elziolzls|aluln|unlv
- OOV]| < = < S|a|e 44
alalaldia|ZIa|n|dlu|a(m|w|o(x{>
(x| XE19(%| - e T I T -%
ol|D FlolzZz|lolwi{g Q| 5
ZziI QG |lw|lw|lid|<|a|@| T[> LAl
x
z
m|w|01|23455?39wnu1.luuw
2 .
1.0!‘0]0]0]0]0]010]01
AS~lolol—|l—~|o|le|—~{o|lo|—|—~|o|o|—|~—
MIOOOO]]]]OOOO]\I]]
INIODOOODUU-II.I]]]I]]

! Reproduced from [FIPS PUB 1 1968, p. 61

48

43

due to EBCDIC (Clamons 19711]. Rlso, 128
characters do not allow all of the curtrent

existing symbols to be represented.

IS0
The International . Standards Organizatinn (IS0)
has established this code (Ross 13964}.. It is
very similar to T7-bit RSCII and is the standard
interchange code to be used by countries outside

of the U.S5.A. [(see Table 3.4).

IBM has also established codes that are de-facto standards.,

They are EBCDIC and HRSCII-S§.

EBCDIC
Extended Binary Coded Decimal Interchange Code
(EBCDIC) is the 8-bit code used as the internal
computer code by the IBM System 360/370 (see Tahle
3.5). It is ‘also used as the normal external

tape code.

RASCII-8
ASCII-7 was extendsd by IBM to an 8-bit code
resulting in ASCII-B (see Table 3.6). Excluding
the transmlssion control graphics, it corresponds
closely +to RSCII-T with one additional bit. Only

128 characters are defined.

5D

Table 3.4 I.5.0. 7-Bit Character Code Table '
0 1] 0 a 1 1 1
I’—. 0 0 1 1 0 0 1 1
M 0 1 0 1 4] 0 1
Dl 0 1 2 3 3 5 3 7

0]0[0|0[D | (T Null | (TCa) DLE Spacs o — ‘P @ 3 p
ojolo[1| 1| rey sou {pey 1 1 A Q a q
0/0]1[0| 2 | (TcasTX |DC2 n (® 2 B R b r
olol1[1| 3| ey eTx | DOy #® 3 c g c s
o[1j0|0| 4 | o EoT DS B10my | i (B i D T d t
0[1]0|1{ §1 ¢Tcy Eng |TCo Nack e 5 E U e u
Ql1]1{0] B | rca aek [Ty Syne & 6 F v r v
oj1{1]1]| 7| Bent (TCy0) ETB ' ® 7 a w ¢ w
1|0{0{0[B | FEa¢Bs) |cConexl { s H x h x
110[0|1[9 | Fes vy [EM) 9 I Y i ¥
1(0[1]|0|10| FE, (LE)} 58 . @ J z I z
10)11|17] rE, v | Esage + @ K (n @ k ®
111J0[0]12] re crry [154(F®) . < L € @] @ |
H1[0[1[13) ke, ccr B 18, G3) - - M m @ m [©)
M110)14] so 1S; (RS) > N - @ n [©)
11{1]1[15] =1 15, (US) { 1 o coo 0 Delete

Explanatory nofes about the 7-bit code {able

1.

' Reproduced from

The contrals CR and LF are intended for grinicr equipment
which requires separnte combinations o return the carriags and
1o feed a line,

For equipmenl which uses p single cambination {called New Line)
for combined carriage return and line feed operation, NL will be
coded n1 FE;. The wme af New Line requires agreement
between the senderand the recipient of the data.

. IF 10 and 11 ns single chamclers are needed {for example, for

Slcrling currency subdivision), they should take the place of
*cofon™ (:} and "“semi-colan™ {:) respectively.

. "Raerved for National Use” These posilions are primarily

Intended for alphaberic exteasinns. |7 Lhey are nol required lor
that purpose. they may be used Foar symbols and the recom-
mended chaice as shown in parentheses.

. “‘Ressrved for Mational Use.™ A currency sign will be nasigned

Lo this postion.

. The number sign (7#4) in positior 2/3 may have on aliemate

phical represzntation (N°).
tis acceptable 10 represen tilde £ by circomflex §) for inter-
national tnlerchanee of information in Spanish and Portuguese,
In Spanish and Poriugese speaking countrics the Glde may
replace the eircumillex in positian 514,

. The graphics in positians 202, /7, 5/14 have Lthe sipnificance of

quotation mark, apostrophe and upwards arrow, respectively;
however, these characiers take on the significance of diacreals,
acute accent ond circumilex diaeritical signs when they [ollow the
Backspace code.

[Ross 1364, p. 199]

Table 3.5

Positiom

4,5 4,7

Extended Binary Coded Decimal Interchange Code ‘!

Bt
Positiom

Q1

11 0,1

1)}

o1 | 10

8

o1

2

=]
=

+—2,3

00

N

Ds

SP

0l

SOS

i0

F3

™

o1

Q0

PF

AES

BYP

PH

01

HT

NL

LF

RS

10

LC

B3

EQB

uc

DEL

PRE

EOT

00

01

=l o =i |n|n |]a

~lajlo]loe |y |g|—{m]|—

Ml |x]g |e|e|=]m

—lx|q|[m|o[n|=]|r

BlIDlP|IQIZIZT|r|=]|~
Nl<|x[g]lc|c|a]wn
@ NIk k| el] -

10

CC

11

00

01

—_] w |]-—

-|e|al-

10

H

As|-=]Aal

'UVI*‘

1

Reproduced from ["IBM Systems/380 Component Description, 2400-Series

Magnetic Tape Units, 280372804 Tape Control and 2816 Switching Unit, Madel 17,

GH22-B866~5, Sixth Edition, Movember 1970, p.

18]

1S

Table 3.6 Eight-Bit Representation for USASCII-8 !

Bil ‘ Bit
Positions Peaitioms
43 2,1 00 01 10 N «—8,7

} 0 [o1 10 {m |l oo | mw|[mn oo | oo | 10] n 0 | o { 10 W |+—6,5
o0 | NUL | DLE sP 0 @ P . P
o | soH [b ! 1 A Q a q |
bl BT S Y N B | R b ‘ i
1 | ETX DC3 + 3 C 3 < s
00 | EOT | DC4 5 4 D T d t
o1 01 | ENQ NAK % 5 E u . v
10 | AcK | syN s 6 . F v f v
11§ BEL EYB ' 7 G| w g w
oo | BS CAN { 8 H X h x
o1 | HT EM) 9 [Y i y
MR 55 : ; 4 Z i z '
N[vr ESC + ; K| C k {
0 | FF Fs y | < L : i
o1 | R GS - o M| 2 m !
"o [0 RS . > N[» n ~
T us / o| — a DEL

' Reproduced from ["IBM Systems/360 Component Description, 2400-Series
Magnetic Tape Units, 280372804 Tape Control and 2816 Switching Unit, Model 1°,
GA22-68B66-5, Sixth Edition, November 1970, p. 18]

Zs

53

On many computers, reference is made to external BCD
and 1internal BCD. External HBCD is a graphic code that
exists on an external media such as magnetic tape. When
this code 1is read into main memory from magnetic tape, a
mapping takes place, usually by the hardware, to transform
the external BCD to internal BCD. Bmong other things, this
iz largely due to not being able 1o vrepresent a zero as
a true zero Un- even parity tape. A BCD zero is normally

recorded on magnetic tape as an octal 12.

Generally if a specific computer has an internal code
different from BCD a one to one relationship exists when
the number of biﬁs in each of the codes is the same. RAs
:an example of wvarious graphic codes that exist within one
computer, consider the CDC 5500, There are basically 3
codes. (1) DISPLAY which is the 1internal code of the
computer, (2) external BCD, a code that can exist on mass
storage devices and (3) internal BCD, a code that 1is
directly related to external BCD except that it rvesides

in the computer (see Table 3.7).

DISPLAY (CDC 65007

This is the B-hit internal machine code used on
the CDC 6500 as well as on other CDC BOD0D series

machines. [(see Table 3.7).

Table 3.7 CDC. 63-Character Set !

Display Halterlth Hollerith Exteenal Diplay Hollerith Hollerith External
Code Charactet {028) {028} BCD Codn Charactar- {028} (029} acoe
00 [nons}t 18 40] b 5 o5
01 A 12-1 12-1 61 41 8 B] ;]
o2 /] 12-2 12-2 62 42 7 7 7 07
03 c 12-3 12-3 83 43 B B 1] 10
o4 D 12-4 12-4 64 44 2]] 8 1
05 E 12-5 12-5 B5 a5 + 12 12-8-8 BO
08 F 125 12-6 1] Li] - 1 1 40
o7 G 12-7 12-7 a7 a7z . 11-3-4 11-8-4 64
10 H 12-8 124 0 50 { 01 0-1 i
1 | 12-9 12-¢ " Bl { 0-8-4 12.8-5 34
12 J 1141 11-1 41 B2 | 12-9-4 11-8-5 74
13 K 11-2 11-2 42 53 L 11-8-3 118-3 23
14 L 11-3 11-3 43 o4 - 8-3 g-8 13
16 M 114 11-4 44 15 blsnk ro punch na punch 20
18 N 11-5 11-6 45 3] , lcommal 0-8-3 0-8-3 ek |
17 0 11-8 11-8 48 &7 . [pariod) 12-8-3 12-8-3 3
20 p 11-2 1-7 a7 60 L] 0-8-§ B-3 36
21 a 118 1148 B0 ‘61 { B-7 B.5 17
22 R 119 11-8 B1 62 -1 0-8-2 12-4-7 a2
23 5 0-2 0-2 22 83 slealon) t 8-2 B-2 Qo
24 T - 0-3 D-3 22 64] 8-4 B-7 14
5 U 04 04 24 65 - 0-8-5 0-B-5 a5
28 v 0.5 0-6 26 66 " 11-0 or 11-0 o 62

27 w -8 0-§ 28 11-8-2 11-8-2

30 X o0-7 0.7 27 67 A 0-8-7 12 a7

31 Y 0-8 0-a 30 70 1 11-8-5 B.4 &5

a2 Z o-8 0-9 31 7 ‘ 11-8-6 0-8-7 56

3 o o o 12 72 < 12D or 12-0 or 72

4 1 1 1 0 12-8-2 12-8-2

g :23 g g gg 73 > 11-8-7 0-8-6 57

e 1 7 " o4 7 < B-5 1284 15
75 > 12-8-5 D-8-2 75
78 - 12-8.-8 11-8-7 76
77 s{samicalon) 12.8-7 11-8-6 77

1Whan the 63-Character Set is usad, ths punch cods 8-2 is associated with displey code 63, the colen. Display code 00y i3 not included in
the B3-Character Sut and (1 nat asociated with any card pupch. The §-8 card punch (026 keypunch} and the 0-8-4 card punch (029 key-
punch] In tha 83-Character Sat sca treatad as blank on Input.

*Sinca 00 cannt ba repressnted on magnetic tape, It Is converied to BCD 12, On Input, it will ba translated 1o display code 33

(numbder zero).

' Reproduced from ["Control Data 6000 Systems Fortran
6000 Yersion 2.3, No.
23, 1971, Hppendix A p. 4]

Reference Manual,

50174900E", April

54

55

EXTERNAL. BCD (CDC 650D) -
This code 1is used when a user requests that his
data be read or written in external BCD. Basic

BCD is & sub set of this code. (see Tahle 3.7).

INTERNRL BCD (CDC 6500)
This is the internal representation of BCD after

its conversion from external BCD, (see Table

3.7).

There are also several other internal computer codes
such as FIELDRATA usedlon the UNIVAC 1100 series, Internal
BCD on the Honeywell 6000 series and BCL on the Burroughs
£500. These may be found respectively in Tables 3.8, 3.9

and 3.10.

HCCEPTHBLE SOURCE THPES

There are several problems that arise when tapes are
generated on the source computer. For example, consider
the IBM 360 and 270 series. Whe=n generating a 7-track tape,
four options can be used,

a) TRTCH = T - The B8-bit EBCDIC code is transiatel to
the E-bit BCDIC code. Since the EBCDIC code has more

than &Y states and the BCDIC code has only €4 possihle

Table 3.8 1108 Character Codes !

56

BCD 1108 B 1106

IKY. Tape Punch On=Lice INT. Tapa Punch Op=Line
Octa]l Octal Coda Printer Octal Octal Coda Printer
00 17 7-8] &0 74 12-4-8)
0 75 12-%-8 [1 41 40 11 -
02 38 11-5-8 11 a2 60 12 +
03 71 12-7-8 / 43 76 12-6-~8 <
Ok 87 11-7-8 Ay " 13 3-8 -
05 20 (BLANK) (Spacs) 4% 16 6-8 >
06 &1 12-1 A 46 oo 2-8 ¢t
o7 62 12-2 3 A7 53 11-3-8 s
10 63 12-3 c a0 2% 11-4-8 N
1 64 12-4 D 51 LT 0-k-8 (
12 65 12-8 B 52 3s 0-5-8 X
13 66 12-6 T 33 1s 5-8 t
14 67 12-7 [~ 54 12 12-0 ?
15 70 12-8 H. 53 52 11-0 !
16 71 12-9 1 36 1 0-3-8 .
17 41 11-1 K] 8y 36 0-8-8 N
0 42 11-2 R 60 12 0 0
21 &3 11-3 L 61 0l 1 1
22 & 11-4 M 62 02 z 2
23 &5 11-3% N E] 03 3 3
24 as 11-6 o 64 04 & A
23 &7 11-7 r 'H o5 5 -
26 50 11-8 Q &6 06 6 6
27 5t 11-9 K 67 07 7 7
o 22 0-2 5 70 10 5 0
1 13 0-3 T 71 1 9 9
32 24 0-4 v 72 . 14 5-B .
1 25 .0~% v 73 56 11-6-8 :
34 26 0-5 W Y 74 21 -1 /
35 27 o-7 X 75 73 12-3-8 .
% 30 o-8 Y 7% 3 0-7-8 PAR
» z

31 0-9 17 32 0-2-8 {(5pace)l

All other combivations of punchas are illegal to the 1108 on-lipe cavd

resder and cause a readar stop. All combinations of punchem are acc-

aptad by the $200-2300 and converted to goma character, Host “illegal”

punches ara convartad to blaoks (octal 05);

NOTES

1.
.24

3

These characters ars diffarant on the 9200 or 9300 printars.

Thie character cannct be written on avan parity (BCD) tapa; if it 1l.prcagnt
in an output vecord, the physical racord is truncated with the previcus fruone
{character).

The character ia input frem the 3200 or 9300 card reader and transmitted to
the 1108 correctly. Tha charactor cen be output punched. If the character
is in a print line, it is convertad to tha > before cranmission from the
1108 to $200 oxr 9300 printer. Alsc this charsctar ie tewporsrily 1llegal
on the 1004,

Thie charactar prints as & space on the 1108 printer and truncates the
print line.

-

' Reproduced from [University of Wisconsin internal
document, September 10, 1969,p. B-4, B-5]

Table 3.8

GE-625/8635 Standard Character Set

1

Standard GE-Internal Hollerith § Standard GE-Internal Hollerith
Character Machine Octal Card Character Machine Octal Card
Set Code Code Code Set Code Cade Code
0 00 0000 Qo 0 ‘ 10 0000 40 11-0
1 00 0001 111 1 J 10 Q001 41 11-1
2 00 0010 02 2 K 10 0010 42 11=2
k| 00 0011 03 3 L 10 0011 43 11-3
4 00 0100 04 4 H 10 G100 44 11=4
5 00 0101 05 5 N 10 0101 45 115
6- 00 0110 06 6 D 10 0110 46 11=6
7 00 0111 07 7 P 10 0111 47 11-7
8 g 1000 10 8 Q 10 1000 50 11-8
9 00 1001 11 9 R 10 1001 51 11-9
E 00 1010 12 2=8 - 10 1010 52 11
00 1011 13 3=8 5 10 1011 53 11-3-8
@ 00 1100 14 4-8 w 10 1100 54 11-54-8
t 00 1101 15 5-8) 10 1101 55 11=5=8
> 00 1110 16 6=8 H 10 1110 56 11-6-8
1 oo 1111 17 7-8 ' 10 1111 57 11-7=8
b 01 DO0O 20 {blank} + 11 0000 60 12-0
A 01 0001 21 12=1 / 11 000l 6l D-1
B 01 0010 22 12-2 5 11 0010 62 0-2
C 01 0011 23 12-3 T 11 0011 63 0=3
D 0t 0100 24 12~4 0 11 0100 64 a=4
E 0l 0101 25 12~5 v 11 0101 65 =5
F 01 0110 26 126 W. 11 0110 66 0-6
G Q1 0111 27 12-7 X - 11 D111 67 n-7
H 01 1000 30 12-8 Y 11 1000 70 0-8
I 01 1001 ‘31 12-9 2 11 1001 71 0-9
& 01 1010 32 12 - 11 1010 72 0=2-8
N 01 1011 i3 12-3-8 N 11 1011 73 0-3-8
]- 0l 1100 34 12-4-8 % 11 1100 74 0-4-8
'Y 01 1101 i5 12-5-8 = 11 1101 5 0-5-8
< 01 1110 k1 12=6=8 " 11 1110 76 0-6-8
1 0l 1111 a7 12=-7=8 H 11 1111 77 0-7-8

1

Reproduced from {("GE~625/635 Programming Reference Manual CPB-1004C", August
18865, Appendix F]

5

Tabte 3.10

B650Q Data Represantation !

HCL BCL EBCDIC HEXADECIMAL BCL BCL EBCRIC HEXADECTMAL
GRAPILIC | EXTERNAL | INTERNAL | INTERNAL GRAPNIC GRAPNIC | EXTERNAL | TNTERWAL | INTERNAL GRAPHIC
Blank 01 qooo 11 o000 0100 0000 o + 11 1010 01 0000 1100 06000 co
. 11 1011 ol 1010 0100 £011 uB TA - 1@ 0001 ol 000l 1100 0001 c1
[11 1100 o1 1011 0100 1010 s P 11 0010 oL 00LD 1100 0010 c2
(11 1101 o1 1101 0100 1101 D c _ 11 ooll o1 ooll 1100 Qo1 c3
e 11 1110 o1 1110 0100 1100 ot D 11 0100 01 0100 1100 0100 ch
- 11111 ol 1111 0100 1111 " E 11 o101 ol 0Lol 1100 0101 c5
4 11 6000 o1 1100 0101 0000 5o F i1 o110 o1 0110 1100 0110 cé
G 11 o111 01 0111 1100 0111 c7
H 10 1010 10 1010 0101 1011 sp H 11 1000 o1 1000 1160 1000 c3
* 10 1100 10 1011 0101 1160 sc b4 11 1001 oL 1001 1100 1001 c9
) 10 1101 10 1101 0l0r 1101 5D
. 10 1110 10 1110 0101 2110 = x (Mult.)| 10 1010 10 0000 1101 0Q0O o
< 10 1111 10 1111 0101 1111 - I 10 0001 10 0a01 1101 0001 Dl
N 10 0000 16 1100 0110 5600 il x 10 0010 10 oolo 1101 0010 b2
L 10 oo11 10 o011l 3101 0011 D3
/ 01 0oQ1 11 0001 0118 0DOL 61 M 10 0100 10 D100 1101 0100 D4
, 01 1011 11 1010 0110 1011 P ¥ 10 o101 10 0101 1101 0101 D5
% 01 1100 11 1011 0110 1100 €c 0 10 0110 10 6110 1161 0110 D6
= 01 1110 11 1101 0111 1110 7E P 10 6111 10 o111 11201 0111 7
] 01 1110 11 1110 0101 1010 5A Q 10 1000 10 1000 1102 1000 D8
" o1 1111 11 1112 0111 1111 - R 10 1001 10 1001 1101 1001 D9
9 00 1011 00 1010 0111 1011 - P 01 1010 11 1100 0110 1101 6D
o 00 1100 00 1011 0111 1100 7e s o1 0010 11 0ot 1110 0010 E2
: 00 1101 00 1101 0111 1010 7 T 01 o011 11 co11 1110 0011 E3
> 00 1110 00 1110 0110 1110 6E u ol 0100 11 oro0 1110 0100 Eb
> 00 1111 00 1111 o111 1101 7D v 01 olol 11 o101 1110 o101 ES
¥ o1 0110 11 0110 1110 0110 E6
x 01 o111 11 o112 1110 ol1t E7
Y o1 1000 11 1000 1110 1000 E8
z oL 100L | -1l 1001, | 1lie @01 E9

8s

Table 3.10, cont.

BCL BCL EHCDIC HEXADECIMAL
GRAPIIIC EXTERNAL INTERNAL INTERKAL GRAPHIC
o 00 1010 00 Qoo 1111 Q00D FO
1 o090 Qoo1 a0 0091 111l 0001 F1
2 o0 0010 Q0 Q0O 1111 0010 F2
) 00 0011 Q00 apll 1111 0011 FJ
4. o0 0100 00 0100 1111 Q100 F4
5 00 0101 ag 0101 1111 0101 F5
6 00 0110 00 0110 111l 0110 Fé&
7 00 0111 00 Q111 1111 0Oll1 F7
8 o0 1000 o0 1000 1111 1000 F3
9 o0 1001 09 1001 1111 1401 F9
? 00 0000 0o 1100 0110 1111 ALL QOTHER
) CODES {uou
notes}
l:::::::::::::::::::; — ——————————————————|

1

Manual No. 10436768" September 1989, Appendix E]

KOTES
EBCDIC 0100 1110 als¢ translates to BCL 11 1010,

EBCDIC 1111 is translated to BCL Q0 0000 with on
additional fleg bit on the most aignificont bit
line (8th bit). This function 1a used by the un-
bufferod printer te stop scanning.

EBCDYC 1110 0000 1s translated to BCL G0 0000
with an additionml flng bit on the next to moot
significant bit line (7th bit), As the prxint
drums have 64 grophics nnd space this migoal can
be used to print the 6ith grophic, The Ghth
graphic is a "CR" for BCL drums and o "¢" for
EBCDIC drums. ‘

The remaining 189 EBCDIC codes are translated
to HCL 00 0000 (7 code).

The EBCDIC graphics and BCL graphics mre the
oame exceopt as followa:

BCL EBCDIC .

1) = * {single quota)
2} x (multipiy) '

3) = {not)

4) o —. {underacore)
5 - |

Reproduced from ["Burroughs B6500 Information Processing Syatems Reference

85

60
states, the mapping is not 1 to 1. Therefore data may
be loat, The T~track tape generated is in odd parity.

b) TRTCH = ET -~ This is the same as TRTCH = T except

that the tape generated is even parity.

c) TRTCH = E - The first two high order bits of the
EBCDIC code are lost. Only the Jow order b6 bits are
kept. In some computer installations this 1s the

default mode. This means lost data. The tape generated

is even parity

d) TRTCH = C - Data conversion 1is used. An EBCDIC
character 1s written on & seven track tape without loss
of data. This is the most acceptable form as it allows
the recipient the capability of mapping the source
graphic code 1o his target graphic code as he wishes.

The tape is written in odd parity.

Since there are {our options, only one of which is
acceptable unless additional information about +the data
is known, the user often receives a tape with missing data
that cannot be reconstructed. If data is missing, the user

must regquest a new taps.

Under the SCOPE system on the CDC 6000 series, tapes
can ke 1n an UPDRATE format. This 1is a common way for

Control Data to send out modifications to their software.

61

A computing center may alsoc elect to have this as a standard
way.of transfering data. If the +tape recorded in update
format had a program on it that a ussr wished to get running
onn another manufacturer's computer, he would have to
understand just how to extract enough meaningful control
information in order to reconstruct the original line

images.

Anather major source tape generation problem i1s sending
incorrect 1information with the tape. - The sender may
incorrectly state the number of files, physical and logical
records and characters per physical record. Parity is
rarely mentioned and occasionally the density 1s not
correct. This makes the task of transforming the tape more

difficult,

FProblems also occur when a 9-track tape arrives at an
installation that has only T-track tape drives. An
intermediate computer is necessary to copy the 3-track tape
to a 7-track tape. It is gquite possible that during this
copy procedure, data may be added or ltost. Thus when the
tape reaches the target computer, it may have two levels

nf confusion irnvolwved.

B2

B SYMTHESIS OF TEST CHSES

Twenty test cases have been chossn for the purpose of
discussing and iltustrating some of the existing problems
of magnetic tape portability. They are numbered according
to the computer manufacturerl of the source computer and
the order in which they arrived [(see Table 3.11). The test
cases were not solicited but were actual instances of users
who were not able to use the data in its original form and
thus needed the data transformed to a wuseakle form. of
the twenty cases, 15 different sending groups were
represented. There were 16 lndividual recipients of these
source tapes representing 12 different groups. Seven
different computer manufacturers were involved in producing

the various source tapes.

In 17 of the test cases, some form of graphic
transformation was required. . Excluding case C1, the target
graphic was CDC 6500 Display code. In case Ct, the target
graphic was EBCDIC. Two cases[D1,M1) had RSCII as the
source graphie, 2 cases(U1,U2) had FIELDRTA as the source
graphic, 5 cases(I1,I4,15,1I8,51) had wversions of EBCDIC
as the source graphic and 7 cases(H1,IZ,IE,I?,I1D,I11,U3J
had versions of BCD as the source graphic. In all of these

cases the exact graphic transformation was not known in

63

advance bhut was determined iteratively.

One non-graphic case(1l) irnvolved floating point
transformations, case 1E reqgquired signed numeric
transformations and case I3 would have used the packed
decimal option if all of the data were correct. In
addition, case D1 also had one file involving fixed point

transformations.

In many cases the graphic code expected (i.e. a verbal
request or a letter that came with the tape) was different
from the actual graphic code found on the tape. In
particular, case IS was to have been 2 files each of BCD
and EBCDIC but really had 4 files of EBCDIC. Case I11 was
to have heen EBCDIC and .it tuwned out to be BCD. In
addition, graphic symbols that were not expected were found

in all cases requiring graphic transformation.

One case(U3) involved two transformations of data. The
tape was BCD which had been trasformed from FIELDATR. The
binary counters that contained the length in words of the

card image were thus treated as FIELDHTH characters and

transformed to BCD which altered the numeric value.

Logical end of files were found in cases U1,U2,U3, Case
I2, produced by the Cambridge Monitor System, had binary
card images as well as source card images mixed on one

physical flle. Several cases had to have their data

64

decompressed(D1,M1,U1,U2,U3}, Only case D1 involved the
interchanging of bit patterns while deleting unnecessary
bits was fequired by cases D1, I2, I8, 19, M, U1, U2,

and U3.

Logical records that spaﬁned across physical records
were involved in cases 16, I7, IR, U1, U2, and U3. Due
to the structure of the source tape and constraints of the
target operating system, case I7 reguired that logical
records be mapped to a Qifferent logical arrangement on
the target system. Traller labels in each physical record

had to be removed in cases U1, U2 and U3.

During conversion from 3-track to T-track case I9 had
the first physical record containing data removed. Case
I8 had a physical record that was damaged. Fortunately
it was possible to reconstruct this record by refering to
a source listing. Two out of & bits were missing in case
I3 as well as having a blocking factor different from that

requested.

In conclusion, there were no cases 1n which it was
possible to transform the tape based on the original

information supplied by the user.

Additional details for the test cases may ke found in

Tables 5.6 and 5.7 in Chapter 5.

Table 3.11

Test Cases

CASE SOURCE COMPUTER GROUP SENDING

It

C1

I2

M1

I3

S1

U1

U2

I4

IS5

I6

Mz

I?

I8

I3

IBM 380

CDC 6500

IBM 360

Modcomp IIT

IBM 370/155

Siemens

Uniwvac 1108

Univac 1103

IBM 360/67

IeM 360

IBM 707y

Modeomp III

IBM

IBM 370/1E5

IBM 370/1E5

Argonne Labs

Purdue University,

Computing Center
MIT

Modular Computer
Systems

Administrative
Data Processing

University of
Freiburg

University of
Wisconsin

Texas Water
Authority

University of
Michigan

Rrgonne Labs
Bureau of
Labor Statistics

Modular Computer
Systems

Investors

Management Serwvices

McDonnel 1 Douglas

Bell Labs

65

GROUP RECIEVING

Nuclear
Engineering

Dusnuesne Light
Civil
Engineering

Computing
Center

Freshman
Engineering

Computer
Sclences

Computer
Stiences

Industrial
ARdministration

Computer
Seiences

Nuclear
Engineering

Economics
Computing
Center

Industrial
Administration

Mechanical
Engineering

Electrical
Enginesring

Table 3.11, cont.

U3

110
111

H1
Di

Univac 1106

IBM 370
IBM 360/67

Honeywell 6000
PDP 11745

University of
Utah

Bell Labs

University nf
Michigan

Bell Labs

Biology

66

Industrial
Rdministration

Sociclogy

Computer
Sciences

Sociology

Biology

67

CHAPTER 4.

AN RPPRORCH FOR PORTABLE MBGNETIC THFES

GENERAL COMMENTS

This chapter considers the requirements that must exist
to provide transformation of data from a source tape to
a target tape. Six data types are discussed followed by
their table specifications. Other requirements for data
description are then discussed followed by a general

algorithm for magnetic tape data transformation.

DATA TYPES

There are six required data types. They are: (1) null,
{2) straight bhinary, (3) fixed point, (4) fleating point,
(5) packed, zoned, numeric decimal codes and (B) graphic

codes.

58

Null

A MNull type used to speclify a null input field results

in not transforming the data specifled in the field. It
is quite wuseful in editing out information. Used in
conjunction with the concatenation feature, which is

discussed later, it allows the joining of two non-adjacent
fields. The option of specifying a null output field is

recessary to allow +the use of binary counters without

passing them on as target fields.

Straight Binary

Straight Binary refers to normal binary fields consisting
of =zeros and ones. They are assumed to be converted
directly. The ones stay ones and the zeros stay zeros.
The main use is for passing identical bit formations between
computers. This allows manipulation of the data to be done

at a later time by the wuser within the target computer

system.

Fixed Point

Transformation between single precision source ({ixed
point and target fixed point is a minimum requirement.

The fixed point attributes are contained in the computer

. 69

attribute table that is briefly discussed later in this
chapter. Rttributes such as length of the integer and sign
position can ke used to isclate the functlonal parts of
the fixed point number. .H general algorithm can ke
constructed for fixed point regardless of the negative
representation of numbers (i.e. ones-complement, twos-
compl ement or sign-magnitude). Step 14, discussed later

in the chapter, outlines this algorithm:

Floating Paint

Transformations between s&urce floating point and target
filoating point take place wvia an algorithm wusing the
floating point attributes that are contained in the computer
attribute +table that is briefly described later in this
chapter. Rttributes such as length of the characteristic
and mantissa, sign position of the characteristic and
mantissa, hase of the mantissa and characteristic, and
method of negative representation can be used to isolate
the furnctional parts of the floating point number. The
minimum transformation requirements are to handle single

precision narmalized numbers.

Zoned, Packed and Mumeric Decimal Codes

This code transformation type provides the capability

70

to convert source packed, zoned or numeric decimal data
to formats acceptable to the-target computer. The packed
decimal format can be considéred to be a string of n bit
digits with the rightmost digit being the sign. The normal
transformation would be to a leading sign followed by a
string of digits. The Jlength of each target digit is

controlied by the target computer.

The zoned and numeric decimal formats can be considered
to be a string of m bit .digits with +the rightmost digit
containing the sign as well as the walue of the digit.

The normal transformation would be as in packed decimal.

Graphic Codes

This type allows a numeric code representing a source
graphic to be transformed to a numeric code representing
the same graphic symbol on the target computer: Chapter

3 discussed this problem in depth.

THELE REQUIREMENTS

The tape transformation algorithm described later in
this chapter requires five tables from which the necessary

attributes can be extracted for input and output type

71

verification, computer descriptlons and code
transformatlions. Examples of Implemented tables can be

found in Chapter 5.

Master Graphic Tahle

This table consists of a basic set of graphic symbols
and their corresponding codes for code transformation.
It provides a mapping from one character sef to another.
The names for the graphic symbols should be based on the
ANSI - standards (ANSI 1967). HAdditional names can be added
without benefit of standardization. The table should also
ke constructed so that it may he easily modified and
contain, as a minimum, several well used codes such as RNSI,.

EBCDIC, BCDIC, IS0, DISPLARY and FIELDATA (see Tables 3.1,

w

.3, 3.4, 3.5, 3.7, 3.8).

Packed and Zoned Decimal Table -

This table is similar to the master graphic table except
it allows code transformations for packed and zoned decimal

to other graphic codes.

Computer Rttribute Table

This table contains the attributes of a computer that

72

are necessary to provide correct transformations for all
data types. It must contain, as a minimum, (1) attributes
to properly define fixed and floating point numbers
including their negative number representation and (2}

number of hits per word, character, hyte and digit.

Type Transformation Table

This table relates a type name to a type number and the

numbar of bits per graphic symbol.

Allowable Type Transformation Matrix

This is an input-output matrix that exists to allow

transformations between different types.

OTHER REQUIREMENTS FOR DATA DESCRIPTION

For proper data description, other options that allow
concatenation, repetition, {low control, sentinel checking,
output, n bit to m bit transformation, labels and spanning
are required. A field descriptor containing some of the
above options can be used to define a field or number of

fields.

13

Concatenation

Concatenation allows two fields to be combined to form

a third. It is useful in transforming fields whose target
description is different than that of the source
description. Another use is in changing zoned, packed and

numeric decimal fields so that they are acceptable for

normal Fortran format statements.

Repetition

Repetition allows the value found in a field to be saved
and used as a constant which will later control the number
of times a field descriptor is to be repeated. It allows
transforming variable length records or fields where the
length of +the record or field is embedded in a previous

record or field.

Flow Control

Flow Cant}ol allows the user to control the flow of his
input and output data description by specifying the field
that will be transformed after the current fleld descriptor
is satisfied. It reduces the number of field descriptors
for 3 given run and ﬁan 2be used to repeat patterns bf

jumping over field descriptors and returning to them later.

74

Sentinel Checking

Sentinel Checking allows the user to specify a field
as a control or sentinel fleld. The wvalue specified in
the sentinel value portion of the field descriptor is tested
each time the field occurs. If the sentinel value is
satizfied, the action specified in the sentinel action
portion of the field descriptor is taken. Sentinels allouw

lines, records and files to be variable length.

Output

The output opticn allows a record to be written on the
target tape uponh completion of the transformations specified
in the field descriptor. If the output option is not used,

the +transformed data specified by the field descriptor will

be placed in the output buffer until another field
descriptor reguests output. Also, 1f the output option
is not used in any field descriptor, the default will he

to generate one physical record out for each physical record

in.

N Bit to M Bit Transformation

This option allows the user tomap n hit fields to m

bit fields. Character sets do not always contain the same

75

number of bits per character. Eight bit EBCDIC often has
to be transformed to a 5-bit code such as BCD or DISPLRAY
and 6-bit codes must often be transformed to 8-bit codes.

Word sizes alsc differ between computers.

Header and Trailer Labels

Any grouping of data may have header and/or trailer
labels. Header lahels may consist of information that
al lows iﬂentificatinn of the following data. Trailer lahels
may contain check sum information. Tapes can have header
and trailer files. Files can have header and trailer
records. Records can have header and trailer fields. The
capability must exist to either extract the necessary

information from the header or trailer or to bypass them.

Sparning Across FPhysical Records

Spanning DCCUrs wHen a logical record or field is
contained inlmoke than one physical record. Therefors ‘thé
capahility must exist to huffer the input in such a way
that spanning is &llowed since source data descriptions

will differ from target data. descriptions.

76

AN ALGORITHM FOR A TAPE TRANSFORMATION PROGRAM

The algorithm that follows is a procedure for
transforming a tape genevrated on a source computer +to one
acceptable for a target computer. It ;s designed to reside
on the target computer. The algorithm is composed of steps
which are in turn composed of tasks. The notation for step
i task j is step i.j. Normal flow through this algorithm
is sequential urnless otherwise noted. R global flow diagram
of the relationship between stieps may be found in Figure

4.1.

Since data description errors compound themselves which
in turn results in erroneous output 1ater, error diagnostics
often terminate a job and return control to the user.
Experience has shown that-an incremental advancement through

the data description is presently the best technique.

The algorithm is limited in that the fixed polnt step
has not been used in actual production and the floating
point step, although general 1in nature, has worked only

for IBM 380 single precision {loating point.

2

16
3 lr :

SOURCE FND TRRGET COMPUTER

7] RTTRIBUTE INITIRLIZATION

1 -

pr—

FILE INITIALIZATION 1

M E, FILE, RECORD DEGCRIFTOR 1HI! LA LZHT JON f——e————

FIELD DESCRIPTOR INITIALIZRTION]|

: !

RcAD A PHYSICAL RECORD

TEST FOR END OF FILE

1E

g
I"SPURCE FECORD FD FIELD
» INITIRL1ZATION

a4
WR11E_PRCRAGE
T h 4
[SECEST WERT FIELD DESCRIFIOR }
B "
TENT INEL_CHECK
p, | TRANSFORM A FIELD
12 ¥ 17y 11 12y
-GHHH TG ’11E [TRFH'\":FORM TRAlzE d|
TRANGFORUH TION PRCKAGE GPAPRIC CODE PACKED
Y . ZONED
15 NUERIC
FLORTING POINT D POINT DECIMAL
TRANSFCGRIATION TEANSEORMAT ION
< 3 ;r
‘ } CHRRRCTER IN OUTRUT msnl
10
{ FREPFIRE FOR 4cXT FIELO|
1
[WRITE PHCKAGE |
EXIT
Figure 4.1 Global Diagram for a Tape Transformation

Al gorithm

77

78

Step 1 ~ Job Inhitiaglization

Taskl1 - Read in.Tablss
Set up the inpuf and output tapes, print program
tittes, read in type transformation options and
print them out, read in and print out the
allowabtle type transformation matrix, read in
and print out the master graphic table, and the
zoned and packed decimal table along with their
headers. |

Task 2 - Read in Header and Job Descriptors
Read in and print out general information (user
name, address, project, etc.}, the source computer

and target computer.

Step 2 - Tape, File, Record Descriptor Initialization

Task t - Read Source and Targst Tape Descriptions
Read in the number of tracks, density and number
of files. If the number of tracks 1is zero,
terminate the job by going to step 10.5, otherwise
set up the density for the read physical record
packaze hy going to step 16.1.

Task 2 - Read Source File Description
Read in the parity, number of physical records
per file, number of bits per character an the
source and target computer, and the number of

bits per digit on the source computer.

739

Task 3 - Read Source and Target Record Description
Read in and print out the blocking factor {logical
records per physical record) and the number of

leading bits to remove from each physical record.

Step 3 - Source and Target Computer Attribute Initialization

Load the source and target at{ribute tables from
the computer -attribute taple. If the walues of
snurce- bits per character, target bits per
character, and scurce bits per digit are omitted
or zero, take the corresponding values from the
computer attribute table., If they have values,
over-ride the corresponding computer atiribute.
Generate a table of masks to be used f{or bit

manipulation. Set the file counter to one.

Step 4 - File Inittializatiaon and Field Descriptor

Initialization

. .Task 1 - Header Deletion Initialization
If header bits- are to be removed from each
physical record, set initial input bit pointer
and initial input word counter to exclude these
leading hits.
Task 2 - Source Fite Initialization

set field descriptor area, input area and output
area to zero, the output word counter to zero,

input and output physical record counters to zero,

80

field descriptor output s@itch to off.

Task 3 - Read and Verify Source and Target Field

Description

Read in the field descriptors containing, the
starting field, énding field, nrumber of units,
units, input type, output type, repstition option,
concatenation option, output option and flow
control option. WVerify that the input and output
types are transformable. If they are nof, print
out é message and terminate the job by going to
step 10.5. If any of the +types in the field
descriptors are of the type fixed point, check
to see 1f the word length of the source computer
is greater than than that on the target computer.
If it is, print out an appropriate message and
terminate the job by going to step 10.5.

Task 4 - Target Field Initiaiization
If the output option in any field descriptor is
Dn,-set'all output control to be triggered by

the field descriptors.

Step 5 - Read a Physical Record and Test for End Of File

Task 1 - Check For Exceeding Physical Record Limit
If the number of physical records per file 1is
unknown, go to step 5.2. If not, check to see

if the number of physical records for this file

81

are to be exceeded. If they are, go td step 5.4,
otherwise continue.

Task 2 - Read One Physical .Record
Increase the input physical record counter by
one. Read one physical record by going to step
16.2. |

Task 3 - Test For End Of File
Check for an end of file. If anh end of file .has
not occurred on the source tape, go to step 6.1,
otherwliss continue.

Task 4 - File Termination Procedures
Write an end of file on the target tape. If
graphic transformations have bheen made, prinf
out the graphics that were not transformable and
the nuwvber of times that each of them has
occurred. Increase the f{ile counter by one,
If the file counter 1is greater than the total
number of files to ke transformed go to step 2.1,

otherwise go to step 4.2.

Step 6§ - Source Record and Field Initialization

Task 1 - New Record Initialization
Turn the initialization.switch on. 5et the input
word counter equal to the initial input word
ccunter, the logical record counter to zero, .and

the output word counter to zero,

82

Task 2 -~ Field Initialization
Set tha field descriptor counter to zero, the
repetition counter to zero and the field counter
to zero.

Task 3 - Hdvance to Next Field and Test For Logical

Record End
Increaze the field counter by one. Save the
curvrent source bits per unit. If +this is not
the end of a Ingicé] record go to step T.1. IIf

this is a repeating field that is not completed,
go to step T.4. Increase the logical record
counter by onhe. If the riumber of legical records
per physical record 1is not equal to the logical
record counter go to step 6.2.
Task 4 - Output Option Test
If the output 1s controlled by field -descriptors,
go to step 5. Otherwise, wFite out ﬁne record
by going to step 17. |
Task 5 -IResét Output Counter
Set the output word counter to zero. Return to

step 5.

Step 7 - Select Next Field Descriptor

Task 1 - Set Up Source Bits Per Unit
If &alt filelds described by the field descriptor

have not been transformed, go +to step 7.4,

83

otherwise select the next field descriptor. Set
up the source bits per unit based on the requested
units (bits, characters, bytes, digits, words).
If the units are unknown, write out an appropriate
message and terminate the job by going to step
10.5.
Task 2 - Multiple Unit Test
If the input type is not straight binary, fixed
point or floating point, go to step 7.4, otherwise
continue.
Task 3 - Set Up Total Source Bits Per Unit For This
Field
Set source bits per unit egual to the producf
of source hits per unit and the number of units
in the current field descriptor. Set the number
of units to bes transformed equal to one. Go to
step B.1.
Task 4 - Set Up Number Of Units
"Set the number of units tﬁ be transformed equal

to the number of units in the field descriptor.

Step 8 - Sentinel Check, Tranasform a Field

Task 1 - Transformation Initialization
Initialize the character pointer to one. If the
initialization switch is off, go +to step 89.5,

otheruwise set the inttialization switch to off.

84

Increase the output word counter by one. Clear
the next word to be used {for output, set the
output bit polnter to the number of blts per word
in the target computer and set the input bit
pointer to the initial bit pointer.

Task 2 - Load Working Area With Input
Load the working area with the next word residing
in the target computer to be transformed.

Task 3 - Extract The Bits To Be Transiormed
Extract the bits to be transformed.

Task 4 - Sentinel Field Check
If this field 1is not a sentinel go to step 8.6.
If the value in the field 1is not the reguired
sentinel go to step 8.6. Otherwise, write out
one record by going to step 17.

Task 5 - Check Type Of Sentinel
Set the output word counter to aone. If this 1is
an and of file sentinel go to step 5.4,
Otherwise, treat as end of logical record sentinel
and go to step 6.2,

Task B ~ Choose Correct Transformation
If the input type is graphic, go to step 11.
Yf the input type 1s packed, zoned or numeric
decimal, go +to step 12Z. If the input type is

hull, go to step 9.2. Otherwise go to step 13.

€5

Task ¥ - Store Transfn?med Field
l.oad the current output word with the transformed
field, If this value is not to be saved for use
as a repetition constant for future flelds go
to step 10, otherwise save the product of this
value and the multiplier value in the repetition

constant field of the field descriptor. Go to

step 10.

Step 3 - Store Transformed Character In Output Hrea

Task 1 - Qutput Area Initialization
Mask out all but the necessary 5it5 of the
transformed character. Ifi the output does not
go across word bhoundaries on the target computer,
go to step 3.3. Otherwise increase the output
bit pointer by the number of bits per word of
the target computer less the number of target
bits per wunit. Put the leftmost bits that will:
fill up the current output word into the current
output word. Increase the output word counter
by ohe. Place the remaining output bits 1in this
new output word.

Task 2 - Increase Output Bit Pointer
Increase the output bit pointer by the number
af target bits per unit. Go to step 9.4.

Task 3 - Place Transformed Character In Output Hrea

B6

Shift the new output character left by the
difference between the outﬁut bit pointer and
the target bits per unlt and place it in the
output word,

Task 4 - End Of Field Test
If the current chafacter counter is greater than
or egual to the number of units to be transformed,
go to step 10. Otherwise, increase the character
pointer by one and save the current source bits
per unit.

Task 5 - Rdvance To R New Field
Reduce the input kit pointer by the saved current
source bits per wunit, reduce the output bit
pointer hy the number of targe% bits per unit.
If the output bit pointer is not equal to zero,
go to step 9.6, otherwise continue. Set the
output bit pointer equal to the target bits per
word. Increase the output word counter by one.
Zero out the new output word.

Task 68 - Rdvance Input And Check For End Of Physical

Record

If the input bit pointer is greater than or equal
to the number of source bits per unit, go to step
8.3. Otherwise, increase the input word counter
by one. I{ the input word counter is less thaﬁ

the number of words vead in by the read package

8T

(step 18) go to step 8.7, otherwise print out
a message that fewer logical records were found
than specified. Go to step B.H4.
Task 7 - Process Input Across Word Boundaries

If the 1input bit pointer is equal to zero, set
the input bit pointer to the number of bits per
word in the target computer and go to step 8.Z.
Otherwise, save the remaining bits that need +to
be transformed, bring the next input word into
the working area, and extract the necessary bits
that need to be added to the previous bits.
Increase the input bit pointer by the number of

bits per word in the target computer. Go to step

8.4.

Step 10 - Prepare For Mext Field

Task 1 - Field Descriptor Repesat Test
If the current field output type is null, go to
step 10.3. If this field descriptor is not to
be repeated, set the repetition counter to zero
and go to step 10.2, Otherwise, increase the
repztition counter by one, if the f{ield has h=en
repeated enough times, resst the repetition
counter to zero and go to step 10.2, oiherwiss
continue. Reduce the field descriptor counter

by one, reduce the field counter by ane. If +the

ee

concatenate switch 1s on, go to step 6.3.
Otherwise go to step 10.2.

Task 2 - Field Concatenation Test
If the concatenate switch is on go to step 6.3.
Otherwise, 1increase the output word counter by
one, zero out the new output word.

Task 3 - Output Option Test
If the concatenate switch is on, go to step 6.3.
Otherwize, set the ﬂutputlbit pointer to the sum
of the bits per word of the target computer and
the number of bits per unit on the ta?get
camputer. If the {field descriptor output option
is off, go to step 6.3. Otherwise, output ky
going to step 17.

Task 4 - Initialize Output Word Counter
Set the output word counter to one. Go to step
65.3.

Task § - Terminate The Job
Write +two end of file marks on the output tape,
print a message that the run 1s terminated.
Terminate this job by returning control to the

user.

Step 11 - Transform One Graphic Code

Task 1 - Transforin One Graphic Code

Look up the target graphic corresponding to the

83

source graphic symbol in the master graphic table.
If it is undefined, print out a message to this
effect and increase the corresponding error count
for this code by one, otherwise continue. Go

to step B.T.

Step 12 - Transform Packed, Zoned or Numeric Decimal

Task 1 - First Character or Digit
If this is not +the first character or digit of
the field go to step 12.2. Otherwise, save the
output word and bit pointers for the future
placement of +the sign, return =zeros for the
transformed value, go to step 12.5.

Task 2 - Mormal Transformation
If this is the Jlast character or digit of the
field go to step 12.3. Otherwise, return the
last character or digit transformed, go to step
12.6.

Task 3 - Last Digit is Packed Decimal Sign
If this is not a packed decimal transformation,
go to step 12.4%. Otherwise, return the last digit
transformed, look up the corresponding wvalue for
the sign of the +target computer in the zoned-
packed decimal table, place the sign 1in the
position saved in step 12.1, go to step B.7T.

Task 4 - Transform Sigh for Zoned or MNumeric Decimal

90

Returnn the last character transformed. If the
sign has already been transfnrﬁed go to step 12.5,
otherwise save the 1input word and bit pﬁinters,
reduce the character counter by one, separate
the sign from the character and save the character
for step 12.5. If input +type 1is zoned decimaf
look wup the corresponding character for the sign
of the target computer in the zoned-packed decimai
table, otherwise look +the sign up in the master
graphic table. Place the sign in the position
saved in step 12.1,. go to 12.6. |

Task 5 - Transform Last Character for Zoned Decimal
Restore the input word and bit pointers to . the
correct position, use the character in step 12.4
and go to step 12.6.

Task 6 - Look Up Transformed Character or Digit
Look up the correaﬁonding digit or character for
the target computer in the packed and =zoned
decimal table, save this transformed wvalue for

the next time, go to step 8.7.

Step 13 - Non-Graphic Transformation

Task 1 - 'Fixed Point, Floating Point or Straight Binary

Test
If the input type 1s stiraight binary, set the

target field equal to the source field and gzo

91

to step 13.2. If the input type is fixed point
go to step 14. If the input type 1s floating
point go to step 15. Otherwise print out an error
message and cunfinue.

Task 2 - Return

Go to step B.7T.

Step 14 - Fixed Point Transiormation

Task 1 - Test For Negation
Save the sign bit. If it is a 0 (positive), set
the target field eqgual to the source field and
go to step 14.5, otherwise extract the integer
part.

Task 2 - Source Computer Is Sign-Magnitude
If the source corputer 1s sign-magnituds, set
the target field equal +to -(integer part) and
20 to step 14.5, otherwise continue.

Task 3 - Source Computer Is Ones-Complement
If the source computer 1is ones-complement and
the target computer 1is sign-magnitude, set the
target field equai_tn -{integer part + 1) and
go to step 14.5, otherwise continue. If the
source computer is ones-complement and the target
computer is also ones-complement, set the target
field equal to -(integer part), set the sign bit

to @ 1 and go to step 14.5, otherwise continue.

92

If the source computer 1is ones-complemant and
the target computer 1s twos-complement set the
target field equal to (integer part - 1), set
the sign bit to a 1 and go to step 14.5, otherwise

continue.

Task 4 - Source Computer Is Twos-Complement

If the source computer 1s twos-complement and
the target computer is ones- complement, set the
target field equal to (integer part + 1), set
the sign bit of the output field equal to 1 and
go to step 14.5, otherwize continue. If +the
source computer is twos-complement and the target
computer is sign magnitude, set the target field
equal to -(integer part), go to step 14.5,
otherwise continue. If the source computer and
the target computer are both twos-complement,
set the target field equai to the integer portion
with its sign bit a 1 and go to step 14.5,

otherwise continue.

Taslkk 5 - Return From Fixed Point

Step 15 -

Return to step 13.2.

Floating Point Transformation

Taslk 1

- Floating Point Transformation
Extract the sign, exponent and fraction and

convert them to target floating point. An

93

algorithm for IBPM 360 to CDC 6500 floating point

may be found in Chapter 2.

Step 16 - Read Package

Task 1 - Set Up Density
If the density 1is allowabhle on the target
computer, set‘up the density for step 16.2 and
return to step 2.2, otherwise send an error
message and terminate the job by goling fo step
10.5.

Task 2 - Read One Physical Record
Read one physical record in either odd or even
parity and at any of the allowable densities,
set the end of file switch on if a physical end
of file appears, reread the physical record a
sufficient numkset of times to wverify its
correctness. If it is correect, go %o step 5.3,
otherwise print out an error messags, set the

end of file switch on and go to step 5.3.

Step 17 - Write Package

Task 1 - Output One Record
Reduce the number of words to be uwritten out by
one, increase the output record counter by ons,
write ocut the record and file numker on the print
file, write out one record on the target tape

in a format acceptable for the target computer,

94

Zevro out the output area. 1If we came from step
6.4, go to step 6.5. If we came from step 8.4,
go to step B8.5. I{ we came from step 10.3 go

to step 10.4.

g5

CHAPTER &

IMPLEMENTRTION OF THE APPROHCH ON R CDC 6500

GENERAL COMMENTS

To wverify the approach discussed in Chapter 4, a program
was implemented on the CDC 6500. Fortran was chosen as
the implementation language primarily due to its widespread
availability. In addition, the Fortrans running under the
MACE operating system at Purdue ' University are well
malintained and reasonably efficient. Also, wunder the
Minnesota Fortran Compiler (MMF) there is an option to allow
checking for ANSI Fortran. Functions are also available

that allow +the necessary bit manipulation capabilities,

The majority of the approach as discussed 1in Chapter
4 has been implemented. Only those features that actually
arose in production test cases were included. It was felt
that adding features for hypothetical cases was not valid,
particularly when it was a major effort to include the

features for actual test cases.

96

The program has been compiled and executed under the
RUN, FUN and MNF compilers. The program compiles under
standard ANSI Fortran with the two following exceptions:

1. The use of ENTRY in subroutines.

2. The use of O(octal) in Format statements.

Howewver, the use of ENTRY statements as used in the program
is generally available in most Fortrans. The use of octal
can be changed depending on whether the graphic tables and
their errors are to be input and output in octal, decimal

or hexadecimal.

The program consists of the main program, 14 subroutines
and [functions. Each of +these are discussed with
implementation assumptions and timitations. Figure 5.1

illustrates a flow network of the tape transformation

program.

MRIN PROGRAM

The main program extracts the bits that are to be
transformed and acts as a driver for the subroutines. It
is machine independent excluding dimension and common
statements which must be changed when ten B-bit characters

do not fit into one word.

97

@
TRARNS

@
()

e@ IICION
®

D,
@

Figure 5.1 Flow Network of the Tape Transformation
Progyram

a8

MACHINE DEPENDENT SUBROUTINES

Six subroutines (CARDS,” FLOAT, MESAGE, RITE, THBCON,
TREED) are machine dependent. They use system routines
that are available under MACE, rely on a &0-bit word or

take advantage o0f the 63 character set on the CDC 8500,

CARDS

Subroutine CHRDS has ten entry points and handles the
reading of all data cards. It prints out the input and
provides some error dlagnostics. The range of the values
in the data descriptor cards have heen chosen to allow a
specific number of variables to exist on each card. If
necessary, the formats of ~ these cards can be changed to
accomodate larger wvalues. However; in the case of
alphanumeric fields, +the dimension of the variable should

be examined and made Targer if required.

FLORT -

Subroutine FLOAT handles IBM 360/370 32-bit floating
point transformations. It is called from subroutine OTHER.
The fractional part is extracted and the binary point moved

50 that it can be treated as an integer. The sign and

89

exponent are also extracted. the resulting number is then
the product of the 1integer and the exponent modifled by
the sign. The algorithm was discussed in Chapter 2. The
implementation is based on a 60-bit word and therefore is

machins dependent.

MESRGE.

Subroutine MESAGE handles the majority of the messages
that are placed in the print file. | The anly other
subroutines that print out messages are CARDS and TREED.
T+ is called from the main program as well as various
subroutines. Because of the nature of ten character words
and octal number capakility on the CDC 6500, this routine

is machine dependent.

RITE

Subroutine RITE writes on to the target tape. The format
is presently restricted to a formatted write. This is
machine dependent and must be modified for a particul ar

system convention. It is called from subroutine QUTFUR.

100

TRBCON

When subroutine TABCON iz given the source graphic code,.
the corresponding target graphic code is returned. Table
look-up is performed on the master graphic table by means
of a pointer, since the table 1s already pre-sorted on the
input type. Téb]e 5.3 contains the available graphic
symbols and their corresponding numeric codes. A1l symbols
in the master graphic table that do not have codes are -
preset to all octal sevens, which is a minus zerc on the
CDC 6500. If the resulting code of the target graphic is
not less than plus zero or greater than 255 1t is assumed
to be correct. Otherwise an error message 1is triggered

prior to the output of the field. It is called from the

main program,

TREED

This subroutine has two entry points. PREED sets up
the density +to be used in TREED. If the density reguested

is other than 200, 556 or 800 bits per 1inch the run 1is

terminated.

TREED vreads one physical record from magnetic tape.
If an end-of-file cccurs, a flag is set which will be
handled by the main program. The number of B0-bit words

read in is also returned. It is capable of reading either

101

even or odd parity tapes with densities of 200, 556, or
800 bits per inch. No attempt is made to read mixed parity
fites or mixed density. tapes. If & tape error occurs,

control is veturned to the main program.

This subroutine is machine dependent since the call +to
the read one physical record (READ) routine available under
the MRCE operating system has machirne dependent arguments.
READ also detects an end-of-file and abnormal conditions..
TREED will have to be modified to conform with the interface

for each computer installation. Both PREED and TREED are

called from the main program.

MACHINE INDEPENDENT SUBROUTINES

Eight subroutines (ERRGRA, FIXED, FMRRK, OKTRAN, OTHER,

OUTPUR, PEBKCON, PZDEC) &are machine independent.

ERRGRA

Subroutine ERRGRR writes out, after an end of file ha§
occurred, all of the graphics and thelr numeric codes that
were used as a source graphic but were undefined as a target
graphic. For example, the graphic "ampersand" is not
defined on some character sets. It is called from the main

program.

102

FIXED

Subroutiﬁe FIXED is called from subroutine OTHER. It
handles all fixed point transformations. if the number
is negative, that is a one bit in the =sign position, the
conputer attribute tables for both the source computer and
the target computer are used to establish if sign-magnitude,
ones complement or twos complement arithmetic is used and
then the appropriate action is taken. The algorithm was
discussed -in Chapter 4. The_integér length of the source
computer must be no larger than the integer length on the
target computer. It 18 assumed that the sign kit is the
leftmost hit in the 1{field to be transformed. This

subroutine has never been used in actual production.

FMARK

Subroutine FMARK writes an end of file on the target

tape. It is called from the main program.

OKTRAN

Subroutine OKTRAN checks to see if the input data tvype
and the output data type are transiovrmable. Types greater
than or equal to ten are assumed to be graphic and are

always transformable to one another. If either type is

103

~greater than 25 an error occurs. Types are checked agalnst
the allowable type transformation matrix (see Table 5.2)
for acceptability. If a 1 is returned it is acceptable.
If a0 is returned it is not acceptable. It i1s called from

the main program.

OTHER

Subroutine OTHER is called from the main program and
acts as a driver for all types other than null, graphic,
packed, zaned and numeric decimal. It handles straight
binary, fixed point, and floating point tvpes. In the ﬁase
of fixsd point, it issues a call to FIKED. In the case
of floating point, - it isgues a call to FLOAT. If other
transformation types occur, an error message 1is printed

out.

OUTPUR

Subroutine OUTPUR 1is calted from the maln program. It
updates the output record counter, writes out the target
record numbeyr and file number on the print file and provides
the correct number of words to be written out. I+ issues

a call to subroutine RITE which writes out 1 record.

104

PARKCON -

Subroutine PRAKCON 1s called by surroutine PZDEC. Given
the source graphic code, the corresponding target graphic
code is returned by table Took-up (see Tahle 5.4). It

operates similarly to TABCON without +the error messages.

PZDEC

Subroutine PZDEC is called from the main program. It
handles packed (IBM 360), zoned (IBM 360) and numeric (IBM
T074) decimal transformations. In zoned and numeric
decimal, the sign is an overpunch on the last character.
In packed decimal, the sign is the rightmost digit. On
output, the sign is placed preceeding the leftmost digit.

One more character is necessary on output than input.

FUNCTIONS

The bit maripulation capabilities have been implemented
as machine dependent functions. IOR and IAND take adwvantage
of ©€DC E500 Fortran, ICIRL, INORL, MKBIT and ITBIT use
functions programmed in assembly language that are available

in the LOGIC package under the MRACE operating system.

105

IRND

The function IAND performa a logical AND between all
of the bits of two words. It iz implemented using .RND.

which is available under CDC B500 Fortran.

TOR

The function IOR performs a logical OR between all of
the bits of two words. It is implemented using .OR. which

is available on CDC 6500 Fortran.

ICIRL

The function ICIRL performs a clrcular left shift of
all bits including the sign bit. Bits leaving the sign
bit are reentered on the right. The arguments are the
location of the word to be shifted and the number of hits
to be shifted left circularly. It is implementad using

the ISHFTLR functicn available in the LOGIC package.

IMNORL

The function INORL performs & left shift with zero f{ill
on the right. The arguments are the location of the word

to be shifted and the number of blts to bhe shifted left.

106

It 1is implemented using the ISHFTL function awvailable in

the LOGIC package.

MKBITH

fhe function MKBIT1 sets & single bit to a one. The
arguments are the location of the word in which the bit
is to be set and the position of the bit to be set to a
ane. Bit positions decrease from left to right. That is
they go from 59 down to 0. It is implemented using the

TBIT function available in the LOGIC package.

ITBIT

The funetlen ITBIT returns the wvalue of a single bit
in a word. The arguments are the location of the word in
which the bit is toc be tested and the position of the hit
to be tested. Bit positions decrease from left to right.
That is they go from 59 down to 0. It is implemented using

the IBRITON function available in the LOGIC package.

107

TABLES |

There are five major tables that were used during
implementation. They are (1) the type transformation tahle,
{2) the allowable type transformation matrix, (3) the master
graphic table, (4) the packed and zoned decimal table and
(5) the computer attribute table. The computer attrikute
table is located in the main program. The four other takles
are read in as data cards. The tables may be modified +to
change graphic codes, add new graphic symbols, limit
transformations between data types or add new computer

attributes.

108

Twpe Transformation Table

The type transformation table consists of the type
number, the type name and the number of bits per graphic
character 1if the +type 1is a member of the graphic type.
There are 25 possible types, 2 of which .are undefined to

allow for further expansion. See Table 5.1.

Table 5.1 Type Transformation Table

TYPE NUMBER TYPE NAME - BITS PER
GRAFHIC

CHHRACTER

NULL

STRAIGHT BIMNARY
FIXED POINT
FLOATING POINT

NUMERIC DECIMAL (IBM 7074)
ZOMED DECIMAL (IBM 360)
PACKED DECIMAL (IBM 360)
DISPLRY (CDC 6500)
INMTERNAL BCD (CDC B8500)
EXTERMNAL BCD (CDC B500)
BCDIC (ALTERNATE)

BCDIC (PRIMCIPLE)

BCD BRSIC

BCD BRASIC + 7

17 BCD (TO BE MODIFIED)

18 BCD (UNIVAC 1108)

19 EXTERNAL BCL. (B6500)

20 INTERNAL BCD (HB35)

21 FIELDATA (UNIVAC 1108)
22 IS0

3 ASCITI (7-8BIT)

24 RSCII (8-BIT)

25 EBCDIC

el B R 4 n I = w N e) B I =T L I

SN =20

m e e R I P R g Y R B By B B g g W]

109

Allowable Type Transformation Matrix

The allowable type transformation matrix is implemented
as an input-output matrix (see Table 5.2). A 1 at the
intersection of input type and output type represents a
valid transformation while & 0 represents an invalid
transformation. This table 1s referenced by subroutine
OKTRAN. Type numbers are the same as in Table 5.1 with
type 10+ representing types 10 to 25. Types & and 6 are

available for future expansion.

Table 5.2 Allowable Type Transformation Matrix

OUTPUT TYPE NUMBER
t 2 3 4 5 5 7 8 910+

1 1 ¢ 0 0 0 0 00 0 6 0

INPUT

5 0 o 0 0 0 0 0O O 0 O
TYFE

b O 0 08 0 0 O D O O
NUMBER

i+l 2 0 0 0 0 Q@ 0 ©0 0O f

110

Master Graphic Table

The master graphic table consists of 16 graphic character
sets and allows up to Y00 graphic symbols (see Table 5.3).
It has been constructed from graphics used in the test cases
discussed in Chapter 3 plUs tables from ather manufacturers.
The initial symbol names were chosen to be those specified
by ANSI (FIPS PUB 1 1868). Other symbol names were added

later. 1In the table, the numeric codes are placed onh the

same card as the grapﬁic symbol name. This allows new

numeric codes or completely new tables to be added to the

existing master table. Once the source graphic code has

been selected, this +tahle 1is pre-sorted on the source

graphic to provide easier table faoﬁ—up by means of a direct

pointer. The type numbers are the same as in Table 5.1,

Paclked and Zoned Decimal Tahkle

The packed and zoned decimal table is in the same format
as the master graphic table. It consists of 16 graphic
character sets and allows 1B graphic symbols (see Table
5.4). The graphics are the numerics (0 to 9) and 6 others
for the plus and minus sign. The table is pre-sorted to
IBM 360 notation with decimal 12 as plus and decimal 13

as minus. The type numbers are the same as Table 5.1.

Table 5.3

NMAONONAWUNR~OMNC X ELC—ANAO IOZEIr A= IOMMOOmD

Master Graphic Table

TYPE NUMRBER

18

19

61
&
63
64
65
66
67
70
71
41
42
43
44
45
46
47
50
51
ee
23
24
25
26
27
20
A
ie
0t
02
03
04
05
a6
07
i0
11

20

21
22
23
24
25
26
er
30
31
41
42
43
44
45
46
47
50
51
62
63
64
€S
66
67
70
71
00
01
02
02
04
05
06
o7
10
11

o2

101
log
103
104
105
106
lo7
110

‘111

lia
113
114
115
lie
117
120
121
iz2
123
124
125
126
1av
130
131

050
061
D6a
DE3

- 064

065
66
067
070
07t

23

104
1e2
103
104
105
106
107
1190
111
112
113
114
115
116
117
120
121
iee
123
124
123
126
127
130
121
132
060
061
os2
Rc2
064
065
065
0s?
070
071

24

241
242
243
244
243
246
247

251
232
293
254
295
29K
257
260
a6l
262
263
264
265
266
267
2ri
2r1
are
120
121
a2
123
124
125
126
iz7
120
121

a5

301
302
303
304
303
306
any
31Q
311
a1
a2
323
224
323
326
327
230
331
342
343
244
345
346
aq7
250
331
360
361
362
363
L4
3635
366
367
370
ot

L1l

Tahle §.3,

cont.

BLARNIK

COrMMA

PERIOD
SEMICOLON
COLON
QUESTION MARK
EXCLAMRTION PT.
RPOSTROPHE
QUOTHRTION MRRKS
AMPERSAND
PERCEMNT
NUMBER SIGN
COMMERCIAL AT
LOZENGE

CENT SIGN
DOLLAR SIGN
ASTERISK
SLANT

PLUS

MINUS

EQUALS

NOT EQUARL
LT. :
LGT,

LE.

.GE.

10

55
&5
57
7T
63

53
47
50
45
N6
Sy
BY
72
73
i
75

11

50
73
33
37
12

53
54
61
20
40
13
14
3z
57
15
35

12

20
a3
73
T

53
54
21
60
40
13
14
72
57
15

-
1

13

20
33
73
56
15
T2
52
14

53
54
21
50
40
13

76
16

14 15 16

20
23
73
5B
15
72
52

&0
34
13
14
L]

53
54
21
40

T6
1B

20
33
73

53
54
21

40

TYPE NUMBER

17

20
33
73
5B
15
72
52
ty

53
54
21
&0
40
13

TE
16

18

20
33
T3
56
15
4
52
Y

0o
35
T
17
37

53
54
21
B0
40
13

76
16

19

20
33
73
56
15
GO0

37
£0
34
13
14

53
o4
21
72
40
35
32
7B
16
57
17

20

20
79
33
56
15
17
77
67
6
32
TH
13
14

53
&y
61
60
52
75

36
16

21

0s
56
75
73
53
54
5%
72

46
52
03
0o
76

47
50
74
42
41
Yy

43
45

22

040
05y
058

arr.

041

048
045

a52
asT
053
D55
075

ary
076

23

Ou40
05y
056
073
072
o7y
041
047
au2
Qug
045
043
100

o4y
052
057
053
055
0758

074
076

24

100
AR
118
133
132
137
101
107
102
106
105
103
240

104
112
117
113
115
135

134
136

25

100
153
113
136
172
157
132
175
177
120
154
173
174

112
133
134
141
116
140
17§

114
156

Zii

Tahle §.

48]

s, cont.

OPENING PRREM.
CLOSING PAREN.
OPENING BRACKET
CLOSTNG BRRACKET
OPENING BRRCE
CLOSING BRACE
UP ARROW

DOWN ARROW
RIGHT ARROUW
LEFT ARROLW

AND

OR

NOT

IDENTITY
REVERSE SLANT
VERTICAL LINE
OVERLINE {TILDE)
UNDERL INE

GRAVE RCCENT
CIRCUMFLEX

X MULTIPLICRTION

MODE CHRANGE DELT
WORD SEPRRATOR
RECORD MRRK HHY
TAPE MARK

GROUF MARK HHHY
SEGMENT MARK

10

o1

- 52

61
G2

70

71
65

BT

T8
&0

74
34
17
72

55
7S
77
52

36
[

12

34
7Y
17
32

55
56
35

37
52

-
1

36

TYPE NUMBER

13 14 15 186 17

34
T4
75
55

36

57
35
32
17
[N

]
g

75
5%

57
35
32
17
VT

37

34
T
75
55

36

57
35
32
17
77
37

18
34
I

75
55

36

57

19

75
55
74
36

g2

20

35
55
12
3y

40

72

3t

21

51
4g
01

02

57

04

22

osa
Q51

100
137

23

nso
051
133
135
173
175

134

174
176
137
140
138

24

110
111
273
275
373

afh

274
37H
378
277
340
276

[
o

)y —
oon

117
137

155

ELL

Tahle 5.

LOWER
L.OWER
LOUWER
LOWER
LOUWER
LOWER
LOWER
LOWER
LOUWER
LOWER
LOWER
LOUER
LOWER
LOWER
LOWER
LOUWER
LOWER
LOWER
LOWER
LOWER
LOWER
LOUWER
LOUWER
LOWER
LOWER
LOWER

3, cont.

CRSE -

CASE
CHSE
CHSE
CHSE
CHSE
CHSE
CRSE
CHSE
CHSE
CRSE
CRSE
CARSE
CRSE
CASE
CASE
CHSE
CARSE
CRSE
CARSE
CHSE
CHSE
CRSE
CRSE
CHSE
CRSE

NAKXECCHNADITVOZINrACHICTMOODD

TYPE NUMBER
10 11 12 13 14 15 18 17 18 13 20 21

22

143
142
143
144
145
146
147
150
151
152
153
154
155
1586
157
160
181
162
163
164
165
166
167
170
171
172

23

141
142
143
14y
145
145
147
150
151
152
153
154
155
156
157
1850
151
162
163
164
165
156
187
17

171
172

24

341
342
343
Iy
345
346
347
350
351
3532
353
3514
355
356
357
360
351
362
363
aBy
365
366
387
370
371
372

25

201
202
203
204
205
206
207
210
211
221
222
223
224
225
226
227
230
231
242
243
244
245
248
247
250
251

Rl

Table 5.3,

cont.

TYPE NUMBER
10 1t 12 13 14 1S 16 17 18 19 20 21

2e

000
00}
og2
003
(1]}
00s
006
ooy
010
011

013
ai4

ale
a1y
020
021
nee
023

025
n2e
Iy
030
031

033
034
035
036

- 037
1?7

23 24 2S

o0o
noi
o2
003
004
003
006
007
019
011
a1e
013
014
0La
Q16
017
=]
021
oza
nz3
024
n2as
026
027
030
0al
032
033
034
025
036
037
177 377

511

Table 5.4

ORIV LEWN—OD

UMNDEF INED
UNDEF INED
PLUS
MINUS
UNDEF INED
UNDEF INED

Packed and Zoned Decimal

10

33
34
35
36
37
40
31
42
43
1

45
4B

11

00
01
02
03
o4
05
Ne
o7
10
11

20
40

12

12
01
02
03
o4
05
o6
o7
10
11

60
40

13

12
01
02
03
04
05
0B
o7
10
11

60
40

14

12
01

03
g4
05
o6
ov
10
11

40

Table

. TYPE NUMBER

16

12
01
az2
03
o4
05
086
07
10
71

ta

17

12
01
02
03
04
05
06
07
10
i1

60
40

18

12
01
02
03
o4
05
ue
ov
10
11

E0
40

18

12
a1
02
03
o4
05
0%
a7
10
11

72
40

20

00
01
02
03
au
0%
0b
av
10
11

60
52

21

60
61
62
B2
64
65
66
67
70
71

42
41

22

060
061
0e2
063
oey
065
066
ae7
070
07t

0s3
0ss

23

060
061
062
063
o6y
065
Ubh6
067
070
071

gs53
055

24

120
121
122
123
124
125
126
127
130
131

113
115

25

360
361
362
363
364
365
366
367
370
371

9t

Computer Qttribute Table

The computer attribute table contains the attributes
of a computer necessary to properly define data that
ariginated on the source computer. In the 1mplemented
program, the attributes. listed in Table &§.5 ' have been
included. There is ample space, 50 entries of which 20
have wvalues, to allow additicnal attrihutes that were

discussed in Chapter 4 to be ‘included at a later tims.

Table 5.5 Computer Attribute Table
ATTRIBUTE COMPUTER
CDC 6500
IBM 360-370
UNIVAC 1108
HIS 635

BITS PER WORD 60 32 36 36

BITS PER BYTE 12 8

BITS PER CHARACTER : ' ' 6) & B

BITS PER DIGIT 4

INTEGER ,
SIGN BIT POSITION 1 1 1 1
LEFTMOST BIT EXCLUDING SIGN 2 2 2 2
LENGTH EXCLUDING SIGN §8 31 35 3%
NEGATIVE HtPthtNIHIION 1 2 2

EXPOMNENT ,
SIGN BIT POSITION 1
LEFTMOST BIT EXCLUDING SIGN 2
LENGTH EXCLUDING SIGN 7
NEGHTIVE REPRESENTATION- 2
BRSE 16 2

FRACTION OR MANTISSR
SIGN BIT POSITION 1 1 1 9
LEFTMOST BIT EXCLUDING SIGN 10
LENGTH EXCLUDING SIGN 24 27
NEGATIVE REPRESENTRTION SM 2

CHARACTERISTIC
LEFTMOST BIT EXCLUDING SIGN 2
LENGTH EXCLUDING SIGN 1
EXCESS 6u

118

SOURCE ANMD TARGET DATAR DESCRIPTION

The input data necessary to describe the data description
of the source tape and the data description of the target
tape may be found 1in the job, file and record descriptor
data sheet (see Figure 5.2) and in the field descriptor

data sheet (see Figure 5.3).

MEMORY _ALLOCHATION AND TIMING

The program compiles on the CDC §500 in less than 62,000

octal words and executes in less than 52,000 octal words.

Timing is a function of the size of each physical record,
the number aof physical recards to be processed on the tape
and the +types of +transformation +to be done. For large
physical records of approximately 5000 6-bit characters
with a straight 6-bit graphic transformation it will execute
as high as 5000 characters per second. For physical records
of 80 characters with straight B-bit graphic transformation
it will execute at approximately 1500 characters per second.
More complicated data descriptions involving blocking
factors, leading pbits to remove etc, will run at abkout

1000 characters per second. Timing for a single {loating

fName, Debartmunt. Difica, Phone, Chargze Numbar

1 K 2 T T N N NN T R O N T N 2N NN TN U T [N S A A N [TN N N |
TR U U0 00 0 K T TN T N A 4 N N I 0 O 2 N N O 0 01 A T
1 Project Description
CARD 2
[SN I A I I T T N I T A T T N OO T N T TN AN I N U N A |
2N N 2 T N N S N TN T T O T T G T U T 2 N N O T A Y T A A I
1 Known Infoirmation [(lape number, density, graphic code, etc.)
CARD 3
[I S T I T T T T A T T T AN T T R O T O I T T T T N W o
SII_Ill_!Illl]lll1]III|II||J_I||I!IIII
CARD U [_. Ly gy | Hanufacturer of Source Compuler (left justliled)
15
L lraaa s .—I Modal Number of Source Computer [left fustiiled)
25 .
l T ' Hanufacturer of Target Computer (lTeft Justified)
a5
L T j Model Mumber of Targat Computer (left justifled)
CFRD 5 ﬁ Tracks (7 ar 3) (0 = end of job)
18 20 ‘
ED Density (200, 556, or BOO0 bits per inch}
30
E Total Number of Files to Precess
10 .
CARD & D Parity [0 = sven, 1 = add)
20 -
m Number of Blaocks (Physical Records) per Flle
{0 = unknown)
ﬂ Bits per Character on the Saurce Computer
(0 = defauit to tables}
ﬂ [llts per Charscter on the Target Computer
(0 = default to tables)
5Q
Bits per Digit on the Source Computer
(0 = dafault to tables)
10
CRRD 7 l [Blockling Factor (Number of Loglcal Records per
e B R RPN L Physical Record) (0 = unknown)
30
L J Header Bits per Physlcal Record to Remove
J_1 1 11 1 & &7 -
Figure 5.2 Joh, Tape, File and Record Descriptor

Data Sheet

119

CARDS 8...n

30

34

s L

YD 42

WE

120

Beginning Field Number
(0 = last field descriptor)

Terminating Field Number
Number of Units to Transform

Type of Units
(left justified)

Source Data Type
Target Data Type

Target Value to be Used Later
as a Repeat Counter
(0 = Mo, 1 = Yes)

Repeat Field Descriptor Based
on Value Found in Field K
(0 = no repeat,

K = the field number)

Concatenate Last Target Field
With First Target Field on
Next Field Descriptor
(0 = No, 1 = Yes)

Output on Completion of This
Field Descriptor
(0 = No, 1 = Yes)

Figure 5.3 Field Descriptor Data Sheet.

121

poinmt number 1is approximately equivalent to straight

transformation of 10 characters.

Exclusive of initialization time (about eight seconds)
and tape read time (a wvariable that ranges between cane
percent and twenfy five percent of the total execution
time), the program will transform between 2500 and 3000

characters per second for an average run.

IMPLEMENTRTION CONSIDERRTIONS

The original program was developed on the CDC 6500.
Mo special design effort was made to take advantage of this
computer however. In designing the system, there were
several ways to implement a procedure. Each of the 'major

implementation considerations will now be discussed.

Bit Extraction

a) shifting routines - The normal left shift and circular
left shift with zero fill could have been rep]acea
by other shifting routines that could accomplish the
same end result with some program modifications.
Since there are no guaranteed shifting instructions

that exist on &all computers, 1t 1is not possihle to

122

choose a universal subset. On a partlcular computer,
the implementations of +these +two shifting ' routines
may not be optimum in either storage or execution

time.

b) bit testing routine - Although this feature could

have bkeen implemented by shifting, masking and non

zero testing, a bit testing routine was used.

c) masking routines - The OR and RAMB capability were

implemented as ~ functions. In CDC 6500 Fortran, the
.OR. and .AND. can be used for non-logical types.
However all references are in a function form so that
the OR functions and the FND functipn can be changed

by am installation to use other routines.

Error Messages

The majority of the error messages are located in a
single subroutine (MESAGE)}. This is done to isolate +the
format statements since they can be machine dependent.
However, it was felt necessary to let the taps read
subroutine (TREED] handle its own machine dependent

rnmessages.

123

l.imitations and Assumptions

If the source computer has & word length longzr than
the target computer, the {ixed point data is examined to
determine if it will exceed the fixed point length of the
target computer. If +the length is exceeded, the field is
flagged and the job is terminated. It is alsoc assumed that
the bkinary point is to the right of the rightmost bit;
The user can circumvent these problems by specifying the
input field as more than one straight binary target field
and then perform the transformation himself. An example
of this would be converting from fixed point on the CDC
6500 (60-bit words) to fixed point on an IBM 370 (32-bit

words) .

Spanning across physical files is not allowed. It is
assumsd that if this is necessary, the user can concatenate

his files in advance.

Up to 100 field descriptor cards are allowed, the maximum
field number 1is 899 and the maximum numker of B-bit
characters per physical record 1s 15000, If a field
descriptor card contains both concatenation and output
options, the output option 1is not exercised, If the
physical record count 1s not zero, upon completion the
source tape will be positiconed at the end of the last record

requested.

124

In the current pruducfion uefsinn of the tape
transformation program, spanning across physical records
is not allowed, sentinel checking has not been implemented,
flow control has not bsen implemented, multiple reel jobs
are not allowed, tape number requests are initiated with
job control cards, the source computer must be manually
selected and the graphic tables must bg manually sorted

prior to a production run.

PROGRAM VERIFICHTION

As the program was developed, test cases were run 1o
verify the different options. Included in these test cases
were nireteen of the twenty cases discussed in Chapter 3
(see Tahle 2.11). Features necessary for case D1 have not
keen implémented vet. These twenty test cases can hest
be described in further detail by examining their job, tape,
file and record descriptors as well as their fleld
descriptors (see Tables 5.8 and 5.7). With minor
modifications to the RITE subroutine, case Ii verified the
possibility of using the program to create a source tape

compatible to the target computer when the target system

was known in adwvance.

Takle 5.6 Job, Tape, File and Record Descriptors for Test Cases

SOURCE COMPUTER

TARGET COMPUTER

TOTAL NUMBER [OF REELS

NUMBER OF TRACKS 0On
ORIGINAL SOURCE TAPE

DENSITY (BITS PER INCH»
CIC 6500 IMPUT TAPE

PARITY

HUMBER OF PHYSICAL FILES
EQURCE BITS PER CHARACTER
TARGET BITS PER CHARACTER
SOURCE BITS PER DIGIT

LOGICAL RECORDS SPAN
ACROSS PHYSICAL RECORDS

ELDEKING FACTOR

HEADER CHARACTERS TO REMOVE
PER PHYSICAL RECORD

LARGEST PHYSICAL RECORD
(IN STHRCE CHARACTERS)

Ci
chC
6500

1EM
360

g0

aon
14

MO

30
NO

2400

m
PDP
11745

chC
6300

oo

anp

ro

iz

NI

14
L]
S

NO

512

CASE
H1
HIS

5000

cbc
6500

596

EVEN

NO

NI

84

I1
1BM
360

CIhC
€500

800

onD

MO

g9

7l20

1z

TBH
360

CDC

‘6300

200

EVEN

ND

YES

306

13
IBM
370,133

CDnC
63500

1
7

800

EVEN

[

L

NO

960

14
I1BH
360-67

cic
6500 !

1 i
9)

80gq i

L)1)
24

2400

Table 5.8, cont.

SOURCE COMPUTER
TARGET CDMPUTER

TOTAL NUMBER OF REELS

HUMBER OF TRACKS OM
ORIGINAL SOURCE TAPE

DENSLITY (BITS FER INCH»
CDC &3500 INPUT TAPE

PARITY

NUMBER OF PHYSICAL FILES
SQURCE BITS PER CHARACTER
TARGET B1TS PER CHARACTER
SOURCE BITS PER DIGIT

LOGICAL RECORDS SPAM
ACROSS PHYSICAL RECORDS

BLOCKING FaCTOR

HEARDER CHARACTERS TO REMOVE

PER PHYSICAL RECORD

LARGEST PHYSICAL RECORD
<IN SOURCE CHARACTERS)

IS
IBM
350

CcDC
6300

801N

(0)))]

NO

NO

20

I
1Bt
7av4

coc
6500

996

EVEN

ro

£ T O

YES

i2
NO

911

CASE

7

1BM

chC
6300

800

EVEM

YES

12
2

5130

I8
TBM
3Irn-16S

CIhC
6500

i
9

800

onD

YES

1.2
YES

ag

19
IBM
370-165

CLC
6500

1
S

800

aop

NO

199
YES

200

IBM
360

CoC

63500

596

EVEN

NO

80

I11

IBM
360-67

cnc
6300

1
T

B00

EVEN

HO

30

N

2400 i

321

Table 5.6, cont.

SOURCE COMPUTER
TARGET COMPUTER

TOTAL NUMBER OF REELS

HUMBER OF TRACKS ON
ORIGINAL SOURCE TaPE

DENSITY (BITS PER INCH)
CDC 6500 INPUT TAPE

PARRITY

HUMBER OF PHYSICAL FILES

SHURCE BITS PER CH&RACTER
TARGET BITS PER CHARACTER
S8QURCE BITS PER DIGIT

LOGICAL RECORDE SPAN
ACROSS PHYSICAL RECORDS

BLOCKING FACTOR

HEADER CHARACTERS TO REMOVE

PER PHYSICAL RECORD

LARGEST PHYSICAL RECORD
{IN S0URCE CHARACTERS)

M
MOopcOompP -
ITI

chc
6500

1
7

800

oDD

NI

20
alnj

20

M2
MaoDcamp
III

CDC
£3500

1
g

3400

ODD

CASE

| U1

SIEMENS UNIVRAC

1108
CIC Coc.
6300 6500
1 1
-l 7
00 500
ond oDo
i 1
8 €
f)
HO YES
| YARIABLE
HE YES
50 107e4

uz
UNIVYAC
1108

coC
6500

1

‘g

800

GDD

YES

VARIABLE
YES

1244

U3
UNIVAC
1106

Ceec
6500

1
g

S35

EVEN

YES

YARIABLE
YES

1344

L2l

128

Tahle 5.7 Field Descriptors for Test Cases

CASE
ct 13} H1 I1 Ia 13 14 I3 1Is

UNIT TYPE
BITS
CHARACTERS x
HORDS

FIELD TYPE
NULL b ®
STRAIGHT BINARY '
FIXED POINT IN .
FLOATING POINT
HUMERIC DECIMAL IN
PACKET DECIMAL IH
BISPLAY (CDC &500) IN OUT OUT OUT OUT OUT BUT QUT oQUT
BCDIC <ALTERNATE?
BCDIT {PRINCIPLE) I IN
BCD BASIC . IN
BCD BASIC + 7 IN o
BCD (UNIVAC 11083
FIELDATA (UNIVAC 1108)
ASCIT (7-BIT)
EBCDIC ouTt IN IN IN

e o

OTHER (12-BIT ASCIID IN
VARIABLE LENGTH LOGICAL RECDRﬁS
CONCATENATED OUTPUT FIELDS b X
auTPUT CONTROL X X
SENTINEL <£ONTROL

/"’

z

Table S.T,I cont.

CASE
I8 I9 I10 It ML M2 S1 w1 U2 U3 ?

UNIT TYPE
BITS X X = X X »
CHARACTERS w ® b3 " b X X X
HORDS b .

FIELD TYPE
NULL ‘ X X , X X X %
STRAIGHT BINARY IN IN IN
FINED FOINT
FLOATING POINT IN
NUMERIC DECIMAL
PACKED DECIMAL
DISPLAY (CDC 6500) guUT OUT OUT OUT OUT OuT OUT OUT auT
BCDIC (ALTERNATE) IN IN
BCDIC ¢PRINCIPLED
BCD BASIC
BCD BASIC + 7 :
ECD <UNIVAC 1108 : IN
FIELDATA CUNIVAC 1108> : IN IN OUT/IN
ASCII ¢7-BIT) IN
EBCDIC I "IN
OTHER <12-BIT ASCII>

VARIABLE LENGTH LOGICAL RECORDS b X X
COMCATENATED OUTPUT FIELDS R » bl X X
OUTPUT CONTROL " X X X n X
SEMTINEL COHTROL b x b o

6Z1

130

MACHINE INDEPENDENCE

Since the major issue of this thesis 1is ‘“portability”,
it was felt that the tape transformation program shoutd

he as portable as possible.

The program, excluding octal.and entry, meets the HANSI

standards as specified under the Mipnesota Fortran

Compiler (MNF). It is currently being compiled, with minor
modifications, under both Fortran G on an IBRMt 370/155 and
the Fortran available on the PDP 11/45. The machine
dependent portions of the program are identified and
separated from the main program. The most flagrant
violations of machine Iindependence are 1in the dimension
and common statements that assume 10 characters per word
and the capability to read and write octal numbers. UWith
minor modifications, a proper read package and bit
manipulation facilities, +this program can successiully run

on ancther computer with a Fortran compiler.

In order to compile the tape transformation program on

another computer, the following steps should be taken:

1} Run all subroutines and the main program through
the Fortran compiler of the target computer.
2) Change dimension and common statements to reflect

size of arrays necessary for sufficient characters.

3)

4)

5)

B)
7)

131

Change format, read and write statements to refléct
maximum number of chafacfars pér'wnrd.

Recode read (TREEDj and write (RITE) subroutines
to reflect new computer dependencies.

Recode functions to allow bit shifting capabilities
and bit testing.

Recode all remaining machine dependent subroutines.

Correct all errors.

132

CHRAPTER &

OPERRTIONAL GUIDELINESIFOR MAGNETIC TRFE INTERCHANGE

GENERAL COMMENTS

The standards and guidelines for magnetic tape

4
interchange that exist were discussed in Chapter 3. Hs
has been noted, the guidelines and standards are not very
definitive and for this reason one may expect to receiwve
magnetic tapes are 1n various formats. MWhat is needed then
are realistic guidelines to follow when generating a source

tape to be used elsewhere and then some techniques to

transfiorm the source tape to a target tape once it arriwves.

GENERATION OF ACCEFTABLE THPES

Excluding physical constraints, the first step 1in
generating acceptable tapes that will be readable at other
installations .is being able to properly describe the data

that resides on the tape.

143

Tape Data Desbription

The necessary parameters to describe the contents of
a tape must be sent with the tape. One can never assume
that the recipient of the tape is completely knowledgeable
regarding 1its contents and format. To alleviate this
problem, it is suggested that the following parameters be
sent.

Manufacturer %nd model number of the source computer

Manufacturer and model number of the tape drive

Total number of reels

Number of tracks on each reel

Density of each resl (in bits per lineal inch}

Total number of physical files on each reel

Total number of logical files in =sach physical f{lle

Parity of each loglcal and physical file

Number of pHysicaT-racords in esach physical file

Number of logical records per physical record (blocking

factor)

Maximum number of characters per physical record

Number of bits per character or byte

Number of bits per digit

Number of bits per word

Data description of each field

Contents of internal labels if they are used

134

Additional Requirements

In additlon to the magrnetlc tape and a description of-
its contents, a listlng, graphic tables, tape control cards,
and decompression algorithms should be sent. External
labels should be placed on the tape reel and a convention

for multiple reel jobs should bea furnished.

Listing

A 1isting of the contents of the tape should be sent
along with the tape. Regardless of the expense of producing
and malling this listing, it provides the recipient of the
data with what he should {ind on the tape. The absence
of a listing may vresult in excessive time consumed in
transforming the tape since the recipient has only a vauge
idea as to its contents. The actual contents of the tape
may not necessarily conform +to the listing due to
decompressed data or the utility routine that placed the

data on the tape.

Graphic Tables

The graphic symbols of the source computer and their
caorresponding numeric code should also accompany the tape.

This allows the recipient to determine which graphic symbols

135

are different between the source computer and the target
computer. It also allows him to determine if the numeric
code for a specific graphic symbol is the same on both the
source and target computers. There are no standard graphic
tables in use today since most installations make at least
one minor change. These tables generally exist in
programming or installation manuals that are available at

the site of the source computer.

Tape Control Cards

A listing of the control cards that generated the source
tape should also be sent. Control cards are very -useful
even if the source computer and its operating system are
very different from those of the target computer. They
provide a frame of reference 1n which further questions
may be asked 1if needed. For example, IBM 380/370 job
control cards provide wvaluable information about thé

contents of a tape even to non IBM installations.

Consider the two following examples:

1) DCB={(RECFM=F,LRECL=51320,BLKSIZE=5130) ,LABEL=(,NL)
2) DCB={RECFM=FB,LRECL=80,BLKSIZE=2400,DEN=2, TRTCH=ET)

In example 1, the logical record size (LRECL) is 5130

characters, hlocksize (BLKSIZE) is 5130 chavacters and there

136

are no labels (ML). Therefore we have an unlabelled tape
with a blocking factor of one with 5130 characters per
physical record. In example 2, the logical record size
is 80 characters, blocksize 1is 2400 characters, density
(DEN} is 800 bpl and even parity with transiation to provide
8§ to & bit translation (ET). Therefore the tape has a
blocking factor of 30 with 2400 6-bit characters per

physical record at BO0 bpi.

Decompression Algorithm

If the tape must be sent in a compressed form, the
algorithm for decompression should also be sent since
without it +the user will not be able to extract the data.
The algorithm describes exactly how to extract the data
from the tape. If the décompressian algorithm can not be
properly described, this is a very strong indication that

the tape should not be sent in this format.

Muttiple Reels

On multiple reel jobs, a physical end of file should
be written before the end of tape reflective mark. In most
cases, the current physical record is completed on writing
after an end of tape reflective spot is reached. ©On reading

however, 1t 1is left to the user to know how many physical

137

records exist_on his reel of tape. R1l systems do not
handle the end of tape reel reflective condition in the
same way. For example, the CDC 604 tape drives have
difficulty readiné data within four inches of the reflective
mark. Ong solution to this problem is always to have an
end of file mark at least one foot before the end of tape

reflective marie.

External Tape Labels

H tape label should be placed on the reel of +tape (not
the container or cannister) containing as much information
as possible. This 1abel should contain pertinent
information about the characteristics of each file such
as the number of tracks, density, number of files, parity,
graphic code, blocking factors and number of records in

each file.

STEPS FOR_ A/ SUCCESSFUL THPE TRAMSFORMATION

The user must always be aware that tapes tend to be
machine dependent as well as dperating system dependent.
As we find out more about the tape, we are able to proceed

further with the transformation. Thus the preocess of

138

transformation is iterative in nature.

There are two programs that are necessary if the user
is to successfully transform a tape. He needs a universal
tape dump program which may or may not be present in the
utility routines in the operating system. He also needs
a tape transformation program.- In addition, he needs to
be aware of the transformation process, manual technigues
for tape transformation and possible causes of errors that

may occur when reading magnetic tapes. These topics are

now discussed.

Universal Tape Dump

For tapes whose contents are wunknown, a tape dump 1is
used to establish density, parity and the exact contents
of the tape prior to its transformation. It ecan also be
used to supply a {irst guess as to the contents of the tape.
The user must also have the capability of being able +to
dump the original tape even after the transformation has
occuirred. With & tape dump it is often possikle to locate
portions of invalid data dus to bit dropouts or minor tape
mal functions. When supplied with this additional
information the input data description can be modified to

help produce valid data.

139

Tape Transformation Program

This program should consist of the topiecs covered in

chapter 4. An implementation was discussed in Chapter &.

The Transformation Process

Before starting the process, the user should gather all
information available to him., This hopefully should consist
of the items that bhave been mentioned earlier in this

chapter under the generation of acceptable tapes.

There 1is a 7 step man-machine process that genera]]?
takes place during the transformation of a tape from one
that 1is acceptable fcr_the source computer to one that is
acceptable to the target computer. Assuming that the tape
is physically compatible as to the number of tracks énd
the width of the tape that are available on the target

machine, these 7 steps are:

1} Check the density of each source tape and the parity

2f each file.

2) Count the number of physical records per file.
Verify that all 'of " the files are there that are
supposed to be there. Identify possible tape errors.
A count of words, bytes or characters per physical

record will often give an indication as to the

140

contents of the tape.

3) Dump the first few physical records of each file
in elther octal, decimal or hexadecimal to wverify
the suggested +transformation code. If the output
of step 2 looks different than was expected, dump
the entire contents of each file. It is better to

do this now than to waste time later.

4) Make & short test run using the suspected
transformation code to werify that It is correet.

If it is not correect, use another transformation

code or modify the current one and repeat this step.

5) Make a complete run to find all errars, Correct
these errors 1f possible. If no errors occur then

skip to step T.
E) Make a final run.
7) Verify that the target tape was generated correctly.

Steps 1 through 3 above can be .accomplished using a
universal tape dump program. Steps 4 through b6 reguire
a tape transformation program. Step 7 regquires an utility
routine capable of wverifying that the target tape was

created without physical errors.

141

Manual Technigues for Tape. Transformation

If the contents of the tape are unknown or partlally
unkrowrn, there are several ftechniques that may be wsed to

help ascertain the graphic code.

1) Dump the tape and look for occurrences of klanks.
If the contents of the tape are card images, strings
of blanks may occur. This gives a hint as teo which

possible code to try.
examples of hlank strings in octal:

5555555555 implies CDC 6500 Display code
BOBD6RE0ED implies internal BCD
2020202020 implies external BCD
0505050505 implies Univac 1108 Fieldata

2004010020040100 implies EBCDIC

2} Look for other characters such as a string of
asterisks, dollar signs, minus signs, etc. that
are repeated. Many programmers use these characters

to separate sections of code.
examples of asterisk strings in octal:

3747474747 implies CDC 6500 Display code
CYySysysusy implies BCD (externmal or internal)
5050505050 implies Univac 1108 Fieldata

2705613427056134 implies EBCDIC

142
examples of dollar sign strings in octal:

5353535353 implies CDC €500 Display code or BCD
Y74 7474747 implies Univac 1108 Fieldata

2B665553326655533 implies EBCDIC
examples of minus sign strings in octal:

Y64E464EYE implies CDC E500 Display code
4040404040 implies BCD (external or internal)
49414149141 implies Univac 1108 Fieldata

3006014030060140 implies EBCDIC

3) ook for expscted patterns. In particular, 1if we
know we are trying to transform a Fortran program,
there should be several card images that have a C
in column one. Thus we can take this numeric code
in column one and back into the graphic symbol with

the help of the master graphic table.
example of a "C" in octal:

03 implies CDC 6500 Display code
23 impliies internal BCD
63 implies external BCD

10 implies Univac 1108 Fieldata

303 implies EBCDIC

143

4) If the tape is compressed, look for special
characters that are wused +to replace sequences of
characters. Examples include replacing 5 blanks
by 3% or replacing 9 zéroes by T# wherse Z and # are

special characters used for compression flags.

5} Telephone the person responsible for generating the

tape for additional information.

Onece the code has been ascertained, it may be necessary

to identify the operating system that produced it.

1} Look for the control words or symbols at the start

of each file or record.

2) Look for repeating codes that appear as end of line
sentinels, end of vecord sentinels and end of file
sentinels.

examples in cctal:
a) 1632 in the rightmest 12 bits of a word implies
a CDC 6500 SCOPE tape

k) 0000 in the rightmost 12 hits of a word implies

a CDC 6500 MACE tape

If the tape appears to be an unknown BCD, the following

steps should be useful.

1] Use BCD Basic as the source code. This will

transform the numerics 0 to 9 and the letters A to Z.

144

2) If BCD Basic looks correct, assume that period,
blank, minus, slash, asterisk, dollar sign and comma
will transform correctly. Use Basic BCD + 7 as the

source code.

3) If we have a Fortran program, it should be obvious
after the first run which are the opening and closing
parenthesis, equals and plus sign. The remaining

characters may not be as easy.

4) After as many characters have been ascertained as
possible, phone the sender and ask him to look on
his listing to see which graphic symbol is used for

the missing numdric codes.

If the tape is not compressed and it 1is not graphic,
it could be either straight binary, fixed point or floating
point. If the range of data is knaﬁn, all transformations
can be tried as 5 first guess before telephoning the person

responsible for generating the source tape.

Magnetic Tape Errors

If persistent tape errors occur on reading the source
tape, it can hbe either the source tape or the tape drive
that is malfunctioning on the target computer. If it is

suspected that the source tape is acceptable, the following

145
questions should be asked:
1) How often are the tape drives cleaned?

2) Is it possible that the tape occupying the tape drive

immediately preceeding yours was a dirty tape?

3) How reliable are the tape drives? Have other users
been having problems with the tape drives? Is there

a specific tape drive that has been giving problems?

If the source tape 1s suspect, it may ke due to one of
the following problems.

1) The bits on the tape are skewed. This happ2ns when
the write head on the tape drive is not perpendicular
to the magnetic tape.

2) The recorded density 1is not within specifications.
This can be checked by developing the tape.

3) The tape is of poor quality. It may be old, dirty,

have creases in it or in general a bad tape.

146

CHAPTER 7

CONCLUSTIONS AND FURTHER RESEARCH RRERS

CONCLUSIONS

A procedure has been described which will transform a
magnhetic tape generated on a source computer to one that
is acceptable on a target computer. The design has been
of a modular form so that improvements can be easily made.
The implementation has shown that tape transiformation can
be removed from requiring the user to revert 1o the level
of assembly language programming. Rside from transiorming
tapes, the implementation has been wuseful in identifying
and locating special graphic symbols, In particular,
machine dependent programming has been observed when the
only occurrences of a graphic symbol appear only in comment

statements in Fortran programs.

The major contributions that have been made are:

1. Developing a methodology and @ program suitable as
a tool for users so that they can transform their

oun tapes.

147

2. Developing a data description that allows 1he user

to define the contents of his magnetic tape.

3. Placing the transformation of tapes at a higher level

than assembly language programming.

4. Identifying machine dependent and machine independent

sections of the transformation process.

5. Providing vrealistic guidelines for magnetic tape

interchange.

EXTENSIONS AND FURTHER RESEARCH

There are several instances where transforming a magnetic
tape using remote batch facilities takes a considerable
amount of elapsed time before the transformation ié
complete, This suggests extending the approach described
in Chapter 4 to include an interactive mode. The user cauld
then be presented with and examine more possibilities which

in turn could result in faster transformation of the tape.

The approach discussed 1in Chapter 4 is optimal neither
in tim2 nor in space. If it were possible 1o properly
describe the data on the magnetic tape, after a limited
number of iterations, the resulting program could then be

passed through a reorganizer that would produce more

148

efficient code. Nylin (1872) has obtained some useful
results in this area that can be used., The savings of
processing time on very large jobs would mores than justify

this extension.

The model has been presented to allow implementation
of an algorithm on a target computer to transform a. source
tape to & target tape. The model could be expanded to
include a host computer for the algorithm. Thus, & sourcs
tap= could be transformed on a host computer into a suitable
Ltarget tape faor the target computer when the target system

was well defined.

There are type limitations imposed on the approach in
Chapter 4 that could be relaxed. The user may wish 1o
transform straight kinary fields to fixed point fields or
floating point fields, etc. HAllowing these additional 1ypse

transformations extends the usefulress of the approach.

A much.larger task would be to expand the model and the
approach to allow for data description on ron-sequential
devices such as disks or drums. This infers allowing an
additional dimersion to he referenced and understanding
the techriques used to place data on these ‘devices. The
impact of these devices on maghetiec tape has already been
shown but the impact of drums on disks and vice versa still

remains an unknown.

LIST OF REFERENCES

ANS T

ANSI

AMNSI

chC

148

LIST OF REFERENCES

"Recorded Magnetic Tape for Information Interchange
(1600 CPI, Phase Encoded)”

Communications of the HCHM

Volume 13/Number 11/November, 13970

pp 579-685

"Recorded Magnetic Tape for Information Interchangs
(200 CPI, NRZI)"

Communications of the HCH

Volume 10/NMumber 11/Navember, 1967

pp 120-737

“Magnetic Tape Labels for Information Interchange”
Communications of the RACM ' :
Volume 10/Number 11/November, 1967

pp T37-743

"8-Bit Subroutine Reference Manual”
Working Copy No. 603534008 A

1972

Control Data Corporation

Clamons, E. H.

"Character Codes: Who Needs Them?"
Honeywell Computer Journal

Volume S5/Number 371971

pp 143-148

Climenson, W. Douglas

“File Organization and Search Technigues”

In: Anhual Review of Information Science and Technology
Volume 1

Edited by Cuadra, Carlos H.

John Wiley (Interscience) 1966

pp 107T-135

150

CODASYL.

"A Survey of Generalized Data Base Management Systems”
CODRSYL Systems Committiee

Available from The Association for Computing Machinery
May 1368

CODRSYL

"Feature RAnalysis of Generalized Data Base Management
Systems”

CODASYL Systems Committee

Available from the Association for Computing Machinery
May 1971

DBTG
"Data Base Task Group Report to the CODASYL Prngrammlng
Language Committes"
CODASYL Data Base Task uroup
Avallable from The Asscciation for Computing Machinery
October 1369
DBTG
"Codasyl Data Base Task Group Report”
CODRSYL Data Base Task Group
Pvallable from the Association for Computing Machinery
Rpril 1971
Diebold
‘Data Management Software”
Diebold Research Program
Document MNumber T24
September 1363
FIPS PURB 1
"USA Standard Code for Information Interchange"
Federal Information Processing Standards Publications
USAS X3.4-1968
U.5. Department of Commerce, National Bureau of
Standards
October 10, 1968
15 pages
FIPS PUEB 2D

“Guidelines for Describing Information Interchange
Faormats"

Federal Information Processing Standards Publications
SD catalog Mo C 13.52:20

U.S. Department of Commerce, National Bureau of
Standards

March 1,1972

11 pages

151

French A., J. Ramirez, H. Solow, N.S. Prywes

Fry,

Fry,

Deslgn of the Data Description Language Prucessar
Moore School Report No. 72-13

University of Pennsylvania
December, 1971

J. P. et al.

"Data Management Systems Survey"
MTP-323, Rev. 1

The MITRE Corporation

May 1969

James P., Randall L. Frank and Ernest A. Hershey
"A Dewvelopmental Model for Data Translation”

ISDOS Working Paper #60

Department of Industrial and Operatiocons Engineering
University of Michigan, Ann Arbor, Michigan

Hugust 1372

Gosden, -John A.

"Software Compatibility: what was promised, what we

have, what we need”
Proceedings Fall Joint Computer Conference 1368

pp &i-87

Guide-Share

TEM

IBM

"Data Base Management System Requirements”

Joint Share and Guide Data Base Reguirements Group
RAvailtable from Share

Movember 11, 1370

"IBM System/380: Planning for the Use of Information
Interchange Standards 0s DOS TOS"

Order Mumber GC 28-6756-0

International Business Machines

June, 1970

"0S Tape Lakels"”
Release 21

Order DMumber GC28-6680-U
International Business Machines Corporation

February 1372

fMlealy, George H., et al.

"Program Transferability Study”
{AD 678 589
Movember 1368

152

MIDMS
"Machine lndependent Data Management System (MIDMS) -
Uzers Reference Manual ”
Uefense Intelligence Agency Manual No 65-~3-8
Headqguarters, Defense Intelligence Agency
Washington, D. C. 20301
March 12, 1971

Minker, Jack and Jerome Sable
"File Organization and Data Management”
In: Annual Review of Information Science and Technology
VMolume 2
Edited by Cuadra, Carlos H.
John Wiley (Interscience) 19367
pp 123-160

Finlker, Jacl
"Gereralized Data Management Systems~Some Perspectives®
Technical Report 63-101
Uriversity of Maryland
Computer Science Center
December 13989

Funamaker, J. F. Jr., D, E. Swenson and A. B. Whinston
“Specifications for the Development of a Generalized
Data Base Planning System”
Mational Computer Conference, 1973
pp 253-270

Mylin, William Carl, Jr.
"Structural Reorganization of Multipass Computer
Syatems”
Fh.D.Thesis
Purdue University, Lafayette, Indiana
Junez, 1972

Ross, H. McG.
"The IS0 Character Code”
The Computer Journal
Volume/Mumber3/October 1364
pp 197-202

Ruth, Stephen S. and Paul J. Kreutzer
"Data Compression for Large Business Files®
Datamation, September 1372
pp 62-66

Sattley, Kirk, Robert Milstein and Stephen Warshall
"On Program Transferability”
Massachusetts Computer Hssociates
CA-7011-2411
Mowember 24, 1970

Senko, Michael E.
"File Organizalion and Management Information Systems”
I Hnnual Review of Information Science and Technology
Yolume 4
Edited by Cuadra, Carlos R,
Encyclopedia Britannica 1963
pp 111-143

Shoffner, Ratph M.
“The Organization, Maintenance, and Search of Machine
Files"
In: Arnual Review of Information Science and Technology
Volume 3
Edited by Cuadra, Carlos A.
Erncyclopedia Britannica 1958
pp 137-1E7

S5ibley, Edgar H. (Director)
"Design Specifications of a Prototype Data Translator"”
Data Translation Project
Uniwveraity of 1ichigan
Department of Industrial and Operations Engineering
Dctober, 1372

SIGFIDET _
"Record of the 1370 ACM SICFIDET Workshop on Data
Description and Access”

Rice University
Rvzilable {rom the Association for Computing Machinery
MNovenmber 15-16, 1970

S5IGFIDET
"Proceedings of 1971 ACH-SIGFIDET Warkshop
Data Description, Accezs and Control”
5an Diego, California
Edited by E. F. Codd and R. L. Dean
Huallable {rom the Association for Computing Machinery
Novembher 11-12, 13971

SIGFIDET
"Froceedings of 1972 ACM-SIGFIDET Workshop
Data Description, Rccess and Control” Denver, Colorado
Edited by R. L. Dean
Fvailable from the RAssociation for Computing Machinery
Movember 29, 30 - December 1, 1972

Smith, Diane Pirog
“An FApproach to Data Description and Conversion®
Moore School Report No. 72-20
University of Pennsylvania
December, 1971

	Magnetic Tape Portability
	Report Number:
	

	tmp.1307986960.pdf.BqiuH

